[IPV4,IPV6]: Share cork.rt between IPv4 and IPv6.
[linux-2.6/libata-dev.git] / include / asm-ppc / mmu_context.h
blob9f097e25b169bbba0940f4745cffdfa544ccfa98
1 #ifdef __KERNEL__
2 #ifndef __PPC_MMU_CONTEXT_H
3 #define __PPC_MMU_CONTEXT_H
5 #include <linux/bitops.h>
7 #include <asm/atomic.h>
8 #include <asm/mmu.h>
9 #include <asm/cputable.h>
10 #include <asm-generic/mm_hooks.h>
13 * On 32-bit PowerPC 6xx/7xx/7xxx CPUs, we use a set of 16 VSIDs
14 * (virtual segment identifiers) for each context. Although the
15 * hardware supports 24-bit VSIDs, and thus >1 million contexts,
16 * we only use 32,768 of them. That is ample, since there can be
17 * at most around 30,000 tasks in the system anyway, and it means
18 * that we can use a bitmap to indicate which contexts are in use.
19 * Using a bitmap means that we entirely avoid all of the problems
20 * that we used to have when the context number overflowed,
21 * particularly on SMP systems.
22 * -- paulus.
26 * This function defines the mapping from contexts to VSIDs (virtual
27 * segment IDs). We use a skew on both the context and the high 4 bits
28 * of the 32-bit virtual address (the "effective segment ID") in order
29 * to spread out the entries in the MMU hash table. Note, if this
30 * function is changed then arch/ppc/mm/hashtable.S will have to be
31 * changed to correspond.
33 #define CTX_TO_VSID(ctx, va) (((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \
34 & 0xffffff)
37 The MPC8xx has only 16 contexts. We rotate through them on each
38 task switch. A better way would be to keep track of tasks that
39 own contexts, and implement an LRU usage. That way very active
40 tasks don't always have to pay the TLB reload overhead. The
41 kernel pages are mapped shared, so the kernel can run on behalf
42 of any task that makes a kernel entry. Shared does not mean they
43 are not protected, just that the ASID comparison is not performed.
44 -- Dan
46 The IBM4xx has 256 contexts, so we can just rotate through these
47 as a way of "switching" contexts. If the TID of the TLB is zero,
48 the PID/TID comparison is disabled, so we can use a TID of zero
49 to represent all kernel pages as shared among all contexts.
50 -- Dan
53 static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
57 #ifdef CONFIG_8xx
58 #define NO_CONTEXT 16
59 #define LAST_CONTEXT 15
60 #define FIRST_CONTEXT 0
62 #elif defined(CONFIG_4xx)
63 #define NO_CONTEXT 256
64 #define LAST_CONTEXT 255
65 #define FIRST_CONTEXT 1
67 #else
69 /* PPC 6xx, 7xx CPUs */
70 #define NO_CONTEXT ((unsigned long) -1)
71 #define LAST_CONTEXT 32767
72 #define FIRST_CONTEXT 1
73 #endif
76 * Set the current MMU context.
77 * On 32-bit PowerPCs (other than the 8xx embedded chips), this is done by
78 * loading up the segment registers for the user part of the address space.
80 * Since the PGD is immediately available, it is much faster to simply
81 * pass this along as a second parameter, which is required for 8xx and
82 * can be used for debugging on all processors (if you happen to have
83 * an Abatron).
85 extern void set_context(unsigned long contextid, pgd_t *pgd);
88 * Bitmap of contexts in use.
89 * The size of this bitmap is LAST_CONTEXT + 1 bits.
91 extern unsigned long context_map[];
94 * This caches the next context number that we expect to be free.
95 * Its use is an optimization only, we can't rely on this context
96 * number to be free, but it usually will be.
98 extern unsigned long next_mmu_context;
101 * If we don't have sufficient contexts to give one to every task
102 * that could be in the system, we need to be able to steal contexts.
103 * These variables support that.
105 #if LAST_CONTEXT < 30000
106 #define FEW_CONTEXTS 1
107 extern atomic_t nr_free_contexts;
108 extern struct mm_struct *context_mm[LAST_CONTEXT+1];
109 extern void steal_context(void);
110 #endif
113 * Get a new mmu context for the address space described by `mm'.
115 static inline void get_mmu_context(struct mm_struct *mm)
117 unsigned long ctx;
119 if (mm->context.id != NO_CONTEXT)
120 return;
121 #ifdef FEW_CONTEXTS
122 while (atomic_dec_if_positive(&nr_free_contexts) < 0)
123 steal_context();
124 #endif
125 ctx = next_mmu_context;
126 while (test_and_set_bit(ctx, context_map)) {
127 ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx);
128 if (ctx > LAST_CONTEXT)
129 ctx = 0;
131 next_mmu_context = (ctx + 1) & LAST_CONTEXT;
132 mm->context.id = ctx;
133 #ifdef FEW_CONTEXTS
134 context_mm[ctx] = mm;
135 #endif
139 * Set up the context for a new address space.
141 static inline int init_new_context(struct task_struct *t, struct mm_struct *mm)
143 mm->context.id = NO_CONTEXT;
144 mm->context.vdso_base = 0;
145 return 0;
149 * We're finished using the context for an address space.
151 static inline void destroy_context(struct mm_struct *mm)
153 preempt_disable();
154 if (mm->context.id != NO_CONTEXT) {
155 clear_bit(mm->context.id, context_map);
156 mm->context.id = NO_CONTEXT;
157 #ifdef FEW_CONTEXTS
158 atomic_inc(&nr_free_contexts);
159 #endif
161 preempt_enable();
164 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
165 struct task_struct *tsk)
167 #ifdef CONFIG_ALTIVEC
168 if (cpu_has_feature(CPU_FTR_ALTIVEC))
169 asm volatile ("dssall;\n"
170 #ifndef CONFIG_POWER4
171 "sync;\n" /* G4 needs a sync here, G5 apparently not */
172 #endif
173 : : );
174 #endif /* CONFIG_ALTIVEC */
176 tsk->thread.pgdir = next->pgd;
178 /* No need to flush userspace segments if the mm doesnt change */
179 if (prev == next)
180 return;
182 /* Setup new userspace context */
183 get_mmu_context(next);
184 set_context(next->context.id, next->pgd);
187 #define deactivate_mm(tsk,mm) do { } while (0)
190 * After we have set current->mm to a new value, this activates
191 * the context for the new mm so we see the new mappings.
193 #define activate_mm(active_mm, mm) switch_mm(active_mm, mm, current)
195 extern void mmu_context_init(void);
197 #endif /* __PPC_MMU_CONTEXT_H */
198 #endif /* __KERNEL__ */