4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
68 struct list_head vec
[TVN_SIZE
];
72 struct list_head vec
[TVR_SIZE
];
77 struct timer_list
*running_timer
;
78 unsigned long timer_jiffies
;
79 unsigned long next_timer
;
85 } ____cacheline_aligned
;
87 struct tvec_base boot_tvec_bases
;
88 EXPORT_SYMBOL(boot_tvec_bases
);
89 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
91 /* Functions below help us manage 'deferrable' flag */
92 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
94 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
97 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
99 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
102 static inline void timer_set_deferrable(struct timer_list
*timer
)
104 timer
->base
= TBASE_MAKE_DEFERRED(timer
->base
);
108 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
110 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
111 tbase_get_deferrable(timer
->base
));
114 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
118 unsigned long original
= j
;
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
137 * But never round down if @force_up is set.
139 if (rem
< HZ
/4 && !force_up
) /* round down */
144 /* now that we have rounded, subtract the extra skew again */
147 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
170 * The return value is the rounded version of the @j parameter.
172 unsigned long __round_jiffies(unsigned long j
, int cpu
)
174 return round_jiffies_common(j
, cpu
, false);
176 EXPORT_SYMBOL_GPL(__round_jiffies
);
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
196 * The return value is the rounded version of the @j parameter.
198 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
200 unsigned long j0
= jiffies
;
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
205 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
211 * round_jiffies() rounds an absolute time in the future (in jiffies)
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
220 * The return value is the rounded version of the @j parameter.
222 unsigned long round_jiffies(unsigned long j
)
224 return round_jiffies_common(j
, raw_smp_processor_id(), false);
226 EXPORT_SYMBOL_GPL(round_jiffies
);
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
241 * The return value is the rounded version of the @j parameter.
243 unsigned long round_jiffies_relative(unsigned long j
)
245 return __round_jiffies_relative(j
, raw_smp_processor_id());
247 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
259 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
261 return round_jiffies_common(j
, cpu
, true);
263 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
275 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
277 unsigned long j0
= jiffies
;
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
282 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
293 unsigned long round_jiffies_up(unsigned long j
)
295 return round_jiffies_common(j
, raw_smp_processor_id(), true);
297 EXPORT_SYMBOL_GPL(round_jiffies_up
);
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
308 unsigned long round_jiffies_up_relative(unsigned long j
)
310 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
312 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
315 * set_timer_slack - set the allowed slack for a timer
316 * @timer: the timer to be modified
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
324 * By setting the slack to -1, a percentage of the delay is used
327 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
329 timer
->slack
= slack_hz
;
331 EXPORT_SYMBOL_GPL(set_timer_slack
);
333 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
335 unsigned long expires
= timer
->expires
;
336 unsigned long idx
= expires
- base
->timer_jiffies
;
337 struct list_head
*vec
;
339 if (idx
< TVR_SIZE
) {
340 int i
= expires
& TVR_MASK
;
341 vec
= base
->tv1
.vec
+ i
;
342 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
343 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
344 vec
= base
->tv2
.vec
+ i
;
345 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
346 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
347 vec
= base
->tv3
.vec
+ i
;
348 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
349 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
350 vec
= base
->tv4
.vec
+ i
;
351 } else if ((signed long) idx
< 0) {
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
356 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
362 if (idx
> 0xffffffffUL
) {
364 expires
= idx
+ base
->timer_jiffies
;
366 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
367 vec
= base
->tv5
.vec
+ i
;
372 list_add_tail(&timer
->entry
, vec
);
375 #ifdef CONFIG_TIMER_STATS
376 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
378 if (timer
->start_site
)
381 timer
->start_site
= addr
;
382 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
383 timer
->start_pid
= current
->pid
;
386 static void timer_stats_account_timer(struct timer_list
*timer
)
388 unsigned int flag
= 0;
390 if (likely(!timer
->start_site
))
392 if (unlikely(tbase_get_deferrable(timer
->base
)))
393 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
395 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
396 timer
->function
, timer
->start_comm
, flag
);
400 static void timer_stats_account_timer(struct timer_list
*timer
) {}
403 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
405 static struct debug_obj_descr timer_debug_descr
;
407 static void *timer_debug_hint(void *addr
)
409 return ((struct timer_list
*) addr
)->function
;
413 * fixup_init is called when:
414 * - an active object is initialized
416 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
418 struct timer_list
*timer
= addr
;
421 case ODEBUG_STATE_ACTIVE
:
422 del_timer_sync(timer
);
423 debug_object_init(timer
, &timer_debug_descr
);
430 /* Stub timer callback for improperly used timers. */
431 static void stub_timer(unsigned long data
)
437 * fixup_activate is called when:
438 * - an active object is activated
439 * - an unknown object is activated (might be a statically initialized object)
441 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
443 struct timer_list
*timer
= addr
;
447 case ODEBUG_STATE_NOTAVAILABLE
:
449 * This is not really a fixup. The timer was
450 * statically initialized. We just make sure that it
451 * is tracked in the object tracker.
453 if (timer
->entry
.next
== NULL
&&
454 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
455 debug_object_init(timer
, &timer_debug_descr
);
456 debug_object_activate(timer
, &timer_debug_descr
);
459 setup_timer(timer
, stub_timer
, 0);
464 case ODEBUG_STATE_ACTIVE
:
473 * fixup_free is called when:
474 * - an active object is freed
476 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
478 struct timer_list
*timer
= addr
;
481 case ODEBUG_STATE_ACTIVE
:
482 del_timer_sync(timer
);
483 debug_object_free(timer
, &timer_debug_descr
);
491 * fixup_assert_init is called when:
492 * - an untracked/uninit-ed object is found
494 static int timer_fixup_assert_init(void *addr
, enum debug_obj_state state
)
496 struct timer_list
*timer
= addr
;
499 case ODEBUG_STATE_NOTAVAILABLE
:
500 if (timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
502 * This is not really a fixup. The timer was
503 * statically initialized. We just make sure that it
504 * is tracked in the object tracker.
506 debug_object_init(timer
, &timer_debug_descr
);
509 setup_timer(timer
, stub_timer
, 0);
517 static struct debug_obj_descr timer_debug_descr
= {
518 .name
= "timer_list",
519 .debug_hint
= timer_debug_hint
,
520 .fixup_init
= timer_fixup_init
,
521 .fixup_activate
= timer_fixup_activate
,
522 .fixup_free
= timer_fixup_free
,
523 .fixup_assert_init
= timer_fixup_assert_init
,
526 static inline void debug_timer_init(struct timer_list
*timer
)
528 debug_object_init(timer
, &timer_debug_descr
);
531 static inline void debug_timer_activate(struct timer_list
*timer
)
533 debug_object_activate(timer
, &timer_debug_descr
);
536 static inline void debug_timer_deactivate(struct timer_list
*timer
)
538 debug_object_deactivate(timer
, &timer_debug_descr
);
541 static inline void debug_timer_free(struct timer_list
*timer
)
543 debug_object_free(timer
, &timer_debug_descr
);
546 static inline void debug_timer_assert_init(struct timer_list
*timer
)
548 debug_object_assert_init(timer
, &timer_debug_descr
);
551 static void __init_timer(struct timer_list
*timer
,
553 struct lock_class_key
*key
);
555 void init_timer_on_stack_key(struct timer_list
*timer
,
557 struct lock_class_key
*key
)
559 debug_object_init_on_stack(timer
, &timer_debug_descr
);
560 __init_timer(timer
, name
, key
);
562 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
564 void destroy_timer_on_stack(struct timer_list
*timer
)
566 debug_object_free(timer
, &timer_debug_descr
);
568 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
571 static inline void debug_timer_init(struct timer_list
*timer
) { }
572 static inline void debug_timer_activate(struct timer_list
*timer
) { }
573 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
574 static inline void debug_timer_assert_init(struct timer_list
*timer
) { }
577 static inline void debug_init(struct timer_list
*timer
)
579 debug_timer_init(timer
);
580 trace_timer_init(timer
);
584 debug_activate(struct timer_list
*timer
, unsigned long expires
)
586 debug_timer_activate(timer
);
587 trace_timer_start(timer
, expires
);
590 static inline void debug_deactivate(struct timer_list
*timer
)
592 debug_timer_deactivate(timer
);
593 trace_timer_cancel(timer
);
596 static inline void debug_assert_init(struct timer_list
*timer
)
598 debug_timer_assert_init(timer
);
601 static void __init_timer(struct timer_list
*timer
,
603 struct lock_class_key
*key
)
605 timer
->entry
.next
= NULL
;
606 timer
->base
= __raw_get_cpu_var(tvec_bases
);
608 #ifdef CONFIG_TIMER_STATS
609 timer
->start_site
= NULL
;
610 timer
->start_pid
= -1;
611 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
613 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
616 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
618 struct lock_class_key
*key
,
619 void (*function
)(unsigned long),
622 timer
->function
= function
;
624 init_timer_on_stack_key(timer
, name
, key
);
625 timer_set_deferrable(timer
);
627 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
630 * init_timer_key - initialize a timer
631 * @timer: the timer to be initialized
632 * @name: name of the timer
633 * @key: lockdep class key of the fake lock used for tracking timer
634 * sync lock dependencies
636 * init_timer_key() must be done to a timer prior calling *any* of the
637 * other timer functions.
639 void init_timer_key(struct timer_list
*timer
,
641 struct lock_class_key
*key
)
644 __init_timer(timer
, name
, key
);
646 EXPORT_SYMBOL(init_timer_key
);
648 void init_timer_deferrable_key(struct timer_list
*timer
,
650 struct lock_class_key
*key
)
652 init_timer_key(timer
, name
, key
);
653 timer_set_deferrable(timer
);
655 EXPORT_SYMBOL(init_timer_deferrable_key
);
657 static inline void detach_timer(struct timer_list
*timer
,
660 struct list_head
*entry
= &timer
->entry
;
662 debug_deactivate(timer
);
664 __list_del(entry
->prev
, entry
->next
);
667 entry
->prev
= LIST_POISON2
;
671 * We are using hashed locking: holding per_cpu(tvec_bases).lock
672 * means that all timers which are tied to this base via timer->base are
673 * locked, and the base itself is locked too.
675 * So __run_timers/migrate_timers can safely modify all timers which could
676 * be found on ->tvX lists.
678 * When the timer's base is locked, and the timer removed from list, it is
679 * possible to set timer->base = NULL and drop the lock: the timer remains
682 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
683 unsigned long *flags
)
684 __acquires(timer
->base
->lock
)
686 struct tvec_base
*base
;
689 struct tvec_base
*prelock_base
= timer
->base
;
690 base
= tbase_get_base(prelock_base
);
691 if (likely(base
!= NULL
)) {
692 spin_lock_irqsave(&base
->lock
, *flags
);
693 if (likely(prelock_base
== timer
->base
))
695 /* The timer has migrated to another CPU */
696 spin_unlock_irqrestore(&base
->lock
, *flags
);
703 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
704 bool pending_only
, int pinned
)
706 struct tvec_base
*base
, *new_base
;
710 timer_stats_timer_set_start_info(timer
);
711 BUG_ON(!timer
->function
);
713 base
= lock_timer_base(timer
, &flags
);
715 if (timer_pending(timer
)) {
716 detach_timer(timer
, 0);
717 if (timer
->expires
== base
->next_timer
&&
718 !tbase_get_deferrable(timer
->base
))
719 base
->next_timer
= base
->timer_jiffies
;
726 debug_activate(timer
, expires
);
728 cpu
= smp_processor_id();
730 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
731 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
732 cpu
= get_nohz_timer_target();
734 new_base
= per_cpu(tvec_bases
, cpu
);
736 if (base
!= new_base
) {
738 * We are trying to schedule the timer on the local CPU.
739 * However we can't change timer's base while it is running,
740 * otherwise del_timer_sync() can't detect that the timer's
741 * handler yet has not finished. This also guarantees that
742 * the timer is serialized wrt itself.
744 if (likely(base
->running_timer
!= timer
)) {
745 /* See the comment in lock_timer_base() */
746 timer_set_base(timer
, NULL
);
747 spin_unlock(&base
->lock
);
749 spin_lock(&base
->lock
);
750 timer_set_base(timer
, base
);
754 timer
->expires
= expires
;
755 if (time_before(timer
->expires
, base
->next_timer
) &&
756 !tbase_get_deferrable(timer
->base
))
757 base
->next_timer
= timer
->expires
;
758 internal_add_timer(base
, timer
);
761 spin_unlock_irqrestore(&base
->lock
, flags
);
767 * mod_timer_pending - modify a pending timer's timeout
768 * @timer: the pending timer to be modified
769 * @expires: new timeout in jiffies
771 * mod_timer_pending() is the same for pending timers as mod_timer(),
772 * but will not re-activate and modify already deleted timers.
774 * It is useful for unserialized use of timers.
776 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
778 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
780 EXPORT_SYMBOL(mod_timer_pending
);
783 * Decide where to put the timer while taking the slack into account
786 * 1) calculate the maximum (absolute) time
787 * 2) calculate the highest bit where the expires and new max are different
788 * 3) use this bit to make a mask
789 * 4) use the bitmask to round down the maximum time, so that all last
793 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
795 unsigned long expires_limit
, mask
;
798 if (timer
->slack
>= 0) {
799 expires_limit
= expires
+ timer
->slack
;
801 long delta
= expires
- jiffies
;
806 expires_limit
= expires
+ delta
/ 256;
808 mask
= expires
^ expires_limit
;
812 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
814 mask
= (1 << bit
) - 1;
816 expires_limit
= expires_limit
& ~(mask
);
818 return expires_limit
;
822 * mod_timer - modify a timer's timeout
823 * @timer: the timer to be modified
824 * @expires: new timeout in jiffies
826 * mod_timer() is a more efficient way to update the expire field of an
827 * active timer (if the timer is inactive it will be activated)
829 * mod_timer(timer, expires) is equivalent to:
831 * del_timer(timer); timer->expires = expires; add_timer(timer);
833 * Note that if there are multiple unserialized concurrent users of the
834 * same timer, then mod_timer() is the only safe way to modify the timeout,
835 * since add_timer() cannot modify an already running timer.
837 * The function returns whether it has modified a pending timer or not.
838 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
839 * active timer returns 1.)
841 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
843 expires
= apply_slack(timer
, expires
);
846 * This is a common optimization triggered by the
847 * networking code - if the timer is re-modified
848 * to be the same thing then just return:
850 if (timer_pending(timer
) && timer
->expires
== expires
)
853 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
855 EXPORT_SYMBOL(mod_timer
);
858 * mod_timer_pinned - modify a timer's timeout
859 * @timer: the timer to be modified
860 * @expires: new timeout in jiffies
862 * mod_timer_pinned() is a way to update the expire field of an
863 * active timer (if the timer is inactive it will be activated)
864 * and to ensure that the timer is scheduled on the current CPU.
866 * Note that this does not prevent the timer from being migrated
867 * when the current CPU goes offline. If this is a problem for
868 * you, use CPU-hotplug notifiers to handle it correctly, for
869 * example, cancelling the timer when the corresponding CPU goes
872 * mod_timer_pinned(timer, expires) is equivalent to:
874 * del_timer(timer); timer->expires = expires; add_timer(timer);
876 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
878 if (timer
->expires
== expires
&& timer_pending(timer
))
881 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
883 EXPORT_SYMBOL(mod_timer_pinned
);
886 * add_timer - start a timer
887 * @timer: the timer to be added
889 * The kernel will do a ->function(->data) callback from the
890 * timer interrupt at the ->expires point in the future. The
891 * current time is 'jiffies'.
893 * The timer's ->expires, ->function (and if the handler uses it, ->data)
894 * fields must be set prior calling this function.
896 * Timers with an ->expires field in the past will be executed in the next
899 void add_timer(struct timer_list
*timer
)
901 BUG_ON(timer_pending(timer
));
902 mod_timer(timer
, timer
->expires
);
904 EXPORT_SYMBOL(add_timer
);
907 * add_timer_on - start a timer on a particular CPU
908 * @timer: the timer to be added
909 * @cpu: the CPU to start it on
911 * This is not very scalable on SMP. Double adds are not possible.
913 void add_timer_on(struct timer_list
*timer
, int cpu
)
915 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
918 timer_stats_timer_set_start_info(timer
);
919 BUG_ON(timer_pending(timer
) || !timer
->function
);
920 spin_lock_irqsave(&base
->lock
, flags
);
921 timer_set_base(timer
, base
);
922 debug_activate(timer
, timer
->expires
);
923 if (time_before(timer
->expires
, base
->next_timer
) &&
924 !tbase_get_deferrable(timer
->base
))
925 base
->next_timer
= timer
->expires
;
926 internal_add_timer(base
, timer
);
928 * Check whether the other CPU is idle and needs to be
929 * triggered to reevaluate the timer wheel when nohz is
930 * active. We are protected against the other CPU fiddling
931 * with the timer by holding the timer base lock. This also
932 * makes sure that a CPU on the way to idle can not evaluate
935 wake_up_idle_cpu(cpu
);
936 spin_unlock_irqrestore(&base
->lock
, flags
);
938 EXPORT_SYMBOL_GPL(add_timer_on
);
941 * del_timer - deactive a timer.
942 * @timer: the timer to be deactivated
944 * del_timer() deactivates a timer - this works on both active and inactive
947 * The function returns whether it has deactivated a pending timer or not.
948 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
949 * active timer returns 1.)
951 int del_timer(struct timer_list
*timer
)
953 struct tvec_base
*base
;
957 debug_assert_init(timer
);
959 timer_stats_timer_clear_start_info(timer
);
960 if (timer_pending(timer
)) {
961 base
= lock_timer_base(timer
, &flags
);
962 if (timer_pending(timer
)) {
963 detach_timer(timer
, 1);
964 if (timer
->expires
== base
->next_timer
&&
965 !tbase_get_deferrable(timer
->base
))
966 base
->next_timer
= base
->timer_jiffies
;
969 spin_unlock_irqrestore(&base
->lock
, flags
);
974 EXPORT_SYMBOL(del_timer
);
977 * try_to_del_timer_sync - Try to deactivate a timer
978 * @timer: timer do del
980 * This function tries to deactivate a timer. Upon successful (ret >= 0)
981 * exit the timer is not queued and the handler is not running on any CPU.
983 int try_to_del_timer_sync(struct timer_list
*timer
)
985 struct tvec_base
*base
;
989 debug_assert_init(timer
);
991 base
= lock_timer_base(timer
, &flags
);
993 if (base
->running_timer
== timer
)
996 timer_stats_timer_clear_start_info(timer
);
998 if (timer_pending(timer
)) {
999 detach_timer(timer
, 1);
1000 if (timer
->expires
== base
->next_timer
&&
1001 !tbase_get_deferrable(timer
->base
))
1002 base
->next_timer
= base
->timer_jiffies
;
1006 spin_unlock_irqrestore(&base
->lock
, flags
);
1010 EXPORT_SYMBOL(try_to_del_timer_sync
);
1014 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1015 * @timer: the timer to be deactivated
1017 * This function only differs from del_timer() on SMP: besides deactivating
1018 * the timer it also makes sure the handler has finished executing on other
1021 * Synchronization rules: Callers must prevent restarting of the timer,
1022 * otherwise this function is meaningless. It must not be called from
1023 * interrupt contexts. The caller must not hold locks which would prevent
1024 * completion of the timer's handler. The timer's handler must not call
1025 * add_timer_on(). Upon exit the timer is not queued and the handler is
1026 * not running on any CPU.
1028 * Note: You must not hold locks that are held in interrupt context
1029 * while calling this function. Even if the lock has nothing to do
1030 * with the timer in question. Here's why:
1036 * base->running_timer = mytimer;
1037 * spin_lock_irq(somelock);
1039 * spin_lock(somelock);
1040 * del_timer_sync(mytimer);
1041 * while (base->running_timer == mytimer);
1043 * Now del_timer_sync() will never return and never release somelock.
1044 * The interrupt on the other CPU is waiting to grab somelock but
1045 * it has interrupted the softirq that CPU0 is waiting to finish.
1047 * The function returns whether it has deactivated a pending timer or not.
1049 int del_timer_sync(struct timer_list
*timer
)
1051 #ifdef CONFIG_LOCKDEP
1052 unsigned long flags
;
1055 * If lockdep gives a backtrace here, please reference
1056 * the synchronization rules above.
1058 local_irq_save(flags
);
1059 lock_map_acquire(&timer
->lockdep_map
);
1060 lock_map_release(&timer
->lockdep_map
);
1061 local_irq_restore(flags
);
1064 * don't use it in hardirq context, because it
1065 * could lead to deadlock.
1069 int ret
= try_to_del_timer_sync(timer
);
1075 EXPORT_SYMBOL(del_timer_sync
);
1078 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1080 /* cascade all the timers from tv up one level */
1081 struct timer_list
*timer
, *tmp
;
1082 struct list_head tv_list
;
1084 list_replace_init(tv
->vec
+ index
, &tv_list
);
1087 * We are removing _all_ timers from the list, so we
1088 * don't have to detach them individually.
1090 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1091 BUG_ON(tbase_get_base(timer
->base
) != base
);
1092 internal_add_timer(base
, timer
);
1098 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1101 int preempt_count
= preempt_count();
1103 #ifdef CONFIG_LOCKDEP
1105 * It is permissible to free the timer from inside the
1106 * function that is called from it, this we need to take into
1107 * account for lockdep too. To avoid bogus "held lock freed"
1108 * warnings as well as problems when looking into
1109 * timer->lockdep_map, make a copy and use that here.
1111 struct lockdep_map lockdep_map
;
1113 lockdep_copy_map(&lockdep_map
, &timer
->lockdep_map
);
1116 * Couple the lock chain with the lock chain at
1117 * del_timer_sync() by acquiring the lock_map around the fn()
1118 * call here and in del_timer_sync().
1120 lock_map_acquire(&lockdep_map
);
1122 trace_timer_expire_entry(timer
);
1124 trace_timer_expire_exit(timer
);
1126 lock_map_release(&lockdep_map
);
1128 if (preempt_count
!= preempt_count()) {
1129 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1130 fn
, preempt_count
, preempt_count());
1132 * Restore the preempt count. That gives us a decent
1133 * chance to survive and extract information. If the
1134 * callback kept a lock held, bad luck, but not worse
1135 * than the BUG() we had.
1137 preempt_count() = preempt_count
;
1141 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1144 * __run_timers - run all expired timers (if any) on this CPU.
1145 * @base: the timer vector to be processed.
1147 * This function cascades all vectors and executes all expired timer
1150 static inline void __run_timers(struct tvec_base
*base
)
1152 struct timer_list
*timer
;
1154 spin_lock_irq(&base
->lock
);
1155 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1156 struct list_head work_list
;
1157 struct list_head
*head
= &work_list
;
1158 int index
= base
->timer_jiffies
& TVR_MASK
;
1164 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1165 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1166 !cascade(base
, &base
->tv4
, INDEX(2)))
1167 cascade(base
, &base
->tv5
, INDEX(3));
1168 ++base
->timer_jiffies
;
1169 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1170 while (!list_empty(head
)) {
1171 void (*fn
)(unsigned long);
1174 timer
= list_first_entry(head
, struct timer_list
,entry
);
1175 fn
= timer
->function
;
1178 timer_stats_account_timer(timer
);
1180 base
->running_timer
= timer
;
1181 detach_timer(timer
, 1);
1183 spin_unlock_irq(&base
->lock
);
1184 call_timer_fn(timer
, fn
, data
);
1185 spin_lock_irq(&base
->lock
);
1188 base
->running_timer
= NULL
;
1189 spin_unlock_irq(&base
->lock
);
1194 * Find out when the next timer event is due to happen. This
1195 * is used on S/390 to stop all activity when a CPU is idle.
1196 * This function needs to be called with interrupts disabled.
1198 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1200 unsigned long timer_jiffies
= base
->timer_jiffies
;
1201 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1202 int index
, slot
, array
, found
= 0;
1203 struct timer_list
*nte
;
1204 struct tvec
*varray
[4];
1206 /* Look for timer events in tv1. */
1207 index
= slot
= timer_jiffies
& TVR_MASK
;
1209 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1210 if (tbase_get_deferrable(nte
->base
))
1214 expires
= nte
->expires
;
1215 /* Look at the cascade bucket(s)? */
1216 if (!index
|| slot
< index
)
1220 slot
= (slot
+ 1) & TVR_MASK
;
1221 } while (slot
!= index
);
1224 /* Calculate the next cascade event */
1226 timer_jiffies
+= TVR_SIZE
- index
;
1227 timer_jiffies
>>= TVR_BITS
;
1229 /* Check tv2-tv5. */
1230 varray
[0] = &base
->tv2
;
1231 varray
[1] = &base
->tv3
;
1232 varray
[2] = &base
->tv4
;
1233 varray
[3] = &base
->tv5
;
1235 for (array
= 0; array
< 4; array
++) {
1236 struct tvec
*varp
= varray
[array
];
1238 index
= slot
= timer_jiffies
& TVN_MASK
;
1240 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1241 if (tbase_get_deferrable(nte
->base
))
1245 if (time_before(nte
->expires
, expires
))
1246 expires
= nte
->expires
;
1249 * Do we still search for the first timer or are
1250 * we looking up the cascade buckets ?
1253 /* Look at the cascade bucket(s)? */
1254 if (!index
|| slot
< index
)
1258 slot
= (slot
+ 1) & TVN_MASK
;
1259 } while (slot
!= index
);
1262 timer_jiffies
+= TVN_SIZE
- index
;
1263 timer_jiffies
>>= TVN_BITS
;
1269 * Check, if the next hrtimer event is before the next timer wheel
1272 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1273 unsigned long expires
)
1275 ktime_t hr_delta
= hrtimer_get_next_event();
1276 struct timespec tsdelta
;
1277 unsigned long delta
;
1279 if (hr_delta
.tv64
== KTIME_MAX
)
1283 * Expired timer available, let it expire in the next tick
1285 if (hr_delta
.tv64
<= 0)
1288 tsdelta
= ktime_to_timespec(hr_delta
);
1289 delta
= timespec_to_jiffies(&tsdelta
);
1292 * Limit the delta to the max value, which is checked in
1293 * tick_nohz_stop_sched_tick():
1295 if (delta
> NEXT_TIMER_MAX_DELTA
)
1296 delta
= NEXT_TIMER_MAX_DELTA
;
1299 * Take rounding errors in to account and make sure, that it
1300 * expires in the next tick. Otherwise we go into an endless
1301 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1307 if (time_before(now
, expires
))
1313 * get_next_timer_interrupt - return the jiffy of the next pending timer
1314 * @now: current time (in jiffies)
1316 unsigned long get_next_timer_interrupt(unsigned long now
)
1318 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1319 unsigned long expires
;
1322 * Pretend that there is no timer pending if the cpu is offline.
1323 * Possible pending timers will be migrated later to an active cpu.
1325 if (cpu_is_offline(smp_processor_id()))
1326 return now
+ NEXT_TIMER_MAX_DELTA
;
1327 spin_lock(&base
->lock
);
1328 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1329 base
->next_timer
= __next_timer_interrupt(base
);
1330 expires
= base
->next_timer
;
1331 spin_unlock(&base
->lock
);
1333 if (time_before_eq(expires
, now
))
1336 return cmp_next_hrtimer_event(now
, expires
);
1341 * Called from the timer interrupt handler to charge one tick to the current
1342 * process. user_tick is 1 if the tick is user time, 0 for system.
1344 void update_process_times(int user_tick
)
1346 struct task_struct
*p
= current
;
1347 int cpu
= smp_processor_id();
1349 /* Note: this timer irq context must be accounted for as well. */
1350 account_process_tick(p
, user_tick
);
1352 rcu_check_callbacks(cpu
, user_tick
);
1354 #ifdef CONFIG_IRQ_WORK
1359 run_posix_cpu_timers(p
);
1363 * This function runs timers and the timer-tq in bottom half context.
1365 static void run_timer_softirq(struct softirq_action
*h
)
1367 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1369 hrtimer_run_pending();
1371 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1376 * Called by the local, per-CPU timer interrupt on SMP.
1378 void run_local_timers(void)
1380 hrtimer_run_queues();
1381 raise_softirq(TIMER_SOFTIRQ
);
1384 #ifdef __ARCH_WANT_SYS_ALARM
1387 * For backwards compatibility? This can be done in libc so Alpha
1388 * and all newer ports shouldn't need it.
1390 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1392 return alarm_setitimer(seconds
);
1400 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1401 * should be moved into arch/i386 instead?
1405 * sys_getpid - return the thread group id of the current process
1407 * Note, despite the name, this returns the tgid not the pid. The tgid and
1408 * the pid are identical unless CLONE_THREAD was specified on clone() in
1409 * which case the tgid is the same in all threads of the same group.
1411 * This is SMP safe as current->tgid does not change.
1413 SYSCALL_DEFINE0(getpid
)
1415 return task_tgid_vnr(current
);
1419 * Accessing ->real_parent is not SMP-safe, it could
1420 * change from under us. However, we can use a stale
1421 * value of ->real_parent under rcu_read_lock(), see
1422 * release_task()->call_rcu(delayed_put_task_struct).
1424 SYSCALL_DEFINE0(getppid
)
1429 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
1435 SYSCALL_DEFINE0(getuid
)
1437 /* Only we change this so SMP safe */
1438 return from_kuid_munged(current_user_ns(), current_uid());
1441 SYSCALL_DEFINE0(geteuid
)
1443 /* Only we change this so SMP safe */
1444 return from_kuid_munged(current_user_ns(), current_euid());
1447 SYSCALL_DEFINE0(getgid
)
1449 /* Only we change this so SMP safe */
1450 return from_kgid_munged(current_user_ns(), current_gid());
1453 SYSCALL_DEFINE0(getegid
)
1455 /* Only we change this so SMP safe */
1456 return from_kgid_munged(current_user_ns(), current_egid());
1461 static void process_timeout(unsigned long __data
)
1463 wake_up_process((struct task_struct
*)__data
);
1467 * schedule_timeout - sleep until timeout
1468 * @timeout: timeout value in jiffies
1470 * Make the current task sleep until @timeout jiffies have
1471 * elapsed. The routine will return immediately unless
1472 * the current task state has been set (see set_current_state()).
1474 * You can set the task state as follows -
1476 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1477 * pass before the routine returns. The routine will return 0
1479 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1480 * delivered to the current task. In this case the remaining time
1481 * in jiffies will be returned, or 0 if the timer expired in time
1483 * The current task state is guaranteed to be TASK_RUNNING when this
1486 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1487 * the CPU away without a bound on the timeout. In this case the return
1488 * value will be %MAX_SCHEDULE_TIMEOUT.
1490 * In all cases the return value is guaranteed to be non-negative.
1492 signed long __sched
schedule_timeout(signed long timeout
)
1494 struct timer_list timer
;
1495 unsigned long expire
;
1499 case MAX_SCHEDULE_TIMEOUT
:
1501 * These two special cases are useful to be comfortable
1502 * in the caller. Nothing more. We could take
1503 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1504 * but I' d like to return a valid offset (>=0) to allow
1505 * the caller to do everything it want with the retval.
1511 * Another bit of PARANOID. Note that the retval will be
1512 * 0 since no piece of kernel is supposed to do a check
1513 * for a negative retval of schedule_timeout() (since it
1514 * should never happens anyway). You just have the printk()
1515 * that will tell you if something is gone wrong and where.
1518 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1519 "value %lx\n", timeout
);
1521 current
->state
= TASK_RUNNING
;
1526 expire
= timeout
+ jiffies
;
1528 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1529 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1531 del_singleshot_timer_sync(&timer
);
1533 /* Remove the timer from the object tracker */
1534 destroy_timer_on_stack(&timer
);
1536 timeout
= expire
- jiffies
;
1539 return timeout
< 0 ? 0 : timeout
;
1541 EXPORT_SYMBOL(schedule_timeout
);
1544 * We can use __set_current_state() here because schedule_timeout() calls
1545 * schedule() unconditionally.
1547 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1549 __set_current_state(TASK_INTERRUPTIBLE
);
1550 return schedule_timeout(timeout
);
1552 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1554 signed long __sched
schedule_timeout_killable(signed long timeout
)
1556 __set_current_state(TASK_KILLABLE
);
1557 return schedule_timeout(timeout
);
1559 EXPORT_SYMBOL(schedule_timeout_killable
);
1561 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1563 __set_current_state(TASK_UNINTERRUPTIBLE
);
1564 return schedule_timeout(timeout
);
1566 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1568 /* Thread ID - the internal kernel "pid" */
1569 SYSCALL_DEFINE0(gettid
)
1571 return task_pid_vnr(current
);
1575 * do_sysinfo - fill in sysinfo struct
1576 * @info: pointer to buffer to fill
1578 int do_sysinfo(struct sysinfo
*info
)
1580 unsigned long mem_total
, sav_total
;
1581 unsigned int mem_unit
, bitcount
;
1584 memset(info
, 0, sizeof(struct sysinfo
));
1587 monotonic_to_bootbased(&tp
);
1588 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1590 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1592 info
->procs
= nr_threads
;
1598 * If the sum of all the available memory (i.e. ram + swap)
1599 * is less than can be stored in a 32 bit unsigned long then
1600 * we can be binary compatible with 2.2.x kernels. If not,
1601 * well, in that case 2.2.x was broken anyways...
1603 * -Erik Andersen <andersee@debian.org>
1606 mem_total
= info
->totalram
+ info
->totalswap
;
1607 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1610 mem_unit
= info
->mem_unit
;
1611 while (mem_unit
> 1) {
1614 sav_total
= mem_total
;
1616 if (mem_total
< sav_total
)
1621 * If mem_total did not overflow, multiply all memory values by
1622 * info->mem_unit and set it to 1. This leaves things compatible
1623 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1628 info
->totalram
<<= bitcount
;
1629 info
->freeram
<<= bitcount
;
1630 info
->sharedram
<<= bitcount
;
1631 info
->bufferram
<<= bitcount
;
1632 info
->totalswap
<<= bitcount
;
1633 info
->freeswap
<<= bitcount
;
1634 info
->totalhigh
<<= bitcount
;
1635 info
->freehigh
<<= bitcount
;
1641 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1647 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1653 static int __cpuinit
init_timers_cpu(int cpu
)
1656 struct tvec_base
*base
;
1657 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1659 if (!tvec_base_done
[cpu
]) {
1660 static char boot_done
;
1664 * The APs use this path later in boot
1666 base
= kmalloc_node(sizeof(*base
),
1667 GFP_KERNEL
| __GFP_ZERO
,
1672 /* Make sure that tvec_base is 2 byte aligned */
1673 if (tbase_get_deferrable(base
)) {
1678 per_cpu(tvec_bases
, cpu
) = base
;
1681 * This is for the boot CPU - we use compile-time
1682 * static initialisation because per-cpu memory isn't
1683 * ready yet and because the memory allocators are not
1684 * initialised either.
1687 base
= &boot_tvec_bases
;
1689 tvec_base_done
[cpu
] = 1;
1691 base
= per_cpu(tvec_bases
, cpu
);
1694 spin_lock_init(&base
->lock
);
1696 for (j
= 0; j
< TVN_SIZE
; j
++) {
1697 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1698 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1699 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1700 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1702 for (j
= 0; j
< TVR_SIZE
; j
++)
1703 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1705 base
->timer_jiffies
= jiffies
;
1706 base
->next_timer
= base
->timer_jiffies
;
1710 #ifdef CONFIG_HOTPLUG_CPU
1711 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1713 struct timer_list
*timer
;
1715 while (!list_empty(head
)) {
1716 timer
= list_first_entry(head
, struct timer_list
, entry
);
1717 detach_timer(timer
, 0);
1718 timer_set_base(timer
, new_base
);
1719 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1720 !tbase_get_deferrable(timer
->base
))
1721 new_base
->next_timer
= timer
->expires
;
1722 internal_add_timer(new_base
, timer
);
1726 static void __cpuinit
migrate_timers(int cpu
)
1728 struct tvec_base
*old_base
;
1729 struct tvec_base
*new_base
;
1732 BUG_ON(cpu_online(cpu
));
1733 old_base
= per_cpu(tvec_bases
, cpu
);
1734 new_base
= get_cpu_var(tvec_bases
);
1736 * The caller is globally serialized and nobody else
1737 * takes two locks at once, deadlock is not possible.
1739 spin_lock_irq(&new_base
->lock
);
1740 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1742 BUG_ON(old_base
->running_timer
);
1744 for (i
= 0; i
< TVR_SIZE
; i
++)
1745 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1746 for (i
= 0; i
< TVN_SIZE
; i
++) {
1747 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1748 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1749 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1750 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1753 spin_unlock(&old_base
->lock
);
1754 spin_unlock_irq(&new_base
->lock
);
1755 put_cpu_var(tvec_bases
);
1757 #endif /* CONFIG_HOTPLUG_CPU */
1759 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1760 unsigned long action
, void *hcpu
)
1762 long cpu
= (long)hcpu
;
1766 case CPU_UP_PREPARE
:
1767 case CPU_UP_PREPARE_FROZEN
:
1768 err
= init_timers_cpu(cpu
);
1770 return notifier_from_errno(err
);
1772 #ifdef CONFIG_HOTPLUG_CPU
1774 case CPU_DEAD_FROZEN
:
1775 migrate_timers(cpu
);
1784 static struct notifier_block __cpuinitdata timers_nb
= {
1785 .notifier_call
= timer_cpu_notify
,
1789 void __init
init_timers(void)
1791 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1792 (void *)(long)smp_processor_id());
1796 BUG_ON(err
!= NOTIFY_OK
);
1797 register_cpu_notifier(&timers_nb
);
1798 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1802 * msleep - sleep safely even with waitqueue interruptions
1803 * @msecs: Time in milliseconds to sleep for
1805 void msleep(unsigned int msecs
)
1807 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1810 timeout
= schedule_timeout_uninterruptible(timeout
);
1813 EXPORT_SYMBOL(msleep
);
1816 * msleep_interruptible - sleep waiting for signals
1817 * @msecs: Time in milliseconds to sleep for
1819 unsigned long msleep_interruptible(unsigned int msecs
)
1821 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1823 while (timeout
&& !signal_pending(current
))
1824 timeout
= schedule_timeout_interruptible(timeout
);
1825 return jiffies_to_msecs(timeout
);
1828 EXPORT_SYMBOL(msleep_interruptible
);
1830 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1833 unsigned long delta
;
1835 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1836 delta
= (max
- min
) * NSEC_PER_USEC
;
1837 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1841 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1842 * @min: Minimum time in usecs to sleep
1843 * @max: Maximum time in usecs to sleep
1845 void usleep_range(unsigned long min
, unsigned long max
)
1847 __set_current_state(TASK_UNINTERRUPTIBLE
);
1848 do_usleep_range(min
, max
);
1850 EXPORT_SYMBOL(usleep_range
);