igb: add support for 82576 quad copper adapter
[linux-2.6/libata-dev.git] / drivers / net / igb / e1000_82575.c
blobefd9be214885cbc4c5c5282df7072aee901beff9
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67 struct e1000_phy_info *phy = &hw->phy;
68 struct e1000_nvm_info *nvm = &hw->nvm;
69 struct e1000_mac_info *mac = &hw->mac;
70 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
71 u32 eecd;
72 s32 ret_val;
73 u16 size;
74 u32 ctrl_ext = 0;
76 switch (hw->device_id) {
77 case E1000_DEV_ID_82575EB_COPPER:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER:
80 mac->type = e1000_82575;
81 break;
82 case E1000_DEV_ID_82576:
83 case E1000_DEV_ID_82576_NS:
84 case E1000_DEV_ID_82576_FIBER:
85 case E1000_DEV_ID_82576_SERDES:
86 case E1000_DEV_ID_82576_QUAD_COPPER:
87 mac->type = e1000_82576;
88 break;
89 default:
90 return -E1000_ERR_MAC_INIT;
91 break;
94 /* Set media type */
96 * The 82575 uses bits 22:23 for link mode. The mode can be changed
97 * based on the EEPROM. We cannot rely upon device ID. There
98 * is no distinguishable difference between fiber and internal
99 * SerDes mode on the 82575. There can be an external PHY attached
100 * on the SGMII interface. For this, we'll set sgmii_active to true.
102 phy->media_type = e1000_media_type_copper;
103 dev_spec->sgmii_active = false;
105 ctrl_ext = rd32(E1000_CTRL_EXT);
106 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
107 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
108 hw->phy.media_type = e1000_media_type_internal_serdes;
109 ctrl_ext |= E1000_CTRL_I2C_ENA;
110 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
111 dev_spec->sgmii_active = true;
112 ctrl_ext |= E1000_CTRL_I2C_ENA;
113 } else {
114 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
116 wr32(E1000_CTRL_EXT, ctrl_ext);
118 /* Set mta register count */
119 mac->mta_reg_count = 128;
120 /* Set rar entry count */
121 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
122 if (mac->type == e1000_82576)
123 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
124 /* Set if part includes ASF firmware */
125 mac->asf_firmware_present = true;
126 /* Set if manageability features are enabled. */
127 mac->arc_subsystem_valid =
128 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
129 ? true : false;
131 /* physical interface link setup */
132 mac->ops.setup_physical_interface =
133 (hw->phy.media_type == e1000_media_type_copper)
134 ? igb_setup_copper_link_82575
135 : igb_setup_fiber_serdes_link_82575;
137 /* NVM initialization */
138 eecd = rd32(E1000_EECD);
140 nvm->opcode_bits = 8;
141 nvm->delay_usec = 1;
142 switch (nvm->override) {
143 case e1000_nvm_override_spi_large:
144 nvm->page_size = 32;
145 nvm->address_bits = 16;
146 break;
147 case e1000_nvm_override_spi_small:
148 nvm->page_size = 8;
149 nvm->address_bits = 8;
150 break;
151 default:
152 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
153 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
154 break;
157 nvm->type = e1000_nvm_eeprom_spi;
159 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
160 E1000_EECD_SIZE_EX_SHIFT);
163 * Added to a constant, "size" becomes the left-shift value
164 * for setting word_size.
166 size += NVM_WORD_SIZE_BASE_SHIFT;
168 /* EEPROM access above 16k is unsupported */
169 if (size > 14)
170 size = 14;
171 nvm->word_size = 1 << size;
173 /* setup PHY parameters */
174 if (phy->media_type != e1000_media_type_copper) {
175 phy->type = e1000_phy_none;
176 return 0;
179 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
180 phy->reset_delay_us = 100;
182 /* PHY function pointers */
183 if (igb_sgmii_active_82575(hw)) {
184 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
185 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
186 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
187 } else {
188 phy->ops.reset = igb_phy_hw_reset;
189 phy->ops.read_reg = igb_read_phy_reg_igp;
190 phy->ops.write_reg = igb_write_phy_reg_igp;
193 /* Set phy->phy_addr and phy->id. */
194 ret_val = igb_get_phy_id_82575(hw);
195 if (ret_val)
196 return ret_val;
198 /* Verify phy id and set remaining function pointers */
199 switch (phy->id) {
200 case M88E1111_I_PHY_ID:
201 phy->type = e1000_phy_m88;
202 phy->ops.get_phy_info = igb_get_phy_info_m88;
203 phy->ops.get_cable_length = igb_get_cable_length_m88;
204 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
205 break;
206 case IGP03E1000_E_PHY_ID:
207 phy->type = e1000_phy_igp_3;
208 phy->ops.get_phy_info = igb_get_phy_info_igp;
209 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
210 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
211 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
212 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
213 break;
214 default:
215 return -E1000_ERR_PHY;
218 /* if 82576 then initialize mailbox parameters */
219 if (mac->type == e1000_82576)
220 igb_init_mbx_params_pf(hw);
222 return 0;
226 * igb_acquire_phy_82575 - Acquire rights to access PHY
227 * @hw: pointer to the HW structure
229 * Acquire access rights to the correct PHY. This is a
230 * function pointer entry point called by the api module.
232 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
234 u16 mask;
236 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
238 return igb_acquire_swfw_sync_82575(hw, mask);
242 * igb_release_phy_82575 - Release rights to access PHY
243 * @hw: pointer to the HW structure
245 * A wrapper to release access rights to the correct PHY. This is a
246 * function pointer entry point called by the api module.
248 static void igb_release_phy_82575(struct e1000_hw *hw)
250 u16 mask;
252 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
253 igb_release_swfw_sync_82575(hw, mask);
257 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
258 * @hw: pointer to the HW structure
259 * @offset: register offset to be read
260 * @data: pointer to the read data
262 * Reads the PHY register at offset using the serial gigabit media independent
263 * interface and stores the retrieved information in data.
265 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
266 u16 *data)
268 struct e1000_phy_info *phy = &hw->phy;
269 u32 i, i2ccmd = 0;
271 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
272 hw_dbg("PHY Address %u is out of range\n", offset);
273 return -E1000_ERR_PARAM;
277 * Set up Op-code, Phy Address, and register address in the I2CCMD
278 * register. The MAC will take care of interfacing with the
279 * PHY to retrieve the desired data.
281 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
282 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
283 (E1000_I2CCMD_OPCODE_READ));
285 wr32(E1000_I2CCMD, i2ccmd);
287 /* Poll the ready bit to see if the I2C read completed */
288 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
289 udelay(50);
290 i2ccmd = rd32(E1000_I2CCMD);
291 if (i2ccmd & E1000_I2CCMD_READY)
292 break;
294 if (!(i2ccmd & E1000_I2CCMD_READY)) {
295 hw_dbg("I2CCMD Read did not complete\n");
296 return -E1000_ERR_PHY;
298 if (i2ccmd & E1000_I2CCMD_ERROR) {
299 hw_dbg("I2CCMD Error bit set\n");
300 return -E1000_ERR_PHY;
303 /* Need to byte-swap the 16-bit value. */
304 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
306 return 0;
310 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
311 * @hw: pointer to the HW structure
312 * @offset: register offset to write to
313 * @data: data to write at register offset
315 * Writes the data to PHY register at the offset using the serial gigabit
316 * media independent interface.
318 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
319 u16 data)
321 struct e1000_phy_info *phy = &hw->phy;
322 u32 i, i2ccmd = 0;
323 u16 phy_data_swapped;
325 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
326 hw_dbg("PHY Address %d is out of range\n", offset);
327 return -E1000_ERR_PARAM;
330 /* Swap the data bytes for the I2C interface */
331 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
334 * Set up Op-code, Phy Address, and register address in the I2CCMD
335 * register. The MAC will take care of interfacing with the
336 * PHY to retrieve the desired data.
338 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
339 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
340 E1000_I2CCMD_OPCODE_WRITE |
341 phy_data_swapped);
343 wr32(E1000_I2CCMD, i2ccmd);
345 /* Poll the ready bit to see if the I2C read completed */
346 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
347 udelay(50);
348 i2ccmd = rd32(E1000_I2CCMD);
349 if (i2ccmd & E1000_I2CCMD_READY)
350 break;
352 if (!(i2ccmd & E1000_I2CCMD_READY)) {
353 hw_dbg("I2CCMD Write did not complete\n");
354 return -E1000_ERR_PHY;
356 if (i2ccmd & E1000_I2CCMD_ERROR) {
357 hw_dbg("I2CCMD Error bit set\n");
358 return -E1000_ERR_PHY;
361 return 0;
365 * igb_get_phy_id_82575 - Retrieve PHY addr and id
366 * @hw: pointer to the HW structure
368 * Retrieves the PHY address and ID for both PHY's which do and do not use
369 * sgmi interface.
371 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
373 struct e1000_phy_info *phy = &hw->phy;
374 s32 ret_val = 0;
375 u16 phy_id;
378 * For SGMII PHYs, we try the list of possible addresses until
379 * we find one that works. For non-SGMII PHYs
380 * (e.g. integrated copper PHYs), an address of 1 should
381 * work. The result of this function should mean phy->phy_addr
382 * and phy->id are set correctly.
384 if (!(igb_sgmii_active_82575(hw))) {
385 phy->addr = 1;
386 ret_val = igb_get_phy_id(hw);
387 goto out;
391 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
392 * Therefore, we need to test 1-7
394 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
395 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
396 if (ret_val == 0) {
397 hw_dbg("Vendor ID 0x%08X read at address %u\n",
398 phy_id, phy->addr);
400 * At the time of this writing, The M88 part is
401 * the only supported SGMII PHY product.
403 if (phy_id == M88_VENDOR)
404 break;
405 } else {
406 hw_dbg("PHY address %u was unreadable\n", phy->addr);
410 /* A valid PHY type couldn't be found. */
411 if (phy->addr == 8) {
412 phy->addr = 0;
413 ret_val = -E1000_ERR_PHY;
414 goto out;
417 ret_val = igb_get_phy_id(hw);
419 out:
420 return ret_val;
424 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
425 * @hw: pointer to the HW structure
427 * Resets the PHY using the serial gigabit media independent interface.
429 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
431 s32 ret_val;
434 * This isn't a true "hard" reset, but is the only reset
435 * available to us at this time.
438 hw_dbg("Soft resetting SGMII attached PHY...\n");
441 * SFP documentation requires the following to configure the SPF module
442 * to work on SGMII. No further documentation is given.
444 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
445 if (ret_val)
446 goto out;
448 ret_val = igb_phy_sw_reset(hw);
450 out:
451 return ret_val;
455 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
456 * @hw: pointer to the HW structure
457 * @active: true to enable LPLU, false to disable
459 * Sets the LPLU D0 state according to the active flag. When
460 * activating LPLU this function also disables smart speed
461 * and vice versa. LPLU will not be activated unless the
462 * device autonegotiation advertisement meets standards of
463 * either 10 or 10/100 or 10/100/1000 at all duplexes.
464 * This is a function pointer entry point only called by
465 * PHY setup routines.
467 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
469 struct e1000_phy_info *phy = &hw->phy;
470 s32 ret_val;
471 u16 data;
473 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
474 if (ret_val)
475 goto out;
477 if (active) {
478 data |= IGP02E1000_PM_D0_LPLU;
479 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
480 data);
481 if (ret_val)
482 goto out;
484 /* When LPLU is enabled, we should disable SmartSpeed */
485 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
486 &data);
487 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
488 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
489 data);
490 if (ret_val)
491 goto out;
492 } else {
493 data &= ~IGP02E1000_PM_D0_LPLU;
494 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
495 data);
497 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
498 * during Dx states where the power conservation is most
499 * important. During driver activity we should enable
500 * SmartSpeed, so performance is maintained.
502 if (phy->smart_speed == e1000_smart_speed_on) {
503 ret_val = phy->ops.read_reg(hw,
504 IGP01E1000_PHY_PORT_CONFIG, &data);
505 if (ret_val)
506 goto out;
508 data |= IGP01E1000_PSCFR_SMART_SPEED;
509 ret_val = phy->ops.write_reg(hw,
510 IGP01E1000_PHY_PORT_CONFIG, data);
511 if (ret_val)
512 goto out;
513 } else if (phy->smart_speed == e1000_smart_speed_off) {
514 ret_val = phy->ops.read_reg(hw,
515 IGP01E1000_PHY_PORT_CONFIG, &data);
516 if (ret_val)
517 goto out;
519 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
520 ret_val = phy->ops.write_reg(hw,
521 IGP01E1000_PHY_PORT_CONFIG, data);
522 if (ret_val)
523 goto out;
527 out:
528 return ret_val;
532 * igb_acquire_nvm_82575 - Request for access to EEPROM
533 * @hw: pointer to the HW structure
535 * Acquire the necessary semaphores for exclusive access to the EEPROM.
536 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
537 * Return successful if access grant bit set, else clear the request for
538 * EEPROM access and return -E1000_ERR_NVM (-1).
540 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
542 s32 ret_val;
544 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
545 if (ret_val)
546 goto out;
548 ret_val = igb_acquire_nvm(hw);
550 if (ret_val)
551 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
553 out:
554 return ret_val;
558 * igb_release_nvm_82575 - Release exclusive access to EEPROM
559 * @hw: pointer to the HW structure
561 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
562 * then release the semaphores acquired.
564 static void igb_release_nvm_82575(struct e1000_hw *hw)
566 igb_release_nvm(hw);
567 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
571 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
572 * @hw: pointer to the HW structure
573 * @mask: specifies which semaphore to acquire
575 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
576 * will also specify which port we're acquiring the lock for.
578 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
580 u32 swfw_sync;
581 u32 swmask = mask;
582 u32 fwmask = mask << 16;
583 s32 ret_val = 0;
584 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
586 while (i < timeout) {
587 if (igb_get_hw_semaphore(hw)) {
588 ret_val = -E1000_ERR_SWFW_SYNC;
589 goto out;
592 swfw_sync = rd32(E1000_SW_FW_SYNC);
593 if (!(swfw_sync & (fwmask | swmask)))
594 break;
597 * Firmware currently using resource (fwmask)
598 * or other software thread using resource (swmask)
600 igb_put_hw_semaphore(hw);
601 mdelay(5);
602 i++;
605 if (i == timeout) {
606 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
607 ret_val = -E1000_ERR_SWFW_SYNC;
608 goto out;
611 swfw_sync |= swmask;
612 wr32(E1000_SW_FW_SYNC, swfw_sync);
614 igb_put_hw_semaphore(hw);
616 out:
617 return ret_val;
621 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
622 * @hw: pointer to the HW structure
623 * @mask: specifies which semaphore to acquire
625 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
626 * will also specify which port we're releasing the lock for.
628 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
630 u32 swfw_sync;
632 while (igb_get_hw_semaphore(hw) != 0);
633 /* Empty */
635 swfw_sync = rd32(E1000_SW_FW_SYNC);
636 swfw_sync &= ~mask;
637 wr32(E1000_SW_FW_SYNC, swfw_sync);
639 igb_put_hw_semaphore(hw);
643 * igb_get_cfg_done_82575 - Read config done bit
644 * @hw: pointer to the HW structure
646 * Read the management control register for the config done bit for
647 * completion status. NOTE: silicon which is EEPROM-less will fail trying
648 * to read the config done bit, so an error is *ONLY* logged and returns
649 * 0. If we were to return with error, EEPROM-less silicon
650 * would not be able to be reset or change link.
652 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
654 s32 timeout = PHY_CFG_TIMEOUT;
655 s32 ret_val = 0;
656 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
658 if (hw->bus.func == 1)
659 mask = E1000_NVM_CFG_DONE_PORT_1;
661 while (timeout) {
662 if (rd32(E1000_EEMNGCTL) & mask)
663 break;
664 msleep(1);
665 timeout--;
667 if (!timeout)
668 hw_dbg("MNG configuration cycle has not completed.\n");
670 /* If EEPROM is not marked present, init the PHY manually */
671 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
672 (hw->phy.type == e1000_phy_igp_3))
673 igb_phy_init_script_igp3(hw);
675 return ret_val;
679 * igb_check_for_link_82575 - Check for link
680 * @hw: pointer to the HW structure
682 * If sgmii is enabled, then use the pcs register to determine link, otherwise
683 * use the generic interface for determining link.
685 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
687 s32 ret_val;
688 u16 speed, duplex;
690 /* SGMII link check is done through the PCS register. */
691 if ((hw->phy.media_type != e1000_media_type_copper) ||
692 (igb_sgmii_active_82575(hw))) {
693 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
694 &duplex);
696 * Use this flag to determine if link needs to be checked or
697 * not. If we have link clear the flag so that we do not
698 * continue to check for link.
700 hw->mac.get_link_status = !hw->mac.serdes_has_link;
701 } else {
702 ret_val = igb_check_for_copper_link(hw);
705 return ret_val;
708 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
709 * @hw: pointer to the HW structure
710 * @speed: stores the current speed
711 * @duplex: stores the current duplex
713 * Using the physical coding sub-layer (PCS), retrieve the current speed and
714 * duplex, then store the values in the pointers provided.
716 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
717 u16 *duplex)
719 struct e1000_mac_info *mac = &hw->mac;
720 u32 pcs;
722 /* Set up defaults for the return values of this function */
723 mac->serdes_has_link = false;
724 *speed = 0;
725 *duplex = 0;
728 * Read the PCS Status register for link state. For non-copper mode,
729 * the status register is not accurate. The PCS status register is
730 * used instead.
732 pcs = rd32(E1000_PCS_LSTAT);
735 * The link up bit determines when link is up on autoneg. The sync ok
736 * gets set once both sides sync up and agree upon link. Stable link
737 * can be determined by checking for both link up and link sync ok
739 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
740 mac->serdes_has_link = true;
742 /* Detect and store PCS speed */
743 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
744 *speed = SPEED_1000;
745 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
746 *speed = SPEED_100;
747 } else {
748 *speed = SPEED_10;
751 /* Detect and store PCS duplex */
752 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
753 *duplex = FULL_DUPLEX;
754 } else {
755 *duplex = HALF_DUPLEX;
759 return 0;
763 * igb_init_rx_addrs_82575 - Initialize receive address's
764 * @hw: pointer to the HW structure
765 * @rar_count: receive address registers
767 * Setups the receive address registers by setting the base receive address
768 * register to the devices MAC address and clearing all the other receive
769 * address registers to 0.
771 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
773 u32 i;
774 u8 addr[6] = {0,0,0,0,0,0};
776 * This function is essentially the same as that of
777 * e1000_init_rx_addrs_generic. However it also takes care
778 * of the special case where the register offset of the
779 * second set of RARs begins elsewhere. This is implicitly taken care by
780 * function e1000_rar_set_generic.
783 hw_dbg("e1000_init_rx_addrs_82575");
785 /* Setup the receive address */
786 hw_dbg("Programming MAC Address into RAR[0]\n");
787 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
789 /* Zero out the other (rar_entry_count - 1) receive addresses */
790 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
791 for (i = 1; i < rar_count; i++)
792 hw->mac.ops.rar_set(hw, addr, i);
796 * igb_update_mc_addr_list - Update Multicast addresses
797 * @hw: pointer to the HW structure
798 * @mc_addr_list: array of multicast addresses to program
799 * @mc_addr_count: number of multicast addresses to program
800 * @rar_used_count: the first RAR register free to program
801 * @rar_count: total number of supported Receive Address Registers
803 * Updates the Receive Address Registers and Multicast Table Array.
804 * The caller must have a packed mc_addr_list of multicast addresses.
805 * The parameter rar_count will usually be hw->mac.rar_entry_count
806 * unless there are workarounds that change this.
808 void igb_update_mc_addr_list(struct e1000_hw *hw,
809 u8 *mc_addr_list, u32 mc_addr_count,
810 u32 rar_used_count, u32 rar_count)
812 u32 hash_value;
813 u32 i;
814 u8 addr[6] = {0,0,0,0,0,0};
816 * This function is essentially the same as that of
817 * igb_update_mc_addr_list_generic. However it also takes care
818 * of the special case where the register offset of the
819 * second set of RARs begins elsewhere. This is implicitly taken care by
820 * function e1000_rar_set_generic.
824 * Load the first set of multicast addresses into the exact
825 * filters (RAR). If there are not enough to fill the RAR
826 * array, clear the filters.
828 for (i = rar_used_count; i < rar_count; i++) {
829 if (mc_addr_count) {
830 igb_rar_set(hw, mc_addr_list, i);
831 mc_addr_count--;
832 mc_addr_list += ETH_ALEN;
833 } else {
834 igb_rar_set(hw, addr, i);
838 /* Clear the old settings from the MTA */
839 hw_dbg("Clearing MTA\n");
840 for (i = 0; i < hw->mac.mta_reg_count; i++) {
841 array_wr32(E1000_MTA, i, 0);
842 wrfl();
845 /* Load any remaining multicast addresses into the hash table. */
846 for (; mc_addr_count > 0; mc_addr_count--) {
847 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
848 hw_dbg("Hash value = 0x%03X\n", hash_value);
849 igb_mta_set(hw, hash_value);
850 mc_addr_list += ETH_ALEN;
855 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
856 * @hw: pointer to the HW structure
858 * In the case of fiber serdes, shut down optics and PCS on driver unload
859 * when management pass thru is not enabled.
861 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
863 u32 reg;
865 if (hw->mac.type != e1000_82576 ||
866 (hw->phy.media_type != e1000_media_type_fiber &&
867 hw->phy.media_type != e1000_media_type_internal_serdes))
868 return;
870 /* if the management interface is not enabled, then power down */
871 if (!igb_enable_mng_pass_thru(hw)) {
872 /* Disable PCS to turn off link */
873 reg = rd32(E1000_PCS_CFG0);
874 reg &= ~E1000_PCS_CFG_PCS_EN;
875 wr32(E1000_PCS_CFG0, reg);
877 /* shutdown the laser */
878 reg = rd32(E1000_CTRL_EXT);
879 reg |= E1000_CTRL_EXT_SDP7_DATA;
880 wr32(E1000_CTRL_EXT, reg);
882 /* flush the write to verify completion */
883 wrfl();
884 msleep(1);
887 return;
891 * igb_reset_hw_82575 - Reset hardware
892 * @hw: pointer to the HW structure
894 * This resets the hardware into a known state. This is a
895 * function pointer entry point called by the api module.
897 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
899 u32 ctrl, icr;
900 s32 ret_val;
903 * Prevent the PCI-E bus from sticking if there is no TLP connection
904 * on the last TLP read/write transaction when MAC is reset.
906 ret_val = igb_disable_pcie_master(hw);
907 if (ret_val)
908 hw_dbg("PCI-E Master disable polling has failed.\n");
910 hw_dbg("Masking off all interrupts\n");
911 wr32(E1000_IMC, 0xffffffff);
913 wr32(E1000_RCTL, 0);
914 wr32(E1000_TCTL, E1000_TCTL_PSP);
915 wrfl();
917 msleep(10);
919 ctrl = rd32(E1000_CTRL);
921 hw_dbg("Issuing a global reset to MAC\n");
922 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
924 ret_val = igb_get_auto_rd_done(hw);
925 if (ret_val) {
927 * When auto config read does not complete, do not
928 * return with an error. This can happen in situations
929 * where there is no eeprom and prevents getting link.
931 hw_dbg("Auto Read Done did not complete\n");
934 /* If EEPROM is not present, run manual init scripts */
935 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
936 igb_reset_init_script_82575(hw);
938 /* Clear any pending interrupt events. */
939 wr32(E1000_IMC, 0xffffffff);
940 icr = rd32(E1000_ICR);
942 igb_check_alt_mac_addr(hw);
944 return ret_val;
948 * igb_init_hw_82575 - Initialize hardware
949 * @hw: pointer to the HW structure
951 * This inits the hardware readying it for operation.
953 static s32 igb_init_hw_82575(struct e1000_hw *hw)
955 struct e1000_mac_info *mac = &hw->mac;
956 s32 ret_val;
957 u16 i, rar_count = mac->rar_entry_count;
959 /* Initialize identification LED */
960 ret_val = igb_id_led_init(hw);
961 if (ret_val) {
962 hw_dbg("Error initializing identification LED\n");
963 /* This is not fatal and we should not stop init due to this */
966 /* Disabling VLAN filtering */
967 hw_dbg("Initializing the IEEE VLAN\n");
968 igb_clear_vfta(hw);
970 /* Setup the receive address */
971 igb_init_rx_addrs_82575(hw, rar_count);
972 /* Zero out the Multicast HASH table */
973 hw_dbg("Zeroing the MTA\n");
974 for (i = 0; i < mac->mta_reg_count; i++)
975 array_wr32(E1000_MTA, i, 0);
977 /* Setup link and flow control */
978 ret_val = igb_setup_link(hw);
981 * Clear all of the statistics registers (clear on read). It is
982 * important that we do this after we have tried to establish link
983 * because the symbol error count will increment wildly if there
984 * is no link.
986 igb_clear_hw_cntrs_82575(hw);
988 return ret_val;
992 * igb_setup_copper_link_82575 - Configure copper link settings
993 * @hw: pointer to the HW structure
995 * Configures the link for auto-neg or forced speed and duplex. Then we check
996 * for link, once link is established calls to configure collision distance
997 * and flow control are called.
999 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1001 u32 ctrl, led_ctrl;
1002 s32 ret_val;
1003 bool link;
1005 ctrl = rd32(E1000_CTRL);
1006 ctrl |= E1000_CTRL_SLU;
1007 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1008 wr32(E1000_CTRL, ctrl);
1010 switch (hw->phy.type) {
1011 case e1000_phy_m88:
1012 ret_val = igb_copper_link_setup_m88(hw);
1013 break;
1014 case e1000_phy_igp_3:
1015 ret_val = igb_copper_link_setup_igp(hw);
1016 /* Setup activity LED */
1017 led_ctrl = rd32(E1000_LEDCTL);
1018 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1019 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1020 wr32(E1000_LEDCTL, led_ctrl);
1021 break;
1022 default:
1023 ret_val = -E1000_ERR_PHY;
1024 break;
1027 if (ret_val)
1028 goto out;
1030 if (hw->mac.autoneg) {
1032 * Setup autoneg and flow control advertisement
1033 * and perform autonegotiation.
1035 ret_val = igb_copper_link_autoneg(hw);
1036 if (ret_val)
1037 goto out;
1038 } else {
1040 * PHY will be set to 10H, 10F, 100H or 100F
1041 * depending on user settings.
1043 hw_dbg("Forcing Speed and Duplex\n");
1044 ret_val = hw->phy.ops.force_speed_duplex(hw);
1045 if (ret_val) {
1046 hw_dbg("Error Forcing Speed and Duplex\n");
1047 goto out;
1051 ret_val = igb_configure_pcs_link_82575(hw);
1052 if (ret_val)
1053 goto out;
1056 * Check link status. Wait up to 100 microseconds for link to become
1057 * valid.
1059 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1060 if (ret_val)
1061 goto out;
1063 if (link) {
1064 hw_dbg("Valid link established!!!\n");
1065 /* Config the MAC and PHY after link is up */
1066 igb_config_collision_dist(hw);
1067 ret_val = igb_config_fc_after_link_up(hw);
1068 } else {
1069 hw_dbg("Unable to establish link!!!\n");
1072 out:
1073 return ret_val;
1077 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1078 * @hw: pointer to the HW structure
1080 * Configures speed and duplex for fiber and serdes links.
1082 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1084 u32 reg;
1087 * On the 82575, SerDes loopback mode persists until it is
1088 * explicitly turned off or a power cycle is performed. A read to
1089 * the register does not indicate its status. Therefore, we ensure
1090 * loopback mode is disabled during initialization.
1092 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1094 /* Force link up, set 1gb, set both sw defined pins */
1095 reg = rd32(E1000_CTRL);
1096 reg |= E1000_CTRL_SLU |
1097 E1000_CTRL_SPD_1000 |
1098 E1000_CTRL_FRCSPD |
1099 E1000_CTRL_SWDPIN0 |
1100 E1000_CTRL_SWDPIN1;
1101 wr32(E1000_CTRL, reg);
1103 /* Power on phy for 82576 fiber adapters */
1104 if (hw->mac.type == e1000_82576) {
1105 reg = rd32(E1000_CTRL_EXT);
1106 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1107 wr32(E1000_CTRL_EXT, reg);
1110 /* Set switch control to serdes energy detect */
1111 reg = rd32(E1000_CONNSW);
1112 reg |= E1000_CONNSW_ENRGSRC;
1113 wr32(E1000_CONNSW, reg);
1116 * New SerDes mode allows for forcing speed or autonegotiating speed
1117 * at 1gb. Autoneg should be default set by most drivers. This is the
1118 * mode that will be compatible with older link partners and switches.
1119 * However, both are supported by the hardware and some drivers/tools.
1121 reg = rd32(E1000_PCS_LCTL);
1123 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1124 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1126 if (hw->mac.autoneg) {
1127 /* Set PCS register for autoneg */
1128 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1129 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1130 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1131 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1132 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1133 } else {
1134 /* Set PCS register for forced speed */
1135 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1136 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1137 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1138 E1000_PCS_LCTL_FSD | /* Force Speed */
1139 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1140 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1143 if (hw->mac.type == e1000_82576) {
1144 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1145 igb_force_mac_fc(hw);
1148 wr32(E1000_PCS_LCTL, reg);
1150 return 0;
1154 * igb_configure_pcs_link_82575 - Configure PCS link
1155 * @hw: pointer to the HW structure
1157 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1158 * only used on copper connections where the serialized gigabit media
1159 * independent interface (sgmii) is being used. Configures the link
1160 * for auto-negotiation or forces speed/duplex.
1162 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1164 struct e1000_mac_info *mac = &hw->mac;
1165 u32 reg = 0;
1167 if (hw->phy.media_type != e1000_media_type_copper ||
1168 !(igb_sgmii_active_82575(hw)))
1169 goto out;
1171 /* For SGMII, we need to issue a PCS autoneg restart */
1172 reg = rd32(E1000_PCS_LCTL);
1174 /* AN time out should be disabled for SGMII mode */
1175 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1177 if (mac->autoneg) {
1178 /* Make sure forced speed and force link are not set */
1179 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1182 * The PHY should be setup prior to calling this function.
1183 * All we need to do is restart autoneg and enable autoneg.
1185 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1186 } else {
1187 /* Set PCS register for forced speed */
1189 /* Turn off bits for full duplex, speed, and autoneg */
1190 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1191 E1000_PCS_LCTL_FSV_100 |
1192 E1000_PCS_LCTL_FDV_FULL |
1193 E1000_PCS_LCTL_AN_ENABLE);
1195 /* Check for duplex first */
1196 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1197 reg |= E1000_PCS_LCTL_FDV_FULL;
1199 /* Now set speed */
1200 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1201 reg |= E1000_PCS_LCTL_FSV_100;
1203 /* Force speed and force link */
1204 reg |= E1000_PCS_LCTL_FSD |
1205 E1000_PCS_LCTL_FORCE_LINK |
1206 E1000_PCS_LCTL_FLV_LINK_UP;
1208 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1209 reg);
1211 wr32(E1000_PCS_LCTL, reg);
1213 out:
1214 return 0;
1218 * igb_sgmii_active_82575 - Return sgmii state
1219 * @hw: pointer to the HW structure
1221 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1222 * which can be enabled for use in the embedded applications. Simply
1223 * return the current state of the sgmii interface.
1225 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1227 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1229 if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576)
1230 return false;
1232 return dev_spec->sgmii_active;
1236 * igb_reset_init_script_82575 - Inits HW defaults after reset
1237 * @hw: pointer to the HW structure
1239 * Inits recommended HW defaults after a reset when there is no EEPROM
1240 * detected. This is only for the 82575.
1242 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1244 if (hw->mac.type == e1000_82575) {
1245 hw_dbg("Running reset init script for 82575\n");
1246 /* SerDes configuration via SERDESCTRL */
1247 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1248 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1249 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1250 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1252 /* CCM configuration via CCMCTL register */
1253 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1254 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1256 /* PCIe lanes configuration */
1257 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1258 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1259 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1260 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1262 /* PCIe PLL Configuration */
1263 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1264 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1265 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1268 return 0;
1272 * igb_read_mac_addr_82575 - Read device MAC address
1273 * @hw: pointer to the HW structure
1275 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1277 s32 ret_val = 0;
1279 if (igb_check_alt_mac_addr(hw))
1280 ret_val = igb_read_mac_addr(hw);
1282 return ret_val;
1286 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1287 * @hw: pointer to the HW structure
1289 * Clears the hardware counters by reading the counter registers.
1291 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1293 u32 temp;
1295 igb_clear_hw_cntrs_base(hw);
1297 temp = rd32(E1000_PRC64);
1298 temp = rd32(E1000_PRC127);
1299 temp = rd32(E1000_PRC255);
1300 temp = rd32(E1000_PRC511);
1301 temp = rd32(E1000_PRC1023);
1302 temp = rd32(E1000_PRC1522);
1303 temp = rd32(E1000_PTC64);
1304 temp = rd32(E1000_PTC127);
1305 temp = rd32(E1000_PTC255);
1306 temp = rd32(E1000_PTC511);
1307 temp = rd32(E1000_PTC1023);
1308 temp = rd32(E1000_PTC1522);
1310 temp = rd32(E1000_ALGNERRC);
1311 temp = rd32(E1000_RXERRC);
1312 temp = rd32(E1000_TNCRS);
1313 temp = rd32(E1000_CEXTERR);
1314 temp = rd32(E1000_TSCTC);
1315 temp = rd32(E1000_TSCTFC);
1317 temp = rd32(E1000_MGTPRC);
1318 temp = rd32(E1000_MGTPDC);
1319 temp = rd32(E1000_MGTPTC);
1321 temp = rd32(E1000_IAC);
1322 temp = rd32(E1000_ICRXOC);
1324 temp = rd32(E1000_ICRXPTC);
1325 temp = rd32(E1000_ICRXATC);
1326 temp = rd32(E1000_ICTXPTC);
1327 temp = rd32(E1000_ICTXATC);
1328 temp = rd32(E1000_ICTXQEC);
1329 temp = rd32(E1000_ICTXQMTC);
1330 temp = rd32(E1000_ICRXDMTC);
1332 temp = rd32(E1000_CBTMPC);
1333 temp = rd32(E1000_HTDPMC);
1334 temp = rd32(E1000_CBRMPC);
1335 temp = rd32(E1000_RPTHC);
1336 temp = rd32(E1000_HGPTC);
1337 temp = rd32(E1000_HTCBDPC);
1338 temp = rd32(E1000_HGORCL);
1339 temp = rd32(E1000_HGORCH);
1340 temp = rd32(E1000_HGOTCL);
1341 temp = rd32(E1000_HGOTCH);
1342 temp = rd32(E1000_LENERRS);
1344 /* This register should not be read in copper configurations */
1345 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1346 temp = rd32(E1000_SCVPC);
1350 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1351 * @hw: pointer to the HW structure
1353 * After rx enable if managability is enabled then there is likely some
1354 * bad data at the start of the fifo and possibly in the DMA fifo. This
1355 * function clears the fifos and flushes any packets that came in as rx was
1356 * being enabled.
1358 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1360 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1361 int i, ms_wait;
1363 if (hw->mac.type != e1000_82575 ||
1364 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1365 return;
1367 /* Disable all RX queues */
1368 for (i = 0; i < 4; i++) {
1369 rxdctl[i] = rd32(E1000_RXDCTL(i));
1370 wr32(E1000_RXDCTL(i),
1371 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1373 /* Poll all queues to verify they have shut down */
1374 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1375 msleep(1);
1376 rx_enabled = 0;
1377 for (i = 0; i < 4; i++)
1378 rx_enabled |= rd32(E1000_RXDCTL(i));
1379 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1380 break;
1383 if (ms_wait == 10)
1384 hw_dbg("Queue disable timed out after 10ms\n");
1386 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1387 * incoming packets are rejected. Set enable and wait 2ms so that
1388 * any packet that was coming in as RCTL.EN was set is flushed
1390 rfctl = rd32(E1000_RFCTL);
1391 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1393 rlpml = rd32(E1000_RLPML);
1394 wr32(E1000_RLPML, 0);
1396 rctl = rd32(E1000_RCTL);
1397 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1398 temp_rctl |= E1000_RCTL_LPE;
1400 wr32(E1000_RCTL, temp_rctl);
1401 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1402 wrfl();
1403 msleep(2);
1405 /* Enable RX queues that were previously enabled and restore our
1406 * previous state
1408 for (i = 0; i < 4; i++)
1409 wr32(E1000_RXDCTL(i), rxdctl[i]);
1410 wr32(E1000_RCTL, rctl);
1411 wrfl();
1413 wr32(E1000_RLPML, rlpml);
1414 wr32(E1000_RFCTL, rfctl);
1416 /* Flush receive errors generated by workaround */
1417 rd32(E1000_ROC);
1418 rd32(E1000_RNBC);
1419 rd32(E1000_MPC);
1423 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1424 * @hw: pointer to the hardware struct
1425 * @enable: state to enter, either enabled or disabled
1427 * enables/disables L2 switch loopback functionality.
1429 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1431 u32 dtxswc = rd32(E1000_DTXSWC);
1433 if (enable)
1434 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1435 else
1436 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1438 wr32(E1000_DTXSWC, dtxswc);
1442 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
1443 * @hw: pointer to the hardware struct
1444 * @enable: state to enter, either enabled or disabled
1446 * enables/disables replication of packets across multiple pools.
1448 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1450 u32 vt_ctl = rd32(E1000_VT_CTL);
1452 if (enable)
1453 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1454 else
1455 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1457 wr32(E1000_VT_CTL, vt_ctl);
1460 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1461 .reset_hw = igb_reset_hw_82575,
1462 .init_hw = igb_init_hw_82575,
1463 .check_for_link = igb_check_for_link_82575,
1464 .rar_set = igb_rar_set,
1465 .read_mac_addr = igb_read_mac_addr_82575,
1466 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1469 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1470 .acquire = igb_acquire_phy_82575,
1471 .get_cfg_done = igb_get_cfg_done_82575,
1472 .release = igb_release_phy_82575,
1475 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1476 .acquire = igb_acquire_nvm_82575,
1477 .read = igb_read_nvm_eerd,
1478 .release = igb_release_nvm_82575,
1479 .write = igb_write_nvm_spi,
1482 const struct e1000_info e1000_82575_info = {
1483 .get_invariants = igb_get_invariants_82575,
1484 .mac_ops = &e1000_mac_ops_82575,
1485 .phy_ops = &e1000_phy_ops_82575,
1486 .nvm_ops = &e1000_nvm_ops_82575,