4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
51 #include <linux/kmsg_dump.h>
52 /* Move somewhere else to avoid recompiling? */
53 #include <generated/utsrelease.h>
55 #include <asm/uaccess.h>
57 #include <asm/unistd.h>
59 #ifndef SET_UNALIGN_CTL
60 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
62 #ifndef GET_UNALIGN_CTL
63 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
66 # define SET_FPEMU_CTL(a,b) (-EINVAL)
69 # define GET_FPEMU_CTL(a,b) (-EINVAL)
72 # define SET_FPEXC_CTL(a,b) (-EINVAL)
75 # define GET_FPEXC_CTL(a,b) (-EINVAL)
78 # define GET_ENDIAN(a,b) (-EINVAL)
81 # define SET_ENDIAN(a,b) (-EINVAL)
84 # define GET_TSC_CTL(a) (-EINVAL)
87 # define SET_TSC_CTL(a) (-EINVAL)
91 * this is where the system-wide overflow UID and GID are defined, for
92 * architectures that now have 32-bit UID/GID but didn't in the past
95 int overflowuid
= DEFAULT_OVERFLOWUID
;
96 int overflowgid
= DEFAULT_OVERFLOWGID
;
98 EXPORT_SYMBOL(overflowuid
);
99 EXPORT_SYMBOL(overflowgid
);
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
106 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
107 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
109 EXPORT_SYMBOL(fs_overflowuid
);
110 EXPORT_SYMBOL(fs_overflowgid
);
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
118 EXPORT_SYMBOL(cad_pid
);
121 * If set, this is used for preparing the system to power off.
124 void (*pm_power_off_prepare
)(void);
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
130 * Called with rcu_read_lock, creds are safe
132 static bool set_one_prio_perm(struct task_struct
*p
)
134 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
136 if (uid_eq(pcred
->uid
, cred
->euid
) ||
137 uid_eq(pcred
->euid
, cred
->euid
))
139 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
145 * set the priority of a task
146 * - the caller must hold the RCU read lock
148 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
152 if (!set_one_prio_perm(p
)) {
156 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
160 no_nice
= security_task_setnice(p
, niceval
);
167 set_user_nice(p
, niceval
);
172 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
174 struct task_struct
*g
, *p
;
175 struct user_struct
*user
;
176 const struct cred
*cred
= current_cred();
181 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
184 /* normalize: avoid signed division (rounding problems) */
192 read_lock(&tasklist_lock
);
196 p
= find_task_by_vpid(who
);
200 error
= set_one_prio(p
, niceval
, error
);
204 pgrp
= find_vpid(who
);
206 pgrp
= task_pgrp(current
);
207 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
208 error
= set_one_prio(p
, niceval
, error
);
209 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
212 uid
= make_kuid(cred
->user_ns
, who
);
216 else if (!uid_eq(uid
, cred
->uid
) &&
217 !(user
= find_user(uid
)))
218 goto out_unlock
; /* No processes for this user */
220 do_each_thread(g
, p
) {
221 if (uid_eq(task_uid(p
), uid
))
222 error
= set_one_prio(p
, niceval
, error
);
223 } while_each_thread(g
, p
);
224 if (!uid_eq(uid
, cred
->uid
))
225 free_uid(user
); /* For find_user() */
229 read_unlock(&tasklist_lock
);
236 * Ugh. To avoid negative return values, "getpriority()" will
237 * not return the normal nice-value, but a negated value that
238 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
239 * to stay compatible.
241 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
243 struct task_struct
*g
, *p
;
244 struct user_struct
*user
;
245 const struct cred
*cred
= current_cred();
246 long niceval
, retval
= -ESRCH
;
250 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
254 read_lock(&tasklist_lock
);
258 p
= find_task_by_vpid(who
);
262 niceval
= 20 - task_nice(p
);
263 if (niceval
> retval
)
269 pgrp
= find_vpid(who
);
271 pgrp
= task_pgrp(current
);
272 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
273 niceval
= 20 - task_nice(p
);
274 if (niceval
> retval
)
276 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
279 uid
= make_kuid(cred
->user_ns
, who
);
283 else if (!uid_eq(uid
, cred
->uid
) &&
284 !(user
= find_user(uid
)))
285 goto out_unlock
; /* No processes for this user */
287 do_each_thread(g
, p
) {
288 if (uid_eq(task_uid(p
), uid
)) {
289 niceval
= 20 - task_nice(p
);
290 if (niceval
> retval
)
293 } while_each_thread(g
, p
);
294 if (!uid_eq(uid
, cred
->uid
))
295 free_uid(user
); /* for find_user() */
299 read_unlock(&tasklist_lock
);
306 * emergency_restart - reboot the system
308 * Without shutting down any hardware or taking any locks
309 * reboot the system. This is called when we know we are in
310 * trouble so this is our best effort to reboot. This is
311 * safe to call in interrupt context.
313 void emergency_restart(void)
315 kmsg_dump(KMSG_DUMP_EMERG
);
316 machine_emergency_restart();
318 EXPORT_SYMBOL_GPL(emergency_restart
);
320 void kernel_restart_prepare(char *cmd
)
322 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
323 system_state
= SYSTEM_RESTART
;
324 usermodehelper_disable();
330 * register_reboot_notifier - Register function to be called at reboot time
331 * @nb: Info about notifier function to be called
333 * Registers a function with the list of functions
334 * to be called at reboot time.
336 * Currently always returns zero, as blocking_notifier_chain_register()
337 * always returns zero.
339 int register_reboot_notifier(struct notifier_block
*nb
)
341 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
343 EXPORT_SYMBOL(register_reboot_notifier
);
346 * unregister_reboot_notifier - Unregister previously registered reboot notifier
347 * @nb: Hook to be unregistered
349 * Unregisters a previously registered reboot
352 * Returns zero on success, or %-ENOENT on failure.
354 int unregister_reboot_notifier(struct notifier_block
*nb
)
356 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
358 EXPORT_SYMBOL(unregister_reboot_notifier
);
361 * kernel_restart - reboot the system
362 * @cmd: pointer to buffer containing command to execute for restart
365 * Shutdown everything and perform a clean reboot.
366 * This is not safe to call in interrupt context.
368 void kernel_restart(char *cmd
)
370 kernel_restart_prepare(cmd
);
372 printk(KERN_EMERG
"Restarting system.\n");
374 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
375 kmsg_dump(KMSG_DUMP_RESTART
);
376 machine_restart(cmd
);
378 EXPORT_SYMBOL_GPL(kernel_restart
);
380 static void kernel_shutdown_prepare(enum system_states state
)
382 blocking_notifier_call_chain(&reboot_notifier_list
,
383 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
384 system_state
= state
;
385 usermodehelper_disable();
389 * kernel_halt - halt the system
391 * Shutdown everything and perform a clean system halt.
393 void kernel_halt(void)
395 kernel_shutdown_prepare(SYSTEM_HALT
);
397 printk(KERN_EMERG
"System halted.\n");
398 kmsg_dump(KMSG_DUMP_HALT
);
402 EXPORT_SYMBOL_GPL(kernel_halt
);
405 * kernel_power_off - power_off the system
407 * Shutdown everything and perform a clean system power_off.
409 void kernel_power_off(void)
411 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
412 if (pm_power_off_prepare
)
413 pm_power_off_prepare();
414 disable_nonboot_cpus();
416 printk(KERN_EMERG
"Power down.\n");
417 kmsg_dump(KMSG_DUMP_POWEROFF
);
420 EXPORT_SYMBOL_GPL(kernel_power_off
);
422 static DEFINE_MUTEX(reboot_mutex
);
425 * Reboot system call: for obvious reasons only root may call it,
426 * and even root needs to set up some magic numbers in the registers
427 * so that some mistake won't make this reboot the whole machine.
428 * You can also set the meaning of the ctrl-alt-del-key here.
430 * reboot doesn't sync: do that yourself before calling this.
432 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
438 /* We only trust the superuser with rebooting the system. */
439 if (!capable(CAP_SYS_BOOT
))
442 /* For safety, we require "magic" arguments. */
443 if (magic1
!= LINUX_REBOOT_MAGIC1
||
444 (magic2
!= LINUX_REBOOT_MAGIC2
&&
445 magic2
!= LINUX_REBOOT_MAGIC2A
&&
446 magic2
!= LINUX_REBOOT_MAGIC2B
&&
447 magic2
!= LINUX_REBOOT_MAGIC2C
))
451 * If pid namespaces are enabled and the current task is in a child
452 * pid_namespace, the command is handled by reboot_pid_ns() which will
455 ret
= reboot_pid_ns(task_active_pid_ns(current
), cmd
);
459 /* Instead of trying to make the power_off code look like
460 * halt when pm_power_off is not set do it the easy way.
462 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
463 cmd
= LINUX_REBOOT_CMD_HALT
;
465 mutex_lock(&reboot_mutex
);
467 case LINUX_REBOOT_CMD_RESTART
:
468 kernel_restart(NULL
);
471 case LINUX_REBOOT_CMD_CAD_ON
:
475 case LINUX_REBOOT_CMD_CAD_OFF
:
479 case LINUX_REBOOT_CMD_HALT
:
482 panic("cannot halt");
484 case LINUX_REBOOT_CMD_POWER_OFF
:
489 case LINUX_REBOOT_CMD_RESTART2
:
490 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
494 buffer
[sizeof(buffer
) - 1] = '\0';
496 kernel_restart(buffer
);
500 case LINUX_REBOOT_CMD_KEXEC
:
501 ret
= kernel_kexec();
505 #ifdef CONFIG_HIBERNATION
506 case LINUX_REBOOT_CMD_SW_SUSPEND
:
515 mutex_unlock(&reboot_mutex
);
519 static void deferred_cad(struct work_struct
*dummy
)
521 kernel_restart(NULL
);
525 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
526 * As it's called within an interrupt, it may NOT sync: the only choice
527 * is whether to reboot at once, or just ignore the ctrl-alt-del.
529 void ctrl_alt_del(void)
531 static DECLARE_WORK(cad_work
, deferred_cad
);
534 schedule_work(&cad_work
);
536 kill_cad_pid(SIGINT
, 1);
540 * Unprivileged users may change the real gid to the effective gid
541 * or vice versa. (BSD-style)
543 * If you set the real gid at all, or set the effective gid to a value not
544 * equal to the real gid, then the saved gid is set to the new effective gid.
546 * This makes it possible for a setgid program to completely drop its
547 * privileges, which is often a useful assertion to make when you are doing
548 * a security audit over a program.
550 * The general idea is that a program which uses just setregid() will be
551 * 100% compatible with BSD. A program which uses just setgid() will be
552 * 100% compatible with POSIX with saved IDs.
554 * SMP: There are not races, the GIDs are checked only by filesystem
555 * operations (as far as semantic preservation is concerned).
557 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
559 struct user_namespace
*ns
= current_user_ns();
560 const struct cred
*old
;
565 krgid
= make_kgid(ns
, rgid
);
566 kegid
= make_kgid(ns
, egid
);
568 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
570 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
573 new = prepare_creds();
576 old
= current_cred();
579 if (rgid
!= (gid_t
) -1) {
580 if (gid_eq(old
->gid
, krgid
) ||
581 gid_eq(old
->egid
, krgid
) ||
582 nsown_capable(CAP_SETGID
))
587 if (egid
!= (gid_t
) -1) {
588 if (gid_eq(old
->gid
, kegid
) ||
589 gid_eq(old
->egid
, kegid
) ||
590 gid_eq(old
->sgid
, kegid
) ||
591 nsown_capable(CAP_SETGID
))
597 if (rgid
!= (gid_t
) -1 ||
598 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
599 new->sgid
= new->egid
;
600 new->fsgid
= new->egid
;
602 return commit_creds(new);
610 * setgid() is implemented like SysV w/ SAVED_IDS
612 * SMP: Same implicit races as above.
614 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
616 struct user_namespace
*ns
= current_user_ns();
617 const struct cred
*old
;
622 kgid
= make_kgid(ns
, gid
);
623 if (!gid_valid(kgid
))
626 new = prepare_creds();
629 old
= current_cred();
632 if (nsown_capable(CAP_SETGID
))
633 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
634 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
635 new->egid
= new->fsgid
= kgid
;
639 return commit_creds(new);
647 * change the user struct in a credentials set to match the new UID
649 static int set_user(struct cred
*new)
651 struct user_struct
*new_user
;
653 new_user
= alloc_uid(new->uid
);
658 * We don't fail in case of NPROC limit excess here because too many
659 * poorly written programs don't check set*uid() return code, assuming
660 * it never fails if called by root. We may still enforce NPROC limit
661 * for programs doing set*uid()+execve() by harmlessly deferring the
662 * failure to the execve() stage.
664 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
665 new_user
!= INIT_USER
)
666 current
->flags
|= PF_NPROC_EXCEEDED
;
668 current
->flags
&= ~PF_NPROC_EXCEEDED
;
671 new->user
= new_user
;
676 * Unprivileged users may change the real uid to the effective uid
677 * or vice versa. (BSD-style)
679 * If you set the real uid at all, or set the effective uid to a value not
680 * equal to the real uid, then the saved uid is set to the new effective uid.
682 * This makes it possible for a setuid program to completely drop its
683 * privileges, which is often a useful assertion to make when you are doing
684 * a security audit over a program.
686 * The general idea is that a program which uses just setreuid() will be
687 * 100% compatible with BSD. A program which uses just setuid() will be
688 * 100% compatible with POSIX with saved IDs.
690 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
692 struct user_namespace
*ns
= current_user_ns();
693 const struct cred
*old
;
698 kruid
= make_kuid(ns
, ruid
);
699 keuid
= make_kuid(ns
, euid
);
701 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
703 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
706 new = prepare_creds();
709 old
= current_cred();
712 if (ruid
!= (uid_t
) -1) {
714 if (!uid_eq(old
->uid
, kruid
) &&
715 !uid_eq(old
->euid
, kruid
) &&
716 !nsown_capable(CAP_SETUID
))
720 if (euid
!= (uid_t
) -1) {
722 if (!uid_eq(old
->uid
, keuid
) &&
723 !uid_eq(old
->euid
, keuid
) &&
724 !uid_eq(old
->suid
, keuid
) &&
725 !nsown_capable(CAP_SETUID
))
729 if (!uid_eq(new->uid
, old
->uid
)) {
730 retval
= set_user(new);
734 if (ruid
!= (uid_t
) -1 ||
735 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
736 new->suid
= new->euid
;
737 new->fsuid
= new->euid
;
739 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
743 return commit_creds(new);
751 * setuid() is implemented like SysV with SAVED_IDS
753 * Note that SAVED_ID's is deficient in that a setuid root program
754 * like sendmail, for example, cannot set its uid to be a normal
755 * user and then switch back, because if you're root, setuid() sets
756 * the saved uid too. If you don't like this, blame the bright people
757 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
758 * will allow a root program to temporarily drop privileges and be able to
759 * regain them by swapping the real and effective uid.
761 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
763 struct user_namespace
*ns
= current_user_ns();
764 const struct cred
*old
;
769 kuid
= make_kuid(ns
, uid
);
770 if (!uid_valid(kuid
))
773 new = prepare_creds();
776 old
= current_cred();
779 if (nsown_capable(CAP_SETUID
)) {
780 new->suid
= new->uid
= kuid
;
781 if (!uid_eq(kuid
, old
->uid
)) {
782 retval
= set_user(new);
786 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
790 new->fsuid
= new->euid
= kuid
;
792 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
796 return commit_creds(new);
805 * This function implements a generic ability to update ruid, euid,
806 * and suid. This allows you to implement the 4.4 compatible seteuid().
808 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
810 struct user_namespace
*ns
= current_user_ns();
811 const struct cred
*old
;
814 kuid_t kruid
, keuid
, ksuid
;
816 kruid
= make_kuid(ns
, ruid
);
817 keuid
= make_kuid(ns
, euid
);
818 ksuid
= make_kuid(ns
, suid
);
820 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
823 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
826 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
829 new = prepare_creds();
833 old
= current_cred();
836 if (!nsown_capable(CAP_SETUID
)) {
837 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
838 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
840 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
841 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
843 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
844 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
848 if (ruid
!= (uid_t
) -1) {
850 if (!uid_eq(kruid
, old
->uid
)) {
851 retval
= set_user(new);
856 if (euid
!= (uid_t
) -1)
858 if (suid
!= (uid_t
) -1)
860 new->fsuid
= new->euid
;
862 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
866 return commit_creds(new);
873 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
875 const struct cred
*cred
= current_cred();
877 uid_t ruid
, euid
, suid
;
879 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
880 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
881 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
883 if (!(retval
= put_user(ruid
, ruidp
)) &&
884 !(retval
= put_user(euid
, euidp
)))
885 retval
= put_user(suid
, suidp
);
891 * Same as above, but for rgid, egid, sgid.
893 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
895 struct user_namespace
*ns
= current_user_ns();
896 const struct cred
*old
;
899 kgid_t krgid
, kegid
, ksgid
;
901 krgid
= make_kgid(ns
, rgid
);
902 kegid
= make_kgid(ns
, egid
);
903 ksgid
= make_kgid(ns
, sgid
);
905 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
907 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
909 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
912 new = prepare_creds();
915 old
= current_cred();
918 if (!nsown_capable(CAP_SETGID
)) {
919 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
920 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
922 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
923 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
925 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
926 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
930 if (rgid
!= (gid_t
) -1)
932 if (egid
!= (gid_t
) -1)
934 if (sgid
!= (gid_t
) -1)
936 new->fsgid
= new->egid
;
938 return commit_creds(new);
945 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
947 const struct cred
*cred
= current_cred();
949 gid_t rgid
, egid
, sgid
;
951 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
952 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
953 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
955 if (!(retval
= put_user(rgid
, rgidp
)) &&
956 !(retval
= put_user(egid
, egidp
)))
957 retval
= put_user(sgid
, sgidp
);
964 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
965 * is used for "access()" and for the NFS daemon (letting nfsd stay at
966 * whatever uid it wants to). It normally shadows "euid", except when
967 * explicitly set by setfsuid() or for access..
969 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
971 const struct cred
*old
;
976 old
= current_cred();
977 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
979 kuid
= make_kuid(old
->user_ns
, uid
);
980 if (!uid_valid(kuid
))
983 new = prepare_creds();
987 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
988 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
989 nsown_capable(CAP_SETUID
)) {
990 if (!uid_eq(kuid
, old
->fsuid
)) {
992 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
1006 * Samma på svenska..
1008 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
1010 const struct cred
*old
;
1015 old
= current_cred();
1016 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
1018 kgid
= make_kgid(old
->user_ns
, gid
);
1019 if (!gid_valid(kgid
))
1022 new = prepare_creds();
1026 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
1027 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
1028 nsown_capable(CAP_SETGID
)) {
1029 if (!gid_eq(kgid
, old
->fsgid
)) {
1043 void do_sys_times(struct tms
*tms
)
1045 cputime_t tgutime
, tgstime
, cutime
, cstime
;
1047 spin_lock_irq(¤t
->sighand
->siglock
);
1048 thread_group_times(current
, &tgutime
, &tgstime
);
1049 cutime
= current
->signal
->cutime
;
1050 cstime
= current
->signal
->cstime
;
1051 spin_unlock_irq(¤t
->sighand
->siglock
);
1052 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
1053 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
1054 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
1055 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
1058 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
1064 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1067 force_successful_syscall_return();
1068 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1072 * This needs some heavy checking ...
1073 * I just haven't the stomach for it. I also don't fully
1074 * understand sessions/pgrp etc. Let somebody who does explain it.
1076 * OK, I think I have the protection semantics right.... this is really
1077 * only important on a multi-user system anyway, to make sure one user
1078 * can't send a signal to a process owned by another. -TYT, 12/12/91
1080 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1083 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1085 struct task_struct
*p
;
1086 struct task_struct
*group_leader
= current
->group_leader
;
1091 pid
= task_pid_vnr(group_leader
);
1098 /* From this point forward we keep holding onto the tasklist lock
1099 * so that our parent does not change from under us. -DaveM
1101 write_lock_irq(&tasklist_lock
);
1104 p
= find_task_by_vpid(pid
);
1109 if (!thread_group_leader(p
))
1112 if (same_thread_group(p
->real_parent
, group_leader
)) {
1114 if (task_session(p
) != task_session(group_leader
))
1121 if (p
!= group_leader
)
1126 if (p
->signal
->leader
)
1131 struct task_struct
*g
;
1133 pgrp
= find_vpid(pgid
);
1134 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1135 if (!g
|| task_session(g
) != task_session(group_leader
))
1139 err
= security_task_setpgid(p
, pgid
);
1143 if (task_pgrp(p
) != pgrp
)
1144 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1148 /* All paths lead to here, thus we are safe. -DaveM */
1149 write_unlock_irq(&tasklist_lock
);
1154 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1156 struct task_struct
*p
;
1162 grp
= task_pgrp(current
);
1165 p
= find_task_by_vpid(pid
);
1172 retval
= security_task_getpgid(p
);
1176 retval
= pid_vnr(grp
);
1182 #ifdef __ARCH_WANT_SYS_GETPGRP
1184 SYSCALL_DEFINE0(getpgrp
)
1186 return sys_getpgid(0);
1191 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1193 struct task_struct
*p
;
1199 sid
= task_session(current
);
1202 p
= find_task_by_vpid(pid
);
1205 sid
= task_session(p
);
1209 retval
= security_task_getsid(p
);
1213 retval
= pid_vnr(sid
);
1219 SYSCALL_DEFINE0(setsid
)
1221 struct task_struct
*group_leader
= current
->group_leader
;
1222 struct pid
*sid
= task_pid(group_leader
);
1223 pid_t session
= pid_vnr(sid
);
1226 write_lock_irq(&tasklist_lock
);
1227 /* Fail if I am already a session leader */
1228 if (group_leader
->signal
->leader
)
1231 /* Fail if a process group id already exists that equals the
1232 * proposed session id.
1234 if (pid_task(sid
, PIDTYPE_PGID
))
1237 group_leader
->signal
->leader
= 1;
1238 __set_special_pids(sid
);
1240 proc_clear_tty(group_leader
);
1244 write_unlock_irq(&tasklist_lock
);
1246 proc_sid_connector(group_leader
);
1247 sched_autogroup_create_attach(group_leader
);
1252 DECLARE_RWSEM(uts_sem
);
1254 #ifdef COMPAT_UTS_MACHINE
1255 #define override_architecture(name) \
1256 (personality(current->personality) == PER_LINUX32 && \
1257 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1258 sizeof(COMPAT_UTS_MACHINE)))
1260 #define override_architecture(name) 0
1264 * Work around broken programs that cannot handle "Linux 3.0".
1265 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1267 static int override_release(char __user
*release
, int len
)
1272 if (current
->personality
& UNAME26
) {
1273 char *rest
= UTS_RELEASE
;
1278 if (*rest
== '.' && ++ndots
>= 3)
1280 if (!isdigit(*rest
) && *rest
!= '.')
1284 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1285 snprintf(buf
, len
, "2.6.%u%s", v
, rest
);
1286 ret
= copy_to_user(release
, buf
, len
);
1291 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1295 down_read(&uts_sem
);
1296 if (copy_to_user(name
, utsname(), sizeof *name
))
1300 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1302 if (!errno
&& override_architecture(name
))
1307 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1311 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1318 down_read(&uts_sem
);
1319 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1323 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1325 if (!error
&& override_architecture(name
))
1330 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1336 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1339 down_read(&uts_sem
);
1340 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1342 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1343 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1345 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1346 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1348 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1349 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1351 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1352 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1354 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1357 if (!error
&& override_architecture(name
))
1359 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1361 return error
? -EFAULT
: 0;
1365 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1368 char tmp
[__NEW_UTS_LEN
];
1370 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1373 if (len
< 0 || len
> __NEW_UTS_LEN
)
1375 down_write(&uts_sem
);
1377 if (!copy_from_user(tmp
, name
, len
)) {
1378 struct new_utsname
*u
= utsname();
1380 memcpy(u
->nodename
, tmp
, len
);
1381 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1383 uts_proc_notify(UTS_PROC_HOSTNAME
);
1389 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1391 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1394 struct new_utsname
*u
;
1398 down_read(&uts_sem
);
1400 i
= 1 + strlen(u
->nodename
);
1404 if (copy_to_user(name
, u
->nodename
, i
))
1413 * Only setdomainname; getdomainname can be implemented by calling
1416 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1419 char tmp
[__NEW_UTS_LEN
];
1421 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1423 if (len
< 0 || len
> __NEW_UTS_LEN
)
1426 down_write(&uts_sem
);
1428 if (!copy_from_user(tmp
, name
, len
)) {
1429 struct new_utsname
*u
= utsname();
1431 memcpy(u
->domainname
, tmp
, len
);
1432 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1434 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1440 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1442 struct rlimit value
;
1445 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1447 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1452 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1455 * Back compatibility for getrlimit. Needed for some apps.
1458 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1459 struct rlimit __user
*, rlim
)
1462 if (resource
>= RLIM_NLIMITS
)
1465 task_lock(current
->group_leader
);
1466 x
= current
->signal
->rlim
[resource
];
1467 task_unlock(current
->group_leader
);
1468 if (x
.rlim_cur
> 0x7FFFFFFF)
1469 x
.rlim_cur
= 0x7FFFFFFF;
1470 if (x
.rlim_max
> 0x7FFFFFFF)
1471 x
.rlim_max
= 0x7FFFFFFF;
1472 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1477 static inline bool rlim64_is_infinity(__u64 rlim64
)
1479 #if BITS_PER_LONG < 64
1480 return rlim64
>= ULONG_MAX
;
1482 return rlim64
== RLIM64_INFINITY
;
1486 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1488 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1489 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1491 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1492 if (rlim
->rlim_max
== RLIM_INFINITY
)
1493 rlim64
->rlim_max
= RLIM64_INFINITY
;
1495 rlim64
->rlim_max
= rlim
->rlim_max
;
1498 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1500 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1501 rlim
->rlim_cur
= RLIM_INFINITY
;
1503 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1504 if (rlim64_is_infinity(rlim64
->rlim_max
))
1505 rlim
->rlim_max
= RLIM_INFINITY
;
1507 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1510 /* make sure you are allowed to change @tsk limits before calling this */
1511 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1512 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1514 struct rlimit
*rlim
;
1517 if (resource
>= RLIM_NLIMITS
)
1520 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1522 if (resource
== RLIMIT_NOFILE
&&
1523 new_rlim
->rlim_max
> sysctl_nr_open
)
1527 /* protect tsk->signal and tsk->sighand from disappearing */
1528 read_lock(&tasklist_lock
);
1529 if (!tsk
->sighand
) {
1534 rlim
= tsk
->signal
->rlim
+ resource
;
1535 task_lock(tsk
->group_leader
);
1537 /* Keep the capable check against init_user_ns until
1538 cgroups can contain all limits */
1539 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1540 !capable(CAP_SYS_RESOURCE
))
1543 retval
= security_task_setrlimit(tsk
->group_leader
,
1544 resource
, new_rlim
);
1545 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1547 * The caller is asking for an immediate RLIMIT_CPU
1548 * expiry. But we use the zero value to mean "it was
1549 * never set". So let's cheat and make it one second
1552 new_rlim
->rlim_cur
= 1;
1561 task_unlock(tsk
->group_leader
);
1564 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1565 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1566 * very long-standing error, and fixing it now risks breakage of
1567 * applications, so we live with it
1569 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1570 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1571 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1573 read_unlock(&tasklist_lock
);
1577 /* rcu lock must be held */
1578 static int check_prlimit_permission(struct task_struct
*task
)
1580 const struct cred
*cred
= current_cred(), *tcred
;
1582 if (current
== task
)
1585 tcred
= __task_cred(task
);
1586 if (uid_eq(cred
->uid
, tcred
->euid
) &&
1587 uid_eq(cred
->uid
, tcred
->suid
) &&
1588 uid_eq(cred
->uid
, tcred
->uid
) &&
1589 gid_eq(cred
->gid
, tcred
->egid
) &&
1590 gid_eq(cred
->gid
, tcred
->sgid
) &&
1591 gid_eq(cred
->gid
, tcred
->gid
))
1593 if (ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1599 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1600 const struct rlimit64 __user
*, new_rlim
,
1601 struct rlimit64 __user
*, old_rlim
)
1603 struct rlimit64 old64
, new64
;
1604 struct rlimit old
, new;
1605 struct task_struct
*tsk
;
1609 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1611 rlim64_to_rlim(&new64
, &new);
1615 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1620 ret
= check_prlimit_permission(tsk
);
1625 get_task_struct(tsk
);
1628 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1629 old_rlim
? &old
: NULL
);
1631 if (!ret
&& old_rlim
) {
1632 rlim_to_rlim64(&old
, &old64
);
1633 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1637 put_task_struct(tsk
);
1641 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1643 struct rlimit new_rlim
;
1645 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1647 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1651 * It would make sense to put struct rusage in the task_struct,
1652 * except that would make the task_struct be *really big*. After
1653 * task_struct gets moved into malloc'ed memory, it would
1654 * make sense to do this. It will make moving the rest of the information
1655 * a lot simpler! (Which we're not doing right now because we're not
1656 * measuring them yet).
1658 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1659 * races with threads incrementing their own counters. But since word
1660 * reads are atomic, we either get new values or old values and we don't
1661 * care which for the sums. We always take the siglock to protect reading
1662 * the c* fields from p->signal from races with exit.c updating those
1663 * fields when reaping, so a sample either gets all the additions of a
1664 * given child after it's reaped, or none so this sample is before reaping.
1667 * We need to take the siglock for CHILDEREN, SELF and BOTH
1668 * for the cases current multithreaded, non-current single threaded
1669 * non-current multithreaded. Thread traversal is now safe with
1671 * Strictly speaking, we donot need to take the siglock if we are current and
1672 * single threaded, as no one else can take our signal_struct away, no one
1673 * else can reap the children to update signal->c* counters, and no one else
1674 * can race with the signal-> fields. If we do not take any lock, the
1675 * signal-> fields could be read out of order while another thread was just
1676 * exiting. So we should place a read memory barrier when we avoid the lock.
1677 * On the writer side, write memory barrier is implied in __exit_signal
1678 * as __exit_signal releases the siglock spinlock after updating the signal->
1679 * fields. But we don't do this yet to keep things simple.
1683 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1685 r
->ru_nvcsw
+= t
->nvcsw
;
1686 r
->ru_nivcsw
+= t
->nivcsw
;
1687 r
->ru_minflt
+= t
->min_flt
;
1688 r
->ru_majflt
+= t
->maj_flt
;
1689 r
->ru_inblock
+= task_io_get_inblock(t
);
1690 r
->ru_oublock
+= task_io_get_oublock(t
);
1693 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1695 struct task_struct
*t
;
1696 unsigned long flags
;
1697 cputime_t tgutime
, tgstime
, utime
, stime
;
1698 unsigned long maxrss
= 0;
1700 memset((char *) r
, 0, sizeof *r
);
1703 if (who
== RUSAGE_THREAD
) {
1704 task_times(current
, &utime
, &stime
);
1705 accumulate_thread_rusage(p
, r
);
1706 maxrss
= p
->signal
->maxrss
;
1710 if (!lock_task_sighand(p
, &flags
))
1715 case RUSAGE_CHILDREN
:
1716 utime
= p
->signal
->cutime
;
1717 stime
= p
->signal
->cstime
;
1718 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1719 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1720 r
->ru_minflt
= p
->signal
->cmin_flt
;
1721 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1722 r
->ru_inblock
= p
->signal
->cinblock
;
1723 r
->ru_oublock
= p
->signal
->coublock
;
1724 maxrss
= p
->signal
->cmaxrss
;
1726 if (who
== RUSAGE_CHILDREN
)
1730 thread_group_times(p
, &tgutime
, &tgstime
);
1733 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1734 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1735 r
->ru_minflt
+= p
->signal
->min_flt
;
1736 r
->ru_majflt
+= p
->signal
->maj_flt
;
1737 r
->ru_inblock
+= p
->signal
->inblock
;
1738 r
->ru_oublock
+= p
->signal
->oublock
;
1739 if (maxrss
< p
->signal
->maxrss
)
1740 maxrss
= p
->signal
->maxrss
;
1743 accumulate_thread_rusage(t
, r
);
1751 unlock_task_sighand(p
, &flags
);
1754 cputime_to_timeval(utime
, &r
->ru_utime
);
1755 cputime_to_timeval(stime
, &r
->ru_stime
);
1757 if (who
!= RUSAGE_CHILDREN
) {
1758 struct mm_struct
*mm
= get_task_mm(p
);
1760 setmax_mm_hiwater_rss(&maxrss
, mm
);
1764 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1767 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1770 k_getrusage(p
, who
, &r
);
1771 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1774 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1776 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1777 who
!= RUSAGE_THREAD
)
1779 return getrusage(current
, who
, ru
);
1782 SYSCALL_DEFINE1(umask
, int, mask
)
1784 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1788 #ifdef CONFIG_CHECKPOINT_RESTORE
1789 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1791 struct vm_area_struct
*vma
;
1792 struct file
*exe_file
;
1793 struct dentry
*dentry
;
1796 exe_file
= fget(fd
);
1800 dentry
= exe_file
->f_path
.dentry
;
1803 * Because the original mm->exe_file points to executable file, make
1804 * sure that this one is executable as well, to avoid breaking an
1808 if (!S_ISREG(dentry
->d_inode
->i_mode
) ||
1809 exe_file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
1812 err
= inode_permission(dentry
->d_inode
, MAY_EXEC
);
1816 down_write(&mm
->mmap_sem
);
1819 * Forbid mm->exe_file change if there are mapped other files.
1822 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1823 if (vma
->vm_file
&& !path_equal(&vma
->vm_file
->f_path
,
1829 * The symlink can be changed only once, just to disallow arbitrary
1830 * transitions malicious software might bring in. This means one
1831 * could make a snapshot over all processes running and monitor
1832 * /proc/pid/exe changes to notice unusual activity if needed.
1835 if (test_and_set_bit(MMF_EXE_FILE_CHANGED
, &mm
->flags
))
1838 set_mm_exe_file(mm
, exe_file
);
1840 up_write(&mm
->mmap_sem
);
1847 static int prctl_set_mm(int opt
, unsigned long addr
,
1848 unsigned long arg4
, unsigned long arg5
)
1850 unsigned long rlim
= rlimit(RLIMIT_DATA
);
1851 struct mm_struct
*mm
= current
->mm
;
1852 struct vm_area_struct
*vma
;
1855 if (arg5
|| (arg4
&& opt
!= PR_SET_MM_AUXV
))
1858 if (!capable(CAP_SYS_RESOURCE
))
1861 if (opt
== PR_SET_MM_EXE_FILE
)
1862 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
1864 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
1869 down_read(&mm
->mmap_sem
);
1870 vma
= find_vma(mm
, addr
);
1873 case PR_SET_MM_START_CODE
:
1874 mm
->start_code
= addr
;
1876 case PR_SET_MM_END_CODE
:
1877 mm
->end_code
= addr
;
1879 case PR_SET_MM_START_DATA
:
1880 mm
->start_data
= addr
;
1882 case PR_SET_MM_END_DATA
:
1883 mm
->end_data
= addr
;
1886 case PR_SET_MM_START_BRK
:
1887 if (addr
<= mm
->end_data
)
1890 if (rlim
< RLIM_INFINITY
&&
1892 (mm
->end_data
- mm
->start_data
) > rlim
)
1895 mm
->start_brk
= addr
;
1899 if (addr
<= mm
->end_data
)
1902 if (rlim
< RLIM_INFINITY
&&
1903 (addr
- mm
->start_brk
) +
1904 (mm
->end_data
- mm
->start_data
) > rlim
)
1911 * If command line arguments and environment
1912 * are placed somewhere else on stack, we can
1913 * set them up here, ARG_START/END to setup
1914 * command line argumets and ENV_START/END
1917 case PR_SET_MM_START_STACK
:
1918 case PR_SET_MM_ARG_START
:
1919 case PR_SET_MM_ARG_END
:
1920 case PR_SET_MM_ENV_START
:
1921 case PR_SET_MM_ENV_END
:
1926 if (opt
== PR_SET_MM_START_STACK
)
1927 mm
->start_stack
= addr
;
1928 else if (opt
== PR_SET_MM_ARG_START
)
1929 mm
->arg_start
= addr
;
1930 else if (opt
== PR_SET_MM_ARG_END
)
1932 else if (opt
== PR_SET_MM_ENV_START
)
1933 mm
->env_start
= addr
;
1934 else if (opt
== PR_SET_MM_ENV_END
)
1939 * This doesn't move auxiliary vector itself
1940 * since it's pinned to mm_struct, but allow
1941 * to fill vector with new values. It's up
1942 * to a caller to provide sane values here
1943 * otherwise user space tools which use this
1944 * vector might be unhappy.
1946 case PR_SET_MM_AUXV
: {
1947 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1949 if (arg4
> sizeof(user_auxv
))
1951 up_read(&mm
->mmap_sem
);
1953 if (copy_from_user(user_auxv
, (const void __user
*)addr
, arg4
))
1956 /* Make sure the last entry is always AT_NULL */
1957 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
1958 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
1960 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1963 memcpy(mm
->saved_auxv
, user_auxv
, arg4
);
1964 task_unlock(current
);
1974 up_read(&mm
->mmap_sem
);
1978 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
1980 return put_user(me
->clear_child_tid
, tid_addr
);
1983 #else /* CONFIG_CHECKPOINT_RESTORE */
1984 static int prctl_set_mm(int opt
, unsigned long addr
,
1985 unsigned long arg4
, unsigned long arg5
)
1989 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
1995 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1996 unsigned long, arg4
, unsigned long, arg5
)
1998 struct task_struct
*me
= current
;
1999 unsigned char comm
[sizeof(me
->comm
)];
2002 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2003 if (error
!= -ENOSYS
)
2008 case PR_SET_PDEATHSIG
:
2009 if (!valid_signal(arg2
)) {
2013 me
->pdeath_signal
= arg2
;
2016 case PR_GET_PDEATHSIG
:
2017 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2019 case PR_GET_DUMPABLE
:
2020 error
= get_dumpable(me
->mm
);
2022 case PR_SET_DUMPABLE
:
2023 if (arg2
< 0 || arg2
> 1) {
2027 set_dumpable(me
->mm
, arg2
);
2031 case PR_SET_UNALIGN
:
2032 error
= SET_UNALIGN_CTL(me
, arg2
);
2034 case PR_GET_UNALIGN
:
2035 error
= GET_UNALIGN_CTL(me
, arg2
);
2038 error
= SET_FPEMU_CTL(me
, arg2
);
2041 error
= GET_FPEMU_CTL(me
, arg2
);
2044 error
= SET_FPEXC_CTL(me
, arg2
);
2047 error
= GET_FPEXC_CTL(me
, arg2
);
2050 error
= PR_TIMING_STATISTICAL
;
2053 if (arg2
!= PR_TIMING_STATISTICAL
)
2060 comm
[sizeof(me
->comm
)-1] = 0;
2061 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2062 sizeof(me
->comm
) - 1) < 0)
2064 set_task_comm(me
, comm
);
2065 proc_comm_connector(me
);
2068 get_task_comm(comm
, me
);
2069 if (copy_to_user((char __user
*)arg2
, comm
,
2074 error
= GET_ENDIAN(me
, arg2
);
2077 error
= SET_ENDIAN(me
, arg2
);
2080 case PR_GET_SECCOMP
:
2081 error
= prctl_get_seccomp();
2083 case PR_SET_SECCOMP
:
2084 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2087 error
= GET_TSC_CTL(arg2
);
2090 error
= SET_TSC_CTL(arg2
);
2092 case PR_TASK_PERF_EVENTS_DISABLE
:
2093 error
= perf_event_task_disable();
2095 case PR_TASK_PERF_EVENTS_ENABLE
:
2096 error
= perf_event_task_enable();
2098 case PR_GET_TIMERSLACK
:
2099 error
= current
->timer_slack_ns
;
2101 case PR_SET_TIMERSLACK
:
2103 current
->timer_slack_ns
=
2104 current
->default_timer_slack_ns
;
2106 current
->timer_slack_ns
= arg2
;
2113 case PR_MCE_KILL_CLEAR
:
2116 current
->flags
&= ~PF_MCE_PROCESS
;
2118 case PR_MCE_KILL_SET
:
2119 current
->flags
|= PF_MCE_PROCESS
;
2120 if (arg3
== PR_MCE_KILL_EARLY
)
2121 current
->flags
|= PF_MCE_EARLY
;
2122 else if (arg3
== PR_MCE_KILL_LATE
)
2123 current
->flags
&= ~PF_MCE_EARLY
;
2124 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2126 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2130 case PR_GET_TID_ADDRESS
:
2131 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2138 case PR_MCE_KILL_GET
:
2139 if (arg2
| arg3
| arg4
| arg5
)
2141 if (current
->flags
& PF_MCE_PROCESS
)
2142 error
= (current
->flags
& PF_MCE_EARLY
) ?
2143 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2145 error
= PR_MCE_KILL_DEFAULT
;
2148 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2150 case PR_SET_CHILD_SUBREAPER
:
2151 me
->signal
->is_child_subreaper
= !!arg2
;
2154 case PR_GET_CHILD_SUBREAPER
:
2155 error
= put_user(me
->signal
->is_child_subreaper
,
2156 (int __user
*) arg2
);
2158 case PR_SET_NO_NEW_PRIVS
:
2159 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2162 current
->no_new_privs
= 1;
2164 case PR_GET_NO_NEW_PRIVS
:
2165 if (arg2
|| arg3
|| arg4
|| arg5
)
2167 return current
->no_new_privs
? 1 : 0;
2175 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2176 struct getcpu_cache __user
*, unused
)
2179 int cpu
= raw_smp_processor_id();
2181 err
|= put_user(cpu
, cpup
);
2183 err
|= put_user(cpu_to_node(cpu
), nodep
);
2184 return err
? -EFAULT
: 0;
2187 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
2189 static void argv_cleanup(struct subprocess_info
*info
)
2191 argv_free(info
->argv
);
2195 * orderly_poweroff - Trigger an orderly system poweroff
2196 * @force: force poweroff if command execution fails
2198 * This may be called from any context to trigger a system shutdown.
2199 * If the orderly shutdown fails, it will force an immediate shutdown.
2201 int orderly_poweroff(bool force
)
2204 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
2205 static char *envp
[] = {
2207 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2213 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
2214 __func__
, poweroff_cmd
);
2218 ret
= call_usermodehelper_fns(argv
[0], argv
, envp
, UMH_NO_WAIT
,
2219 NULL
, argv_cleanup
, NULL
);
2228 printk(KERN_WARNING
"Failed to start orderly shutdown: "
2229 "forcing the issue\n");
2231 /* I guess this should try to kick off some daemon to
2232 sync and poweroff asap. Or not even bother syncing
2233 if we're doing an emergency shutdown? */
2240 EXPORT_SYMBOL_GPL(orderly_poweroff
);