sched: Update the cpu_power sum during load-balance
[linux-2.6/libata-dev.git] / kernel / sched_fair.c
blob2ff850f90d1e77c02f2efd75a45b72b1a4e382e1
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
37 unsigned int sysctl_sched_latency = 20000000ULL;
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
48 static unsigned int sched_nr_latency = 5;
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
57 * sys_sched_yield() compat mode
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
62 unsigned int __read_mostly sysctl_sched_compat_yield;
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
76 static const struct sched_class fair_sched_class;
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
82 #ifdef CONFIG_FAIR_GROUP_SCHED
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
87 return cfs_rq->rq;
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
93 static inline struct task_struct *task_of(struct sched_entity *se)
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
107 return p->se.cfs_rq;
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
113 return se->cfs_rq;
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
119 return grp->my_q;
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
127 return cfs_rq->tg->cfs_rq[this_cpu];
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
141 return 0;
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
146 return se->parent;
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
152 int depth = 0;
154 for_each_sched_entity(se)
155 depth++;
157 return depth;
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
163 int se_depth, pse_depth;
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
194 static inline struct task_struct *task_of(struct sched_entity *se)
196 return container_of(se, struct task_struct, se);
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
201 return container_of(cfs_rq, struct rq, cfs);
204 #define entity_is_task(se) 1
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
211 return &task_rq(p)->cfs;
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
219 return &rq->cfs;
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
225 return NULL;
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
230 return &cpu_rq(this_cpu)->cfs;
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
239 return 1;
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
244 return NULL;
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
265 return min_vruntime;
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
274 return min_vruntime;
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
280 return (s64)(a->vruntime - b->vruntime) < 0;
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
285 return se->vruntime - cfs_rq->min_vruntime;
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
290 u64 vruntime = cfs_rq->min_vruntime;
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
310 * Enqueue an entity into the rb-tree:
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
321 * Find the right place in the rbtree:
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
363 struct rb_node *left = cfs_rq->rb_leftmost;
365 if (!left)
366 return NULL;
368 return rb_entry(left, struct sched_entity, run_node);
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
375 if (!last)
376 return NULL;
378 return rb_entry(last, struct sched_entity, run_node);
381 /**************************************************************
382 * Scheduling class statistics methods:
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
392 if (ret || !write)
393 return ret;
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
398 return 0;
400 #endif
403 * delta /= w
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
411 return delta;
415 * The idea is to set a period in which each task runs once.
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
420 * p = (nr <= nl) ? l : l*nr/nl
422 static u64 __sched_period(unsigned long nr_running)
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
432 return period;
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
439 * s = p*P[w/rw]
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
458 slice = calc_delta_mine(slice, se->load.weight, load);
460 return slice;
464 * We calculate the vruntime slice of a to be inserted task
466 * vs = s/w
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
481 unsigned long delta_exec_weighted;
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
492 static void update_curr(struct cfs_rq *cfs_rq)
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
498 if (unlikely(!curr))
499 return;
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
516 cpuacct_charge(curtask, delta_exec);
517 account_group_exec_runtime(curtask, delta_exec);
521 static inline void
522 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
528 * Task is being enqueued - update stats:
530 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
536 if (se != cfs_rq->curr)
537 update_stats_wait_start(cfs_rq, se);
540 static void
541 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
548 schedstat_set(se->wait_start, 0);
550 #ifdef CONFIG_SCHEDSTATS
551 if (entity_is_task(se)) {
552 trace_sched_stat_wait(task_of(se),
553 rq_of(cfs_rq)->clock - se->wait_start);
555 #endif
558 static inline void
559 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
565 if (se != cfs_rq->curr)
566 update_stats_wait_end(cfs_rq, se);
570 * We are picking a new current task - update its stats:
572 static inline void
573 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
576 * We are starting a new run period:
578 se->exec_start = rq_of(cfs_rq)->clock;
581 /**************************************************
582 * Scheduling class queueing methods:
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586 static void
587 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
589 cfs_rq->task_weight += weight;
591 #else
592 static inline void
593 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
596 #endif
598 static void
599 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 update_load_add(&cfs_rq->load, se->load.weight);
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604 if (entity_is_task(se)) {
605 add_cfs_task_weight(cfs_rq, se->load.weight);
606 list_add(&se->group_node, &cfs_rq->tasks);
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
612 static void
613 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
615 update_load_sub(&cfs_rq->load, se->load.weight);
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618 if (entity_is_task(se)) {
619 add_cfs_task_weight(cfs_rq, -se->load.weight);
620 list_del_init(&se->group_node);
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
626 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
628 #ifdef CONFIG_SCHEDSTATS
629 struct task_struct *tsk = NULL;
631 if (entity_is_task(se))
632 tsk = task_of(se);
634 if (se->sleep_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
637 if ((s64)delta < 0)
638 delta = 0;
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
646 if (tsk) {
647 account_scheduler_latency(tsk, delta >> 10, 1);
648 trace_sched_stat_sleep(tsk, delta);
651 if (se->block_start) {
652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
654 if ((s64)delta < 0)
655 delta = 0;
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
663 if (tsk) {
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
667 trace_sched_stat_iowait(tsk, delta);
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
680 account_scheduler_latency(tsk, delta >> 10, 0);
683 #endif
686 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
688 #ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
691 if (d < 0)
692 d = -d;
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696 #endif
699 static void
700 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
702 u64 vruntime = cfs_rq->min_vruntime;
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
710 if (initial && sched_feat(START_DEBIT))
711 vruntime += sched_vslice(cfs_rq, se);
713 if (!initial) {
714 /* sleeps upto a single latency don't count. */
715 if (sched_feat(NEW_FAIR_SLEEPERS)) {
716 unsigned long thresh = sysctl_sched_latency;
719 * Convert the sleeper threshold into virtual time.
720 * SCHED_IDLE is a special sub-class. We care about
721 * fairness only relative to other SCHED_IDLE tasks,
722 * all of which have the same weight.
724 if (sched_feat(NORMALIZED_SLEEPER) &&
725 (!entity_is_task(se) ||
726 task_of(se)->policy != SCHED_IDLE))
727 thresh = calc_delta_fair(thresh, se);
729 vruntime -= thresh;
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
736 se->vruntime = vruntime;
739 static void
740 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
743 * Update run-time statistics of the 'current'.
745 update_curr(cfs_rq);
746 account_entity_enqueue(cfs_rq, se);
748 if (wakeup) {
749 place_entity(cfs_rq, se, 0);
750 enqueue_sleeper(cfs_rq, se);
753 update_stats_enqueue(cfs_rq, se);
754 check_spread(cfs_rq, se);
755 if (se != cfs_rq->curr)
756 __enqueue_entity(cfs_rq, se);
759 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
761 if (cfs_rq->last == se)
762 cfs_rq->last = NULL;
764 if (cfs_rq->next == se)
765 cfs_rq->next = NULL;
768 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
770 for_each_sched_entity(se)
771 __clear_buddies(cfs_rq_of(se), se);
774 static void
775 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
778 * Update run-time statistics of the 'current'.
780 update_curr(cfs_rq);
782 update_stats_dequeue(cfs_rq, se);
783 if (sleep) {
784 #ifdef CONFIG_SCHEDSTATS
785 if (entity_is_task(se)) {
786 struct task_struct *tsk = task_of(se);
788 if (tsk->state & TASK_INTERRUPTIBLE)
789 se->sleep_start = rq_of(cfs_rq)->clock;
790 if (tsk->state & TASK_UNINTERRUPTIBLE)
791 se->block_start = rq_of(cfs_rq)->clock;
793 #endif
796 clear_buddies(cfs_rq, se);
798 if (se != cfs_rq->curr)
799 __dequeue_entity(cfs_rq, se);
800 account_entity_dequeue(cfs_rq, se);
801 update_min_vruntime(cfs_rq);
805 * Preempt the current task with a newly woken task if needed:
807 static void
808 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
810 unsigned long ideal_runtime, delta_exec;
812 ideal_runtime = sched_slice(cfs_rq, curr);
813 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
814 if (delta_exec > ideal_runtime) {
815 resched_task(rq_of(cfs_rq)->curr);
817 * The current task ran long enough, ensure it doesn't get
818 * re-elected due to buddy favours.
820 clear_buddies(cfs_rq, curr);
824 static void
825 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
827 /* 'current' is not kept within the tree. */
828 if (se->on_rq) {
830 * Any task has to be enqueued before it get to execute on
831 * a CPU. So account for the time it spent waiting on the
832 * runqueue.
834 update_stats_wait_end(cfs_rq, se);
835 __dequeue_entity(cfs_rq, se);
838 update_stats_curr_start(cfs_rq, se);
839 cfs_rq->curr = se;
840 #ifdef CONFIG_SCHEDSTATS
842 * Track our maximum slice length, if the CPU's load is at
843 * least twice that of our own weight (i.e. dont track it
844 * when there are only lesser-weight tasks around):
846 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
847 se->slice_max = max(se->slice_max,
848 se->sum_exec_runtime - se->prev_sum_exec_runtime);
850 #endif
851 se->prev_sum_exec_runtime = se->sum_exec_runtime;
854 static int
855 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
857 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
859 struct sched_entity *se = __pick_next_entity(cfs_rq);
861 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
862 return cfs_rq->next;
864 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
865 return cfs_rq->last;
867 return se;
870 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
873 * If still on the runqueue then deactivate_task()
874 * was not called and update_curr() has to be done:
876 if (prev->on_rq)
877 update_curr(cfs_rq);
879 check_spread(cfs_rq, prev);
880 if (prev->on_rq) {
881 update_stats_wait_start(cfs_rq, prev);
882 /* Put 'current' back into the tree. */
883 __enqueue_entity(cfs_rq, prev);
885 cfs_rq->curr = NULL;
888 static void
889 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
892 * Update run-time statistics of the 'current'.
894 update_curr(cfs_rq);
896 #ifdef CONFIG_SCHED_HRTICK
898 * queued ticks are scheduled to match the slice, so don't bother
899 * validating it and just reschedule.
901 if (queued) {
902 resched_task(rq_of(cfs_rq)->curr);
903 return;
906 * don't let the period tick interfere with the hrtick preemption
908 if (!sched_feat(DOUBLE_TICK) &&
909 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
910 return;
911 #endif
913 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
914 check_preempt_tick(cfs_rq, curr);
917 /**************************************************
918 * CFS operations on tasks:
921 #ifdef CONFIG_SCHED_HRTICK
922 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
924 struct sched_entity *se = &p->se;
925 struct cfs_rq *cfs_rq = cfs_rq_of(se);
927 WARN_ON(task_rq(p) != rq);
929 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
930 u64 slice = sched_slice(cfs_rq, se);
931 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
932 s64 delta = slice - ran;
934 if (delta < 0) {
935 if (rq->curr == p)
936 resched_task(p);
937 return;
941 * Don't schedule slices shorter than 10000ns, that just
942 * doesn't make sense. Rely on vruntime for fairness.
944 if (rq->curr != p)
945 delta = max_t(s64, 10000LL, delta);
947 hrtick_start(rq, delta);
952 * called from enqueue/dequeue and updates the hrtick when the
953 * current task is from our class and nr_running is low enough
954 * to matter.
956 static void hrtick_update(struct rq *rq)
958 struct task_struct *curr = rq->curr;
960 if (curr->sched_class != &fair_sched_class)
961 return;
963 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
964 hrtick_start_fair(rq, curr);
966 #else /* !CONFIG_SCHED_HRTICK */
967 static inline void
968 hrtick_start_fair(struct rq *rq, struct task_struct *p)
972 static inline void hrtick_update(struct rq *rq)
975 #endif
978 * The enqueue_task method is called before nr_running is
979 * increased. Here we update the fair scheduling stats and
980 * then put the task into the rbtree:
982 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
984 struct cfs_rq *cfs_rq;
985 struct sched_entity *se = &p->se;
987 for_each_sched_entity(se) {
988 if (se->on_rq)
989 break;
990 cfs_rq = cfs_rq_of(se);
991 enqueue_entity(cfs_rq, se, wakeup);
992 wakeup = 1;
995 hrtick_update(rq);
999 * The dequeue_task method is called before nr_running is
1000 * decreased. We remove the task from the rbtree and
1001 * update the fair scheduling stats:
1003 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1005 struct cfs_rq *cfs_rq;
1006 struct sched_entity *se = &p->se;
1008 for_each_sched_entity(se) {
1009 cfs_rq = cfs_rq_of(se);
1010 dequeue_entity(cfs_rq, se, sleep);
1011 /* Don't dequeue parent if it has other entities besides us */
1012 if (cfs_rq->load.weight)
1013 break;
1014 sleep = 1;
1017 hrtick_update(rq);
1021 * sched_yield() support is very simple - we dequeue and enqueue.
1023 * If compat_yield is turned on then we requeue to the end of the tree.
1025 static void yield_task_fair(struct rq *rq)
1027 struct task_struct *curr = rq->curr;
1028 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1029 struct sched_entity *rightmost, *se = &curr->se;
1032 * Are we the only task in the tree?
1034 if (unlikely(cfs_rq->nr_running == 1))
1035 return;
1037 clear_buddies(cfs_rq, se);
1039 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1040 update_rq_clock(rq);
1042 * Update run-time statistics of the 'current'.
1044 update_curr(cfs_rq);
1046 return;
1049 * Find the rightmost entry in the rbtree:
1051 rightmost = __pick_last_entity(cfs_rq);
1053 * Already in the rightmost position?
1055 if (unlikely(!rightmost || entity_before(rightmost, se)))
1056 return;
1059 * Minimally necessary key value to be last in the tree:
1060 * Upon rescheduling, sched_class::put_prev_task() will place
1061 * 'current' within the tree based on its new key value.
1063 se->vruntime = rightmost->vruntime + 1;
1067 * wake_idle() will wake a task on an idle cpu if task->cpu is
1068 * not idle and an idle cpu is available. The span of cpus to
1069 * search starts with cpus closest then further out as needed,
1070 * so we always favor a closer, idle cpu.
1071 * Domains may include CPUs that are not usable for migration,
1072 * hence we need to mask them out (rq->rd->online)
1074 * Returns the CPU we should wake onto.
1076 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1078 #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1080 static int wake_idle(int cpu, struct task_struct *p)
1082 struct sched_domain *sd;
1083 int i;
1084 unsigned int chosen_wakeup_cpu;
1085 int this_cpu;
1086 struct rq *task_rq = task_rq(p);
1089 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1090 * are idle and this is not a kernel thread and this task's affinity
1091 * allows it to be moved to preferred cpu, then just move!
1094 this_cpu = smp_processor_id();
1095 chosen_wakeup_cpu =
1096 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1098 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1099 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1100 p->mm && !(p->flags & PF_KTHREAD) &&
1101 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1102 return chosen_wakeup_cpu;
1105 * If it is idle, then it is the best cpu to run this task.
1107 * This cpu is also the best, if it has more than one task already.
1108 * Siblings must be also busy(in most cases) as they didn't already
1109 * pickup the extra load from this cpu and hence we need not check
1110 * sibling runqueue info. This will avoid the checks and cache miss
1111 * penalities associated with that.
1113 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1114 return cpu;
1116 for_each_domain(cpu, sd) {
1117 if ((sd->flags & SD_WAKE_IDLE)
1118 || ((sd->flags & SD_WAKE_IDLE_FAR)
1119 && !task_hot(p, task_rq->clock, sd))) {
1120 for_each_cpu_and(i, sched_domain_span(sd),
1121 &p->cpus_allowed) {
1122 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1123 if (i != task_cpu(p)) {
1124 schedstat_inc(p,
1125 se.nr_wakeups_idle);
1127 return i;
1130 } else {
1131 break;
1134 return cpu;
1136 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1137 static inline int wake_idle(int cpu, struct task_struct *p)
1139 return cpu;
1141 #endif
1143 #ifdef CONFIG_SMP
1145 #ifdef CONFIG_FAIR_GROUP_SCHED
1147 * effective_load() calculates the load change as seen from the root_task_group
1149 * Adding load to a group doesn't make a group heavier, but can cause movement
1150 * of group shares between cpus. Assuming the shares were perfectly aligned one
1151 * can calculate the shift in shares.
1153 * The problem is that perfectly aligning the shares is rather expensive, hence
1154 * we try to avoid doing that too often - see update_shares(), which ratelimits
1155 * this change.
1157 * We compensate this by not only taking the current delta into account, but
1158 * also considering the delta between when the shares were last adjusted and
1159 * now.
1161 * We still saw a performance dip, some tracing learned us that between
1162 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1163 * significantly. Therefore try to bias the error in direction of failing
1164 * the affine wakeup.
1167 static long effective_load(struct task_group *tg, int cpu,
1168 long wl, long wg)
1170 struct sched_entity *se = tg->se[cpu];
1172 if (!tg->parent)
1173 return wl;
1176 * By not taking the decrease of shares on the other cpu into
1177 * account our error leans towards reducing the affine wakeups.
1179 if (!wl && sched_feat(ASYM_EFF_LOAD))
1180 return wl;
1182 for_each_sched_entity(se) {
1183 long S, rw, s, a, b;
1184 long more_w;
1187 * Instead of using this increment, also add the difference
1188 * between when the shares were last updated and now.
1190 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1191 wl += more_w;
1192 wg += more_w;
1194 S = se->my_q->tg->shares;
1195 s = se->my_q->shares;
1196 rw = se->my_q->rq_weight;
1198 a = S*(rw + wl);
1199 b = S*rw + s*wg;
1201 wl = s*(a-b);
1203 if (likely(b))
1204 wl /= b;
1207 * Assume the group is already running and will
1208 * thus already be accounted for in the weight.
1210 * That is, moving shares between CPUs, does not
1211 * alter the group weight.
1213 wg = 0;
1216 return wl;
1219 #else
1221 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1222 unsigned long wl, unsigned long wg)
1224 return wl;
1227 #endif
1229 static int
1230 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1231 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1232 int idx, unsigned long load, unsigned long this_load,
1233 unsigned int imbalance)
1235 struct task_struct *curr = this_rq->curr;
1236 struct task_group *tg;
1237 unsigned long tl = this_load;
1238 unsigned long tl_per_task;
1239 unsigned long weight;
1240 int balanced;
1242 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1243 return 0;
1245 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1246 p->se.avg_overlap > sysctl_sched_migration_cost))
1247 sync = 0;
1250 * If sync wakeup then subtract the (maximum possible)
1251 * effect of the currently running task from the load
1252 * of the current CPU:
1254 if (sync) {
1255 tg = task_group(current);
1256 weight = current->se.load.weight;
1258 tl += effective_load(tg, this_cpu, -weight, -weight);
1259 load += effective_load(tg, prev_cpu, 0, -weight);
1262 tg = task_group(p);
1263 weight = p->se.load.weight;
1265 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1266 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1269 * If the currently running task will sleep within
1270 * a reasonable amount of time then attract this newly
1271 * woken task:
1273 if (sync && balanced)
1274 return 1;
1276 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1277 tl_per_task = cpu_avg_load_per_task(this_cpu);
1279 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1280 tl_per_task)) {
1282 * This domain has SD_WAKE_AFFINE and
1283 * p is cache cold in this domain, and
1284 * there is no bad imbalance.
1286 schedstat_inc(this_sd, ttwu_move_affine);
1287 schedstat_inc(p, se.nr_wakeups_affine);
1289 return 1;
1291 return 0;
1294 static int select_task_rq_fair(struct task_struct *p, int sync)
1296 struct sched_domain *sd, *this_sd = NULL;
1297 int prev_cpu, this_cpu, new_cpu;
1298 unsigned long load, this_load;
1299 struct rq *this_rq;
1300 unsigned int imbalance;
1301 int idx;
1303 prev_cpu = task_cpu(p);
1304 this_cpu = smp_processor_id();
1305 this_rq = cpu_rq(this_cpu);
1306 new_cpu = prev_cpu;
1308 if (prev_cpu == this_cpu)
1309 goto out;
1311 * 'this_sd' is the first domain that both
1312 * this_cpu and prev_cpu are present in:
1314 for_each_domain(this_cpu, sd) {
1315 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1316 this_sd = sd;
1317 break;
1321 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1322 goto out;
1325 * Check for affine wakeup and passive balancing possibilities.
1327 if (!this_sd)
1328 goto out;
1330 idx = this_sd->wake_idx;
1332 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1334 load = source_load(prev_cpu, idx);
1335 this_load = target_load(this_cpu, idx);
1337 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1338 load, this_load, imbalance))
1339 return this_cpu;
1342 * Start passive balancing when half the imbalance_pct
1343 * limit is reached.
1345 if (this_sd->flags & SD_WAKE_BALANCE) {
1346 if (imbalance*this_load <= 100*load) {
1347 schedstat_inc(this_sd, ttwu_move_balance);
1348 schedstat_inc(p, se.nr_wakeups_passive);
1349 return this_cpu;
1353 out:
1354 return wake_idle(new_cpu, p);
1356 #endif /* CONFIG_SMP */
1359 * Adaptive granularity
1361 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1362 * with the limit of wakeup_gran -- when it never does a wakeup.
1364 * So the smaller avg_wakeup is the faster we want this task to preempt,
1365 * but we don't want to treat the preemptee unfairly and therefore allow it
1366 * to run for at least the amount of time we'd like to run.
1368 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1370 * NOTE: we use *nr_running to scale with load, this nicely matches the
1371 * degrading latency on load.
1373 static unsigned long
1374 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1376 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1377 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1378 u64 gran = 0;
1380 if (this_run < expected_wakeup)
1381 gran = expected_wakeup - this_run;
1383 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1386 static unsigned long
1387 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1389 unsigned long gran = sysctl_sched_wakeup_granularity;
1391 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1392 gran = adaptive_gran(curr, se);
1395 * Since its curr running now, convert the gran from real-time
1396 * to virtual-time in his units.
1398 if (sched_feat(ASYM_GRAN)) {
1400 * By using 'se' instead of 'curr' we penalize light tasks, so
1401 * they get preempted easier. That is, if 'se' < 'curr' then
1402 * the resulting gran will be larger, therefore penalizing the
1403 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1404 * be smaller, again penalizing the lighter task.
1406 * This is especially important for buddies when the leftmost
1407 * task is higher priority than the buddy.
1409 if (unlikely(se->load.weight != NICE_0_LOAD))
1410 gran = calc_delta_fair(gran, se);
1411 } else {
1412 if (unlikely(curr->load.weight != NICE_0_LOAD))
1413 gran = calc_delta_fair(gran, curr);
1416 return gran;
1420 * Should 'se' preempt 'curr'.
1422 * |s1
1423 * |s2
1424 * |s3
1426 * |<--->|c
1428 * w(c, s1) = -1
1429 * w(c, s2) = 0
1430 * w(c, s3) = 1
1433 static int
1434 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1436 s64 gran, vdiff = curr->vruntime - se->vruntime;
1438 if (vdiff <= 0)
1439 return -1;
1441 gran = wakeup_gran(curr, se);
1442 if (vdiff > gran)
1443 return 1;
1445 return 0;
1448 static void set_last_buddy(struct sched_entity *se)
1450 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1451 for_each_sched_entity(se)
1452 cfs_rq_of(se)->last = se;
1456 static void set_next_buddy(struct sched_entity *se)
1458 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1459 for_each_sched_entity(se)
1460 cfs_rq_of(se)->next = se;
1465 * Preempt the current task with a newly woken task if needed:
1467 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1469 struct task_struct *curr = rq->curr;
1470 struct sched_entity *se = &curr->se, *pse = &p->se;
1471 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1473 update_curr(cfs_rq);
1475 if (unlikely(rt_prio(p->prio))) {
1476 resched_task(curr);
1477 return;
1480 if (unlikely(p->sched_class != &fair_sched_class))
1481 return;
1483 if (unlikely(se == pse))
1484 return;
1487 * Only set the backward buddy when the current task is still on the
1488 * rq. This can happen when a wakeup gets interleaved with schedule on
1489 * the ->pre_schedule() or idle_balance() point, either of which can
1490 * drop the rq lock.
1492 * Also, during early boot the idle thread is in the fair class, for
1493 * obvious reasons its a bad idea to schedule back to the idle thread.
1495 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1496 set_last_buddy(se);
1497 set_next_buddy(pse);
1500 * We can come here with TIF_NEED_RESCHED already set from new task
1501 * wake up path.
1503 if (test_tsk_need_resched(curr))
1504 return;
1507 * Batch and idle tasks do not preempt (their preemption is driven by
1508 * the tick):
1510 if (unlikely(p->policy != SCHED_NORMAL))
1511 return;
1513 /* Idle tasks are by definition preempted by everybody. */
1514 if (unlikely(curr->policy == SCHED_IDLE)) {
1515 resched_task(curr);
1516 return;
1519 if (!sched_feat(WAKEUP_PREEMPT))
1520 return;
1522 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1523 (se->avg_overlap < sysctl_sched_migration_cost &&
1524 pse->avg_overlap < sysctl_sched_migration_cost))) {
1525 resched_task(curr);
1526 return;
1529 find_matching_se(&se, &pse);
1531 BUG_ON(!pse);
1533 if (wakeup_preempt_entity(se, pse) == 1)
1534 resched_task(curr);
1537 static struct task_struct *pick_next_task_fair(struct rq *rq)
1539 struct task_struct *p;
1540 struct cfs_rq *cfs_rq = &rq->cfs;
1541 struct sched_entity *se;
1543 if (unlikely(!cfs_rq->nr_running))
1544 return NULL;
1546 do {
1547 se = pick_next_entity(cfs_rq);
1549 * If se was a buddy, clear it so that it will have to earn
1550 * the favour again.
1552 __clear_buddies(cfs_rq, se);
1553 set_next_entity(cfs_rq, se);
1554 cfs_rq = group_cfs_rq(se);
1555 } while (cfs_rq);
1557 p = task_of(se);
1558 hrtick_start_fair(rq, p);
1560 return p;
1564 * Account for a descheduled task:
1566 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1568 struct sched_entity *se = &prev->se;
1569 struct cfs_rq *cfs_rq;
1571 for_each_sched_entity(se) {
1572 cfs_rq = cfs_rq_of(se);
1573 put_prev_entity(cfs_rq, se);
1577 #ifdef CONFIG_SMP
1578 /**************************************************
1579 * Fair scheduling class load-balancing methods:
1583 * Load-balancing iterator. Note: while the runqueue stays locked
1584 * during the whole iteration, the current task might be
1585 * dequeued so the iterator has to be dequeue-safe. Here we
1586 * achieve that by always pre-iterating before returning
1587 * the current task:
1589 static struct task_struct *
1590 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1592 struct task_struct *p = NULL;
1593 struct sched_entity *se;
1595 if (next == &cfs_rq->tasks)
1596 return NULL;
1598 se = list_entry(next, struct sched_entity, group_node);
1599 p = task_of(se);
1600 cfs_rq->balance_iterator = next->next;
1602 return p;
1605 static struct task_struct *load_balance_start_fair(void *arg)
1607 struct cfs_rq *cfs_rq = arg;
1609 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1612 static struct task_struct *load_balance_next_fair(void *arg)
1614 struct cfs_rq *cfs_rq = arg;
1616 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1619 static unsigned long
1620 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1621 unsigned long max_load_move, struct sched_domain *sd,
1622 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1623 struct cfs_rq *cfs_rq)
1625 struct rq_iterator cfs_rq_iterator;
1627 cfs_rq_iterator.start = load_balance_start_fair;
1628 cfs_rq_iterator.next = load_balance_next_fair;
1629 cfs_rq_iterator.arg = cfs_rq;
1631 return balance_tasks(this_rq, this_cpu, busiest,
1632 max_load_move, sd, idle, all_pinned,
1633 this_best_prio, &cfs_rq_iterator);
1636 #ifdef CONFIG_FAIR_GROUP_SCHED
1637 static unsigned long
1638 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1639 unsigned long max_load_move,
1640 struct sched_domain *sd, enum cpu_idle_type idle,
1641 int *all_pinned, int *this_best_prio)
1643 long rem_load_move = max_load_move;
1644 int busiest_cpu = cpu_of(busiest);
1645 struct task_group *tg;
1647 rcu_read_lock();
1648 update_h_load(busiest_cpu);
1650 list_for_each_entry_rcu(tg, &task_groups, list) {
1651 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1652 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1653 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1654 u64 rem_load, moved_load;
1657 * empty group
1659 if (!busiest_cfs_rq->task_weight)
1660 continue;
1662 rem_load = (u64)rem_load_move * busiest_weight;
1663 rem_load = div_u64(rem_load, busiest_h_load + 1);
1665 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1666 rem_load, sd, idle, all_pinned, this_best_prio,
1667 tg->cfs_rq[busiest_cpu]);
1669 if (!moved_load)
1670 continue;
1672 moved_load *= busiest_h_load;
1673 moved_load = div_u64(moved_load, busiest_weight + 1);
1675 rem_load_move -= moved_load;
1676 if (rem_load_move < 0)
1677 break;
1679 rcu_read_unlock();
1681 return max_load_move - rem_load_move;
1683 #else
1684 static unsigned long
1685 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1686 unsigned long max_load_move,
1687 struct sched_domain *sd, enum cpu_idle_type idle,
1688 int *all_pinned, int *this_best_prio)
1690 return __load_balance_fair(this_rq, this_cpu, busiest,
1691 max_load_move, sd, idle, all_pinned,
1692 this_best_prio, &busiest->cfs);
1694 #endif
1696 static int
1697 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1698 struct sched_domain *sd, enum cpu_idle_type idle)
1700 struct cfs_rq *busy_cfs_rq;
1701 struct rq_iterator cfs_rq_iterator;
1703 cfs_rq_iterator.start = load_balance_start_fair;
1704 cfs_rq_iterator.next = load_balance_next_fair;
1706 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1708 * pass busy_cfs_rq argument into
1709 * load_balance_[start|next]_fair iterators
1711 cfs_rq_iterator.arg = busy_cfs_rq;
1712 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1713 &cfs_rq_iterator))
1714 return 1;
1717 return 0;
1719 #endif /* CONFIG_SMP */
1722 * scheduler tick hitting a task of our scheduling class:
1724 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1726 struct cfs_rq *cfs_rq;
1727 struct sched_entity *se = &curr->se;
1729 for_each_sched_entity(se) {
1730 cfs_rq = cfs_rq_of(se);
1731 entity_tick(cfs_rq, se, queued);
1736 * Share the fairness runtime between parent and child, thus the
1737 * total amount of pressure for CPU stays equal - new tasks
1738 * get a chance to run but frequent forkers are not allowed to
1739 * monopolize the CPU. Note: the parent runqueue is locked,
1740 * the child is not running yet.
1742 static void task_new_fair(struct rq *rq, struct task_struct *p)
1744 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1745 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1746 int this_cpu = smp_processor_id();
1748 sched_info_queued(p);
1750 update_curr(cfs_rq);
1751 place_entity(cfs_rq, se, 1);
1753 /* 'curr' will be NULL if the child belongs to a different group */
1754 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1755 curr && entity_before(curr, se)) {
1757 * Upon rescheduling, sched_class::put_prev_task() will place
1758 * 'current' within the tree based on its new key value.
1760 swap(curr->vruntime, se->vruntime);
1761 resched_task(rq->curr);
1764 enqueue_task_fair(rq, p, 0);
1768 * Priority of the task has changed. Check to see if we preempt
1769 * the current task.
1771 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1772 int oldprio, int running)
1775 * Reschedule if we are currently running on this runqueue and
1776 * our priority decreased, or if we are not currently running on
1777 * this runqueue and our priority is higher than the current's
1779 if (running) {
1780 if (p->prio > oldprio)
1781 resched_task(rq->curr);
1782 } else
1783 check_preempt_curr(rq, p, 0);
1787 * We switched to the sched_fair class.
1789 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1790 int running)
1793 * We were most likely switched from sched_rt, so
1794 * kick off the schedule if running, otherwise just see
1795 * if we can still preempt the current task.
1797 if (running)
1798 resched_task(rq->curr);
1799 else
1800 check_preempt_curr(rq, p, 0);
1803 /* Account for a task changing its policy or group.
1805 * This routine is mostly called to set cfs_rq->curr field when a task
1806 * migrates between groups/classes.
1808 static void set_curr_task_fair(struct rq *rq)
1810 struct sched_entity *se = &rq->curr->se;
1812 for_each_sched_entity(se)
1813 set_next_entity(cfs_rq_of(se), se);
1816 #ifdef CONFIG_FAIR_GROUP_SCHED
1817 static void moved_group_fair(struct task_struct *p)
1819 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1821 update_curr(cfs_rq);
1822 place_entity(cfs_rq, &p->se, 1);
1824 #endif
1827 * All the scheduling class methods:
1829 static const struct sched_class fair_sched_class = {
1830 .next = &idle_sched_class,
1831 .enqueue_task = enqueue_task_fair,
1832 .dequeue_task = dequeue_task_fair,
1833 .yield_task = yield_task_fair,
1835 .check_preempt_curr = check_preempt_wakeup,
1837 .pick_next_task = pick_next_task_fair,
1838 .put_prev_task = put_prev_task_fair,
1840 #ifdef CONFIG_SMP
1841 .select_task_rq = select_task_rq_fair,
1843 .load_balance = load_balance_fair,
1844 .move_one_task = move_one_task_fair,
1845 #endif
1847 .set_curr_task = set_curr_task_fair,
1848 .task_tick = task_tick_fair,
1849 .task_new = task_new_fair,
1851 .prio_changed = prio_changed_fair,
1852 .switched_to = switched_to_fair,
1854 #ifdef CONFIG_FAIR_GROUP_SCHED
1855 .moved_group = moved_group_fair,
1856 #endif
1859 #ifdef CONFIG_SCHED_DEBUG
1860 static void print_cfs_stats(struct seq_file *m, int cpu)
1862 struct cfs_rq *cfs_rq;
1864 rcu_read_lock();
1865 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1866 print_cfs_rq(m, cpu, cfs_rq);
1867 rcu_read_unlock();
1869 #endif