2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
57 #include <trace/events/rcu.h>
61 /* Data structures. */
63 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
65 #define RCU_STATE_INITIALIZER(structname) { \
66 .level = { &structname##_state.node[0] }, \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
74 .fqs_state = RCU_GP_IDLE, \
77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
78 .orphan_nxttail = &structname##_state.orphan_nxtlist, \
79 .orphan_donetail = &structname##_state.orphan_donelist, \
80 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
82 .n_force_qs_ngp = 0, \
83 .name = #structname, \
86 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched
);
87 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
89 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh
);
90 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
92 static struct rcu_state
*rcu_state
;
95 * The rcu_scheduler_active variable transitions from zero to one just
96 * before the first task is spawned. So when this variable is zero, RCU
97 * can assume that there is but one task, allowing RCU to (for example)
98 * optimized synchronize_sched() to a simple barrier(). When this variable
99 * is one, RCU must actually do all the hard work required to detect real
100 * grace periods. This variable is also used to suppress boot-time false
101 * positives from lockdep-RCU error checking.
103 int rcu_scheduler_active __read_mostly
;
104 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
107 * The rcu_scheduler_fully_active variable transitions from zero to one
108 * during the early_initcall() processing, which is after the scheduler
109 * is capable of creating new tasks. So RCU processing (for example,
110 * creating tasks for RCU priority boosting) must be delayed until after
111 * rcu_scheduler_fully_active transitions from zero to one. We also
112 * currently delay invocation of any RCU callbacks until after this point.
114 * It might later prove better for people registering RCU callbacks during
115 * early boot to take responsibility for these callbacks, but one step at
118 static int rcu_scheduler_fully_active __read_mostly
;
120 #ifdef CONFIG_RCU_BOOST
123 * Control variables for per-CPU and per-rcu_node kthreads. These
124 * handle all flavors of RCU.
126 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
127 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
128 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
129 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
130 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
132 #endif /* #ifdef CONFIG_RCU_BOOST */
134 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
135 static void invoke_rcu_core(void);
136 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
139 * Track the rcutorture test sequence number and the update version
140 * number within a given test. The rcutorture_testseq is incremented
141 * on every rcutorture module load and unload, so has an odd value
142 * when a test is running. The rcutorture_vernum is set to zero
143 * when rcutorture starts and is incremented on each rcutorture update.
144 * These variables enable correlating rcutorture output with the
145 * RCU tracing information.
147 unsigned long rcutorture_testseq
;
148 unsigned long rcutorture_vernum
;
150 /* State information for rcu_barrier() and friends. */
152 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
153 static atomic_t rcu_barrier_cpu_count
;
154 static DEFINE_MUTEX(rcu_barrier_mutex
);
155 static struct completion rcu_barrier_completion
;
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
162 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
164 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
168 * Note a quiescent state. Because we do not need to know
169 * how many quiescent states passed, just if there was at least
170 * one since the start of the grace period, this just sets a flag.
171 * The caller must have disabled preemption.
173 void rcu_sched_qs(int cpu
)
175 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
177 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
179 if (rdp
->passed_quiesce
== 0)
180 trace_rcu_grace_period("rcu_sched", rdp
->gpnum
, "cpuqs");
181 rdp
->passed_quiesce
= 1;
184 void rcu_bh_qs(int cpu
)
186 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
188 rdp
->passed_quiesce_gpnum
= rdp
->gpnum
;
190 if (rdp
->passed_quiesce
== 0)
191 trace_rcu_grace_period("rcu_bh", rdp
->gpnum
, "cpuqs");
192 rdp
->passed_quiesce
= 1;
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
198 * The caller must have disabled preemption.
200 void rcu_note_context_switch(int cpu
)
202 trace_rcu_utilization("Start context switch");
204 trace_rcu_utilization("End context switch");
206 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
208 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
209 .dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
,
210 .dynticks
= ATOMIC_INIT(1),
213 static int blimit
= 10; /* Maximum callbacks per rcu_do_batch. */
214 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
215 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
217 module_param(blimit
, int, 0);
218 module_param(qhimark
, int, 0);
219 module_param(qlowmark
, int, 0);
221 int rcu_cpu_stall_suppress __read_mostly
; /* 1 = suppress stall warnings. */
222 int rcu_cpu_stall_timeout __read_mostly
= CONFIG_RCU_CPU_STALL_TIMEOUT
;
224 module_param(rcu_cpu_stall_suppress
, int, 0644);
225 module_param(rcu_cpu_stall_timeout
, int, 0644);
227 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
228 static int rcu_pending(int cpu
);
231 * Return the number of RCU-sched batches processed thus far for debug & stats.
233 long rcu_batches_completed_sched(void)
235 return rcu_sched_state
.completed
;
237 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
240 * Return the number of RCU BH batches processed thus far for debug & stats.
242 long rcu_batches_completed_bh(void)
244 return rcu_bh_state
.completed
;
246 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
249 * Force a quiescent state for RCU BH.
251 void rcu_bh_force_quiescent_state(void)
253 force_quiescent_state(&rcu_bh_state
, 0);
255 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
258 * Record the number of times rcutorture tests have been initiated and
259 * terminated. This information allows the debugfs tracing stats to be
260 * correlated to the rcutorture messages, even when the rcutorture module
261 * is being repeatedly loaded and unloaded. In other words, we cannot
262 * store this state in rcutorture itself.
264 void rcutorture_record_test_transition(void)
266 rcutorture_testseq
++;
267 rcutorture_vernum
= 0;
269 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
272 * Record the number of writer passes through the current rcutorture test.
273 * This is also used to correlate debugfs tracing stats with the rcutorture
276 void rcutorture_record_progress(unsigned long vernum
)
280 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
283 * Force a quiescent state for RCU-sched.
285 void rcu_sched_force_quiescent_state(void)
287 force_quiescent_state(&rcu_sched_state
, 0);
289 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
292 * Does the CPU have callbacks ready to be invoked?
295 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
297 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
301 * Does the current CPU require a yet-as-unscheduled grace period?
304 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
306 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
310 * Return the root node of the specified rcu_state structure.
312 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
314 return &rsp
->node
[0];
318 * If the specified CPU is offline, tell the caller that it is in
319 * a quiescent state. Otherwise, whack it with a reschedule IPI.
320 * Grace periods can end up waiting on an offline CPU when that
321 * CPU is in the process of coming online -- it will be added to the
322 * rcu_node bitmasks before it actually makes it online. The same thing
323 * can happen while a CPU is in the process of coming online. Because this
324 * race is quite rare, we check for it after detecting that the grace
325 * period has been delayed rather than checking each and every CPU
326 * each and every time we start a new grace period.
328 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
331 * If the CPU is offline for more than a jiffy, it is in a quiescent
332 * state. We can trust its state not to change because interrupts
333 * are disabled. The reason for the jiffy's worth of slack is to
334 * handle CPUs initializing on the way up and finding their way
335 * to the idle loop on the way down.
337 if (cpu_is_offline(rdp
->cpu
) &&
338 ULONG_CMP_LT(rdp
->rsp
->gp_start
+ 2, jiffies
)) {
339 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "ofl");
347 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
349 * If the new value of the ->dynticks_nesting counter now is zero,
350 * we really have entered idle, and must do the appropriate accounting.
351 * The caller must have disabled interrupts.
353 static void rcu_idle_enter_common(struct rcu_dynticks
*rdtp
, long long oldval
)
355 trace_rcu_dyntick("Start", oldval
, 0);
356 if (!is_idle_task(current
)) {
357 struct task_struct
*idle
= idle_task(smp_processor_id());
359 trace_rcu_dyntick("Error on entry: not idle task", oldval
, 0);
360 ftrace_dump(DUMP_ALL
);
361 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
362 current
->pid
, current
->comm
,
363 idle
->pid
, idle
->comm
); /* must be idle task! */
365 rcu_prepare_for_idle(smp_processor_id());
366 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
367 smp_mb__before_atomic_inc(); /* See above. */
368 atomic_inc(&rdtp
->dynticks
);
369 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
370 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
373 * The idle task is not permitted to enter the idle loop while
374 * in an RCU read-side critical section.
376 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map
),
377 "Illegal idle entry in RCU read-side critical section.");
378 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
),
379 "Illegal idle entry in RCU-bh read-side critical section.");
380 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map
),
381 "Illegal idle entry in RCU-sched read-side critical section.");
385 * rcu_idle_enter - inform RCU that current CPU is entering idle
387 * Enter idle mode, in other words, -leave- the mode in which RCU
388 * read-side critical sections can occur. (Though RCU read-side
389 * critical sections can occur in irq handlers in idle, a possibility
390 * handled by irq_enter() and irq_exit().)
392 * We crowbar the ->dynticks_nesting field to zero to allow for
393 * the possibility of usermode upcalls having messed up our count
394 * of interrupt nesting level during the prior busy period.
396 void rcu_idle_enter(void)
400 struct rcu_dynticks
*rdtp
;
402 local_irq_save(flags
);
403 rdtp
= &__get_cpu_var(rcu_dynticks
);
404 oldval
= rdtp
->dynticks_nesting
;
405 WARN_ON_ONCE((oldval
& DYNTICK_TASK_NEST_MASK
) == 0);
406 if ((oldval
& DYNTICK_TASK_NEST_MASK
) == DYNTICK_TASK_NEST_VALUE
)
407 rdtp
->dynticks_nesting
= 0;
409 rdtp
->dynticks_nesting
-= DYNTICK_TASK_NEST_VALUE
;
410 rcu_idle_enter_common(rdtp
, oldval
);
411 local_irq_restore(flags
);
413 EXPORT_SYMBOL_GPL(rcu_idle_enter
);
416 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
418 * Exit from an interrupt handler, which might possibly result in entering
419 * idle mode, in other words, leaving the mode in which read-side critical
420 * sections can occur.
422 * This code assumes that the idle loop never does anything that might
423 * result in unbalanced calls to irq_enter() and irq_exit(). If your
424 * architecture violates this assumption, RCU will give you what you
425 * deserve, good and hard. But very infrequently and irreproducibly.
427 * Use things like work queues to work around this limitation.
429 * You have been warned.
431 void rcu_irq_exit(void)
435 struct rcu_dynticks
*rdtp
;
437 local_irq_save(flags
);
438 rdtp
= &__get_cpu_var(rcu_dynticks
);
439 oldval
= rdtp
->dynticks_nesting
;
440 rdtp
->dynticks_nesting
--;
441 WARN_ON_ONCE(rdtp
->dynticks_nesting
< 0);
442 if (rdtp
->dynticks_nesting
)
443 trace_rcu_dyntick("--=", oldval
, rdtp
->dynticks_nesting
);
445 rcu_idle_enter_common(rdtp
, oldval
);
446 local_irq_restore(flags
);
450 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
452 * If the new value of the ->dynticks_nesting counter was previously zero,
453 * we really have exited idle, and must do the appropriate accounting.
454 * The caller must have disabled interrupts.
456 static void rcu_idle_exit_common(struct rcu_dynticks
*rdtp
, long long oldval
)
458 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
459 atomic_inc(&rdtp
->dynticks
);
460 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
461 smp_mb__after_atomic_inc(); /* See above. */
462 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
463 rcu_cleanup_after_idle(smp_processor_id());
464 trace_rcu_dyntick("End", oldval
, rdtp
->dynticks_nesting
);
465 if (!is_idle_task(current
)) {
466 struct task_struct
*idle
= idle_task(smp_processor_id());
468 trace_rcu_dyntick("Error on exit: not idle task",
469 oldval
, rdtp
->dynticks_nesting
);
470 ftrace_dump(DUMP_ALL
);
471 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
472 current
->pid
, current
->comm
,
473 idle
->pid
, idle
->comm
); /* must be idle task! */
478 * rcu_idle_exit - inform RCU that current CPU is leaving idle
480 * Exit idle mode, in other words, -enter- the mode in which RCU
481 * read-side critical sections can occur.
483 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
484 * allow for the possibility of usermode upcalls messing up our count
485 * of interrupt nesting level during the busy period that is just
488 void rcu_idle_exit(void)
491 struct rcu_dynticks
*rdtp
;
494 local_irq_save(flags
);
495 rdtp
= &__get_cpu_var(rcu_dynticks
);
496 oldval
= rdtp
->dynticks_nesting
;
497 WARN_ON_ONCE(oldval
< 0);
498 if (oldval
& DYNTICK_TASK_NEST_MASK
)
499 rdtp
->dynticks_nesting
+= DYNTICK_TASK_NEST_VALUE
;
501 rdtp
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
502 rcu_idle_exit_common(rdtp
, oldval
);
503 local_irq_restore(flags
);
505 EXPORT_SYMBOL_GPL(rcu_idle_exit
);
508 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
510 * Enter an interrupt handler, which might possibly result in exiting
511 * idle mode, in other words, entering the mode in which read-side critical
512 * sections can occur.
514 * Note that the Linux kernel is fully capable of entering an interrupt
515 * handler that it never exits, for example when doing upcalls to
516 * user mode! This code assumes that the idle loop never does upcalls to
517 * user mode. If your architecture does do upcalls from the idle loop (or
518 * does anything else that results in unbalanced calls to the irq_enter()
519 * and irq_exit() functions), RCU will give you what you deserve, good
520 * and hard. But very infrequently and irreproducibly.
522 * Use things like work queues to work around this limitation.
524 * You have been warned.
526 void rcu_irq_enter(void)
529 struct rcu_dynticks
*rdtp
;
532 local_irq_save(flags
);
533 rdtp
= &__get_cpu_var(rcu_dynticks
);
534 oldval
= rdtp
->dynticks_nesting
;
535 rdtp
->dynticks_nesting
++;
536 WARN_ON_ONCE(rdtp
->dynticks_nesting
== 0);
538 trace_rcu_dyntick("++=", oldval
, rdtp
->dynticks_nesting
);
540 rcu_idle_exit_common(rdtp
, oldval
);
541 local_irq_restore(flags
);
545 * rcu_nmi_enter - inform RCU of entry to NMI context
547 * If the CPU was idle with dynamic ticks active, and there is no
548 * irq handler running, this updates rdtp->dynticks_nmi to let the
549 * RCU grace-period handling know that the CPU is active.
551 void rcu_nmi_enter(void)
553 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
555 if (rdtp
->dynticks_nmi_nesting
== 0 &&
556 (atomic_read(&rdtp
->dynticks
) & 0x1))
558 rdtp
->dynticks_nmi_nesting
++;
559 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
560 atomic_inc(&rdtp
->dynticks
);
561 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
562 smp_mb__after_atomic_inc(); /* See above. */
563 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
567 * rcu_nmi_exit - inform RCU of exit from NMI context
569 * If the CPU was idle with dynamic ticks active, and there is no
570 * irq handler running, this updates rdtp->dynticks_nmi to let the
571 * RCU grace-period handling know that the CPU is no longer active.
573 void rcu_nmi_exit(void)
575 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
577 if (rdtp
->dynticks_nmi_nesting
== 0 ||
578 --rdtp
->dynticks_nmi_nesting
!= 0)
580 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
581 smp_mb__before_atomic_inc(); /* See above. */
582 atomic_inc(&rdtp
->dynticks
);
583 smp_mb__after_atomic_inc(); /* Force delay to next write. */
584 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
587 #ifdef CONFIG_PROVE_RCU
590 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
592 * If the current CPU is in its idle loop and is neither in an interrupt
593 * or NMI handler, return true.
595 int rcu_is_cpu_idle(void)
600 ret
= (atomic_read(&__get_cpu_var(rcu_dynticks
).dynticks
) & 0x1) == 0;
604 EXPORT_SYMBOL(rcu_is_cpu_idle
);
606 #ifdef CONFIG_HOTPLUG_CPU
609 * Is the current CPU online? Disable preemption to avoid false positives
610 * that could otherwise happen due to the current CPU number being sampled,
611 * this task being preempted, its old CPU being taken offline, resuming
612 * on some other CPU, then determining that its old CPU is now offline.
613 * It is OK to use RCU on an offline processor during initial boot, hence
614 * the check for rcu_scheduler_fully_active. Note also that it is OK
615 * for a CPU coming online to use RCU for one jiffy prior to marking itself
616 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
617 * offline to continue to use RCU for one jiffy after marking itself
618 * offline in the cpu_online_mask. This leniency is necessary given the
619 * non-atomic nature of the online and offline processing, for example,
620 * the fact that a CPU enters the scheduler after completing the CPU_DYING
623 * This is also why RCU internally marks CPUs online during the
624 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
626 * Disable checking if in an NMI handler because we cannot safely report
627 * errors from NMI handlers anyway.
629 bool rcu_lockdep_current_cpu_online(void)
631 struct rcu_data
*rdp
;
632 struct rcu_node
*rnp
;
638 rdp
= &__get_cpu_var(rcu_sched_data
);
640 ret
= (rdp
->grpmask
& rnp
->qsmaskinit
) ||
641 !rcu_scheduler_fully_active
;
645 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
647 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
649 #endif /* #ifdef CONFIG_PROVE_RCU */
652 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
654 * If the current CPU is idle or running at a first-level (not nested)
655 * interrupt from idle, return true. The caller must have at least
656 * disabled preemption.
658 int rcu_is_cpu_rrupt_from_idle(void)
660 return __get_cpu_var(rcu_dynticks
).dynticks_nesting
<= 1;
664 * Snapshot the specified CPU's dynticks counter so that we can later
665 * credit them with an implicit quiescent state. Return 1 if this CPU
666 * is in dynticks idle mode, which is an extended quiescent state.
668 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
670 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
671 return (rdp
->dynticks_snap
& 0x1) == 0;
675 * Return true if the specified CPU has passed through a quiescent
676 * state by virtue of being in or having passed through an dynticks
677 * idle state since the last call to dyntick_save_progress_counter()
680 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
685 curr
= (unsigned int)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
686 snap
= (unsigned int)rdp
->dynticks_snap
;
689 * If the CPU passed through or entered a dynticks idle phase with
690 * no active irq/NMI handlers, then we can safely pretend that the CPU
691 * already acknowledged the request to pass through a quiescent
692 * state. Either way, that CPU cannot possibly be in an RCU
693 * read-side critical section that started before the beginning
694 * of the current RCU grace period.
696 if ((curr
& 0x1) == 0 || UINT_CMP_GE(curr
, snap
+ 2)) {
697 trace_rcu_fqs(rdp
->rsp
->name
, rdp
->gpnum
, rdp
->cpu
, "dti");
702 /* Go check for the CPU being offline. */
703 return rcu_implicit_offline_qs(rdp
);
706 static int jiffies_till_stall_check(void)
708 int till_stall_check
= ACCESS_ONCE(rcu_cpu_stall_timeout
);
711 * Limit check must be consistent with the Kconfig limits
712 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
714 if (till_stall_check
< 3) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout
) = 3;
716 till_stall_check
= 3;
717 } else if (till_stall_check
> 300) {
718 ACCESS_ONCE(rcu_cpu_stall_timeout
) = 300;
719 till_stall_check
= 300;
721 return till_stall_check
* HZ
+ RCU_STALL_DELAY_DELTA
;
724 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
726 rsp
->gp_start
= jiffies
;
727 rsp
->jiffies_stall
= jiffies
+ jiffies_till_stall_check();
730 static void print_other_cpu_stall(struct rcu_state
*rsp
)
736 struct rcu_node
*rnp
= rcu_get_root(rsp
);
738 /* Only let one CPU complain about others per time interval. */
740 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
741 delta
= jiffies
- rsp
->jiffies_stall
;
742 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
743 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
746 rsp
->jiffies_stall
= jiffies
+ 3 * jiffies_till_stall_check() + 3;
747 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
750 * OK, time to rat on our buddy...
751 * See Documentation/RCU/stallwarn.txt for info on how to debug
752 * RCU CPU stall warnings.
754 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks:",
756 print_cpu_stall_info_begin();
757 rcu_for_each_leaf_node(rsp
, rnp
) {
758 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
759 ndetected
+= rcu_print_task_stall(rnp
);
760 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
761 if (rnp
->qsmask
== 0)
763 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
764 if (rnp
->qsmask
& (1UL << cpu
)) {
765 print_cpu_stall_info(rsp
, rnp
->grplo
+ cpu
);
771 * Now rat on any tasks that got kicked up to the root rcu_node
772 * due to CPU offlining.
774 rnp
= rcu_get_root(rsp
);
775 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
776 ndetected
= rcu_print_task_stall(rnp
);
777 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
779 print_cpu_stall_info_end();
780 printk(KERN_CONT
"(detected by %d, t=%ld jiffies)\n",
781 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
783 printk(KERN_ERR
"INFO: Stall ended before state dump start\n");
784 else if (!trigger_all_cpu_backtrace())
787 /* If so configured, complain about tasks blocking the grace period. */
789 rcu_print_detail_task_stall(rsp
);
791 force_quiescent_state(rsp
, 0); /* Kick them all. */
794 static void print_cpu_stall(struct rcu_state
*rsp
)
797 struct rcu_node
*rnp
= rcu_get_root(rsp
);
800 * OK, time to rat on ourselves...
801 * See Documentation/RCU/stallwarn.txt for info on how to debug
802 * RCU CPU stall warnings.
804 printk(KERN_ERR
"INFO: %s self-detected stall on CPU", rsp
->name
);
805 print_cpu_stall_info_begin();
806 print_cpu_stall_info(rsp
, smp_processor_id());
807 print_cpu_stall_info_end();
808 printk(KERN_CONT
" (t=%lu jiffies)\n", jiffies
- rsp
->gp_start
);
809 if (!trigger_all_cpu_backtrace())
812 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
813 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
814 rsp
->jiffies_stall
= jiffies
+
815 3 * jiffies_till_stall_check() + 3;
816 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
818 set_need_resched(); /* kick ourselves to get things going. */
821 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
825 struct rcu_node
*rnp
;
827 if (rcu_cpu_stall_suppress
)
829 j
= ACCESS_ONCE(jiffies
);
830 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
832 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
834 /* We haven't checked in, so go dump stack. */
835 print_cpu_stall(rsp
);
837 } else if (rcu_gp_in_progress(rsp
) &&
838 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
840 /* They had a few time units to dump stack, so complain. */
841 print_other_cpu_stall(rsp
);
845 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
847 rcu_cpu_stall_suppress
= 1;
852 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
854 * Set the stall-warning timeout way off into the future, thus preventing
855 * any RCU CPU stall-warning messages from appearing in the current set of
858 * The caller must disable hard irqs.
860 void rcu_cpu_stall_reset(void)
862 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
863 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
864 rcu_preempt_stall_reset();
867 static struct notifier_block rcu_panic_block
= {
868 .notifier_call
= rcu_panic
,
871 static void __init
check_cpu_stall_init(void)
873 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
877 * Update CPU-local rcu_data state to record the newly noticed grace period.
878 * This is used both when we started the grace period and when we notice
879 * that someone else started the grace period. The caller must hold the
880 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
881 * and must have irqs disabled.
883 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
885 if (rdp
->gpnum
!= rnp
->gpnum
) {
887 * If the current grace period is waiting for this CPU,
888 * set up to detect a quiescent state, otherwise don't
889 * go looking for one.
891 rdp
->gpnum
= rnp
->gpnum
;
892 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpustart");
893 if (rnp
->qsmask
& rdp
->grpmask
) {
895 rdp
->passed_quiesce
= 0;
898 zero_cpu_stall_ticks(rdp
);
902 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
905 struct rcu_node
*rnp
;
907 local_irq_save(flags
);
909 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
910 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
911 local_irq_restore(flags
);
914 __note_new_gpnum(rsp
, rnp
, rdp
);
915 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
919 * Did someone else start a new RCU grace period start since we last
920 * checked? Update local state appropriately if so. Must be called
921 * on the CPU corresponding to rdp.
924 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
929 local_irq_save(flags
);
930 if (rdp
->gpnum
!= rsp
->gpnum
) {
931 note_new_gpnum(rsp
, rdp
);
934 local_irq_restore(flags
);
939 * Advance this CPU's callbacks, but only if the current grace period
940 * has ended. This may be called only from the CPU to whom the rdp
941 * belongs. In addition, the corresponding leaf rcu_node structure's
942 * ->lock must be held by the caller, with irqs disabled.
945 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
947 /* Did another grace period end? */
948 if (rdp
->completed
!= rnp
->completed
) {
950 /* Advance callbacks. No harm if list empty. */
951 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
952 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
953 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
955 /* Remember that we saw this grace-period completion. */
956 rdp
->completed
= rnp
->completed
;
957 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuend");
960 * If we were in an extended quiescent state, we may have
961 * missed some grace periods that others CPUs handled on
962 * our behalf. Catch up with this state to avoid noting
963 * spurious new grace periods. If another grace period
964 * has started, then rnp->gpnum will have advanced, so
965 * we will detect this later on.
967 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
968 rdp
->gpnum
= rdp
->completed
;
971 * If RCU does not need a quiescent state from this CPU,
972 * then make sure that this CPU doesn't go looking for one.
974 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
980 * Advance this CPU's callbacks, but only if the current grace period
981 * has ended. This may be called only from the CPU to whom the rdp
985 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
988 struct rcu_node
*rnp
;
990 local_irq_save(flags
);
992 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
993 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
994 local_irq_restore(flags
);
997 __rcu_process_gp_end(rsp
, rnp
, rdp
);
998 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1002 * Do per-CPU grace-period initialization for running CPU. The caller
1003 * must hold the lock of the leaf rcu_node structure corresponding to
1007 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1009 /* Prior grace period ended, so advance callbacks for current CPU. */
1010 __rcu_process_gp_end(rsp
, rnp
, rdp
);
1013 * Because this CPU just now started the new grace period, we know
1014 * that all of its callbacks will be covered by this upcoming grace
1015 * period, even the ones that were registered arbitrarily recently.
1016 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1018 * Other CPUs cannot be sure exactly when the grace period started.
1019 * Therefore, their recently registered callbacks must pass through
1020 * an additional RCU_NEXT_READY stage, so that they will be handled
1021 * by the next RCU grace period.
1023 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1024 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1026 /* Set state so that this CPU will detect the next quiescent state. */
1027 __note_new_gpnum(rsp
, rnp
, rdp
);
1031 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1032 * in preparation for detecting the next grace period. The caller must hold
1033 * the root node's ->lock, which is released before return. Hard irqs must
1036 * Note that it is legal for a dying CPU (which is marked as offline) to
1037 * invoke this function. This can happen when the dying CPU reports its
1041 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
1042 __releases(rcu_get_root(rsp
)->lock
)
1044 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1045 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1047 if (!rcu_scheduler_fully_active
||
1048 !cpu_needs_another_gp(rsp
, rdp
)) {
1050 * Either the scheduler hasn't yet spawned the first
1051 * non-idle task or this CPU does not need another
1052 * grace period. Either way, don't start a new grace
1055 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1059 if (rsp
->fqs_active
) {
1061 * This CPU needs a grace period, but force_quiescent_state()
1062 * is running. Tell it to start one on this CPU's behalf.
1064 rsp
->fqs_need_gp
= 1;
1065 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1069 /* Advance to a new grace period and initialize state. */
1071 trace_rcu_grace_period(rsp
->name
, rsp
->gpnum
, "start");
1072 WARN_ON_ONCE(rsp
->fqs_state
== RCU_GP_INIT
);
1073 rsp
->fqs_state
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
1074 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1075 record_gp_stall_check_time(rsp
);
1076 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
1078 /* Exclude any concurrent CPU-hotplug operations. */
1079 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1082 * Set the quiescent-state-needed bits in all the rcu_node
1083 * structures for all currently online CPUs in breadth-first
1084 * order, starting from the root rcu_node structure. This
1085 * operation relies on the layout of the hierarchy within the
1086 * rsp->node[] array. Note that other CPUs will access only
1087 * the leaves of the hierarchy, which still indicate that no
1088 * grace period is in progress, at least until the corresponding
1089 * leaf node has been initialized. In addition, we have excluded
1090 * CPU-hotplug operations.
1092 * Note that the grace period cannot complete until we finish
1093 * the initialization process, as there will be at least one
1094 * qsmask bit set in the root node until that time, namely the
1095 * one corresponding to this CPU, due to the fact that we have
1098 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1099 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1100 rcu_preempt_check_blocked_tasks(rnp
);
1101 rnp
->qsmask
= rnp
->qsmaskinit
;
1102 rnp
->gpnum
= rsp
->gpnum
;
1103 rnp
->completed
= rsp
->completed
;
1104 if (rnp
== rdp
->mynode
)
1105 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
1106 rcu_preempt_boost_start_gp(rnp
);
1107 trace_rcu_grace_period_init(rsp
->name
, rnp
->gpnum
,
1108 rnp
->level
, rnp
->grplo
,
1109 rnp
->grphi
, rnp
->qsmask
);
1110 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1113 rnp
= rcu_get_root(rsp
);
1114 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1115 rsp
->fqs_state
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
1116 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1117 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1121 * Report a full set of quiescent states to the specified rcu_state
1122 * data structure. This involves cleaning up after the prior grace
1123 * period and letting rcu_start_gp() start up the next grace period
1124 * if one is needed. Note that the caller must hold rnp->lock, as
1125 * required by rcu_start_gp(), which will release it.
1127 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
1128 __releases(rcu_get_root(rsp
)->lock
)
1130 unsigned long gp_duration
;
1131 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1132 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1134 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
1137 * Ensure that all grace-period and pre-grace-period activity
1138 * is seen before the assignment to rsp->completed.
1140 smp_mb(); /* See above block comment. */
1141 gp_duration
= jiffies
- rsp
->gp_start
;
1142 if (gp_duration
> rsp
->gp_max
)
1143 rsp
->gp_max
= gp_duration
;
1146 * We know the grace period is complete, but to everyone else
1147 * it appears to still be ongoing. But it is also the case
1148 * that to everyone else it looks like there is nothing that
1149 * they can do to advance the grace period. It is therefore
1150 * safe for us to drop the lock in order to mark the grace
1151 * period as completed in all of the rcu_node structures.
1153 * But if this CPU needs another grace period, it will take
1154 * care of this while initializing the next grace period.
1155 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1156 * because the callbacks have not yet been advanced: Those
1157 * callbacks are waiting on the grace period that just now
1160 if (*rdp
->nxttail
[RCU_WAIT_TAIL
] == NULL
) {
1161 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1164 * Propagate new ->completed value to rcu_node structures
1165 * so that other CPUs don't have to wait until the start
1166 * of the next grace period to process their callbacks.
1168 rcu_for_each_node_breadth_first(rsp
, rnp
) {
1169 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1170 rnp
->completed
= rsp
->gpnum
;
1171 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1173 rnp
= rcu_get_root(rsp
);
1174 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1177 rsp
->completed
= rsp
->gpnum
; /* Declare the grace period complete. */
1178 trace_rcu_grace_period(rsp
->name
, rsp
->completed
, "end");
1179 rsp
->fqs_state
= RCU_GP_IDLE
;
1180 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
1184 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1185 * Allows quiescent states for a group of CPUs to be reported at one go
1186 * to the specified rcu_node structure, though all the CPUs in the group
1187 * must be represented by the same rcu_node structure (which need not be
1188 * a leaf rcu_node structure, though it often will be). That structure's
1189 * lock must be held upon entry, and it is released before return.
1192 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
1193 struct rcu_node
*rnp
, unsigned long flags
)
1194 __releases(rnp
->lock
)
1196 struct rcu_node
*rnp_c
;
1198 /* Walk up the rcu_node hierarchy. */
1200 if (!(rnp
->qsmask
& mask
)) {
1202 /* Our bit has already been cleared, so done. */
1203 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1206 rnp
->qsmask
&= ~mask
;
1207 trace_rcu_quiescent_state_report(rsp
->name
, rnp
->gpnum
,
1208 mask
, rnp
->qsmask
, rnp
->level
,
1209 rnp
->grplo
, rnp
->grphi
,
1211 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
1213 /* Other bits still set at this level, so done. */
1214 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1217 mask
= rnp
->grpmask
;
1218 if (rnp
->parent
== NULL
) {
1220 /* No more levels. Exit loop holding root lock. */
1224 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1227 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1228 WARN_ON_ONCE(rnp_c
->qsmask
);
1232 * Get here if we are the last CPU to pass through a quiescent
1233 * state for this grace period. Invoke rcu_report_qs_rsp()
1234 * to clean up and start the next grace period if one is needed.
1236 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
1240 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1241 * structure. This must be either called from the specified CPU, or
1242 * called when the specified CPU is known to be offline (and when it is
1243 * also known that no other CPU is concurrently trying to help the offline
1244 * CPU). The lastcomp argument is used to make sure we are still in the
1245 * grace period of interest. We don't want to end the current grace period
1246 * based on quiescent states detected in an earlier grace period!
1249 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastgp
)
1251 unsigned long flags
;
1253 struct rcu_node
*rnp
;
1256 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1257 if (lastgp
!= rnp
->gpnum
|| rnp
->completed
== rnp
->gpnum
) {
1260 * The grace period in which this quiescent state was
1261 * recorded has ended, so don't report it upwards.
1262 * We will instead need a new quiescent state that lies
1263 * within the current grace period.
1265 rdp
->passed_quiesce
= 0; /* need qs for new gp. */
1266 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1269 mask
= rdp
->grpmask
;
1270 if ((rnp
->qsmask
& mask
) == 0) {
1271 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1273 rdp
->qs_pending
= 0;
1276 * This GP can't end until cpu checks in, so all of our
1277 * callbacks can be processed during the next GP.
1279 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1281 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1286 * Check to see if there is a new grace period of which this CPU
1287 * is not yet aware, and if so, set up local rcu_data state for it.
1288 * Otherwise, see if this CPU has just passed through its first
1289 * quiescent state for this grace period, and record that fact if so.
1292 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1294 /* If there is now a new grace period, record and return. */
1295 if (check_for_new_grace_period(rsp
, rdp
))
1299 * Does this CPU still need to do its part for current grace period?
1300 * If no, return and let the other CPUs do their part as well.
1302 if (!rdp
->qs_pending
)
1306 * Was there a quiescent state since the beginning of the grace
1307 * period? If no, then exit and wait for the next call.
1309 if (!rdp
->passed_quiesce
)
1313 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1316 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesce_gpnum
);
1319 #ifdef CONFIG_HOTPLUG_CPU
1322 * Send the specified CPU's RCU callbacks to the orphanage. The
1323 * specified CPU must be offline, and the caller must hold the
1327 rcu_send_cbs_to_orphanage(int cpu
, struct rcu_state
*rsp
,
1328 struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1333 * Orphan the callbacks. First adjust the counts. This is safe
1334 * because ->onofflock excludes _rcu_barrier()'s adoption of
1335 * the callbacks, thus no memory barrier is required.
1337 if (rdp
->nxtlist
!= NULL
) {
1338 rsp
->qlen_lazy
+= rdp
->qlen_lazy
;
1339 rsp
->qlen
+= rdp
->qlen
;
1340 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1346 * Next, move those callbacks still needing a grace period to
1347 * the orphanage, where some other CPU will pick them up.
1348 * Some of the callbacks might have gone partway through a grace
1349 * period, but that is too bad. They get to start over because we
1350 * cannot assume that grace periods are synchronized across CPUs.
1351 * We don't bother updating the ->nxttail[] array yet, instead
1352 * we just reset the whole thing later on.
1354 if (*rdp
->nxttail
[RCU_DONE_TAIL
] != NULL
) {
1355 *rsp
->orphan_nxttail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1356 rsp
->orphan_nxttail
= rdp
->nxttail
[RCU_NEXT_TAIL
];
1357 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1361 * Then move the ready-to-invoke callbacks to the orphanage,
1362 * where some other CPU will pick them up. These will not be
1363 * required to pass though another grace period: They are done.
1365 if (rdp
->nxtlist
!= NULL
) {
1366 *rsp
->orphan_donetail
= rdp
->nxtlist
;
1367 rsp
->orphan_donetail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1370 /* Finally, initialize the rcu_data structure's list to empty. */
1371 rdp
->nxtlist
= NULL
;
1372 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1373 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1377 * Adopt the RCU callbacks from the specified rcu_state structure's
1378 * orphanage. The caller must hold the ->onofflock.
1380 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
1383 struct rcu_data
*rdp
= __this_cpu_ptr(rsp
->rda
);
1386 * If there is an rcu_barrier() operation in progress, then
1387 * only the task doing that operation is permitted to adopt
1388 * callbacks. To do otherwise breaks rcu_barrier() and friends
1389 * by causing them to fail to wait for the callbacks in the
1392 if (rsp
->rcu_barrier_in_progress
&&
1393 rsp
->rcu_barrier_in_progress
!= current
)
1396 /* Do the accounting first. */
1397 rdp
->qlen_lazy
+= rsp
->qlen_lazy
;
1398 rdp
->qlen
+= rsp
->qlen
;
1399 rdp
->n_cbs_adopted
+= rsp
->qlen
;
1400 if (rsp
->qlen_lazy
!= rsp
->qlen
)
1401 rcu_idle_count_callbacks_posted();
1406 * We do not need a memory barrier here because the only way we
1407 * can get here if there is an rcu_barrier() in flight is if
1408 * we are the task doing the rcu_barrier().
1411 /* First adopt the ready-to-invoke callbacks. */
1412 if (rsp
->orphan_donelist
!= NULL
) {
1413 *rsp
->orphan_donetail
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1414 *rdp
->nxttail
[RCU_DONE_TAIL
] = rsp
->orphan_donelist
;
1415 for (i
= RCU_NEXT_SIZE
- 1; i
>= RCU_DONE_TAIL
; i
--)
1416 if (rdp
->nxttail
[i
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1417 rdp
->nxttail
[i
] = rsp
->orphan_donetail
;
1418 rsp
->orphan_donelist
= NULL
;
1419 rsp
->orphan_donetail
= &rsp
->orphan_donelist
;
1422 /* And then adopt the callbacks that still need a grace period. */
1423 if (rsp
->orphan_nxtlist
!= NULL
) {
1424 *rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxtlist
;
1425 rdp
->nxttail
[RCU_NEXT_TAIL
] = rsp
->orphan_nxttail
;
1426 rsp
->orphan_nxtlist
= NULL
;
1427 rsp
->orphan_nxttail
= &rsp
->orphan_nxtlist
;
1432 * Trace the fact that this CPU is going offline.
1434 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1436 RCU_TRACE(unsigned long mask
);
1437 RCU_TRACE(struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
));
1438 RCU_TRACE(struct rcu_node
*rnp
= rdp
->mynode
);
1440 RCU_TRACE(mask
= rdp
->grpmask
);
1441 trace_rcu_grace_period(rsp
->name
,
1442 rnp
->gpnum
+ 1 - !!(rnp
->qsmask
& mask
),
1447 * The CPU has been completely removed, and some other CPU is reporting
1448 * this fact from process context. Do the remainder of the cleanup,
1449 * including orphaning the outgoing CPU's RCU callbacks, and also
1450 * adopting them, if there is no _rcu_barrier() instance running.
1451 * There can only be one CPU hotplug operation at a time, so no other
1452 * CPU can be attempting to update rcu_cpu_kthread_task.
1454 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1456 unsigned long flags
;
1458 int need_report
= 0;
1459 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1460 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
1462 /* Adjust any no-longer-needed kthreads. */
1463 rcu_stop_cpu_kthread(cpu
);
1464 rcu_node_kthread_setaffinity(rnp
, -1);
1466 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
1468 /* Exclude any attempts to start a new grace period. */
1469 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1471 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1472 rcu_send_cbs_to_orphanage(cpu
, rsp
, rnp
, rdp
);
1473 rcu_adopt_orphan_cbs(rsp
);
1475 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1476 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1478 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1479 rnp
->qsmaskinit
&= ~mask
;
1480 if (rnp
->qsmaskinit
!= 0) {
1481 if (rnp
!= rdp
->mynode
)
1482 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1485 if (rnp
== rdp
->mynode
)
1486 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1488 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1489 mask
= rnp
->grpmask
;
1491 } while (rnp
!= NULL
);
1494 * We still hold the leaf rcu_node structure lock here, and
1495 * irqs are still disabled. The reason for this subterfuge is
1496 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1497 * held leads to deadlock.
1499 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1501 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1502 rcu_report_unblock_qs_rnp(rnp
, flags
);
1504 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1505 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1506 rcu_report_exp_rnp(rsp
, rnp
, true);
1509 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1511 static void rcu_adopt_orphan_cbs(struct rcu_state
*rsp
)
1515 static void rcu_cleanup_dying_cpu(struct rcu_state
*rsp
)
1519 static void rcu_cleanup_dead_cpu(int cpu
, struct rcu_state
*rsp
)
1523 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1526 * Invoke any RCU callbacks that have made it to the end of their grace
1527 * period. Thottle as specified by rdp->blimit.
1529 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1531 unsigned long flags
;
1532 struct rcu_head
*next
, *list
, **tail
;
1533 int bl
, count
, count_lazy
;
1535 /* If no callbacks are ready, just return.*/
1536 if (!cpu_has_callbacks_ready_to_invoke(rdp
)) {
1537 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, 0);
1538 trace_rcu_batch_end(rsp
->name
, 0, !!ACCESS_ONCE(rdp
->nxtlist
),
1539 need_resched(), is_idle_task(current
),
1540 rcu_is_callbacks_kthread());
1545 * Extract the list of ready callbacks, disabling to prevent
1546 * races with call_rcu() from interrupt handlers.
1548 local_irq_save(flags
);
1549 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
1551 trace_rcu_batch_start(rsp
->name
, rdp
->qlen_lazy
, rdp
->qlen
, bl
);
1552 list
= rdp
->nxtlist
;
1553 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1554 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1555 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1556 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1557 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1558 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1559 local_irq_restore(flags
);
1561 /* Invoke callbacks. */
1562 count
= count_lazy
= 0;
1566 debug_rcu_head_unqueue(list
);
1567 if (__rcu_reclaim(rsp
->name
, list
))
1570 /* Stop only if limit reached and CPU has something to do. */
1571 if (++count
>= bl
&&
1573 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
1577 local_irq_save(flags
);
1578 trace_rcu_batch_end(rsp
->name
, count
, !!list
, need_resched(),
1579 is_idle_task(current
),
1580 rcu_is_callbacks_kthread());
1582 /* Update count, and requeue any remaining callbacks. */
1584 *tail
= rdp
->nxtlist
;
1585 rdp
->nxtlist
= list
;
1586 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1587 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1588 rdp
->nxttail
[count
] = tail
;
1592 smp_mb(); /* List handling before counting for rcu_barrier(). */
1593 rdp
->qlen_lazy
-= count_lazy
;
1595 rdp
->n_cbs_invoked
+= count
;
1597 /* Reinstate batch limit if we have worked down the excess. */
1598 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1599 rdp
->blimit
= blimit
;
1601 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1602 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1603 rdp
->qlen_last_fqs_check
= 0;
1604 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1605 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1606 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1608 local_irq_restore(flags
);
1610 /* Re-invoke RCU core processing if there are callbacks remaining. */
1611 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1616 * Check to see if this CPU is in a non-context-switch quiescent state
1617 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1618 * Also schedule RCU core processing.
1620 * This function must be called from hardirq context. It is normally
1621 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1622 * false, there is no point in invoking rcu_check_callbacks().
1624 void rcu_check_callbacks(int cpu
, int user
)
1626 trace_rcu_utilization("Start scheduler-tick");
1627 increment_cpu_stall_ticks();
1628 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
1631 * Get here if this CPU took its interrupt from user
1632 * mode or from the idle loop, and if this is not a
1633 * nested interrupt. In this case, the CPU is in
1634 * a quiescent state, so note it.
1636 * No memory barrier is required here because both
1637 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1638 * variables that other CPUs neither access nor modify,
1639 * at least not while the corresponding CPU is online.
1645 } else if (!in_softirq()) {
1648 * Get here if this CPU did not take its interrupt from
1649 * softirq, in other words, if it is not interrupting
1650 * a rcu_bh read-side critical section. This is an _bh
1651 * critical section, so note it.
1656 rcu_preempt_check_callbacks(cpu
);
1657 if (rcu_pending(cpu
))
1659 trace_rcu_utilization("End scheduler-tick");
1663 * Scan the leaf rcu_node structures, processing dyntick state for any that
1664 * have not yet encountered a quiescent state, using the function specified.
1665 * Also initiate boosting for any threads blocked on the root rcu_node.
1667 * The caller must have suppressed start of new grace periods.
1669 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1673 unsigned long flags
;
1675 struct rcu_node
*rnp
;
1677 rcu_for_each_leaf_node(rsp
, rnp
) {
1679 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1680 if (!rcu_gp_in_progress(rsp
)) {
1681 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1684 if (rnp
->qsmask
== 0) {
1685 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1690 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1691 if ((rnp
->qsmask
& bit
) != 0 &&
1692 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1697 /* rcu_report_qs_rnp() releases rnp->lock. */
1698 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1701 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1703 rnp
= rcu_get_root(rsp
);
1704 if (rnp
->qsmask
== 0) {
1705 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1706 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1711 * Force quiescent states on reluctant CPUs, and also detect which
1712 * CPUs are in dyntick-idle mode.
1714 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1716 unsigned long flags
;
1717 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1719 trace_rcu_utilization("Start fqs");
1720 if (!rcu_gp_in_progress(rsp
)) {
1721 trace_rcu_utilization("End fqs");
1722 return; /* No grace period in progress, nothing to force. */
1724 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1725 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1726 trace_rcu_utilization("End fqs");
1727 return; /* Someone else is already on the job. */
1729 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1730 goto unlock_fqs_ret
; /* no emergency and done recently. */
1732 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1733 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1734 if(!rcu_gp_in_progress(rsp
)) {
1735 rsp
->n_force_qs_ngp
++;
1736 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1737 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1739 rsp
->fqs_active
= 1;
1740 switch (rsp
->fqs_state
) {
1744 break; /* grace period idle or initializing, ignore. */
1746 case RCU_SAVE_DYNTICK
:
1747 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1748 break; /* So gcc recognizes the dead code. */
1750 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1752 /* Record dyntick-idle state. */
1753 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1754 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1755 if (rcu_gp_in_progress(rsp
))
1756 rsp
->fqs_state
= RCU_FORCE_QS
;
1761 /* Check dyntick-idle state, send IPI to laggarts. */
1762 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1763 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1765 /* Leave state in case more forcing is required. */
1767 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1770 rsp
->fqs_active
= 0;
1771 if (rsp
->fqs_need_gp
) {
1772 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1773 rsp
->fqs_need_gp
= 0;
1774 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1775 trace_rcu_utilization("End fqs");
1778 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1780 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1781 trace_rcu_utilization("End fqs");
1785 * This does the RCU core processing work for the specified rcu_state
1786 * and rcu_data structures. This may be called only from the CPU to
1787 * whom the rdp belongs.
1790 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1792 unsigned long flags
;
1794 WARN_ON_ONCE(rdp
->beenonline
== 0);
1797 * If an RCU GP has gone long enough, go check for dyntick
1798 * idle CPUs and, if needed, send resched IPIs.
1800 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1801 force_quiescent_state(rsp
, 1);
1804 * Advance callbacks in response to end of earlier grace
1805 * period that some other CPU ended.
1807 rcu_process_gp_end(rsp
, rdp
);
1809 /* Update RCU state based on any recent quiescent states. */
1810 rcu_check_quiescent_state(rsp
, rdp
);
1812 /* Does this CPU require a not-yet-started grace period? */
1813 if (cpu_needs_another_gp(rsp
, rdp
)) {
1814 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1815 rcu_start_gp(rsp
, flags
); /* releases above lock */
1818 /* If there are callbacks ready, invoke them. */
1819 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1820 invoke_rcu_callbacks(rsp
, rdp
);
1824 * Do RCU core processing for the current CPU.
1826 static void rcu_process_callbacks(struct softirq_action
*unused
)
1828 trace_rcu_utilization("Start RCU core");
1829 __rcu_process_callbacks(&rcu_sched_state
,
1830 &__get_cpu_var(rcu_sched_data
));
1831 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1832 rcu_preempt_process_callbacks();
1833 trace_rcu_utilization("End RCU core");
1837 * Schedule RCU callback invocation. If the specified type of RCU
1838 * does not support RCU priority boosting, just do a direct call,
1839 * otherwise wake up the per-CPU kernel kthread. Note that because we
1840 * are running on the current CPU with interrupts disabled, the
1841 * rcu_cpu_kthread_task cannot disappear out from under us.
1843 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1845 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
1847 if (likely(!rsp
->boost
)) {
1848 rcu_do_batch(rsp
, rdp
);
1851 invoke_rcu_callbacks_kthread();
1854 static void invoke_rcu_core(void)
1856 raise_softirq(RCU_SOFTIRQ
);
1860 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1861 struct rcu_state
*rsp
, bool lazy
)
1863 unsigned long flags
;
1864 struct rcu_data
*rdp
;
1866 WARN_ON_ONCE((unsigned long)head
& 0x3); /* Misaligned rcu_head! */
1867 debug_rcu_head_queue(head
);
1871 smp_mb(); /* Ensure RCU update seen before callback registry. */
1874 * Opportunistically note grace-period endings and beginnings.
1875 * Note that we might see a beginning right after we see an
1876 * end, but never vice versa, since this CPU has to pass through
1877 * a quiescent state betweentimes.
1879 local_irq_save(flags
);
1880 rdp
= this_cpu_ptr(rsp
->rda
);
1882 /* Add the callback to our list. */
1887 rcu_idle_count_callbacks_posted();
1888 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1889 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1890 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1892 if (__is_kfree_rcu_offset((unsigned long)func
))
1893 trace_rcu_kfree_callback(rsp
->name
, head
, (unsigned long)func
,
1894 rdp
->qlen_lazy
, rdp
->qlen
);
1896 trace_rcu_callback(rsp
->name
, head
, rdp
->qlen_lazy
, rdp
->qlen
);
1898 /* If interrupts were disabled, don't dive into RCU core. */
1899 if (irqs_disabled_flags(flags
)) {
1900 local_irq_restore(flags
);
1905 * Force the grace period if too many callbacks or too long waiting.
1906 * Enforce hysteresis, and don't invoke force_quiescent_state()
1907 * if some other CPU has recently done so. Also, don't bother
1908 * invoking force_quiescent_state() if the newly enqueued callback
1909 * is the only one waiting for a grace period to complete.
1911 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1913 /* Are we ignoring a completed grace period? */
1914 rcu_process_gp_end(rsp
, rdp
);
1915 check_for_new_grace_period(rsp
, rdp
);
1917 /* Start a new grace period if one not already started. */
1918 if (!rcu_gp_in_progress(rsp
)) {
1919 unsigned long nestflag
;
1920 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1922 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1923 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1925 /* Give the grace period a kick. */
1926 rdp
->blimit
= LONG_MAX
;
1927 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1928 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1929 force_quiescent_state(rsp
, 0);
1930 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1931 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1933 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1934 force_quiescent_state(rsp
, 1);
1935 local_irq_restore(flags
);
1939 * Queue an RCU-sched callback for invocation after a grace period.
1941 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1943 __call_rcu(head
, func
, &rcu_sched_state
, 0);
1945 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1948 * Queue an RCU callback for invocation after a quicker grace period.
1950 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1952 __call_rcu(head
, func
, &rcu_bh_state
, 0);
1954 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1957 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1958 * any blocking grace-period wait automatically implies a grace period
1959 * if there is only one CPU online at any point time during execution
1960 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1961 * occasionally incorrectly indicate that there are multiple CPUs online
1962 * when there was in fact only one the whole time, as this just adds
1963 * some overhead: RCU still operates correctly.
1965 * Of course, sampling num_online_cpus() with preemption enabled can
1966 * give erroneous results if there are concurrent CPU-hotplug operations.
1967 * For example, given a demonic sequence of preemptions in num_online_cpus()
1968 * and CPU-hotplug operations, there could be two or more CPUs online at
1969 * all times, but num_online_cpus() might well return one (or even zero).
1971 * However, all such demonic sequences require at least one CPU-offline
1972 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1973 * is only a problem if there is an RCU read-side critical section executing
1974 * throughout. But RCU-sched and RCU-bh read-side critical sections
1975 * disable either preemption or bh, which prevents a CPU from going offline.
1976 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1977 * that there is only one CPU when in fact there was more than one throughout
1978 * is when there were no RCU readers in the system. If there are no
1979 * RCU readers, the grace period by definition can be of zero length,
1980 * regardless of the number of online CPUs.
1982 static inline int rcu_blocking_is_gp(void)
1984 might_sleep(); /* Check for RCU read-side critical section. */
1985 return num_online_cpus() <= 1;
1989 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1991 * Control will return to the caller some time after a full rcu-sched
1992 * grace period has elapsed, in other words after all currently executing
1993 * rcu-sched read-side critical sections have completed. These read-side
1994 * critical sections are delimited by rcu_read_lock_sched() and
1995 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1996 * local_irq_disable(), and so on may be used in place of
1997 * rcu_read_lock_sched().
1999 * This means that all preempt_disable code sequences, including NMI and
2000 * hardware-interrupt handlers, in progress on entry will have completed
2001 * before this primitive returns. However, this does not guarantee that
2002 * softirq handlers will have completed, since in some kernels, these
2003 * handlers can run in process context, and can block.
2005 * This primitive provides the guarantees made by the (now removed)
2006 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2007 * guarantees that rcu_read_lock() sections will have completed.
2008 * In "classic RCU", these two guarantees happen to be one and
2009 * the same, but can differ in realtime RCU implementations.
2011 void synchronize_sched(void)
2013 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
2014 !lock_is_held(&rcu_lock_map
) &&
2015 !lock_is_held(&rcu_sched_lock_map
),
2016 "Illegal synchronize_sched() in RCU-sched read-side critical section");
2017 if (rcu_blocking_is_gp())
2019 wait_rcu_gp(call_rcu_sched
);
2021 EXPORT_SYMBOL_GPL(synchronize_sched
);
2024 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2026 * Control will return to the caller some time after a full rcu_bh grace
2027 * period has elapsed, in other words after all currently executing rcu_bh
2028 * read-side critical sections have completed. RCU read-side critical
2029 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2030 * and may be nested.
2032 void synchronize_rcu_bh(void)
2034 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map
) &&
2035 !lock_is_held(&rcu_lock_map
) &&
2036 !lock_is_held(&rcu_sched_lock_map
),
2037 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2038 if (rcu_blocking_is_gp())
2040 wait_rcu_gp(call_rcu_bh
);
2042 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
2044 static atomic_t sync_sched_expedited_started
= ATOMIC_INIT(0);
2045 static atomic_t sync_sched_expedited_done
= ATOMIC_INIT(0);
2047 static int synchronize_sched_expedited_cpu_stop(void *data
)
2050 * There must be a full memory barrier on each affected CPU
2051 * between the time that try_stop_cpus() is called and the
2052 * time that it returns.
2054 * In the current initial implementation of cpu_stop, the
2055 * above condition is already met when the control reaches
2056 * this point and the following smp_mb() is not strictly
2057 * necessary. Do smp_mb() anyway for documentation and
2058 * robustness against future implementation changes.
2060 smp_mb(); /* See above comment block. */
2065 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2067 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2068 * approach to force the grace period to end quickly. This consumes
2069 * significant time on all CPUs and is unfriendly to real-time workloads,
2070 * so is thus not recommended for any sort of common-case code. In fact,
2071 * if you are using synchronize_sched_expedited() in a loop, please
2072 * restructure your code to batch your updates, and then use a single
2073 * synchronize_sched() instead.
2075 * Note that it is illegal to call this function while holding any lock
2076 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2077 * to call this function from a CPU-hotplug notifier. Failing to observe
2078 * these restriction will result in deadlock.
2080 * This implementation can be thought of as an application of ticket
2081 * locking to RCU, with sync_sched_expedited_started and
2082 * sync_sched_expedited_done taking on the roles of the halves
2083 * of the ticket-lock word. Each task atomically increments
2084 * sync_sched_expedited_started upon entry, snapshotting the old value,
2085 * then attempts to stop all the CPUs. If this succeeds, then each
2086 * CPU will have executed a context switch, resulting in an RCU-sched
2087 * grace period. We are then done, so we use atomic_cmpxchg() to
2088 * update sync_sched_expedited_done to match our snapshot -- but
2089 * only if someone else has not already advanced past our snapshot.
2091 * On the other hand, if try_stop_cpus() fails, we check the value
2092 * of sync_sched_expedited_done. If it has advanced past our
2093 * initial snapshot, then someone else must have forced a grace period
2094 * some time after we took our snapshot. In this case, our work is
2095 * done for us, and we can simply return. Otherwise, we try again,
2096 * but keep our initial snapshot for purposes of checking for someone
2097 * doing our work for us.
2099 * If we fail too many times in a row, we fall back to synchronize_sched().
2101 void synchronize_sched_expedited(void)
2103 int firstsnap
, s
, snap
, trycount
= 0;
2105 /* Note that atomic_inc_return() implies full memory barrier. */
2106 firstsnap
= snap
= atomic_inc_return(&sync_sched_expedited_started
);
2108 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2111 * Each pass through the following loop attempts to force a
2112 * context switch on each CPU.
2114 while (try_stop_cpus(cpu_online_mask
,
2115 synchronize_sched_expedited_cpu_stop
,
2119 /* No joy, try again later. Or just synchronize_sched(). */
2120 if (trycount
++ < 10)
2121 udelay(trycount
* num_online_cpus());
2123 synchronize_sched();
2127 /* Check to see if someone else did our work for us. */
2128 s
= atomic_read(&sync_sched_expedited_done
);
2129 if (UINT_CMP_GE((unsigned)s
, (unsigned)firstsnap
)) {
2130 smp_mb(); /* ensure test happens before caller kfree */
2135 * Refetching sync_sched_expedited_started allows later
2136 * callers to piggyback on our grace period. We subtract
2137 * 1 to get the same token that the last incrementer got.
2138 * We retry after they started, so our grace period works
2139 * for them, and they started after our first try, so their
2140 * grace period works for us.
2143 snap
= atomic_read(&sync_sched_expedited_started
);
2144 smp_mb(); /* ensure read is before try_stop_cpus(). */
2148 * Everyone up to our most recent fetch is covered by our grace
2149 * period. Update the counter, but only if our work is still
2150 * relevant -- which it won't be if someone who started later
2151 * than we did beat us to the punch.
2154 s
= atomic_read(&sync_sched_expedited_done
);
2155 if (UINT_CMP_GE((unsigned)s
, (unsigned)snap
)) {
2156 smp_mb(); /* ensure test happens before caller kfree */
2159 } while (atomic_cmpxchg(&sync_sched_expedited_done
, s
, snap
) != s
);
2163 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
2166 * Check to see if there is any immediate RCU-related work to be done
2167 * by the current CPU, for the specified type of RCU, returning 1 if so.
2168 * The checks are in order of increasing expense: checks that can be
2169 * carried out against CPU-local state are performed first. However,
2170 * we must check for CPU stalls first, else we might not get a chance.
2172 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
2174 struct rcu_node
*rnp
= rdp
->mynode
;
2176 rdp
->n_rcu_pending
++;
2178 /* Check for CPU stalls, if enabled. */
2179 check_cpu_stall(rsp
, rdp
);
2181 /* Is the RCU core waiting for a quiescent state from this CPU? */
2182 if (rcu_scheduler_fully_active
&&
2183 rdp
->qs_pending
&& !rdp
->passed_quiesce
) {
2186 * If force_quiescent_state() coming soon and this CPU
2187 * needs a quiescent state, and this is either RCU-sched
2188 * or RCU-bh, force a local reschedule.
2190 rdp
->n_rp_qs_pending
++;
2191 if (!rdp
->preemptible
&&
2192 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
2195 } else if (rdp
->qs_pending
&& rdp
->passed_quiesce
) {
2196 rdp
->n_rp_report_qs
++;
2200 /* Does this CPU have callbacks ready to invoke? */
2201 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
2202 rdp
->n_rp_cb_ready
++;
2206 /* Has RCU gone idle with this CPU needing another grace period? */
2207 if (cpu_needs_another_gp(rsp
, rdp
)) {
2208 rdp
->n_rp_cpu_needs_gp
++;
2212 /* Has another RCU grace period completed? */
2213 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
2214 rdp
->n_rp_gp_completed
++;
2218 /* Has a new RCU grace period started? */
2219 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
2220 rdp
->n_rp_gp_started
++;
2224 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2225 if (rcu_gp_in_progress(rsp
) &&
2226 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
2227 rdp
->n_rp_need_fqs
++;
2232 rdp
->n_rp_need_nothing
++;
2237 * Check to see if there is any immediate RCU-related work to be done
2238 * by the current CPU, returning 1 if so. This function is part of the
2239 * RCU implementation; it is -not- an exported member of the RCU API.
2241 static int rcu_pending(int cpu
)
2243 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
2244 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
2245 rcu_preempt_pending(cpu
);
2249 * Check to see if any future RCU-related work will need to be done
2250 * by the current CPU, even if none need be done immediately, returning
2253 static int rcu_cpu_has_callbacks(int cpu
)
2255 /* RCU callbacks either ready or pending? */
2256 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
2257 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
2258 rcu_preempt_cpu_has_callbacks(cpu
);
2262 * RCU callback function for _rcu_barrier(). If we are last, wake
2263 * up the task executing _rcu_barrier().
2265 static void rcu_barrier_callback(struct rcu_head
*notused
)
2267 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2268 complete(&rcu_barrier_completion
);
2272 * Called with preemption disabled, and from cross-cpu IRQ context.
2274 static void rcu_barrier_func(void *type
)
2276 int cpu
= smp_processor_id();
2277 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
2278 void (*call_rcu_func
)(struct rcu_head
*head
,
2279 void (*func
)(struct rcu_head
*head
));
2281 atomic_inc(&rcu_barrier_cpu_count
);
2282 call_rcu_func
= type
;
2283 call_rcu_func(head
, rcu_barrier_callback
);
2287 * Orchestrate the specified type of RCU barrier, waiting for all
2288 * RCU callbacks of the specified type to complete.
2290 static void _rcu_barrier(struct rcu_state
*rsp
,
2291 void (*call_rcu_func
)(struct rcu_head
*head
,
2292 void (*func
)(struct rcu_head
*head
)))
2295 unsigned long flags
;
2296 struct rcu_data
*rdp
;
2299 init_rcu_head_on_stack(&rh
);
2301 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2302 mutex_lock(&rcu_barrier_mutex
);
2304 smp_mb(); /* Prevent any prior operations from leaking in. */
2307 * Initialize the count to one rather than to zero in order to
2308 * avoid a too-soon return to zero in case of a short grace period
2309 * (or preemption of this task). Also flag this task as doing
2310 * an rcu_barrier(). This will prevent anyone else from adopting
2311 * orphaned callbacks, which could cause otherwise failure if a
2312 * CPU went offline and quickly came back online. To see this,
2313 * consider the following sequence of events:
2315 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2316 * 2. CPU 1 goes offline, orphaning its callbacks.
2317 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2318 * 4. CPU 1 comes back online.
2319 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2320 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2321 * us -- but before CPU 1's orphaned callbacks are invoked!!!
2323 init_completion(&rcu_barrier_completion
);
2324 atomic_set(&rcu_barrier_cpu_count
, 1);
2325 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
2326 rsp
->rcu_barrier_in_progress
= current
;
2327 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
2330 * Force every CPU with callbacks to register a new callback
2331 * that will tell us when all the preceding callbacks have
2332 * been invoked. If an offline CPU has callbacks, wait for
2333 * it to either come back online or to finish orphaning those
2336 for_each_possible_cpu(cpu
) {
2338 rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2339 if (cpu_is_offline(cpu
)) {
2341 while (cpu_is_offline(cpu
) && ACCESS_ONCE(rdp
->qlen
))
2342 schedule_timeout_interruptible(1);
2343 } else if (ACCESS_ONCE(rdp
->qlen
)) {
2344 smp_call_function_single(cpu
, rcu_barrier_func
,
2345 (void *)call_rcu_func
, 1);
2353 * Now that all online CPUs have rcu_barrier_callback() callbacks
2354 * posted, we can adopt all of the orphaned callbacks and place
2355 * an rcu_barrier_callback() callback after them. When that is done,
2356 * we are guaranteed to have an rcu_barrier_callback() callback
2357 * following every callback that could possibly have been
2358 * registered before _rcu_barrier() was called.
2360 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
2361 rcu_adopt_orphan_cbs(rsp
);
2362 rsp
->rcu_barrier_in_progress
= NULL
;
2363 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
2364 atomic_inc(&rcu_barrier_cpu_count
);
2365 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2366 call_rcu_func(&rh
, rcu_barrier_callback
);
2369 * Now that we have an rcu_barrier_callback() callback on each
2370 * CPU, and thus each counted, remove the initial count.
2372 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
2373 complete(&rcu_barrier_completion
);
2375 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
2376 wait_for_completion(&rcu_barrier_completion
);
2378 /* Other rcu_barrier() invocations can now safely proceed. */
2379 mutex_unlock(&rcu_barrier_mutex
);
2381 destroy_rcu_head_on_stack(&rh
);
2385 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2387 void rcu_barrier_bh(void)
2389 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
2391 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
2394 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2396 void rcu_barrier_sched(void)
2398 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
2400 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
2403 * Do boot-time initialization of a CPU's per-CPU RCU data.
2406 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
2408 unsigned long flags
;
2410 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2411 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2413 /* Set up local state, ensuring consistent view of global state. */
2414 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2415 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
2416 rdp
->nxtlist
= NULL
;
2417 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
2418 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
2421 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
2422 WARN_ON_ONCE(rdp
->dynticks
->dynticks_nesting
!= DYNTICK_TASK_EXIT_IDLE
);
2423 WARN_ON_ONCE(atomic_read(&rdp
->dynticks
->dynticks
) != 1);
2426 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
2430 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2431 * offline event can be happening at a given time. Note also that we
2432 * can accept some slop in the rsp->completed access due to the fact
2433 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2435 static void __cpuinit
2436 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
2438 unsigned long flags
;
2440 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
2441 struct rcu_node
*rnp
= rcu_get_root(rsp
);
2443 /* Set up local state, ensuring consistent view of global state. */
2444 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
2445 rdp
->beenonline
= 1; /* We have now been online. */
2446 rdp
->preemptible
= preemptible
;
2447 rdp
->qlen_last_fqs_check
= 0;
2448 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
2449 rdp
->blimit
= blimit
;
2450 rdp
->dynticks
->dynticks_nesting
= DYNTICK_TASK_EXIT_IDLE
;
2451 atomic_set(&rdp
->dynticks
->dynticks
,
2452 (atomic_read(&rdp
->dynticks
->dynticks
) & ~0x1) + 1);
2453 rcu_prepare_for_idle_init(cpu
);
2454 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
2457 * A new grace period might start here. If so, we won't be part
2458 * of it, but that is OK, as we are currently in a quiescent state.
2461 /* Exclude any attempts to start a new GP on large systems. */
2462 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
2464 /* Add CPU to rcu_node bitmasks. */
2466 mask
= rdp
->grpmask
;
2468 /* Exclude any attempts to start a new GP on small systems. */
2469 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
2470 rnp
->qsmaskinit
|= mask
;
2471 mask
= rnp
->grpmask
;
2472 if (rnp
== rdp
->mynode
) {
2474 * If there is a grace period in progress, we will
2475 * set up to wait for it next time we run the
2478 rdp
->gpnum
= rnp
->completed
;
2479 rdp
->completed
= rnp
->completed
;
2480 rdp
->passed_quiesce
= 0;
2481 rdp
->qs_pending
= 0;
2482 rdp
->passed_quiesce_gpnum
= rnp
->gpnum
- 1;
2483 trace_rcu_grace_period(rsp
->name
, rdp
->gpnum
, "cpuonl");
2485 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
2487 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
2489 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
2492 static void __cpuinit
rcu_prepare_cpu(int cpu
)
2494 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
2495 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
2496 rcu_preempt_init_percpu_data(cpu
);
2500 * Handle CPU online/offline notification events.
2502 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
2503 unsigned long action
, void *hcpu
)
2505 long cpu
= (long)hcpu
;
2506 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
2507 struct rcu_node
*rnp
= rdp
->mynode
;
2509 trace_rcu_utilization("Start CPU hotplug");
2511 case CPU_UP_PREPARE
:
2512 case CPU_UP_PREPARE_FROZEN
:
2513 rcu_prepare_cpu(cpu
);
2514 rcu_prepare_kthreads(cpu
);
2517 case CPU_DOWN_FAILED
:
2518 rcu_node_kthread_setaffinity(rnp
, -1);
2519 rcu_cpu_kthread_setrt(cpu
, 1);
2521 case CPU_DOWN_PREPARE
:
2522 rcu_node_kthread_setaffinity(rnp
, cpu
);
2523 rcu_cpu_kthread_setrt(cpu
, 0);
2526 case CPU_DYING_FROZEN
:
2528 * The whole machine is "stopped" except this CPU, so we can
2529 * touch any data without introducing corruption. We send the
2530 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2532 rcu_cleanup_dying_cpu(&rcu_bh_state
);
2533 rcu_cleanup_dying_cpu(&rcu_sched_state
);
2534 rcu_preempt_cleanup_dying_cpu();
2535 rcu_cleanup_after_idle(cpu
);
2538 case CPU_DEAD_FROZEN
:
2539 case CPU_UP_CANCELED
:
2540 case CPU_UP_CANCELED_FROZEN
:
2541 rcu_cleanup_dead_cpu(cpu
, &rcu_bh_state
);
2542 rcu_cleanup_dead_cpu(cpu
, &rcu_sched_state
);
2543 rcu_preempt_cleanup_dead_cpu(cpu
);
2548 trace_rcu_utilization("End CPU hotplug");
2553 * This function is invoked towards the end of the scheduler's initialization
2554 * process. Before this is called, the idle task might contain
2555 * RCU read-side critical sections (during which time, this idle
2556 * task is booting the system). After this function is called, the
2557 * idle tasks are prohibited from containing RCU read-side critical
2558 * sections. This function also enables RCU lockdep checking.
2560 void rcu_scheduler_starting(void)
2562 WARN_ON(num_online_cpus() != 1);
2563 WARN_ON(nr_context_switches() > 0);
2564 rcu_scheduler_active
= 1;
2568 * Compute the per-level fanout, either using the exact fanout specified
2569 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2571 #ifdef CONFIG_RCU_FANOUT_EXACT
2572 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2576 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
2577 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
2578 rsp
->levelspread
[0] = CONFIG_RCU_FANOUT_LEAF
;
2580 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2581 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
2588 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2589 ccur
= rsp
->levelcnt
[i
];
2590 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2594 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2597 * Helper function for rcu_init() that initializes one rcu_state structure.
2599 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2600 struct rcu_data __percpu
*rda
)
2602 static char *buf
[] = { "rcu_node_level_0",
2605 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2609 struct rcu_node
*rnp
;
2611 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2613 /* Initialize the level-tracking arrays. */
2615 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2616 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2617 rcu_init_levelspread(rsp
);
2619 /* Initialize the elements themselves, starting from the leaves. */
2621 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2622 cpustride
*= rsp
->levelspread
[i
];
2623 rnp
= rsp
->level
[i
];
2624 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2625 raw_spin_lock_init(&rnp
->lock
);
2626 lockdep_set_class_and_name(&rnp
->lock
,
2627 &rcu_node_class
[i
], buf
[i
]);
2630 rnp
->qsmaskinit
= 0;
2631 rnp
->grplo
= j
* cpustride
;
2632 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2633 if (rnp
->grphi
>= NR_CPUS
)
2634 rnp
->grphi
= NR_CPUS
- 1;
2640 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2641 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2642 rnp
->parent
= rsp
->level
[i
- 1] +
2643 j
/ rsp
->levelspread
[i
- 1];
2646 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2651 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2652 for_each_possible_cpu(i
) {
2653 while (i
> rnp
->grphi
)
2655 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2656 rcu_boot_init_percpu_data(i
, rsp
);
2660 void __init
rcu_init(void)
2664 rcu_bootup_announce();
2665 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2666 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2667 __rcu_init_preempt();
2668 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
2671 * We don't need protection against CPU-hotplug here because
2672 * this is called early in boot, before either interrupts
2673 * or the scheduler are operational.
2675 cpu_notifier(rcu_cpu_notify
, 0);
2676 for_each_online_cpu(cpu
)
2677 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2678 check_cpu_stall_init();
2681 #include "rcutree_plugin.h"