memcg: add mm_vmscan_memcg_isolate tracepoint
[linux-2.6/libata-dev.git] / mm / memcontrol.c
blob0576e9e64586df7dd0aa0d182966c32df92384c2
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
52 #include <asm/uaccess.h>
54 #include <trace/events/vmscan.h>
56 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
57 #define MEM_CGROUP_RECLAIM_RETRIES 5
58 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
61 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
62 int do_swap_account __read_mostly;
63 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
64 #else
65 #define do_swap_account (0)
66 #endif
69 * Per memcg event counter is incremented at every pagein/pageout. This counter
70 * is used for trigger some periodic events. This is straightforward and better
71 * than using jiffies etc. to handle periodic memcg event.
73 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
76 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
79 * Statistics for memory cgroup.
81 enum mem_cgroup_stat_index {
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
88 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
89 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_EVENTS, /* incremented at every pagein/pageout */
93 MEM_CGROUP_STAT_NSTATS,
96 struct mem_cgroup_stat_cpu {
97 s64 count[MEM_CGROUP_STAT_NSTATS];
101 * per-zone information in memory controller.
103 struct mem_cgroup_per_zone {
105 * spin_lock to protect the per cgroup LRU
107 struct list_head lists[NR_LRU_LISTS];
108 unsigned long count[NR_LRU_LISTS];
110 struct zone_reclaim_stat reclaim_stat;
111 struct rb_node tree_node; /* RB tree node */
112 unsigned long long usage_in_excess;/* Set to the value by which */
113 /* the soft limit is exceeded*/
114 bool on_tree;
115 struct mem_cgroup *mem; /* Back pointer, we cannot */
116 /* use container_of */
118 /* Macro for accessing counter */
119 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
121 struct mem_cgroup_per_node {
122 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125 struct mem_cgroup_lru_info {
126 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
130 * Cgroups above their limits are maintained in a RB-Tree, independent of
131 * their hierarchy representation
134 struct mem_cgroup_tree_per_zone {
135 struct rb_root rb_root;
136 spinlock_t lock;
139 struct mem_cgroup_tree_per_node {
140 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
143 struct mem_cgroup_tree {
144 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
147 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 struct mem_cgroup_threshold {
150 struct eventfd_ctx *eventfd;
151 u64 threshold;
154 /* For threshold */
155 struct mem_cgroup_threshold_ary {
156 /* An array index points to threshold just below usage. */
157 int current_threshold;
158 /* Size of entries[] */
159 unsigned int size;
160 /* Array of thresholds */
161 struct mem_cgroup_threshold entries[0];
164 struct mem_cgroup_thresholds {
165 /* Primary thresholds array */
166 struct mem_cgroup_threshold_ary *primary;
168 * Spare threshold array.
169 * This is needed to make mem_cgroup_unregister_event() "never fail".
170 * It must be able to store at least primary->size - 1 entries.
172 struct mem_cgroup_threshold_ary *spare;
175 /* for OOM */
176 struct mem_cgroup_eventfd_list {
177 struct list_head list;
178 struct eventfd_ctx *eventfd;
181 static void mem_cgroup_threshold(struct mem_cgroup *mem);
182 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
185 * The memory controller data structure. The memory controller controls both
186 * page cache and RSS per cgroup. We would eventually like to provide
187 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
188 * to help the administrator determine what knobs to tune.
190 * TODO: Add a water mark for the memory controller. Reclaim will begin when
191 * we hit the water mark. May be even add a low water mark, such that
192 * no reclaim occurs from a cgroup at it's low water mark, this is
193 * a feature that will be implemented much later in the future.
195 struct mem_cgroup {
196 struct cgroup_subsys_state css;
198 * the counter to account for memory usage
200 struct res_counter res;
202 * the counter to account for mem+swap usage.
204 struct res_counter memsw;
206 * Per cgroup active and inactive list, similar to the
207 * per zone LRU lists.
209 struct mem_cgroup_lru_info info;
212 protect against reclaim related member.
214 spinlock_t reclaim_param_lock;
217 * While reclaiming in a hierarchy, we cache the last child we
218 * reclaimed from.
220 int last_scanned_child;
222 * Should the accounting and control be hierarchical, per subtree?
224 bool use_hierarchy;
225 atomic_t oom_lock;
226 atomic_t refcnt;
228 unsigned int swappiness;
229 /* OOM-Killer disable */
230 int oom_kill_disable;
232 /* set when res.limit == memsw.limit */
233 bool memsw_is_minimum;
235 /* protect arrays of thresholds */
236 struct mutex thresholds_lock;
238 /* thresholds for memory usage. RCU-protected */
239 struct mem_cgroup_thresholds thresholds;
241 /* thresholds for mem+swap usage. RCU-protected */
242 struct mem_cgroup_thresholds memsw_thresholds;
244 /* For oom notifier event fd */
245 struct list_head oom_notify;
248 * Should we move charges of a task when a task is moved into this
249 * mem_cgroup ? And what type of charges should we move ?
251 unsigned long move_charge_at_immigrate;
253 * percpu counter.
255 struct mem_cgroup_stat_cpu *stat;
258 /* Stuffs for move charges at task migration. */
260 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
261 * left-shifted bitmap of these types.
263 enum move_type {
264 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
265 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
266 NR_MOVE_TYPE,
269 /* "mc" and its members are protected by cgroup_mutex */
270 static struct move_charge_struct {
271 struct mem_cgroup *from;
272 struct mem_cgroup *to;
273 unsigned long precharge;
274 unsigned long moved_charge;
275 unsigned long moved_swap;
276 struct task_struct *moving_task; /* a task moving charges */
277 wait_queue_head_t waitq; /* a waitq for other context */
278 } mc = {
279 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
282 static bool move_anon(void)
284 return test_bit(MOVE_CHARGE_TYPE_ANON,
285 &mc.to->move_charge_at_immigrate);
288 static bool move_file(void)
290 return test_bit(MOVE_CHARGE_TYPE_FILE,
291 &mc.to->move_charge_at_immigrate);
295 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
296 * limit reclaim to prevent infinite loops, if they ever occur.
298 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
299 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
301 enum charge_type {
302 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
303 MEM_CGROUP_CHARGE_TYPE_MAPPED,
304 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
305 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
306 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
307 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
308 NR_CHARGE_TYPE,
311 /* only for here (for easy reading.) */
312 #define PCGF_CACHE (1UL << PCG_CACHE)
313 #define PCGF_USED (1UL << PCG_USED)
314 #define PCGF_LOCK (1UL << PCG_LOCK)
315 /* Not used, but added here for completeness */
316 #define PCGF_ACCT (1UL << PCG_ACCT)
318 /* for encoding cft->private value on file */
319 #define _MEM (0)
320 #define _MEMSWAP (1)
321 #define _OOM_TYPE (2)
322 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
323 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
324 #define MEMFILE_ATTR(val) ((val) & 0xffff)
325 /* Used for OOM nofiier */
326 #define OOM_CONTROL (0)
329 * Reclaim flags for mem_cgroup_hierarchical_reclaim
331 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
332 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
333 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
334 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
336 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
338 static void mem_cgroup_get(struct mem_cgroup *mem);
339 static void mem_cgroup_put(struct mem_cgroup *mem);
340 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
341 static void drain_all_stock_async(void);
343 static struct mem_cgroup_per_zone *
344 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
346 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
349 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
351 return &mem->css;
354 static struct mem_cgroup_per_zone *
355 page_cgroup_zoneinfo(struct page_cgroup *pc)
357 struct mem_cgroup *mem = pc->mem_cgroup;
358 int nid = page_cgroup_nid(pc);
359 int zid = page_cgroup_zid(pc);
361 if (!mem)
362 return NULL;
364 return mem_cgroup_zoneinfo(mem, nid, zid);
367 static struct mem_cgroup_tree_per_zone *
368 soft_limit_tree_node_zone(int nid, int zid)
370 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
373 static struct mem_cgroup_tree_per_zone *
374 soft_limit_tree_from_page(struct page *page)
376 int nid = page_to_nid(page);
377 int zid = page_zonenum(page);
379 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
382 static void
383 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
384 struct mem_cgroup_per_zone *mz,
385 struct mem_cgroup_tree_per_zone *mctz,
386 unsigned long long new_usage_in_excess)
388 struct rb_node **p = &mctz->rb_root.rb_node;
389 struct rb_node *parent = NULL;
390 struct mem_cgroup_per_zone *mz_node;
392 if (mz->on_tree)
393 return;
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess)
403 p = &(*p)->rb_left;
405 * We can't avoid mem cgroups that are over their soft
406 * limit by the same amount
408 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
409 p = &(*p)->rb_right;
411 rb_link_node(&mz->tree_node, parent, p);
412 rb_insert_color(&mz->tree_node, &mctz->rb_root);
413 mz->on_tree = true;
416 static void
417 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
418 struct mem_cgroup_per_zone *mz,
419 struct mem_cgroup_tree_per_zone *mctz)
421 if (!mz->on_tree)
422 return;
423 rb_erase(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = false;
427 static void
428 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
429 struct mem_cgroup_per_zone *mz,
430 struct mem_cgroup_tree_per_zone *mctz)
432 spin_lock(&mctz->lock);
433 __mem_cgroup_remove_exceeded(mem, mz, mctz);
434 spin_unlock(&mctz->lock);
438 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
440 unsigned long long excess;
441 struct mem_cgroup_per_zone *mz;
442 struct mem_cgroup_tree_per_zone *mctz;
443 int nid = page_to_nid(page);
444 int zid = page_zonenum(page);
445 mctz = soft_limit_tree_from_page(page);
448 * Necessary to update all ancestors when hierarchy is used.
449 * because their event counter is not touched.
451 for (; mem; mem = parent_mem_cgroup(mem)) {
452 mz = mem_cgroup_zoneinfo(mem, nid, zid);
453 excess = res_counter_soft_limit_excess(&mem->res);
455 * We have to update the tree if mz is on RB-tree or
456 * mem is over its softlimit.
458 if (excess || mz->on_tree) {
459 spin_lock(&mctz->lock);
460 /* if on-tree, remove it */
461 if (mz->on_tree)
462 __mem_cgroup_remove_exceeded(mem, mz, mctz);
464 * Insert again. mz->usage_in_excess will be updated.
465 * If excess is 0, no tree ops.
467 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
468 spin_unlock(&mctz->lock);
473 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
475 int node, zone;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
479 for_each_node_state(node, N_POSSIBLE) {
480 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
481 mz = mem_cgroup_zoneinfo(mem, node, zone);
482 mctz = soft_limit_tree_node_zone(node, zone);
483 mem_cgroup_remove_exceeded(mem, mz, mctz);
488 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
490 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
493 static struct mem_cgroup_per_zone *
494 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
496 struct rb_node *rightmost = NULL;
497 struct mem_cgroup_per_zone *mz;
499 retry:
500 mz = NULL;
501 rightmost = rb_last(&mctz->rb_root);
502 if (!rightmost)
503 goto done; /* Nothing to reclaim from */
505 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
507 * Remove the node now but someone else can add it back,
508 * we will to add it back at the end of reclaim to its correct
509 * position in the tree.
511 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
512 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
513 !css_tryget(&mz->mem->css))
514 goto retry;
515 done:
516 return mz;
519 static struct mem_cgroup_per_zone *
520 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
522 struct mem_cgroup_per_zone *mz;
524 spin_lock(&mctz->lock);
525 mz = __mem_cgroup_largest_soft_limit_node(mctz);
526 spin_unlock(&mctz->lock);
527 return mz;
530 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
531 enum mem_cgroup_stat_index idx)
533 int cpu;
534 s64 val = 0;
536 for_each_possible_cpu(cpu)
537 val += per_cpu(mem->stat->count[idx], cpu);
538 return val;
541 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
543 s64 ret;
545 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
546 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
547 return ret;
550 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
551 bool charge)
553 int val = (charge) ? 1 : -1;
554 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
557 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
558 struct page_cgroup *pc,
559 bool charge)
561 int val = (charge) ? 1 : -1;
563 preempt_disable();
565 if (PageCgroupCache(pc))
566 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
567 else
568 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
570 if (charge)
571 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
572 else
573 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
574 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
576 preempt_enable();
579 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
580 enum lru_list idx)
582 int nid, zid;
583 struct mem_cgroup_per_zone *mz;
584 u64 total = 0;
586 for_each_online_node(nid)
587 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
588 mz = mem_cgroup_zoneinfo(mem, nid, zid);
589 total += MEM_CGROUP_ZSTAT(mz, idx);
591 return total;
594 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
596 s64 val;
598 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
600 return !(val & ((1 << event_mask_shift) - 1));
604 * Check events in order.
607 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
609 /* threshold event is triggered in finer grain than soft limit */
610 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
611 mem_cgroup_threshold(mem);
612 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
613 mem_cgroup_update_tree(mem, page);
617 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
619 return container_of(cgroup_subsys_state(cont,
620 mem_cgroup_subsys_id), struct mem_cgroup,
621 css);
624 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
627 * mm_update_next_owner() may clear mm->owner to NULL
628 * if it races with swapoff, page migration, etc.
629 * So this can be called with p == NULL.
631 if (unlikely(!p))
632 return NULL;
634 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
635 struct mem_cgroup, css);
638 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
640 struct mem_cgroup *mem = NULL;
642 if (!mm)
643 return NULL;
645 * Because we have no locks, mm->owner's may be being moved to other
646 * cgroup. We use css_tryget() here even if this looks
647 * pessimistic (rather than adding locks here).
649 rcu_read_lock();
650 do {
651 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
652 if (unlikely(!mem))
653 break;
654 } while (!css_tryget(&mem->css));
655 rcu_read_unlock();
656 return mem;
660 * Call callback function against all cgroup under hierarchy tree.
662 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
663 int (*func)(struct mem_cgroup *, void *))
665 int found, ret, nextid;
666 struct cgroup_subsys_state *css;
667 struct mem_cgroup *mem;
669 if (!root->use_hierarchy)
670 return (*func)(root, data);
672 nextid = 1;
673 do {
674 ret = 0;
675 mem = NULL;
677 rcu_read_lock();
678 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
679 &found);
680 if (css && css_tryget(css))
681 mem = container_of(css, struct mem_cgroup, css);
682 rcu_read_unlock();
684 if (mem) {
685 ret = (*func)(mem, data);
686 css_put(&mem->css);
688 nextid = found + 1;
689 } while (!ret && css);
691 return ret;
694 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
696 return (mem == root_mem_cgroup);
700 * Following LRU functions are allowed to be used without PCG_LOCK.
701 * Operations are called by routine of global LRU independently from memcg.
702 * What we have to take care of here is validness of pc->mem_cgroup.
704 * Changes to pc->mem_cgroup happens when
705 * 1. charge
706 * 2. moving account
707 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
708 * It is added to LRU before charge.
709 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
710 * When moving account, the page is not on LRU. It's isolated.
713 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
715 struct page_cgroup *pc;
716 struct mem_cgroup_per_zone *mz;
718 if (mem_cgroup_disabled())
719 return;
720 pc = lookup_page_cgroup(page);
721 /* can happen while we handle swapcache. */
722 if (!TestClearPageCgroupAcctLRU(pc))
723 return;
724 VM_BUG_ON(!pc->mem_cgroup);
726 * We don't check PCG_USED bit. It's cleared when the "page" is finally
727 * removed from global LRU.
729 mz = page_cgroup_zoneinfo(pc);
730 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
731 if (mem_cgroup_is_root(pc->mem_cgroup))
732 return;
733 VM_BUG_ON(list_empty(&pc->lru));
734 list_del_init(&pc->lru);
735 return;
738 void mem_cgroup_del_lru(struct page *page)
740 mem_cgroup_del_lru_list(page, page_lru(page));
743 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
745 struct mem_cgroup_per_zone *mz;
746 struct page_cgroup *pc;
748 if (mem_cgroup_disabled())
749 return;
751 pc = lookup_page_cgroup(page);
753 * Used bit is set without atomic ops but after smp_wmb().
754 * For making pc->mem_cgroup visible, insert smp_rmb() here.
756 smp_rmb();
757 /* unused or root page is not rotated. */
758 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
759 return;
760 mz = page_cgroup_zoneinfo(pc);
761 list_move(&pc->lru, &mz->lists[lru]);
764 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
766 struct page_cgroup *pc;
767 struct mem_cgroup_per_zone *mz;
769 if (mem_cgroup_disabled())
770 return;
771 pc = lookup_page_cgroup(page);
772 VM_BUG_ON(PageCgroupAcctLRU(pc));
774 * Used bit is set without atomic ops but after smp_wmb().
775 * For making pc->mem_cgroup visible, insert smp_rmb() here.
777 smp_rmb();
778 if (!PageCgroupUsed(pc))
779 return;
781 mz = page_cgroup_zoneinfo(pc);
782 MEM_CGROUP_ZSTAT(mz, lru) += 1;
783 SetPageCgroupAcctLRU(pc);
784 if (mem_cgroup_is_root(pc->mem_cgroup))
785 return;
786 list_add(&pc->lru, &mz->lists[lru]);
790 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
791 * lru because the page may.be reused after it's fully uncharged (because of
792 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
793 * it again. This function is only used to charge SwapCache. It's done under
794 * lock_page and expected that zone->lru_lock is never held.
796 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
798 unsigned long flags;
799 struct zone *zone = page_zone(page);
800 struct page_cgroup *pc = lookup_page_cgroup(page);
802 spin_lock_irqsave(&zone->lru_lock, flags);
804 * Forget old LRU when this page_cgroup is *not* used. This Used bit
805 * is guarded by lock_page() because the page is SwapCache.
807 if (!PageCgroupUsed(pc))
808 mem_cgroup_del_lru_list(page, page_lru(page));
809 spin_unlock_irqrestore(&zone->lru_lock, flags);
812 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
814 unsigned long flags;
815 struct zone *zone = page_zone(page);
816 struct page_cgroup *pc = lookup_page_cgroup(page);
818 spin_lock_irqsave(&zone->lru_lock, flags);
819 /* link when the page is linked to LRU but page_cgroup isn't */
820 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
821 mem_cgroup_add_lru_list(page, page_lru(page));
822 spin_unlock_irqrestore(&zone->lru_lock, flags);
826 void mem_cgroup_move_lists(struct page *page,
827 enum lru_list from, enum lru_list to)
829 if (mem_cgroup_disabled())
830 return;
831 mem_cgroup_del_lru_list(page, from);
832 mem_cgroup_add_lru_list(page, to);
835 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
837 int ret;
838 struct mem_cgroup *curr = NULL;
840 task_lock(task);
841 rcu_read_lock();
842 curr = try_get_mem_cgroup_from_mm(task->mm);
843 rcu_read_unlock();
844 task_unlock(task);
845 if (!curr)
846 return 0;
848 * We should check use_hierarchy of "mem" not "curr". Because checking
849 * use_hierarchy of "curr" here make this function true if hierarchy is
850 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
851 * hierarchy(even if use_hierarchy is disabled in "mem").
853 if (mem->use_hierarchy)
854 ret = css_is_ancestor(&curr->css, &mem->css);
855 else
856 ret = (curr == mem);
857 css_put(&curr->css);
858 return ret;
861 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
863 unsigned long active;
864 unsigned long inactive;
865 unsigned long gb;
866 unsigned long inactive_ratio;
868 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
869 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
871 gb = (inactive + active) >> (30 - PAGE_SHIFT);
872 if (gb)
873 inactive_ratio = int_sqrt(10 * gb);
874 else
875 inactive_ratio = 1;
877 if (present_pages) {
878 present_pages[0] = inactive;
879 present_pages[1] = active;
882 return inactive_ratio;
885 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
887 unsigned long active;
888 unsigned long inactive;
889 unsigned long present_pages[2];
890 unsigned long inactive_ratio;
892 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
894 inactive = present_pages[0];
895 active = present_pages[1];
897 if (inactive * inactive_ratio < active)
898 return 1;
900 return 0;
903 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
905 unsigned long active;
906 unsigned long inactive;
908 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
909 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
911 return (active > inactive);
914 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
915 struct zone *zone,
916 enum lru_list lru)
918 int nid = zone->zone_pgdat->node_id;
919 int zid = zone_idx(zone);
920 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
922 return MEM_CGROUP_ZSTAT(mz, lru);
925 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
926 struct zone *zone)
928 int nid = zone->zone_pgdat->node_id;
929 int zid = zone_idx(zone);
930 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
932 return &mz->reclaim_stat;
935 struct zone_reclaim_stat *
936 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
938 struct page_cgroup *pc;
939 struct mem_cgroup_per_zone *mz;
941 if (mem_cgroup_disabled())
942 return NULL;
944 pc = lookup_page_cgroup(page);
946 * Used bit is set without atomic ops but after smp_wmb().
947 * For making pc->mem_cgroup visible, insert smp_rmb() here.
949 smp_rmb();
950 if (!PageCgroupUsed(pc))
951 return NULL;
953 mz = page_cgroup_zoneinfo(pc);
954 if (!mz)
955 return NULL;
957 return &mz->reclaim_stat;
960 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
961 struct list_head *dst,
962 unsigned long *scanned, int order,
963 int mode, struct zone *z,
964 struct mem_cgroup *mem_cont,
965 int active, int file)
967 unsigned long nr_taken = 0;
968 struct page *page;
969 unsigned long scan;
970 LIST_HEAD(pc_list);
971 struct list_head *src;
972 struct page_cgroup *pc, *tmp;
973 int nid = z->zone_pgdat->node_id;
974 int zid = zone_idx(z);
975 struct mem_cgroup_per_zone *mz;
976 int lru = LRU_FILE * file + active;
977 int ret;
979 BUG_ON(!mem_cont);
980 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
981 src = &mz->lists[lru];
983 scan = 0;
984 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
985 if (scan >= nr_to_scan)
986 break;
988 page = pc->page;
989 if (unlikely(!PageCgroupUsed(pc)))
990 continue;
991 if (unlikely(!PageLRU(page)))
992 continue;
994 scan++;
995 ret = __isolate_lru_page(page, mode, file);
996 switch (ret) {
997 case 0:
998 list_move(&page->lru, dst);
999 mem_cgroup_del_lru(page);
1000 nr_taken++;
1001 break;
1002 case -EBUSY:
1003 /* we don't affect global LRU but rotate in our LRU */
1004 mem_cgroup_rotate_lru_list(page, page_lru(page));
1005 break;
1006 default:
1007 break;
1011 *scanned = scan;
1013 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1014 0, 0, 0, mode);
1016 return nr_taken;
1019 #define mem_cgroup_from_res_counter(counter, member) \
1020 container_of(counter, struct mem_cgroup, member)
1022 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1024 if (do_swap_account) {
1025 if (res_counter_check_under_limit(&mem->res) &&
1026 res_counter_check_under_limit(&mem->memsw))
1027 return true;
1028 } else
1029 if (res_counter_check_under_limit(&mem->res))
1030 return true;
1031 return false;
1034 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1036 struct cgroup *cgrp = memcg->css.cgroup;
1037 unsigned int swappiness;
1039 /* root ? */
1040 if (cgrp->parent == NULL)
1041 return vm_swappiness;
1043 spin_lock(&memcg->reclaim_param_lock);
1044 swappiness = memcg->swappiness;
1045 spin_unlock(&memcg->reclaim_param_lock);
1047 return swappiness;
1050 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1052 int *val = data;
1053 (*val)++;
1054 return 0;
1058 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1059 * @memcg: The memory cgroup that went over limit
1060 * @p: Task that is going to be killed
1062 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1063 * enabled
1065 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1067 struct cgroup *task_cgrp;
1068 struct cgroup *mem_cgrp;
1070 * Need a buffer in BSS, can't rely on allocations. The code relies
1071 * on the assumption that OOM is serialized for memory controller.
1072 * If this assumption is broken, revisit this code.
1074 static char memcg_name[PATH_MAX];
1075 int ret;
1077 if (!memcg || !p)
1078 return;
1081 rcu_read_lock();
1083 mem_cgrp = memcg->css.cgroup;
1084 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1086 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1087 if (ret < 0) {
1089 * Unfortunately, we are unable to convert to a useful name
1090 * But we'll still print out the usage information
1092 rcu_read_unlock();
1093 goto done;
1095 rcu_read_unlock();
1097 printk(KERN_INFO "Task in %s killed", memcg_name);
1099 rcu_read_lock();
1100 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1101 if (ret < 0) {
1102 rcu_read_unlock();
1103 goto done;
1105 rcu_read_unlock();
1108 * Continues from above, so we don't need an KERN_ level
1110 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1111 done:
1113 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1114 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1115 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1116 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1117 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1118 "failcnt %llu\n",
1119 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1120 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1121 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1125 * This function returns the number of memcg under hierarchy tree. Returns
1126 * 1(self count) if no children.
1128 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1130 int num = 0;
1131 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1132 return num;
1136 * Return the memory (and swap, if configured) limit for a memcg.
1138 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1140 u64 limit;
1141 u64 memsw;
1143 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1144 total_swap_pages;
1145 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1147 * If memsw is finite and limits the amount of swap space available
1148 * to this memcg, return that limit.
1150 return min(limit, memsw);
1154 * Visit the first child (need not be the first child as per the ordering
1155 * of the cgroup list, since we track last_scanned_child) of @mem and use
1156 * that to reclaim free pages from.
1158 static struct mem_cgroup *
1159 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1161 struct mem_cgroup *ret = NULL;
1162 struct cgroup_subsys_state *css;
1163 int nextid, found;
1165 if (!root_mem->use_hierarchy) {
1166 css_get(&root_mem->css);
1167 ret = root_mem;
1170 while (!ret) {
1171 rcu_read_lock();
1172 nextid = root_mem->last_scanned_child + 1;
1173 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1174 &found);
1175 if (css && css_tryget(css))
1176 ret = container_of(css, struct mem_cgroup, css);
1178 rcu_read_unlock();
1179 /* Updates scanning parameter */
1180 spin_lock(&root_mem->reclaim_param_lock);
1181 if (!css) {
1182 /* this means start scan from ID:1 */
1183 root_mem->last_scanned_child = 0;
1184 } else
1185 root_mem->last_scanned_child = found;
1186 spin_unlock(&root_mem->reclaim_param_lock);
1189 return ret;
1193 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1194 * we reclaimed from, so that we don't end up penalizing one child extensively
1195 * based on its position in the children list.
1197 * root_mem is the original ancestor that we've been reclaim from.
1199 * We give up and return to the caller when we visit root_mem twice.
1200 * (other groups can be removed while we're walking....)
1202 * If shrink==true, for avoiding to free too much, this returns immedieately.
1204 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1205 struct zone *zone,
1206 gfp_t gfp_mask,
1207 unsigned long reclaim_options)
1209 struct mem_cgroup *victim;
1210 int ret, total = 0;
1211 int loop = 0;
1212 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1213 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1214 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1215 unsigned long excess = mem_cgroup_get_excess(root_mem);
1217 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1218 if (root_mem->memsw_is_minimum)
1219 noswap = true;
1221 while (1) {
1222 victim = mem_cgroup_select_victim(root_mem);
1223 if (victim == root_mem) {
1224 loop++;
1225 if (loop >= 1)
1226 drain_all_stock_async();
1227 if (loop >= 2) {
1229 * If we have not been able to reclaim
1230 * anything, it might because there are
1231 * no reclaimable pages under this hierarchy
1233 if (!check_soft || !total) {
1234 css_put(&victim->css);
1235 break;
1238 * We want to do more targetted reclaim.
1239 * excess >> 2 is not to excessive so as to
1240 * reclaim too much, nor too less that we keep
1241 * coming back to reclaim from this cgroup
1243 if (total >= (excess >> 2) ||
1244 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1245 css_put(&victim->css);
1246 break;
1250 if (!mem_cgroup_local_usage(victim)) {
1251 /* this cgroup's local usage == 0 */
1252 css_put(&victim->css);
1253 continue;
1255 /* we use swappiness of local cgroup */
1256 if (check_soft)
1257 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1258 noswap, get_swappiness(victim), zone,
1259 zone->zone_pgdat->node_id);
1260 else
1261 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1262 noswap, get_swappiness(victim));
1263 css_put(&victim->css);
1265 * At shrinking usage, we can't check we should stop here or
1266 * reclaim more. It's depends on callers. last_scanned_child
1267 * will work enough for keeping fairness under tree.
1269 if (shrink)
1270 return ret;
1271 total += ret;
1272 if (check_soft) {
1273 if (res_counter_check_under_soft_limit(&root_mem->res))
1274 return total;
1275 } else if (mem_cgroup_check_under_limit(root_mem))
1276 return 1 + total;
1278 return total;
1281 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1283 int *val = (int *)data;
1284 int x;
1286 * Logically, we can stop scanning immediately when we find
1287 * a memcg is already locked. But condidering unlock ops and
1288 * creation/removal of memcg, scan-all is simple operation.
1290 x = atomic_inc_return(&mem->oom_lock);
1291 *val = max(x, *val);
1292 return 0;
1295 * Check OOM-Killer is already running under our hierarchy.
1296 * If someone is running, return false.
1298 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1300 int lock_count = 0;
1302 mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1304 if (lock_count == 1)
1305 return true;
1306 return false;
1309 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1312 * When a new child is created while the hierarchy is under oom,
1313 * mem_cgroup_oom_lock() may not be called. We have to use
1314 * atomic_add_unless() here.
1316 atomic_add_unless(&mem->oom_lock, -1, 0);
1317 return 0;
1320 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1322 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1325 static DEFINE_MUTEX(memcg_oom_mutex);
1326 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1328 struct oom_wait_info {
1329 struct mem_cgroup *mem;
1330 wait_queue_t wait;
1333 static int memcg_oom_wake_function(wait_queue_t *wait,
1334 unsigned mode, int sync, void *arg)
1336 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1337 struct oom_wait_info *oom_wait_info;
1339 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1341 if (oom_wait_info->mem == wake_mem)
1342 goto wakeup;
1343 /* if no hierarchy, no match */
1344 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1345 return 0;
1347 * Both of oom_wait_info->mem and wake_mem are stable under us.
1348 * Then we can use css_is_ancestor without taking care of RCU.
1350 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1351 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1352 return 0;
1354 wakeup:
1355 return autoremove_wake_function(wait, mode, sync, arg);
1358 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1360 /* for filtering, pass "mem" as argument. */
1361 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1364 static void memcg_oom_recover(struct mem_cgroup *mem)
1366 if (atomic_read(&mem->oom_lock))
1367 memcg_wakeup_oom(mem);
1371 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1373 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1375 struct oom_wait_info owait;
1376 bool locked, need_to_kill;
1378 owait.mem = mem;
1379 owait.wait.flags = 0;
1380 owait.wait.func = memcg_oom_wake_function;
1381 owait.wait.private = current;
1382 INIT_LIST_HEAD(&owait.wait.task_list);
1383 need_to_kill = true;
1384 /* At first, try to OOM lock hierarchy under mem.*/
1385 mutex_lock(&memcg_oom_mutex);
1386 locked = mem_cgroup_oom_lock(mem);
1388 * Even if signal_pending(), we can't quit charge() loop without
1389 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1390 * under OOM is always welcomed, use TASK_KILLABLE here.
1392 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1393 if (!locked || mem->oom_kill_disable)
1394 need_to_kill = false;
1395 if (locked)
1396 mem_cgroup_oom_notify(mem);
1397 mutex_unlock(&memcg_oom_mutex);
1399 if (need_to_kill) {
1400 finish_wait(&memcg_oom_waitq, &owait.wait);
1401 mem_cgroup_out_of_memory(mem, mask);
1402 } else {
1403 schedule();
1404 finish_wait(&memcg_oom_waitq, &owait.wait);
1406 mutex_lock(&memcg_oom_mutex);
1407 mem_cgroup_oom_unlock(mem);
1408 memcg_wakeup_oom(mem);
1409 mutex_unlock(&memcg_oom_mutex);
1411 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1412 return false;
1413 /* Give chance to dying process */
1414 schedule_timeout(1);
1415 return true;
1419 * Currently used to update mapped file statistics, but the routine can be
1420 * generalized to update other statistics as well.
1422 void mem_cgroup_update_file_mapped(struct page *page, int val)
1424 struct mem_cgroup *mem;
1425 struct page_cgroup *pc;
1427 pc = lookup_page_cgroup(page);
1428 if (unlikely(!pc))
1429 return;
1431 lock_page_cgroup(pc);
1432 mem = pc->mem_cgroup;
1433 if (!mem || !PageCgroupUsed(pc))
1434 goto done;
1437 * Preemption is already disabled. We can use __this_cpu_xxx
1439 if (val > 0) {
1440 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1441 SetPageCgroupFileMapped(pc);
1442 } else {
1443 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1444 ClearPageCgroupFileMapped(pc);
1447 done:
1448 unlock_page_cgroup(pc);
1452 * size of first charge trial. "32" comes from vmscan.c's magic value.
1453 * TODO: maybe necessary to use big numbers in big irons.
1455 #define CHARGE_SIZE (32 * PAGE_SIZE)
1456 struct memcg_stock_pcp {
1457 struct mem_cgroup *cached; /* this never be root cgroup */
1458 int charge;
1459 struct work_struct work;
1461 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1462 static atomic_t memcg_drain_count;
1465 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1466 * from local stock and true is returned. If the stock is 0 or charges from a
1467 * cgroup which is not current target, returns false. This stock will be
1468 * refilled.
1470 static bool consume_stock(struct mem_cgroup *mem)
1472 struct memcg_stock_pcp *stock;
1473 bool ret = true;
1475 stock = &get_cpu_var(memcg_stock);
1476 if (mem == stock->cached && stock->charge)
1477 stock->charge -= PAGE_SIZE;
1478 else /* need to call res_counter_charge */
1479 ret = false;
1480 put_cpu_var(memcg_stock);
1481 return ret;
1485 * Returns stocks cached in percpu to res_counter and reset cached information.
1487 static void drain_stock(struct memcg_stock_pcp *stock)
1489 struct mem_cgroup *old = stock->cached;
1491 if (stock->charge) {
1492 res_counter_uncharge(&old->res, stock->charge);
1493 if (do_swap_account)
1494 res_counter_uncharge(&old->memsw, stock->charge);
1496 stock->cached = NULL;
1497 stock->charge = 0;
1501 * This must be called under preempt disabled or must be called by
1502 * a thread which is pinned to local cpu.
1504 static void drain_local_stock(struct work_struct *dummy)
1506 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1507 drain_stock(stock);
1511 * Cache charges(val) which is from res_counter, to local per_cpu area.
1512 * This will be consumed by consume_stock() function, later.
1514 static void refill_stock(struct mem_cgroup *mem, int val)
1516 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1518 if (stock->cached != mem) { /* reset if necessary */
1519 drain_stock(stock);
1520 stock->cached = mem;
1522 stock->charge += val;
1523 put_cpu_var(memcg_stock);
1527 * Tries to drain stocked charges in other cpus. This function is asynchronous
1528 * and just put a work per cpu for draining localy on each cpu. Caller can
1529 * expects some charges will be back to res_counter later but cannot wait for
1530 * it.
1532 static void drain_all_stock_async(void)
1534 int cpu;
1535 /* This function is for scheduling "drain" in asynchronous way.
1536 * The result of "drain" is not directly handled by callers. Then,
1537 * if someone is calling drain, we don't have to call drain more.
1538 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1539 * there is a race. We just do loose check here.
1541 if (atomic_read(&memcg_drain_count))
1542 return;
1543 /* Notify other cpus that system-wide "drain" is running */
1544 atomic_inc(&memcg_drain_count);
1545 get_online_cpus();
1546 for_each_online_cpu(cpu) {
1547 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1548 schedule_work_on(cpu, &stock->work);
1550 put_online_cpus();
1551 atomic_dec(&memcg_drain_count);
1552 /* We don't wait for flush_work */
1555 /* This is a synchronous drain interface. */
1556 static void drain_all_stock_sync(void)
1558 /* called when force_empty is called */
1559 atomic_inc(&memcg_drain_count);
1560 schedule_on_each_cpu(drain_local_stock);
1561 atomic_dec(&memcg_drain_count);
1564 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1565 unsigned long action,
1566 void *hcpu)
1568 int cpu = (unsigned long)hcpu;
1569 struct memcg_stock_pcp *stock;
1571 if (action != CPU_DEAD)
1572 return NOTIFY_OK;
1573 stock = &per_cpu(memcg_stock, cpu);
1574 drain_stock(stock);
1575 return NOTIFY_OK;
1579 * Unlike exported interface, "oom" parameter is added. if oom==true,
1580 * oom-killer can be invoked.
1582 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1583 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1585 struct mem_cgroup *mem, *mem_over_limit;
1586 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1587 struct res_counter *fail_res;
1588 int csize = CHARGE_SIZE;
1591 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1592 * in system level. So, allow to go ahead dying process in addition to
1593 * MEMDIE process.
1595 if (unlikely(test_thread_flag(TIF_MEMDIE)
1596 || fatal_signal_pending(current)))
1597 goto bypass;
1600 * We always charge the cgroup the mm_struct belongs to.
1601 * The mm_struct's mem_cgroup changes on task migration if the
1602 * thread group leader migrates. It's possible that mm is not
1603 * set, if so charge the init_mm (happens for pagecache usage).
1605 mem = *memcg;
1606 if (likely(!mem)) {
1607 mem = try_get_mem_cgroup_from_mm(mm);
1608 *memcg = mem;
1609 } else {
1610 css_get(&mem->css);
1612 if (unlikely(!mem))
1613 return 0;
1615 VM_BUG_ON(css_is_removed(&mem->css));
1616 if (mem_cgroup_is_root(mem))
1617 goto done;
1619 while (1) {
1620 int ret = 0;
1621 unsigned long flags = 0;
1623 if (consume_stock(mem))
1624 goto done;
1626 ret = res_counter_charge(&mem->res, csize, &fail_res);
1627 if (likely(!ret)) {
1628 if (!do_swap_account)
1629 break;
1630 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1631 if (likely(!ret))
1632 break;
1633 /* mem+swap counter fails */
1634 res_counter_uncharge(&mem->res, csize);
1635 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1636 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1637 memsw);
1638 } else
1639 /* mem counter fails */
1640 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1641 res);
1643 /* reduce request size and retry */
1644 if (csize > PAGE_SIZE) {
1645 csize = PAGE_SIZE;
1646 continue;
1648 if (!(gfp_mask & __GFP_WAIT))
1649 goto nomem;
1651 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1652 gfp_mask, flags);
1653 if (ret)
1654 continue;
1657 * try_to_free_mem_cgroup_pages() might not give us a full
1658 * picture of reclaim. Some pages are reclaimed and might be
1659 * moved to swap cache or just unmapped from the cgroup.
1660 * Check the limit again to see if the reclaim reduced the
1661 * current usage of the cgroup before giving up
1664 if (mem_cgroup_check_under_limit(mem_over_limit))
1665 continue;
1667 /* try to avoid oom while someone is moving charge */
1668 if (mc.moving_task && current != mc.moving_task) {
1669 struct mem_cgroup *from, *to;
1670 bool do_continue = false;
1672 * There is a small race that "from" or "to" can be
1673 * freed by rmdir, so we use css_tryget().
1675 from = mc.from;
1676 to = mc.to;
1677 if (from && css_tryget(&from->css)) {
1678 if (mem_over_limit->use_hierarchy)
1679 do_continue = css_is_ancestor(
1680 &from->css,
1681 &mem_over_limit->css);
1682 else
1683 do_continue = (from == mem_over_limit);
1684 css_put(&from->css);
1686 if (!do_continue && to && css_tryget(&to->css)) {
1687 if (mem_over_limit->use_hierarchy)
1688 do_continue = css_is_ancestor(
1689 &to->css,
1690 &mem_over_limit->css);
1691 else
1692 do_continue = (to == mem_over_limit);
1693 css_put(&to->css);
1695 if (do_continue) {
1696 DEFINE_WAIT(wait);
1697 prepare_to_wait(&mc.waitq, &wait,
1698 TASK_INTERRUPTIBLE);
1699 /* moving charge context might have finished. */
1700 if (mc.moving_task)
1701 schedule();
1702 finish_wait(&mc.waitq, &wait);
1703 continue;
1707 if (!nr_retries--) {
1708 if (!oom)
1709 goto nomem;
1710 if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1711 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1712 continue;
1714 /* When we reach here, current task is dying .*/
1715 css_put(&mem->css);
1716 goto bypass;
1719 if (csize > PAGE_SIZE)
1720 refill_stock(mem, csize - PAGE_SIZE);
1721 done:
1722 return 0;
1723 nomem:
1724 css_put(&mem->css);
1725 return -ENOMEM;
1726 bypass:
1727 *memcg = NULL;
1728 return 0;
1732 * Somemtimes we have to undo a charge we got by try_charge().
1733 * This function is for that and do uncharge, put css's refcnt.
1734 * gotten by try_charge().
1736 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1737 unsigned long count)
1739 if (!mem_cgroup_is_root(mem)) {
1740 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1741 if (do_swap_account)
1742 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1743 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1744 WARN_ON_ONCE(count > INT_MAX);
1745 __css_put(&mem->css, (int)count);
1747 /* we don't need css_put for root */
1750 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1752 __mem_cgroup_cancel_charge(mem, 1);
1756 * A helper function to get mem_cgroup from ID. must be called under
1757 * rcu_read_lock(). The caller must check css_is_removed() or some if
1758 * it's concern. (dropping refcnt from swap can be called against removed
1759 * memcg.)
1761 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1763 struct cgroup_subsys_state *css;
1765 /* ID 0 is unused ID */
1766 if (!id)
1767 return NULL;
1768 css = css_lookup(&mem_cgroup_subsys, id);
1769 if (!css)
1770 return NULL;
1771 return container_of(css, struct mem_cgroup, css);
1774 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1776 struct mem_cgroup *mem = NULL;
1777 struct page_cgroup *pc;
1778 unsigned short id;
1779 swp_entry_t ent;
1781 VM_BUG_ON(!PageLocked(page));
1783 pc = lookup_page_cgroup(page);
1784 lock_page_cgroup(pc);
1785 if (PageCgroupUsed(pc)) {
1786 mem = pc->mem_cgroup;
1787 if (mem && !css_tryget(&mem->css))
1788 mem = NULL;
1789 } else if (PageSwapCache(page)) {
1790 ent.val = page_private(page);
1791 id = lookup_swap_cgroup(ent);
1792 rcu_read_lock();
1793 mem = mem_cgroup_lookup(id);
1794 if (mem && !css_tryget(&mem->css))
1795 mem = NULL;
1796 rcu_read_unlock();
1798 unlock_page_cgroup(pc);
1799 return mem;
1803 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1804 * USED state. If already USED, uncharge and return.
1807 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1808 struct page_cgroup *pc,
1809 enum charge_type ctype)
1811 /* try_charge() can return NULL to *memcg, taking care of it. */
1812 if (!mem)
1813 return;
1815 lock_page_cgroup(pc);
1816 if (unlikely(PageCgroupUsed(pc))) {
1817 unlock_page_cgroup(pc);
1818 mem_cgroup_cancel_charge(mem);
1819 return;
1822 pc->mem_cgroup = mem;
1824 * We access a page_cgroup asynchronously without lock_page_cgroup().
1825 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1826 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1827 * before USED bit, we need memory barrier here.
1828 * See mem_cgroup_add_lru_list(), etc.
1830 smp_wmb();
1831 switch (ctype) {
1832 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1833 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1834 SetPageCgroupCache(pc);
1835 SetPageCgroupUsed(pc);
1836 break;
1837 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1838 ClearPageCgroupCache(pc);
1839 SetPageCgroupUsed(pc);
1840 break;
1841 default:
1842 break;
1845 mem_cgroup_charge_statistics(mem, pc, true);
1847 unlock_page_cgroup(pc);
1849 * "charge_statistics" updated event counter. Then, check it.
1850 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1851 * if they exceeds softlimit.
1853 memcg_check_events(mem, pc->page);
1857 * __mem_cgroup_move_account - move account of the page
1858 * @pc: page_cgroup of the page.
1859 * @from: mem_cgroup which the page is moved from.
1860 * @to: mem_cgroup which the page is moved to. @from != @to.
1861 * @uncharge: whether we should call uncharge and css_put against @from.
1863 * The caller must confirm following.
1864 * - page is not on LRU (isolate_page() is useful.)
1865 * - the pc is locked, used, and ->mem_cgroup points to @from.
1867 * This function doesn't do "charge" nor css_get to new cgroup. It should be
1868 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1869 * true, this function does "uncharge" from old cgroup, but it doesn't if
1870 * @uncharge is false, so a caller should do "uncharge".
1873 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1874 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1876 VM_BUG_ON(from == to);
1877 VM_BUG_ON(PageLRU(pc->page));
1878 VM_BUG_ON(!PageCgroupLocked(pc));
1879 VM_BUG_ON(!PageCgroupUsed(pc));
1880 VM_BUG_ON(pc->mem_cgroup != from);
1882 if (PageCgroupFileMapped(pc)) {
1883 /* Update mapped_file data for mem_cgroup */
1884 preempt_disable();
1885 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1886 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1887 preempt_enable();
1889 mem_cgroup_charge_statistics(from, pc, false);
1890 if (uncharge)
1891 /* This is not "cancel", but cancel_charge does all we need. */
1892 mem_cgroup_cancel_charge(from);
1894 /* caller should have done css_get */
1895 pc->mem_cgroup = to;
1896 mem_cgroup_charge_statistics(to, pc, true);
1898 * We charges against "to" which may not have any tasks. Then, "to"
1899 * can be under rmdir(). But in current implementation, caller of
1900 * this function is just force_empty() and move charge, so it's
1901 * garanteed that "to" is never removed. So, we don't check rmdir
1902 * status here.
1907 * check whether the @pc is valid for moving account and call
1908 * __mem_cgroup_move_account()
1910 static int mem_cgroup_move_account(struct page_cgroup *pc,
1911 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1913 int ret = -EINVAL;
1914 lock_page_cgroup(pc);
1915 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1916 __mem_cgroup_move_account(pc, from, to, uncharge);
1917 ret = 0;
1919 unlock_page_cgroup(pc);
1921 * check events
1923 memcg_check_events(to, pc->page);
1924 memcg_check_events(from, pc->page);
1925 return ret;
1929 * move charges to its parent.
1932 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1933 struct mem_cgroup *child,
1934 gfp_t gfp_mask)
1936 struct page *page = pc->page;
1937 struct cgroup *cg = child->css.cgroup;
1938 struct cgroup *pcg = cg->parent;
1939 struct mem_cgroup *parent;
1940 int ret;
1942 /* Is ROOT ? */
1943 if (!pcg)
1944 return -EINVAL;
1946 ret = -EBUSY;
1947 if (!get_page_unless_zero(page))
1948 goto out;
1949 if (isolate_lru_page(page))
1950 goto put;
1952 parent = mem_cgroup_from_cont(pcg);
1953 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1954 if (ret || !parent)
1955 goto put_back;
1957 ret = mem_cgroup_move_account(pc, child, parent, true);
1958 if (ret)
1959 mem_cgroup_cancel_charge(parent);
1960 put_back:
1961 putback_lru_page(page);
1962 put:
1963 put_page(page);
1964 out:
1965 return ret;
1969 * Charge the memory controller for page usage.
1970 * Return
1971 * 0 if the charge was successful
1972 * < 0 if the cgroup is over its limit
1974 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1975 gfp_t gfp_mask, enum charge_type ctype,
1976 struct mem_cgroup *memcg)
1978 struct mem_cgroup *mem;
1979 struct page_cgroup *pc;
1980 int ret;
1982 pc = lookup_page_cgroup(page);
1983 /* can happen at boot */
1984 if (unlikely(!pc))
1985 return 0;
1986 prefetchw(pc);
1988 mem = memcg;
1989 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1990 if (ret || !mem)
1991 return ret;
1993 __mem_cgroup_commit_charge(mem, pc, ctype);
1994 return 0;
1997 int mem_cgroup_newpage_charge(struct page *page,
1998 struct mm_struct *mm, gfp_t gfp_mask)
2000 if (mem_cgroup_disabled())
2001 return 0;
2002 if (PageCompound(page))
2003 return 0;
2005 * If already mapped, we don't have to account.
2006 * If page cache, page->mapping has address_space.
2007 * But page->mapping may have out-of-use anon_vma pointer,
2008 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2009 * is NULL.
2011 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2012 return 0;
2013 if (unlikely(!mm))
2014 mm = &init_mm;
2015 return mem_cgroup_charge_common(page, mm, gfp_mask,
2016 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2019 static void
2020 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2021 enum charge_type ctype);
2023 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2024 gfp_t gfp_mask)
2026 struct mem_cgroup *mem = NULL;
2027 int ret;
2029 if (mem_cgroup_disabled())
2030 return 0;
2031 if (PageCompound(page))
2032 return 0;
2034 * Corner case handling. This is called from add_to_page_cache()
2035 * in usual. But some FS (shmem) precharges this page before calling it
2036 * and call add_to_page_cache() with GFP_NOWAIT.
2038 * For GFP_NOWAIT case, the page may be pre-charged before calling
2039 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2040 * charge twice. (It works but has to pay a bit larger cost.)
2041 * And when the page is SwapCache, it should take swap information
2042 * into account. This is under lock_page() now.
2044 if (!(gfp_mask & __GFP_WAIT)) {
2045 struct page_cgroup *pc;
2048 pc = lookup_page_cgroup(page);
2049 if (!pc)
2050 return 0;
2051 lock_page_cgroup(pc);
2052 if (PageCgroupUsed(pc)) {
2053 unlock_page_cgroup(pc);
2054 return 0;
2056 unlock_page_cgroup(pc);
2059 if (unlikely(!mm && !mem))
2060 mm = &init_mm;
2062 if (page_is_file_cache(page))
2063 return mem_cgroup_charge_common(page, mm, gfp_mask,
2064 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2066 /* shmem */
2067 if (PageSwapCache(page)) {
2068 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2069 if (!ret)
2070 __mem_cgroup_commit_charge_swapin(page, mem,
2071 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2072 } else
2073 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2074 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2076 return ret;
2080 * While swap-in, try_charge -> commit or cancel, the page is locked.
2081 * And when try_charge() successfully returns, one refcnt to memcg without
2082 * struct page_cgroup is acquired. This refcnt will be consumed by
2083 * "commit()" or removed by "cancel()"
2085 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2086 struct page *page,
2087 gfp_t mask, struct mem_cgroup **ptr)
2089 struct mem_cgroup *mem;
2090 int ret;
2092 if (mem_cgroup_disabled())
2093 return 0;
2095 if (!do_swap_account)
2096 goto charge_cur_mm;
2098 * A racing thread's fault, or swapoff, may have already updated
2099 * the pte, and even removed page from swap cache: in those cases
2100 * do_swap_page()'s pte_same() test will fail; but there's also a
2101 * KSM case which does need to charge the page.
2103 if (!PageSwapCache(page))
2104 goto charge_cur_mm;
2105 mem = try_get_mem_cgroup_from_page(page);
2106 if (!mem)
2107 goto charge_cur_mm;
2108 *ptr = mem;
2109 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2110 /* drop extra refcnt from tryget */
2111 css_put(&mem->css);
2112 return ret;
2113 charge_cur_mm:
2114 if (unlikely(!mm))
2115 mm = &init_mm;
2116 return __mem_cgroup_try_charge(mm, mask, ptr, true);
2119 static void
2120 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2121 enum charge_type ctype)
2123 struct page_cgroup *pc;
2125 if (mem_cgroup_disabled())
2126 return;
2127 if (!ptr)
2128 return;
2129 cgroup_exclude_rmdir(&ptr->css);
2130 pc = lookup_page_cgroup(page);
2131 mem_cgroup_lru_del_before_commit_swapcache(page);
2132 __mem_cgroup_commit_charge(ptr, pc, ctype);
2133 mem_cgroup_lru_add_after_commit_swapcache(page);
2135 * Now swap is on-memory. This means this page may be
2136 * counted both as mem and swap....double count.
2137 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2138 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2139 * may call delete_from_swap_cache() before reach here.
2141 if (do_swap_account && PageSwapCache(page)) {
2142 swp_entry_t ent = {.val = page_private(page)};
2143 unsigned short id;
2144 struct mem_cgroup *memcg;
2146 id = swap_cgroup_record(ent, 0);
2147 rcu_read_lock();
2148 memcg = mem_cgroup_lookup(id);
2149 if (memcg) {
2151 * This recorded memcg can be obsolete one. So, avoid
2152 * calling css_tryget
2154 if (!mem_cgroup_is_root(memcg))
2155 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2156 mem_cgroup_swap_statistics(memcg, false);
2157 mem_cgroup_put(memcg);
2159 rcu_read_unlock();
2162 * At swapin, we may charge account against cgroup which has no tasks.
2163 * So, rmdir()->pre_destroy() can be called while we do this charge.
2164 * In that case, we need to call pre_destroy() again. check it here.
2166 cgroup_release_and_wakeup_rmdir(&ptr->css);
2169 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2171 __mem_cgroup_commit_charge_swapin(page, ptr,
2172 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2175 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2177 if (mem_cgroup_disabled())
2178 return;
2179 if (!mem)
2180 return;
2181 mem_cgroup_cancel_charge(mem);
2184 static void
2185 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2187 struct memcg_batch_info *batch = NULL;
2188 bool uncharge_memsw = true;
2189 /* If swapout, usage of swap doesn't decrease */
2190 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2191 uncharge_memsw = false;
2193 batch = &current->memcg_batch;
2195 * In usual, we do css_get() when we remember memcg pointer.
2196 * But in this case, we keep res->usage until end of a series of
2197 * uncharges. Then, it's ok to ignore memcg's refcnt.
2199 if (!batch->memcg)
2200 batch->memcg = mem;
2202 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2203 * In those cases, all pages freed continously can be expected to be in
2204 * the same cgroup and we have chance to coalesce uncharges.
2205 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2206 * because we want to do uncharge as soon as possible.
2209 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2210 goto direct_uncharge;
2213 * In typical case, batch->memcg == mem. This means we can
2214 * merge a series of uncharges to an uncharge of res_counter.
2215 * If not, we uncharge res_counter ony by one.
2217 if (batch->memcg != mem)
2218 goto direct_uncharge;
2219 /* remember freed charge and uncharge it later */
2220 batch->bytes += PAGE_SIZE;
2221 if (uncharge_memsw)
2222 batch->memsw_bytes += PAGE_SIZE;
2223 return;
2224 direct_uncharge:
2225 res_counter_uncharge(&mem->res, PAGE_SIZE);
2226 if (uncharge_memsw)
2227 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2228 if (unlikely(batch->memcg != mem))
2229 memcg_oom_recover(mem);
2230 return;
2234 * uncharge if !page_mapped(page)
2236 static struct mem_cgroup *
2237 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2239 struct page_cgroup *pc;
2240 struct mem_cgroup *mem = NULL;
2241 struct mem_cgroup_per_zone *mz;
2243 if (mem_cgroup_disabled())
2244 return NULL;
2246 if (PageSwapCache(page))
2247 return NULL;
2250 * Check if our page_cgroup is valid
2252 pc = lookup_page_cgroup(page);
2253 if (unlikely(!pc || !PageCgroupUsed(pc)))
2254 return NULL;
2256 lock_page_cgroup(pc);
2258 mem = pc->mem_cgroup;
2260 if (!PageCgroupUsed(pc))
2261 goto unlock_out;
2263 switch (ctype) {
2264 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2265 case MEM_CGROUP_CHARGE_TYPE_DROP:
2266 /* See mem_cgroup_prepare_migration() */
2267 if (page_mapped(page) || PageCgroupMigration(pc))
2268 goto unlock_out;
2269 break;
2270 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2271 if (!PageAnon(page)) { /* Shared memory */
2272 if (page->mapping && !page_is_file_cache(page))
2273 goto unlock_out;
2274 } else if (page_mapped(page)) /* Anon */
2275 goto unlock_out;
2276 break;
2277 default:
2278 break;
2281 if (!mem_cgroup_is_root(mem))
2282 __do_uncharge(mem, ctype);
2283 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2284 mem_cgroup_swap_statistics(mem, true);
2285 mem_cgroup_charge_statistics(mem, pc, false);
2287 ClearPageCgroupUsed(pc);
2289 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2290 * freed from LRU. This is safe because uncharged page is expected not
2291 * to be reused (freed soon). Exception is SwapCache, it's handled by
2292 * special functions.
2295 mz = page_cgroup_zoneinfo(pc);
2296 unlock_page_cgroup(pc);
2298 memcg_check_events(mem, page);
2299 /* at swapout, this memcg will be accessed to record to swap */
2300 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2301 css_put(&mem->css);
2303 return mem;
2305 unlock_out:
2306 unlock_page_cgroup(pc);
2307 return NULL;
2310 void mem_cgroup_uncharge_page(struct page *page)
2312 /* early check. */
2313 if (page_mapped(page))
2314 return;
2315 if (page->mapping && !PageAnon(page))
2316 return;
2317 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2320 void mem_cgroup_uncharge_cache_page(struct page *page)
2322 VM_BUG_ON(page_mapped(page));
2323 VM_BUG_ON(page->mapping);
2324 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2328 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2329 * In that cases, pages are freed continuously and we can expect pages
2330 * are in the same memcg. All these calls itself limits the number of
2331 * pages freed at once, then uncharge_start/end() is called properly.
2332 * This may be called prural(2) times in a context,
2335 void mem_cgroup_uncharge_start(void)
2337 current->memcg_batch.do_batch++;
2338 /* We can do nest. */
2339 if (current->memcg_batch.do_batch == 1) {
2340 current->memcg_batch.memcg = NULL;
2341 current->memcg_batch.bytes = 0;
2342 current->memcg_batch.memsw_bytes = 0;
2346 void mem_cgroup_uncharge_end(void)
2348 struct memcg_batch_info *batch = &current->memcg_batch;
2350 if (!batch->do_batch)
2351 return;
2353 batch->do_batch--;
2354 if (batch->do_batch) /* If stacked, do nothing. */
2355 return;
2357 if (!batch->memcg)
2358 return;
2360 * This "batch->memcg" is valid without any css_get/put etc...
2361 * bacause we hide charges behind us.
2363 if (batch->bytes)
2364 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2365 if (batch->memsw_bytes)
2366 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2367 memcg_oom_recover(batch->memcg);
2368 /* forget this pointer (for sanity check) */
2369 batch->memcg = NULL;
2372 #ifdef CONFIG_SWAP
2374 * called after __delete_from_swap_cache() and drop "page" account.
2375 * memcg information is recorded to swap_cgroup of "ent"
2377 void
2378 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2380 struct mem_cgroup *memcg;
2381 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2383 if (!swapout) /* this was a swap cache but the swap is unused ! */
2384 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2386 memcg = __mem_cgroup_uncharge_common(page, ctype);
2388 /* record memcg information */
2389 if (do_swap_account && swapout && memcg) {
2390 swap_cgroup_record(ent, css_id(&memcg->css));
2391 mem_cgroup_get(memcg);
2393 if (swapout && memcg)
2394 css_put(&memcg->css);
2396 #endif
2398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2400 * called from swap_entry_free(). remove record in swap_cgroup and
2401 * uncharge "memsw" account.
2403 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2405 struct mem_cgroup *memcg;
2406 unsigned short id;
2408 if (!do_swap_account)
2409 return;
2411 id = swap_cgroup_record(ent, 0);
2412 rcu_read_lock();
2413 memcg = mem_cgroup_lookup(id);
2414 if (memcg) {
2416 * We uncharge this because swap is freed.
2417 * This memcg can be obsolete one. We avoid calling css_tryget
2419 if (!mem_cgroup_is_root(memcg))
2420 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2421 mem_cgroup_swap_statistics(memcg, false);
2422 mem_cgroup_put(memcg);
2424 rcu_read_unlock();
2428 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2429 * @entry: swap entry to be moved
2430 * @from: mem_cgroup which the entry is moved from
2431 * @to: mem_cgroup which the entry is moved to
2432 * @need_fixup: whether we should fixup res_counters and refcounts.
2434 * It succeeds only when the swap_cgroup's record for this entry is the same
2435 * as the mem_cgroup's id of @from.
2437 * Returns 0 on success, -EINVAL on failure.
2439 * The caller must have charged to @to, IOW, called res_counter_charge() about
2440 * both res and memsw, and called css_get().
2442 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2443 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2445 unsigned short old_id, new_id;
2447 old_id = css_id(&from->css);
2448 new_id = css_id(&to->css);
2450 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2451 mem_cgroup_swap_statistics(from, false);
2452 mem_cgroup_swap_statistics(to, true);
2454 * This function is only called from task migration context now.
2455 * It postpones res_counter and refcount handling till the end
2456 * of task migration(mem_cgroup_clear_mc()) for performance
2457 * improvement. But we cannot postpone mem_cgroup_get(to)
2458 * because if the process that has been moved to @to does
2459 * swap-in, the refcount of @to might be decreased to 0.
2461 mem_cgroup_get(to);
2462 if (need_fixup) {
2463 if (!mem_cgroup_is_root(from))
2464 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2465 mem_cgroup_put(from);
2467 * we charged both to->res and to->memsw, so we should
2468 * uncharge to->res.
2470 if (!mem_cgroup_is_root(to))
2471 res_counter_uncharge(&to->res, PAGE_SIZE);
2472 css_put(&to->css);
2474 return 0;
2476 return -EINVAL;
2478 #else
2479 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2480 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2482 return -EINVAL;
2484 #endif
2487 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2488 * page belongs to.
2490 int mem_cgroup_prepare_migration(struct page *page,
2491 struct page *newpage, struct mem_cgroup **ptr)
2493 struct page_cgroup *pc;
2494 struct mem_cgroup *mem = NULL;
2495 enum charge_type ctype;
2496 int ret = 0;
2498 if (mem_cgroup_disabled())
2499 return 0;
2501 pc = lookup_page_cgroup(page);
2502 lock_page_cgroup(pc);
2503 if (PageCgroupUsed(pc)) {
2504 mem = pc->mem_cgroup;
2505 css_get(&mem->css);
2507 * At migrating an anonymous page, its mapcount goes down
2508 * to 0 and uncharge() will be called. But, even if it's fully
2509 * unmapped, migration may fail and this page has to be
2510 * charged again. We set MIGRATION flag here and delay uncharge
2511 * until end_migration() is called
2513 * Corner Case Thinking
2514 * A)
2515 * When the old page was mapped as Anon and it's unmap-and-freed
2516 * while migration was ongoing.
2517 * If unmap finds the old page, uncharge() of it will be delayed
2518 * until end_migration(). If unmap finds a new page, it's
2519 * uncharged when it make mapcount to be 1->0. If unmap code
2520 * finds swap_migration_entry, the new page will not be mapped
2521 * and end_migration() will find it(mapcount==0).
2523 * B)
2524 * When the old page was mapped but migraion fails, the kernel
2525 * remaps it. A charge for it is kept by MIGRATION flag even
2526 * if mapcount goes down to 0. We can do remap successfully
2527 * without charging it again.
2529 * C)
2530 * The "old" page is under lock_page() until the end of
2531 * migration, so, the old page itself will not be swapped-out.
2532 * If the new page is swapped out before end_migraton, our
2533 * hook to usual swap-out path will catch the event.
2535 if (PageAnon(page))
2536 SetPageCgroupMigration(pc);
2538 unlock_page_cgroup(pc);
2540 * If the page is not charged at this point,
2541 * we return here.
2543 if (!mem)
2544 return 0;
2546 *ptr = mem;
2547 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2548 css_put(&mem->css);/* drop extra refcnt */
2549 if (ret || *ptr == NULL) {
2550 if (PageAnon(page)) {
2551 lock_page_cgroup(pc);
2552 ClearPageCgroupMigration(pc);
2553 unlock_page_cgroup(pc);
2555 * The old page may be fully unmapped while we kept it.
2557 mem_cgroup_uncharge_page(page);
2559 return -ENOMEM;
2562 * We charge new page before it's used/mapped. So, even if unlock_page()
2563 * is called before end_migration, we can catch all events on this new
2564 * page. In the case new page is migrated but not remapped, new page's
2565 * mapcount will be finally 0 and we call uncharge in end_migration().
2567 pc = lookup_page_cgroup(newpage);
2568 if (PageAnon(page))
2569 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2570 else if (page_is_file_cache(page))
2571 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2572 else
2573 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2574 __mem_cgroup_commit_charge(mem, pc, ctype);
2575 return ret;
2578 /* remove redundant charge if migration failed*/
2579 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2580 struct page *oldpage, struct page *newpage)
2582 struct page *used, *unused;
2583 struct page_cgroup *pc;
2585 if (!mem)
2586 return;
2587 /* blocks rmdir() */
2588 cgroup_exclude_rmdir(&mem->css);
2589 /* at migration success, oldpage->mapping is NULL. */
2590 if (oldpage->mapping) {
2591 used = oldpage;
2592 unused = newpage;
2593 } else {
2594 used = newpage;
2595 unused = oldpage;
2598 * We disallowed uncharge of pages under migration because mapcount
2599 * of the page goes down to zero, temporarly.
2600 * Clear the flag and check the page should be charged.
2602 pc = lookup_page_cgroup(oldpage);
2603 lock_page_cgroup(pc);
2604 ClearPageCgroupMigration(pc);
2605 unlock_page_cgroup(pc);
2607 if (unused != oldpage)
2608 pc = lookup_page_cgroup(unused);
2609 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2611 pc = lookup_page_cgroup(used);
2613 * If a page is a file cache, radix-tree replacement is very atomic
2614 * and we can skip this check. When it was an Anon page, its mapcount
2615 * goes down to 0. But because we added MIGRATION flage, it's not
2616 * uncharged yet. There are several case but page->mapcount check
2617 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2618 * check. (see prepare_charge() also)
2620 if (PageAnon(used))
2621 mem_cgroup_uncharge_page(used);
2623 * At migration, we may charge account against cgroup which has no
2624 * tasks.
2625 * So, rmdir()->pre_destroy() can be called while we do this charge.
2626 * In that case, we need to call pre_destroy() again. check it here.
2628 cgroup_release_and_wakeup_rmdir(&mem->css);
2632 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2633 * Calling hierarchical_reclaim is not enough because we should update
2634 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2635 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2636 * not from the memcg which this page would be charged to.
2637 * try_charge_swapin does all of these works properly.
2639 int mem_cgroup_shmem_charge_fallback(struct page *page,
2640 struct mm_struct *mm,
2641 gfp_t gfp_mask)
2643 struct mem_cgroup *mem = NULL;
2644 int ret;
2646 if (mem_cgroup_disabled())
2647 return 0;
2649 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2650 if (!ret)
2651 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2653 return ret;
2656 static DEFINE_MUTEX(set_limit_mutex);
2658 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2659 unsigned long long val)
2661 int retry_count;
2662 u64 memswlimit, memlimit;
2663 int ret = 0;
2664 int children = mem_cgroup_count_children(memcg);
2665 u64 curusage, oldusage;
2666 int enlarge;
2669 * For keeping hierarchical_reclaim simple, how long we should retry
2670 * is depends on callers. We set our retry-count to be function
2671 * of # of children which we should visit in this loop.
2673 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2675 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2677 enlarge = 0;
2678 while (retry_count) {
2679 if (signal_pending(current)) {
2680 ret = -EINTR;
2681 break;
2684 * Rather than hide all in some function, I do this in
2685 * open coded manner. You see what this really does.
2686 * We have to guarantee mem->res.limit < mem->memsw.limit.
2688 mutex_lock(&set_limit_mutex);
2689 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2690 if (memswlimit < val) {
2691 ret = -EINVAL;
2692 mutex_unlock(&set_limit_mutex);
2693 break;
2696 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2697 if (memlimit < val)
2698 enlarge = 1;
2700 ret = res_counter_set_limit(&memcg->res, val);
2701 if (!ret) {
2702 if (memswlimit == val)
2703 memcg->memsw_is_minimum = true;
2704 else
2705 memcg->memsw_is_minimum = false;
2707 mutex_unlock(&set_limit_mutex);
2709 if (!ret)
2710 break;
2712 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2713 MEM_CGROUP_RECLAIM_SHRINK);
2714 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2715 /* Usage is reduced ? */
2716 if (curusage >= oldusage)
2717 retry_count--;
2718 else
2719 oldusage = curusage;
2721 if (!ret && enlarge)
2722 memcg_oom_recover(memcg);
2724 return ret;
2727 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2728 unsigned long long val)
2730 int retry_count;
2731 u64 memlimit, memswlimit, oldusage, curusage;
2732 int children = mem_cgroup_count_children(memcg);
2733 int ret = -EBUSY;
2734 int enlarge = 0;
2736 /* see mem_cgroup_resize_res_limit */
2737 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2738 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2739 while (retry_count) {
2740 if (signal_pending(current)) {
2741 ret = -EINTR;
2742 break;
2745 * Rather than hide all in some function, I do this in
2746 * open coded manner. You see what this really does.
2747 * We have to guarantee mem->res.limit < mem->memsw.limit.
2749 mutex_lock(&set_limit_mutex);
2750 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2751 if (memlimit > val) {
2752 ret = -EINVAL;
2753 mutex_unlock(&set_limit_mutex);
2754 break;
2756 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2757 if (memswlimit < val)
2758 enlarge = 1;
2759 ret = res_counter_set_limit(&memcg->memsw, val);
2760 if (!ret) {
2761 if (memlimit == val)
2762 memcg->memsw_is_minimum = true;
2763 else
2764 memcg->memsw_is_minimum = false;
2766 mutex_unlock(&set_limit_mutex);
2768 if (!ret)
2769 break;
2771 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2772 MEM_CGROUP_RECLAIM_NOSWAP |
2773 MEM_CGROUP_RECLAIM_SHRINK);
2774 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2775 /* Usage is reduced ? */
2776 if (curusage >= oldusage)
2777 retry_count--;
2778 else
2779 oldusage = curusage;
2781 if (!ret && enlarge)
2782 memcg_oom_recover(memcg);
2783 return ret;
2786 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2787 gfp_t gfp_mask, int nid,
2788 int zid)
2790 unsigned long nr_reclaimed = 0;
2791 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2792 unsigned long reclaimed;
2793 int loop = 0;
2794 struct mem_cgroup_tree_per_zone *mctz;
2795 unsigned long long excess;
2797 if (order > 0)
2798 return 0;
2800 mctz = soft_limit_tree_node_zone(nid, zid);
2802 * This loop can run a while, specially if mem_cgroup's continuously
2803 * keep exceeding their soft limit and putting the system under
2804 * pressure
2806 do {
2807 if (next_mz)
2808 mz = next_mz;
2809 else
2810 mz = mem_cgroup_largest_soft_limit_node(mctz);
2811 if (!mz)
2812 break;
2814 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2815 gfp_mask,
2816 MEM_CGROUP_RECLAIM_SOFT);
2817 nr_reclaimed += reclaimed;
2818 spin_lock(&mctz->lock);
2821 * If we failed to reclaim anything from this memory cgroup
2822 * it is time to move on to the next cgroup
2824 next_mz = NULL;
2825 if (!reclaimed) {
2826 do {
2828 * Loop until we find yet another one.
2830 * By the time we get the soft_limit lock
2831 * again, someone might have aded the
2832 * group back on the RB tree. Iterate to
2833 * make sure we get a different mem.
2834 * mem_cgroup_largest_soft_limit_node returns
2835 * NULL if no other cgroup is present on
2836 * the tree
2838 next_mz =
2839 __mem_cgroup_largest_soft_limit_node(mctz);
2840 if (next_mz == mz) {
2841 css_put(&next_mz->mem->css);
2842 next_mz = NULL;
2843 } else /* next_mz == NULL or other memcg */
2844 break;
2845 } while (1);
2847 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2848 excess = res_counter_soft_limit_excess(&mz->mem->res);
2850 * One school of thought says that we should not add
2851 * back the node to the tree if reclaim returns 0.
2852 * But our reclaim could return 0, simply because due
2853 * to priority we are exposing a smaller subset of
2854 * memory to reclaim from. Consider this as a longer
2855 * term TODO.
2857 /* If excess == 0, no tree ops */
2858 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2859 spin_unlock(&mctz->lock);
2860 css_put(&mz->mem->css);
2861 loop++;
2863 * Could not reclaim anything and there are no more
2864 * mem cgroups to try or we seem to be looping without
2865 * reclaiming anything.
2867 if (!nr_reclaimed &&
2868 (next_mz == NULL ||
2869 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2870 break;
2871 } while (!nr_reclaimed);
2872 if (next_mz)
2873 css_put(&next_mz->mem->css);
2874 return nr_reclaimed;
2878 * This routine traverse page_cgroup in given list and drop them all.
2879 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2881 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2882 int node, int zid, enum lru_list lru)
2884 struct zone *zone;
2885 struct mem_cgroup_per_zone *mz;
2886 struct page_cgroup *pc, *busy;
2887 unsigned long flags, loop;
2888 struct list_head *list;
2889 int ret = 0;
2891 zone = &NODE_DATA(node)->node_zones[zid];
2892 mz = mem_cgroup_zoneinfo(mem, node, zid);
2893 list = &mz->lists[lru];
2895 loop = MEM_CGROUP_ZSTAT(mz, lru);
2896 /* give some margin against EBUSY etc...*/
2897 loop += 256;
2898 busy = NULL;
2899 while (loop--) {
2900 ret = 0;
2901 spin_lock_irqsave(&zone->lru_lock, flags);
2902 if (list_empty(list)) {
2903 spin_unlock_irqrestore(&zone->lru_lock, flags);
2904 break;
2906 pc = list_entry(list->prev, struct page_cgroup, lru);
2907 if (busy == pc) {
2908 list_move(&pc->lru, list);
2909 busy = NULL;
2910 spin_unlock_irqrestore(&zone->lru_lock, flags);
2911 continue;
2913 spin_unlock_irqrestore(&zone->lru_lock, flags);
2915 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2916 if (ret == -ENOMEM)
2917 break;
2919 if (ret == -EBUSY || ret == -EINVAL) {
2920 /* found lock contention or "pc" is obsolete. */
2921 busy = pc;
2922 cond_resched();
2923 } else
2924 busy = NULL;
2927 if (!ret && !list_empty(list))
2928 return -EBUSY;
2929 return ret;
2933 * make mem_cgroup's charge to be 0 if there is no task.
2934 * This enables deleting this mem_cgroup.
2936 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2938 int ret;
2939 int node, zid, shrink;
2940 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2941 struct cgroup *cgrp = mem->css.cgroup;
2943 css_get(&mem->css);
2945 shrink = 0;
2946 /* should free all ? */
2947 if (free_all)
2948 goto try_to_free;
2949 move_account:
2950 do {
2951 ret = -EBUSY;
2952 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2953 goto out;
2954 ret = -EINTR;
2955 if (signal_pending(current))
2956 goto out;
2957 /* This is for making all *used* pages to be on LRU. */
2958 lru_add_drain_all();
2959 drain_all_stock_sync();
2960 ret = 0;
2961 for_each_node_state(node, N_HIGH_MEMORY) {
2962 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2963 enum lru_list l;
2964 for_each_lru(l) {
2965 ret = mem_cgroup_force_empty_list(mem,
2966 node, zid, l);
2967 if (ret)
2968 break;
2971 if (ret)
2972 break;
2974 memcg_oom_recover(mem);
2975 /* it seems parent cgroup doesn't have enough mem */
2976 if (ret == -ENOMEM)
2977 goto try_to_free;
2978 cond_resched();
2979 /* "ret" should also be checked to ensure all lists are empty. */
2980 } while (mem->res.usage > 0 || ret);
2981 out:
2982 css_put(&mem->css);
2983 return ret;
2985 try_to_free:
2986 /* returns EBUSY if there is a task or if we come here twice. */
2987 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2988 ret = -EBUSY;
2989 goto out;
2991 /* we call try-to-free pages for make this cgroup empty */
2992 lru_add_drain_all();
2993 /* try to free all pages in this cgroup */
2994 shrink = 1;
2995 while (nr_retries && mem->res.usage > 0) {
2996 int progress;
2998 if (signal_pending(current)) {
2999 ret = -EINTR;
3000 goto out;
3002 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3003 false, get_swappiness(mem));
3004 if (!progress) {
3005 nr_retries--;
3006 /* maybe some writeback is necessary */
3007 congestion_wait(BLK_RW_ASYNC, HZ/10);
3011 lru_add_drain();
3012 /* try move_account...there may be some *locked* pages. */
3013 goto move_account;
3016 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3018 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3022 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3024 return mem_cgroup_from_cont(cont)->use_hierarchy;
3027 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3028 u64 val)
3030 int retval = 0;
3031 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3032 struct cgroup *parent = cont->parent;
3033 struct mem_cgroup *parent_mem = NULL;
3035 if (parent)
3036 parent_mem = mem_cgroup_from_cont(parent);
3038 cgroup_lock();
3040 * If parent's use_hierarchy is set, we can't make any modifications
3041 * in the child subtrees. If it is unset, then the change can
3042 * occur, provided the current cgroup has no children.
3044 * For the root cgroup, parent_mem is NULL, we allow value to be
3045 * set if there are no children.
3047 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3048 (val == 1 || val == 0)) {
3049 if (list_empty(&cont->children))
3050 mem->use_hierarchy = val;
3051 else
3052 retval = -EBUSY;
3053 } else
3054 retval = -EINVAL;
3055 cgroup_unlock();
3057 return retval;
3060 struct mem_cgroup_idx_data {
3061 s64 val;
3062 enum mem_cgroup_stat_index idx;
3065 static int
3066 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3068 struct mem_cgroup_idx_data *d = data;
3069 d->val += mem_cgroup_read_stat(mem, d->idx);
3070 return 0;
3073 static void
3074 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3075 enum mem_cgroup_stat_index idx, s64 *val)
3077 struct mem_cgroup_idx_data d;
3078 d.idx = idx;
3079 d.val = 0;
3080 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3081 *val = d.val;
3084 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3086 u64 idx_val, val;
3088 if (!mem_cgroup_is_root(mem)) {
3089 if (!swap)
3090 return res_counter_read_u64(&mem->res, RES_USAGE);
3091 else
3092 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3095 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3096 val = idx_val;
3097 mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3098 val += idx_val;
3100 if (swap) {
3101 mem_cgroup_get_recursive_idx_stat(mem,
3102 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3103 val += idx_val;
3106 return val << PAGE_SHIFT;
3109 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3111 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3112 u64 val;
3113 int type, name;
3115 type = MEMFILE_TYPE(cft->private);
3116 name = MEMFILE_ATTR(cft->private);
3117 switch (type) {
3118 case _MEM:
3119 if (name == RES_USAGE)
3120 val = mem_cgroup_usage(mem, false);
3121 else
3122 val = res_counter_read_u64(&mem->res, name);
3123 break;
3124 case _MEMSWAP:
3125 if (name == RES_USAGE)
3126 val = mem_cgroup_usage(mem, true);
3127 else
3128 val = res_counter_read_u64(&mem->memsw, name);
3129 break;
3130 default:
3131 BUG();
3132 break;
3134 return val;
3137 * The user of this function is...
3138 * RES_LIMIT.
3140 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3141 const char *buffer)
3143 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3144 int type, name;
3145 unsigned long long val;
3146 int ret;
3148 type = MEMFILE_TYPE(cft->private);
3149 name = MEMFILE_ATTR(cft->private);
3150 switch (name) {
3151 case RES_LIMIT:
3152 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3153 ret = -EINVAL;
3154 break;
3156 /* This function does all necessary parse...reuse it */
3157 ret = res_counter_memparse_write_strategy(buffer, &val);
3158 if (ret)
3159 break;
3160 if (type == _MEM)
3161 ret = mem_cgroup_resize_limit(memcg, val);
3162 else
3163 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3164 break;
3165 case RES_SOFT_LIMIT:
3166 ret = res_counter_memparse_write_strategy(buffer, &val);
3167 if (ret)
3168 break;
3170 * For memsw, soft limits are hard to implement in terms
3171 * of semantics, for now, we support soft limits for
3172 * control without swap
3174 if (type == _MEM)
3175 ret = res_counter_set_soft_limit(&memcg->res, val);
3176 else
3177 ret = -EINVAL;
3178 break;
3179 default:
3180 ret = -EINVAL; /* should be BUG() ? */
3181 break;
3183 return ret;
3186 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3187 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3189 struct cgroup *cgroup;
3190 unsigned long long min_limit, min_memsw_limit, tmp;
3192 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3193 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3194 cgroup = memcg->css.cgroup;
3195 if (!memcg->use_hierarchy)
3196 goto out;
3198 while (cgroup->parent) {
3199 cgroup = cgroup->parent;
3200 memcg = mem_cgroup_from_cont(cgroup);
3201 if (!memcg->use_hierarchy)
3202 break;
3203 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3204 min_limit = min(min_limit, tmp);
3205 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3206 min_memsw_limit = min(min_memsw_limit, tmp);
3208 out:
3209 *mem_limit = min_limit;
3210 *memsw_limit = min_memsw_limit;
3211 return;
3214 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3216 struct mem_cgroup *mem;
3217 int type, name;
3219 mem = mem_cgroup_from_cont(cont);
3220 type = MEMFILE_TYPE(event);
3221 name = MEMFILE_ATTR(event);
3222 switch (name) {
3223 case RES_MAX_USAGE:
3224 if (type == _MEM)
3225 res_counter_reset_max(&mem->res);
3226 else
3227 res_counter_reset_max(&mem->memsw);
3228 break;
3229 case RES_FAILCNT:
3230 if (type == _MEM)
3231 res_counter_reset_failcnt(&mem->res);
3232 else
3233 res_counter_reset_failcnt(&mem->memsw);
3234 break;
3237 return 0;
3240 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3241 struct cftype *cft)
3243 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3246 #ifdef CONFIG_MMU
3247 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3248 struct cftype *cft, u64 val)
3250 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3252 if (val >= (1 << NR_MOVE_TYPE))
3253 return -EINVAL;
3255 * We check this value several times in both in can_attach() and
3256 * attach(), so we need cgroup lock to prevent this value from being
3257 * inconsistent.
3259 cgroup_lock();
3260 mem->move_charge_at_immigrate = val;
3261 cgroup_unlock();
3263 return 0;
3265 #else
3266 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3267 struct cftype *cft, u64 val)
3269 return -ENOSYS;
3271 #endif
3274 /* For read statistics */
3275 enum {
3276 MCS_CACHE,
3277 MCS_RSS,
3278 MCS_FILE_MAPPED,
3279 MCS_PGPGIN,
3280 MCS_PGPGOUT,
3281 MCS_SWAP,
3282 MCS_INACTIVE_ANON,
3283 MCS_ACTIVE_ANON,
3284 MCS_INACTIVE_FILE,
3285 MCS_ACTIVE_FILE,
3286 MCS_UNEVICTABLE,
3287 NR_MCS_STAT,
3290 struct mcs_total_stat {
3291 s64 stat[NR_MCS_STAT];
3294 struct {
3295 char *local_name;
3296 char *total_name;
3297 } memcg_stat_strings[NR_MCS_STAT] = {
3298 {"cache", "total_cache"},
3299 {"rss", "total_rss"},
3300 {"mapped_file", "total_mapped_file"},
3301 {"pgpgin", "total_pgpgin"},
3302 {"pgpgout", "total_pgpgout"},
3303 {"swap", "total_swap"},
3304 {"inactive_anon", "total_inactive_anon"},
3305 {"active_anon", "total_active_anon"},
3306 {"inactive_file", "total_inactive_file"},
3307 {"active_file", "total_active_file"},
3308 {"unevictable", "total_unevictable"}
3312 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3314 struct mcs_total_stat *s = data;
3315 s64 val;
3317 /* per cpu stat */
3318 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3319 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3320 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3321 s->stat[MCS_RSS] += val * PAGE_SIZE;
3322 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3323 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3324 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3325 s->stat[MCS_PGPGIN] += val;
3326 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3327 s->stat[MCS_PGPGOUT] += val;
3328 if (do_swap_account) {
3329 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3330 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3333 /* per zone stat */
3334 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3335 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3336 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3337 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3338 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3339 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3340 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3341 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3342 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3343 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3344 return 0;
3347 static void
3348 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3350 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3353 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3354 struct cgroup_map_cb *cb)
3356 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3357 struct mcs_total_stat mystat;
3358 int i;
3360 memset(&mystat, 0, sizeof(mystat));
3361 mem_cgroup_get_local_stat(mem_cont, &mystat);
3363 for (i = 0; i < NR_MCS_STAT; i++) {
3364 if (i == MCS_SWAP && !do_swap_account)
3365 continue;
3366 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3369 /* Hierarchical information */
3371 unsigned long long limit, memsw_limit;
3372 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3373 cb->fill(cb, "hierarchical_memory_limit", limit);
3374 if (do_swap_account)
3375 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3378 memset(&mystat, 0, sizeof(mystat));
3379 mem_cgroup_get_total_stat(mem_cont, &mystat);
3380 for (i = 0; i < NR_MCS_STAT; i++) {
3381 if (i == MCS_SWAP && !do_swap_account)
3382 continue;
3383 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3386 #ifdef CONFIG_DEBUG_VM
3387 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3390 int nid, zid;
3391 struct mem_cgroup_per_zone *mz;
3392 unsigned long recent_rotated[2] = {0, 0};
3393 unsigned long recent_scanned[2] = {0, 0};
3395 for_each_online_node(nid)
3396 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3397 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3399 recent_rotated[0] +=
3400 mz->reclaim_stat.recent_rotated[0];
3401 recent_rotated[1] +=
3402 mz->reclaim_stat.recent_rotated[1];
3403 recent_scanned[0] +=
3404 mz->reclaim_stat.recent_scanned[0];
3405 recent_scanned[1] +=
3406 mz->reclaim_stat.recent_scanned[1];
3408 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3409 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3410 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3411 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3413 #endif
3415 return 0;
3418 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3420 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3422 return get_swappiness(memcg);
3425 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3426 u64 val)
3428 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3429 struct mem_cgroup *parent;
3431 if (val > 100)
3432 return -EINVAL;
3434 if (cgrp->parent == NULL)
3435 return -EINVAL;
3437 parent = mem_cgroup_from_cont(cgrp->parent);
3439 cgroup_lock();
3441 /* If under hierarchy, only empty-root can set this value */
3442 if ((parent->use_hierarchy) ||
3443 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3444 cgroup_unlock();
3445 return -EINVAL;
3448 spin_lock(&memcg->reclaim_param_lock);
3449 memcg->swappiness = val;
3450 spin_unlock(&memcg->reclaim_param_lock);
3452 cgroup_unlock();
3454 return 0;
3457 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3459 struct mem_cgroup_threshold_ary *t;
3460 u64 usage;
3461 int i;
3463 rcu_read_lock();
3464 if (!swap)
3465 t = rcu_dereference(memcg->thresholds.primary);
3466 else
3467 t = rcu_dereference(memcg->memsw_thresholds.primary);
3469 if (!t)
3470 goto unlock;
3472 usage = mem_cgroup_usage(memcg, swap);
3475 * current_threshold points to threshold just below usage.
3476 * If it's not true, a threshold was crossed after last
3477 * call of __mem_cgroup_threshold().
3479 i = t->current_threshold;
3482 * Iterate backward over array of thresholds starting from
3483 * current_threshold and check if a threshold is crossed.
3484 * If none of thresholds below usage is crossed, we read
3485 * only one element of the array here.
3487 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3488 eventfd_signal(t->entries[i].eventfd, 1);
3490 /* i = current_threshold + 1 */
3491 i++;
3494 * Iterate forward over array of thresholds starting from
3495 * current_threshold+1 and check if a threshold is crossed.
3496 * If none of thresholds above usage is crossed, we read
3497 * only one element of the array here.
3499 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3500 eventfd_signal(t->entries[i].eventfd, 1);
3502 /* Update current_threshold */
3503 t->current_threshold = i - 1;
3504 unlock:
3505 rcu_read_unlock();
3508 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3510 __mem_cgroup_threshold(memcg, false);
3511 if (do_swap_account)
3512 __mem_cgroup_threshold(memcg, true);
3515 static int compare_thresholds(const void *a, const void *b)
3517 const struct mem_cgroup_threshold *_a = a;
3518 const struct mem_cgroup_threshold *_b = b;
3520 return _a->threshold - _b->threshold;
3523 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3525 struct mem_cgroup_eventfd_list *ev;
3527 list_for_each_entry(ev, &mem->oom_notify, list)
3528 eventfd_signal(ev->eventfd, 1);
3529 return 0;
3532 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3534 mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3537 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3538 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3540 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3541 struct mem_cgroup_thresholds *thresholds;
3542 struct mem_cgroup_threshold_ary *new;
3543 int type = MEMFILE_TYPE(cft->private);
3544 u64 threshold, usage;
3545 int i, size, ret;
3547 ret = res_counter_memparse_write_strategy(args, &threshold);
3548 if (ret)
3549 return ret;
3551 mutex_lock(&memcg->thresholds_lock);
3553 if (type == _MEM)
3554 thresholds = &memcg->thresholds;
3555 else if (type == _MEMSWAP)
3556 thresholds = &memcg->memsw_thresholds;
3557 else
3558 BUG();
3560 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3562 /* Check if a threshold crossed before adding a new one */
3563 if (thresholds->primary)
3564 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3566 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3568 /* Allocate memory for new array of thresholds */
3569 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3570 GFP_KERNEL);
3571 if (!new) {
3572 ret = -ENOMEM;
3573 goto unlock;
3575 new->size = size;
3577 /* Copy thresholds (if any) to new array */
3578 if (thresholds->primary) {
3579 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3580 sizeof(struct mem_cgroup_threshold));
3583 /* Add new threshold */
3584 new->entries[size - 1].eventfd = eventfd;
3585 new->entries[size - 1].threshold = threshold;
3587 /* Sort thresholds. Registering of new threshold isn't time-critical */
3588 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3589 compare_thresholds, NULL);
3591 /* Find current threshold */
3592 new->current_threshold = -1;
3593 for (i = 0; i < size; i++) {
3594 if (new->entries[i].threshold < usage) {
3596 * new->current_threshold will not be used until
3597 * rcu_assign_pointer(), so it's safe to increment
3598 * it here.
3600 ++new->current_threshold;
3604 /* Free old spare buffer and save old primary buffer as spare */
3605 kfree(thresholds->spare);
3606 thresholds->spare = thresholds->primary;
3608 rcu_assign_pointer(thresholds->primary, new);
3610 /* To be sure that nobody uses thresholds */
3611 synchronize_rcu();
3613 unlock:
3614 mutex_unlock(&memcg->thresholds_lock);
3616 return ret;
3619 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3620 struct cftype *cft, struct eventfd_ctx *eventfd)
3622 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3623 struct mem_cgroup_thresholds *thresholds;
3624 struct mem_cgroup_threshold_ary *new;
3625 int type = MEMFILE_TYPE(cft->private);
3626 u64 usage;
3627 int i, j, size;
3629 mutex_lock(&memcg->thresholds_lock);
3630 if (type == _MEM)
3631 thresholds = &memcg->thresholds;
3632 else if (type == _MEMSWAP)
3633 thresholds = &memcg->memsw_thresholds;
3634 else
3635 BUG();
3638 * Something went wrong if we trying to unregister a threshold
3639 * if we don't have thresholds
3641 BUG_ON(!thresholds);
3643 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3645 /* Check if a threshold crossed before removing */
3646 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3648 /* Calculate new number of threshold */
3649 size = 0;
3650 for (i = 0; i < thresholds->primary->size; i++) {
3651 if (thresholds->primary->entries[i].eventfd != eventfd)
3652 size++;
3655 new = thresholds->spare;
3657 /* Set thresholds array to NULL if we don't have thresholds */
3658 if (!size) {
3659 kfree(new);
3660 new = NULL;
3661 goto swap_buffers;
3664 new->size = size;
3666 /* Copy thresholds and find current threshold */
3667 new->current_threshold = -1;
3668 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3669 if (thresholds->primary->entries[i].eventfd == eventfd)
3670 continue;
3672 new->entries[j] = thresholds->primary->entries[i];
3673 if (new->entries[j].threshold < usage) {
3675 * new->current_threshold will not be used
3676 * until rcu_assign_pointer(), so it's safe to increment
3677 * it here.
3679 ++new->current_threshold;
3681 j++;
3684 swap_buffers:
3685 /* Swap primary and spare array */
3686 thresholds->spare = thresholds->primary;
3687 rcu_assign_pointer(thresholds->primary, new);
3689 /* To be sure that nobody uses thresholds */
3690 synchronize_rcu();
3692 mutex_unlock(&memcg->thresholds_lock);
3695 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3696 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3698 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3699 struct mem_cgroup_eventfd_list *event;
3700 int type = MEMFILE_TYPE(cft->private);
3702 BUG_ON(type != _OOM_TYPE);
3703 event = kmalloc(sizeof(*event), GFP_KERNEL);
3704 if (!event)
3705 return -ENOMEM;
3707 mutex_lock(&memcg_oom_mutex);
3709 event->eventfd = eventfd;
3710 list_add(&event->list, &memcg->oom_notify);
3712 /* already in OOM ? */
3713 if (atomic_read(&memcg->oom_lock))
3714 eventfd_signal(eventfd, 1);
3715 mutex_unlock(&memcg_oom_mutex);
3717 return 0;
3720 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3721 struct cftype *cft, struct eventfd_ctx *eventfd)
3723 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3724 struct mem_cgroup_eventfd_list *ev, *tmp;
3725 int type = MEMFILE_TYPE(cft->private);
3727 BUG_ON(type != _OOM_TYPE);
3729 mutex_lock(&memcg_oom_mutex);
3731 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3732 if (ev->eventfd == eventfd) {
3733 list_del(&ev->list);
3734 kfree(ev);
3738 mutex_unlock(&memcg_oom_mutex);
3741 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3742 struct cftype *cft, struct cgroup_map_cb *cb)
3744 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3746 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3748 if (atomic_read(&mem->oom_lock))
3749 cb->fill(cb, "under_oom", 1);
3750 else
3751 cb->fill(cb, "under_oom", 0);
3752 return 0;
3757 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3758 struct cftype *cft, u64 val)
3760 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3761 struct mem_cgroup *parent;
3763 /* cannot set to root cgroup and only 0 and 1 are allowed */
3764 if (!cgrp->parent || !((val == 0) || (val == 1)))
3765 return -EINVAL;
3767 parent = mem_cgroup_from_cont(cgrp->parent);
3769 cgroup_lock();
3770 /* oom-kill-disable is a flag for subhierarchy. */
3771 if ((parent->use_hierarchy) ||
3772 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3773 cgroup_unlock();
3774 return -EINVAL;
3776 mem->oom_kill_disable = val;
3777 if (!val)
3778 memcg_oom_recover(mem);
3779 cgroup_unlock();
3780 return 0;
3783 static struct cftype mem_cgroup_files[] = {
3785 .name = "usage_in_bytes",
3786 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3787 .read_u64 = mem_cgroup_read,
3788 .register_event = mem_cgroup_usage_register_event,
3789 .unregister_event = mem_cgroup_usage_unregister_event,
3792 .name = "max_usage_in_bytes",
3793 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3794 .trigger = mem_cgroup_reset,
3795 .read_u64 = mem_cgroup_read,
3798 .name = "limit_in_bytes",
3799 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3800 .write_string = mem_cgroup_write,
3801 .read_u64 = mem_cgroup_read,
3804 .name = "soft_limit_in_bytes",
3805 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3806 .write_string = mem_cgroup_write,
3807 .read_u64 = mem_cgroup_read,
3810 .name = "failcnt",
3811 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3812 .trigger = mem_cgroup_reset,
3813 .read_u64 = mem_cgroup_read,
3816 .name = "stat",
3817 .read_map = mem_control_stat_show,
3820 .name = "force_empty",
3821 .trigger = mem_cgroup_force_empty_write,
3824 .name = "use_hierarchy",
3825 .write_u64 = mem_cgroup_hierarchy_write,
3826 .read_u64 = mem_cgroup_hierarchy_read,
3829 .name = "swappiness",
3830 .read_u64 = mem_cgroup_swappiness_read,
3831 .write_u64 = mem_cgroup_swappiness_write,
3834 .name = "move_charge_at_immigrate",
3835 .read_u64 = mem_cgroup_move_charge_read,
3836 .write_u64 = mem_cgroup_move_charge_write,
3839 .name = "oom_control",
3840 .read_map = mem_cgroup_oom_control_read,
3841 .write_u64 = mem_cgroup_oom_control_write,
3842 .register_event = mem_cgroup_oom_register_event,
3843 .unregister_event = mem_cgroup_oom_unregister_event,
3844 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3848 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3849 static struct cftype memsw_cgroup_files[] = {
3851 .name = "memsw.usage_in_bytes",
3852 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3853 .read_u64 = mem_cgroup_read,
3854 .register_event = mem_cgroup_usage_register_event,
3855 .unregister_event = mem_cgroup_usage_unregister_event,
3858 .name = "memsw.max_usage_in_bytes",
3859 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3860 .trigger = mem_cgroup_reset,
3861 .read_u64 = mem_cgroup_read,
3864 .name = "memsw.limit_in_bytes",
3865 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3866 .write_string = mem_cgroup_write,
3867 .read_u64 = mem_cgroup_read,
3870 .name = "memsw.failcnt",
3871 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3872 .trigger = mem_cgroup_reset,
3873 .read_u64 = mem_cgroup_read,
3877 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3879 if (!do_swap_account)
3880 return 0;
3881 return cgroup_add_files(cont, ss, memsw_cgroup_files,
3882 ARRAY_SIZE(memsw_cgroup_files));
3884 #else
3885 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3887 return 0;
3889 #endif
3891 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3893 struct mem_cgroup_per_node *pn;
3894 struct mem_cgroup_per_zone *mz;
3895 enum lru_list l;
3896 int zone, tmp = node;
3898 * This routine is called against possible nodes.
3899 * But it's BUG to call kmalloc() against offline node.
3901 * TODO: this routine can waste much memory for nodes which will
3902 * never be onlined. It's better to use memory hotplug callback
3903 * function.
3905 if (!node_state(node, N_NORMAL_MEMORY))
3906 tmp = -1;
3907 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3908 if (!pn)
3909 return 1;
3911 mem->info.nodeinfo[node] = pn;
3912 memset(pn, 0, sizeof(*pn));
3914 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3915 mz = &pn->zoneinfo[zone];
3916 for_each_lru(l)
3917 INIT_LIST_HEAD(&mz->lists[l]);
3918 mz->usage_in_excess = 0;
3919 mz->on_tree = false;
3920 mz->mem = mem;
3922 return 0;
3925 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3927 kfree(mem->info.nodeinfo[node]);
3930 static struct mem_cgroup *mem_cgroup_alloc(void)
3932 struct mem_cgroup *mem;
3933 int size = sizeof(struct mem_cgroup);
3935 /* Can be very big if MAX_NUMNODES is very big */
3936 if (size < PAGE_SIZE)
3937 mem = kmalloc(size, GFP_KERNEL);
3938 else
3939 mem = vmalloc(size);
3941 if (!mem)
3942 return NULL;
3944 memset(mem, 0, size);
3945 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3946 if (!mem->stat) {
3947 if (size < PAGE_SIZE)
3948 kfree(mem);
3949 else
3950 vfree(mem);
3951 mem = NULL;
3953 return mem;
3957 * At destroying mem_cgroup, references from swap_cgroup can remain.
3958 * (scanning all at force_empty is too costly...)
3960 * Instead of clearing all references at force_empty, we remember
3961 * the number of reference from swap_cgroup and free mem_cgroup when
3962 * it goes down to 0.
3964 * Removal of cgroup itself succeeds regardless of refs from swap.
3967 static void __mem_cgroup_free(struct mem_cgroup *mem)
3969 int node;
3971 mem_cgroup_remove_from_trees(mem);
3972 free_css_id(&mem_cgroup_subsys, &mem->css);
3974 for_each_node_state(node, N_POSSIBLE)
3975 free_mem_cgroup_per_zone_info(mem, node);
3977 free_percpu(mem->stat);
3978 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3979 kfree(mem);
3980 else
3981 vfree(mem);
3984 static void mem_cgroup_get(struct mem_cgroup *mem)
3986 atomic_inc(&mem->refcnt);
3989 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3991 if (atomic_sub_and_test(count, &mem->refcnt)) {
3992 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3993 __mem_cgroup_free(mem);
3994 if (parent)
3995 mem_cgroup_put(parent);
3999 static void mem_cgroup_put(struct mem_cgroup *mem)
4001 __mem_cgroup_put(mem, 1);
4005 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4007 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4009 if (!mem->res.parent)
4010 return NULL;
4011 return mem_cgroup_from_res_counter(mem->res.parent, res);
4014 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4015 static void __init enable_swap_cgroup(void)
4017 if (!mem_cgroup_disabled() && really_do_swap_account)
4018 do_swap_account = 1;
4020 #else
4021 static void __init enable_swap_cgroup(void)
4024 #endif
4026 static int mem_cgroup_soft_limit_tree_init(void)
4028 struct mem_cgroup_tree_per_node *rtpn;
4029 struct mem_cgroup_tree_per_zone *rtpz;
4030 int tmp, node, zone;
4032 for_each_node_state(node, N_POSSIBLE) {
4033 tmp = node;
4034 if (!node_state(node, N_NORMAL_MEMORY))
4035 tmp = -1;
4036 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4037 if (!rtpn)
4038 return 1;
4040 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4042 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4043 rtpz = &rtpn->rb_tree_per_zone[zone];
4044 rtpz->rb_root = RB_ROOT;
4045 spin_lock_init(&rtpz->lock);
4048 return 0;
4051 static struct cgroup_subsys_state * __ref
4052 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4054 struct mem_cgroup *mem, *parent;
4055 long error = -ENOMEM;
4056 int node;
4058 mem = mem_cgroup_alloc();
4059 if (!mem)
4060 return ERR_PTR(error);
4062 for_each_node_state(node, N_POSSIBLE)
4063 if (alloc_mem_cgroup_per_zone_info(mem, node))
4064 goto free_out;
4066 /* root ? */
4067 if (cont->parent == NULL) {
4068 int cpu;
4069 enable_swap_cgroup();
4070 parent = NULL;
4071 root_mem_cgroup = mem;
4072 if (mem_cgroup_soft_limit_tree_init())
4073 goto free_out;
4074 for_each_possible_cpu(cpu) {
4075 struct memcg_stock_pcp *stock =
4076 &per_cpu(memcg_stock, cpu);
4077 INIT_WORK(&stock->work, drain_local_stock);
4079 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4080 } else {
4081 parent = mem_cgroup_from_cont(cont->parent);
4082 mem->use_hierarchy = parent->use_hierarchy;
4083 mem->oom_kill_disable = parent->oom_kill_disable;
4086 if (parent && parent->use_hierarchy) {
4087 res_counter_init(&mem->res, &parent->res);
4088 res_counter_init(&mem->memsw, &parent->memsw);
4090 * We increment refcnt of the parent to ensure that we can
4091 * safely access it on res_counter_charge/uncharge.
4092 * This refcnt will be decremented when freeing this
4093 * mem_cgroup(see mem_cgroup_put).
4095 mem_cgroup_get(parent);
4096 } else {
4097 res_counter_init(&mem->res, NULL);
4098 res_counter_init(&mem->memsw, NULL);
4100 mem->last_scanned_child = 0;
4101 spin_lock_init(&mem->reclaim_param_lock);
4102 INIT_LIST_HEAD(&mem->oom_notify);
4104 if (parent)
4105 mem->swappiness = get_swappiness(parent);
4106 atomic_set(&mem->refcnt, 1);
4107 mem->move_charge_at_immigrate = 0;
4108 mutex_init(&mem->thresholds_lock);
4109 return &mem->css;
4110 free_out:
4111 __mem_cgroup_free(mem);
4112 root_mem_cgroup = NULL;
4113 return ERR_PTR(error);
4116 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4117 struct cgroup *cont)
4119 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4121 return mem_cgroup_force_empty(mem, false);
4124 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4125 struct cgroup *cont)
4127 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4129 mem_cgroup_put(mem);
4132 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4133 struct cgroup *cont)
4135 int ret;
4137 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4138 ARRAY_SIZE(mem_cgroup_files));
4140 if (!ret)
4141 ret = register_memsw_files(cont, ss);
4142 return ret;
4145 #ifdef CONFIG_MMU
4146 /* Handlers for move charge at task migration. */
4147 #define PRECHARGE_COUNT_AT_ONCE 256
4148 static int mem_cgroup_do_precharge(unsigned long count)
4150 int ret = 0;
4151 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4152 struct mem_cgroup *mem = mc.to;
4154 if (mem_cgroup_is_root(mem)) {
4155 mc.precharge += count;
4156 /* we don't need css_get for root */
4157 return ret;
4159 /* try to charge at once */
4160 if (count > 1) {
4161 struct res_counter *dummy;
4163 * "mem" cannot be under rmdir() because we've already checked
4164 * by cgroup_lock_live_cgroup() that it is not removed and we
4165 * are still under the same cgroup_mutex. So we can postpone
4166 * css_get().
4168 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4169 goto one_by_one;
4170 if (do_swap_account && res_counter_charge(&mem->memsw,
4171 PAGE_SIZE * count, &dummy)) {
4172 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4173 goto one_by_one;
4175 mc.precharge += count;
4176 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4177 WARN_ON_ONCE(count > INT_MAX);
4178 __css_get(&mem->css, (int)count);
4179 return ret;
4181 one_by_one:
4182 /* fall back to one by one charge */
4183 while (count--) {
4184 if (signal_pending(current)) {
4185 ret = -EINTR;
4186 break;
4188 if (!batch_count--) {
4189 batch_count = PRECHARGE_COUNT_AT_ONCE;
4190 cond_resched();
4192 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4193 if (ret || !mem)
4194 /* mem_cgroup_clear_mc() will do uncharge later */
4195 return -ENOMEM;
4196 mc.precharge++;
4198 return ret;
4202 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4203 * @vma: the vma the pte to be checked belongs
4204 * @addr: the address corresponding to the pte to be checked
4205 * @ptent: the pte to be checked
4206 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4208 * Returns
4209 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4210 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4211 * move charge. if @target is not NULL, the page is stored in target->page
4212 * with extra refcnt got(Callers should handle it).
4213 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4214 * target for charge migration. if @target is not NULL, the entry is stored
4215 * in target->ent.
4217 * Called with pte lock held.
4219 union mc_target {
4220 struct page *page;
4221 swp_entry_t ent;
4224 enum mc_target_type {
4225 MC_TARGET_NONE, /* not used */
4226 MC_TARGET_PAGE,
4227 MC_TARGET_SWAP,
4230 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4231 unsigned long addr, pte_t ptent)
4233 struct page *page = vm_normal_page(vma, addr, ptent);
4235 if (!page || !page_mapped(page))
4236 return NULL;
4237 if (PageAnon(page)) {
4238 /* we don't move shared anon */
4239 if (!move_anon() || page_mapcount(page) > 2)
4240 return NULL;
4241 } else if (!move_file())
4242 /* we ignore mapcount for file pages */
4243 return NULL;
4244 if (!get_page_unless_zero(page))
4245 return NULL;
4247 return page;
4250 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4251 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4253 int usage_count;
4254 struct page *page = NULL;
4255 swp_entry_t ent = pte_to_swp_entry(ptent);
4257 if (!move_anon() || non_swap_entry(ent))
4258 return NULL;
4259 usage_count = mem_cgroup_count_swap_user(ent, &page);
4260 if (usage_count > 1) { /* we don't move shared anon */
4261 if (page)
4262 put_page(page);
4263 return NULL;
4265 if (do_swap_account)
4266 entry->val = ent.val;
4268 return page;
4271 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4272 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4274 struct page *page = NULL;
4275 struct inode *inode;
4276 struct address_space *mapping;
4277 pgoff_t pgoff;
4279 if (!vma->vm_file) /* anonymous vma */
4280 return NULL;
4281 if (!move_file())
4282 return NULL;
4284 inode = vma->vm_file->f_path.dentry->d_inode;
4285 mapping = vma->vm_file->f_mapping;
4286 if (pte_none(ptent))
4287 pgoff = linear_page_index(vma, addr);
4288 else /* pte_file(ptent) is true */
4289 pgoff = pte_to_pgoff(ptent);
4291 /* page is moved even if it's not RSS of this task(page-faulted). */
4292 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4293 page = find_get_page(mapping, pgoff);
4294 } else { /* shmem/tmpfs file. we should take account of swap too. */
4295 swp_entry_t ent;
4296 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4297 if (do_swap_account)
4298 entry->val = ent.val;
4301 return page;
4304 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4305 unsigned long addr, pte_t ptent, union mc_target *target)
4307 struct page *page = NULL;
4308 struct page_cgroup *pc;
4309 int ret = 0;
4310 swp_entry_t ent = { .val = 0 };
4312 if (pte_present(ptent))
4313 page = mc_handle_present_pte(vma, addr, ptent);
4314 else if (is_swap_pte(ptent))
4315 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4316 else if (pte_none(ptent) || pte_file(ptent))
4317 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4319 if (!page && !ent.val)
4320 return 0;
4321 if (page) {
4322 pc = lookup_page_cgroup(page);
4324 * Do only loose check w/o page_cgroup lock.
4325 * mem_cgroup_move_account() checks the pc is valid or not under
4326 * the lock.
4328 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4329 ret = MC_TARGET_PAGE;
4330 if (target)
4331 target->page = page;
4333 if (!ret || !target)
4334 put_page(page);
4336 /* There is a swap entry and a page doesn't exist or isn't charged */
4337 if (ent.val && !ret &&
4338 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4339 ret = MC_TARGET_SWAP;
4340 if (target)
4341 target->ent = ent;
4343 return ret;
4346 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4347 unsigned long addr, unsigned long end,
4348 struct mm_walk *walk)
4350 struct vm_area_struct *vma = walk->private;
4351 pte_t *pte;
4352 spinlock_t *ptl;
4354 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4355 for (; addr != end; pte++, addr += PAGE_SIZE)
4356 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4357 mc.precharge++; /* increment precharge temporarily */
4358 pte_unmap_unlock(pte - 1, ptl);
4359 cond_resched();
4361 return 0;
4364 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4366 unsigned long precharge;
4367 struct vm_area_struct *vma;
4369 down_read(&mm->mmap_sem);
4370 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4371 struct mm_walk mem_cgroup_count_precharge_walk = {
4372 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4373 .mm = mm,
4374 .private = vma,
4376 if (is_vm_hugetlb_page(vma))
4377 continue;
4378 walk_page_range(vma->vm_start, vma->vm_end,
4379 &mem_cgroup_count_precharge_walk);
4381 up_read(&mm->mmap_sem);
4383 precharge = mc.precharge;
4384 mc.precharge = 0;
4386 return precharge;
4389 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4391 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4394 static void mem_cgroup_clear_mc(void)
4396 /* we must uncharge all the leftover precharges from mc.to */
4397 if (mc.precharge) {
4398 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4399 mc.precharge = 0;
4400 memcg_oom_recover(mc.to);
4403 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4404 * we must uncharge here.
4406 if (mc.moved_charge) {
4407 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4408 mc.moved_charge = 0;
4409 memcg_oom_recover(mc.from);
4411 /* we must fixup refcnts and charges */
4412 if (mc.moved_swap) {
4413 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4414 /* uncharge swap account from the old cgroup */
4415 if (!mem_cgroup_is_root(mc.from))
4416 res_counter_uncharge(&mc.from->memsw,
4417 PAGE_SIZE * mc.moved_swap);
4418 __mem_cgroup_put(mc.from, mc.moved_swap);
4420 if (!mem_cgroup_is_root(mc.to)) {
4422 * we charged both to->res and to->memsw, so we should
4423 * uncharge to->res.
4425 res_counter_uncharge(&mc.to->res,
4426 PAGE_SIZE * mc.moved_swap);
4427 VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4428 __css_put(&mc.to->css, mc.moved_swap);
4430 /* we've already done mem_cgroup_get(mc.to) */
4432 mc.moved_swap = 0;
4434 mc.from = NULL;
4435 mc.to = NULL;
4436 mc.moving_task = NULL;
4437 wake_up_all(&mc.waitq);
4440 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4441 struct cgroup *cgroup,
4442 struct task_struct *p,
4443 bool threadgroup)
4445 int ret = 0;
4446 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4448 if (mem->move_charge_at_immigrate) {
4449 struct mm_struct *mm;
4450 struct mem_cgroup *from = mem_cgroup_from_task(p);
4452 VM_BUG_ON(from == mem);
4454 mm = get_task_mm(p);
4455 if (!mm)
4456 return 0;
4457 /* We move charges only when we move a owner of the mm */
4458 if (mm->owner == p) {
4459 VM_BUG_ON(mc.from);
4460 VM_BUG_ON(mc.to);
4461 VM_BUG_ON(mc.precharge);
4462 VM_BUG_ON(mc.moved_charge);
4463 VM_BUG_ON(mc.moved_swap);
4464 VM_BUG_ON(mc.moving_task);
4465 mc.from = from;
4466 mc.to = mem;
4467 mc.precharge = 0;
4468 mc.moved_charge = 0;
4469 mc.moved_swap = 0;
4470 mc.moving_task = current;
4472 ret = mem_cgroup_precharge_mc(mm);
4473 if (ret)
4474 mem_cgroup_clear_mc();
4476 mmput(mm);
4478 return ret;
4481 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4482 struct cgroup *cgroup,
4483 struct task_struct *p,
4484 bool threadgroup)
4486 mem_cgroup_clear_mc();
4489 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4490 unsigned long addr, unsigned long end,
4491 struct mm_walk *walk)
4493 int ret = 0;
4494 struct vm_area_struct *vma = walk->private;
4495 pte_t *pte;
4496 spinlock_t *ptl;
4498 retry:
4499 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4500 for (; addr != end; addr += PAGE_SIZE) {
4501 pte_t ptent = *(pte++);
4502 union mc_target target;
4503 int type;
4504 struct page *page;
4505 struct page_cgroup *pc;
4506 swp_entry_t ent;
4508 if (!mc.precharge)
4509 break;
4511 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4512 switch (type) {
4513 case MC_TARGET_PAGE:
4514 page = target.page;
4515 if (isolate_lru_page(page))
4516 goto put;
4517 pc = lookup_page_cgroup(page);
4518 if (!mem_cgroup_move_account(pc,
4519 mc.from, mc.to, false)) {
4520 mc.precharge--;
4521 /* we uncharge from mc.from later. */
4522 mc.moved_charge++;
4524 putback_lru_page(page);
4525 put: /* is_target_pte_for_mc() gets the page */
4526 put_page(page);
4527 break;
4528 case MC_TARGET_SWAP:
4529 ent = target.ent;
4530 if (!mem_cgroup_move_swap_account(ent,
4531 mc.from, mc.to, false)) {
4532 mc.precharge--;
4533 /* we fixup refcnts and charges later. */
4534 mc.moved_swap++;
4536 break;
4537 default:
4538 break;
4541 pte_unmap_unlock(pte - 1, ptl);
4542 cond_resched();
4544 if (addr != end) {
4546 * We have consumed all precharges we got in can_attach().
4547 * We try charge one by one, but don't do any additional
4548 * charges to mc.to if we have failed in charge once in attach()
4549 * phase.
4551 ret = mem_cgroup_do_precharge(1);
4552 if (!ret)
4553 goto retry;
4556 return ret;
4559 static void mem_cgroup_move_charge(struct mm_struct *mm)
4561 struct vm_area_struct *vma;
4563 lru_add_drain_all();
4564 down_read(&mm->mmap_sem);
4565 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4566 int ret;
4567 struct mm_walk mem_cgroup_move_charge_walk = {
4568 .pmd_entry = mem_cgroup_move_charge_pte_range,
4569 .mm = mm,
4570 .private = vma,
4572 if (is_vm_hugetlb_page(vma))
4573 continue;
4574 ret = walk_page_range(vma->vm_start, vma->vm_end,
4575 &mem_cgroup_move_charge_walk);
4576 if (ret)
4578 * means we have consumed all precharges and failed in
4579 * doing additional charge. Just abandon here.
4581 break;
4583 up_read(&mm->mmap_sem);
4586 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4587 struct cgroup *cont,
4588 struct cgroup *old_cont,
4589 struct task_struct *p,
4590 bool threadgroup)
4592 struct mm_struct *mm;
4594 if (!mc.to)
4595 /* no need to move charge */
4596 return;
4598 mm = get_task_mm(p);
4599 if (mm) {
4600 mem_cgroup_move_charge(mm);
4601 mmput(mm);
4603 mem_cgroup_clear_mc();
4605 #else /* !CONFIG_MMU */
4606 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4607 struct cgroup *cgroup,
4608 struct task_struct *p,
4609 bool threadgroup)
4611 return 0;
4613 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4614 struct cgroup *cgroup,
4615 struct task_struct *p,
4616 bool threadgroup)
4619 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4620 struct cgroup *cont,
4621 struct cgroup *old_cont,
4622 struct task_struct *p,
4623 bool threadgroup)
4626 #endif
4628 struct cgroup_subsys mem_cgroup_subsys = {
4629 .name = "memory",
4630 .subsys_id = mem_cgroup_subsys_id,
4631 .create = mem_cgroup_create,
4632 .pre_destroy = mem_cgroup_pre_destroy,
4633 .destroy = mem_cgroup_destroy,
4634 .populate = mem_cgroup_populate,
4635 .can_attach = mem_cgroup_can_attach,
4636 .cancel_attach = mem_cgroup_cancel_attach,
4637 .attach = mem_cgroup_move_task,
4638 .early_init = 0,
4639 .use_id = 1,
4642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4644 static int __init disable_swap_account(char *s)
4646 really_do_swap_account = 0;
4647 return 1;
4649 __setup("noswapaccount", disable_swap_account);
4650 #endif