manual update from upstream:
[linux-2.6/libata-dev.git] / drivers / md / raid1.c
blob0e1f148dd41de73f93922d904cd9615028db8e01
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
46 * Number of guaranteed r1bios in case of extreme VM load:
48 #define NR_RAID1_BIOS 256
50 static mdk_personality_t raid1_personality;
52 static void unplug_slaves(mddev_t *mddev);
55 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 struct pool_info *pi = data;
58 r1bio_t *r1_bio;
59 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61 /* allocate a r1bio with room for raid_disks entries in the bios array */
62 r1_bio = kmalloc(size, gfp_flags);
63 if (r1_bio)
64 memset(r1_bio, 0, size);
65 else
66 unplug_slaves(pi->mddev);
68 return r1_bio;
71 static void r1bio_pool_free(void *r1_bio, void *data)
73 kfree(r1_bio);
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
82 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
84 struct pool_info *pi = data;
85 struct page *page;
86 r1bio_t *r1_bio;
87 struct bio *bio;
88 int i, j;
90 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91 if (!r1_bio) {
92 unplug_slaves(pi->mddev);
93 return NULL;
97 * Allocate bios : 1 for reading, n-1 for writing
99 for (j = pi->raid_disks ; j-- ; ) {
100 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101 if (!bio)
102 goto out_free_bio;
103 r1_bio->bios[j] = bio;
106 * Allocate RESYNC_PAGES data pages and attach them to
107 * the first bio;
109 bio = r1_bio->bios[0];
110 for (i = 0; i < RESYNC_PAGES; i++) {
111 page = alloc_page(gfp_flags);
112 if (unlikely(!page))
113 goto out_free_pages;
115 bio->bi_io_vec[i].bv_page = page;
118 r1_bio->master_bio = NULL;
120 return r1_bio;
122 out_free_pages:
123 for ( ; i > 0 ; i--)
124 __free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126 while ( ++j < pi->raid_disks )
127 bio_put(r1_bio->bios[j]);
128 r1bio_pool_free(r1_bio, data);
129 return NULL;
132 static void r1buf_pool_free(void *__r1_bio, void *data)
134 struct pool_info *pi = data;
135 int i;
136 r1bio_t *r1bio = __r1_bio;
137 struct bio *bio = r1bio->bios[0];
139 for (i = 0; i < RESYNC_PAGES; i++) {
140 __free_page(bio->bi_io_vec[i].bv_page);
141 bio->bi_io_vec[i].bv_page = NULL;
143 for (i=0 ; i < pi->raid_disks; i++)
144 bio_put(r1bio->bios[i]);
146 r1bio_pool_free(r1bio, data);
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
151 int i;
153 for (i = 0; i < conf->raid_disks; i++) {
154 struct bio **bio = r1_bio->bios + i;
155 if (*bio)
156 bio_put(*bio);
157 *bio = NULL;
161 static inline void free_r1bio(r1bio_t *r1_bio)
163 unsigned long flags;
165 conf_t *conf = mddev_to_conf(r1_bio->mddev);
168 * Wake up any possible resync thread that waits for the device
169 * to go idle.
171 spin_lock_irqsave(&conf->resync_lock, flags);
172 if (!--conf->nr_pending) {
173 wake_up(&conf->wait_idle);
174 wake_up(&conf->wait_resume);
176 spin_unlock_irqrestore(&conf->resync_lock, flags);
178 put_all_bios(conf, r1_bio);
179 mempool_free(r1_bio, conf->r1bio_pool);
182 static inline void put_buf(r1bio_t *r1_bio)
184 conf_t *conf = mddev_to_conf(r1_bio->mddev);
185 unsigned long flags;
187 mempool_free(r1_bio, conf->r1buf_pool);
189 spin_lock_irqsave(&conf->resync_lock, flags);
190 if (!conf->barrier)
191 BUG();
192 --conf->barrier;
193 wake_up(&conf->wait_resume);
194 wake_up(&conf->wait_idle);
196 if (!--conf->nr_pending) {
197 wake_up(&conf->wait_idle);
198 wake_up(&conf->wait_resume);
200 spin_unlock_irqrestore(&conf->resync_lock, flags);
203 static void reschedule_retry(r1bio_t *r1_bio)
205 unsigned long flags;
206 mddev_t *mddev = r1_bio->mddev;
207 conf_t *conf = mddev_to_conf(mddev);
209 spin_lock_irqsave(&conf->device_lock, flags);
210 list_add(&r1_bio->retry_list, &conf->retry_list);
211 spin_unlock_irqrestore(&conf->device_lock, flags);
213 md_wakeup_thread(mddev->thread);
217 * raid_end_bio_io() is called when we have finished servicing a mirrored
218 * operation and are ready to return a success/failure code to the buffer
219 * cache layer.
221 static void raid_end_bio_io(r1bio_t *r1_bio)
223 struct bio *bio = r1_bio->master_bio;
225 /* if nobody has done the final endio yet, do it now */
226 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
227 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
228 (bio_data_dir(bio) == WRITE) ? "write" : "read",
229 (unsigned long long) bio->bi_sector,
230 (unsigned long long) bio->bi_sector +
231 (bio->bi_size >> 9) - 1);
233 bio_endio(bio, bio->bi_size,
234 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
236 free_r1bio(r1_bio);
240 * Update disk head position estimator based on IRQ completion info.
242 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
244 conf_t *conf = mddev_to_conf(r1_bio->mddev);
246 conf->mirrors[disk].head_position =
247 r1_bio->sector + (r1_bio->sectors);
250 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
252 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
253 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
254 int mirror;
255 conf_t *conf = mddev_to_conf(r1_bio->mddev);
257 if (bio->bi_size)
258 return 1;
260 mirror = r1_bio->read_disk;
262 * this branch is our 'one mirror IO has finished' event handler:
264 if (!uptodate)
265 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
266 else
268 * Set R1BIO_Uptodate in our master bio, so that
269 * we will return a good error code for to the higher
270 * levels even if IO on some other mirrored buffer fails.
272 * The 'master' represents the composite IO operation to
273 * user-side. So if something waits for IO, then it will
274 * wait for the 'master' bio.
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
278 update_head_pos(mirror, r1_bio);
281 * we have only one bio on the read side
283 if (uptodate)
284 raid_end_bio_io(r1_bio);
285 else {
287 * oops, read error:
289 char b[BDEVNAME_SIZE];
290 if (printk_ratelimit())
291 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
292 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
293 reschedule_retry(r1_bio);
296 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
297 return 0;
300 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
302 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
303 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
304 int mirror, behind;
305 conf_t *conf = mddev_to_conf(r1_bio->mddev);
307 if (bio->bi_size)
308 return 1;
310 for (mirror = 0; mirror < conf->raid_disks; mirror++)
311 if (r1_bio->bios[mirror] == bio)
312 break;
315 * this branch is our 'one mirror IO has finished' event handler:
317 if (!uptodate) {
318 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
319 /* an I/O failed, we can't clear the bitmap */
320 set_bit(R1BIO_Degraded, &r1_bio->state);
321 } else
323 * Set R1BIO_Uptodate in our master bio, so that
324 * we will return a good error code for to the higher
325 * levels even if IO on some other mirrored buffer fails.
327 * The 'master' represents the composite IO operation to
328 * user-side. So if something waits for IO, then it will
329 * wait for the 'master' bio.
331 set_bit(R1BIO_Uptodate, &r1_bio->state);
333 update_head_pos(mirror, r1_bio);
335 behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 if (behind) {
337 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
338 atomic_dec(&r1_bio->behind_remaining);
340 /* In behind mode, we ACK the master bio once the I/O has safely
341 * reached all non-writemostly disks. Setting the Returned bit
342 * ensures that this gets done only once -- we don't ever want to
343 * return -EIO here, instead we'll wait */
345 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
346 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
347 /* Maybe we can return now */
348 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
349 struct bio *mbio = r1_bio->master_bio;
350 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
351 (unsigned long long) mbio->bi_sector,
352 (unsigned long long) mbio->bi_sector +
353 (mbio->bi_size >> 9) - 1);
354 bio_endio(mbio, mbio->bi_size, 0);
360 * Let's see if all mirrored write operations have finished
361 * already.
363 if (atomic_dec_and_test(&r1_bio->remaining)) {
364 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
365 /* free extra copy of the data pages */
366 int i = bio->bi_vcnt;
367 while (i--)
368 __free_page(bio->bi_io_vec[i].bv_page);
370 /* clear the bitmap if all writes complete successfully */
371 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
372 r1_bio->sectors,
373 !test_bit(R1BIO_Degraded, &r1_bio->state),
374 behind);
375 md_write_end(r1_bio->mddev);
376 raid_end_bio_io(r1_bio);
379 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
380 return 0;
385 * This routine returns the disk from which the requested read should
386 * be done. There is a per-array 'next expected sequential IO' sector
387 * number - if this matches on the next IO then we use the last disk.
388 * There is also a per-disk 'last know head position' sector that is
389 * maintained from IRQ contexts, both the normal and the resync IO
390 * completion handlers update this position correctly. If there is no
391 * perfect sequential match then we pick the disk whose head is closest.
393 * If there are 2 mirrors in the same 2 devices, performance degrades
394 * because position is mirror, not device based.
396 * The rdev for the device selected will have nr_pending incremented.
398 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
400 const unsigned long this_sector = r1_bio->sector;
401 int new_disk = conf->last_used, disk = new_disk;
402 int wonly_disk = -1;
403 const int sectors = r1_bio->sectors;
404 sector_t new_distance, current_distance;
405 mdk_rdev_t *rdev;
407 rcu_read_lock();
409 * Check if we can balance. We can balance on the whole
410 * device if no resync is going on, or below the resync window.
411 * We take the first readable disk when above the resync window.
413 retry:
414 if (conf->mddev->recovery_cp < MaxSector &&
415 (this_sector + sectors >= conf->next_resync)) {
416 /* Choose the first operation device, for consistancy */
417 new_disk = 0;
419 for (rdev = conf->mirrors[new_disk].rdev;
420 !rdev || !rdev->in_sync
421 || test_bit(WriteMostly, &rdev->flags);
422 rdev = conf->mirrors[++new_disk].rdev) {
424 if (rdev && rdev->in_sync)
425 wonly_disk = new_disk;
427 if (new_disk == conf->raid_disks - 1) {
428 new_disk = wonly_disk;
429 break;
432 goto rb_out;
436 /* make sure the disk is operational */
437 for (rdev = conf->mirrors[new_disk].rdev;
438 !rdev || !rdev->in_sync ||
439 test_bit(WriteMostly, &rdev->flags);
440 rdev = conf->mirrors[new_disk].rdev) {
442 if (rdev && rdev->in_sync)
443 wonly_disk = new_disk;
445 if (new_disk <= 0)
446 new_disk = conf->raid_disks;
447 new_disk--;
448 if (new_disk == disk) {
449 new_disk = wonly_disk;
450 break;
454 if (new_disk < 0)
455 goto rb_out;
457 disk = new_disk;
458 /* now disk == new_disk == starting point for search */
461 * Don't change to another disk for sequential reads:
463 if (conf->next_seq_sect == this_sector)
464 goto rb_out;
465 if (this_sector == conf->mirrors[new_disk].head_position)
466 goto rb_out;
468 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
470 /* Find the disk whose head is closest */
472 do {
473 if (disk <= 0)
474 disk = conf->raid_disks;
475 disk--;
477 rdev = conf->mirrors[disk].rdev;
479 if (!rdev ||
480 !rdev->in_sync ||
481 test_bit(WriteMostly, &rdev->flags))
482 continue;
484 if (!atomic_read(&rdev->nr_pending)) {
485 new_disk = disk;
486 break;
488 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
489 if (new_distance < current_distance) {
490 current_distance = new_distance;
491 new_disk = disk;
493 } while (disk != conf->last_used);
495 rb_out:
498 if (new_disk >= 0) {
499 rdev = conf->mirrors[new_disk].rdev;
500 if (!rdev)
501 goto retry;
502 atomic_inc(&rdev->nr_pending);
503 if (!rdev->in_sync) {
504 /* cannot risk returning a device that failed
505 * before we inc'ed nr_pending
507 atomic_dec(&rdev->nr_pending);
508 goto retry;
510 conf->next_seq_sect = this_sector + sectors;
511 conf->last_used = new_disk;
513 rcu_read_unlock();
515 return new_disk;
518 static void unplug_slaves(mddev_t *mddev)
520 conf_t *conf = mddev_to_conf(mddev);
521 int i;
523 rcu_read_lock();
524 for (i=0; i<mddev->raid_disks; i++) {
525 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
526 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
527 request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
529 atomic_inc(&rdev->nr_pending);
530 rcu_read_unlock();
532 if (r_queue->unplug_fn)
533 r_queue->unplug_fn(r_queue);
535 rdev_dec_pending(rdev, mddev);
536 rcu_read_lock();
539 rcu_read_unlock();
542 static void raid1_unplug(request_queue_t *q)
544 mddev_t *mddev = q->queuedata;
546 unplug_slaves(mddev);
547 md_wakeup_thread(mddev->thread);
550 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
551 sector_t *error_sector)
553 mddev_t *mddev = q->queuedata;
554 conf_t *conf = mddev_to_conf(mddev);
555 int i, ret = 0;
557 rcu_read_lock();
558 for (i=0; i<mddev->raid_disks && ret == 0; i++) {
559 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
560 if (rdev && !rdev->faulty) {
561 struct block_device *bdev = rdev->bdev;
562 request_queue_t *r_queue = bdev_get_queue(bdev);
564 if (!r_queue->issue_flush_fn)
565 ret = -EOPNOTSUPP;
566 else {
567 atomic_inc(&rdev->nr_pending);
568 rcu_read_unlock();
569 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
570 error_sector);
571 rdev_dec_pending(rdev, mddev);
572 rcu_read_lock();
576 rcu_read_unlock();
577 return ret;
581 * Throttle resync depth, so that we can both get proper overlapping of
582 * requests, but are still able to handle normal requests quickly.
584 #define RESYNC_DEPTH 32
586 static void device_barrier(conf_t *conf, sector_t sect)
588 spin_lock_irq(&conf->resync_lock);
589 wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
590 conf->resync_lock, raid1_unplug(conf->mddev->queue));
592 if (!conf->barrier++) {
593 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
594 conf->resync_lock, raid1_unplug(conf->mddev->queue));
595 if (conf->nr_pending)
596 BUG();
598 wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
599 conf->resync_lock, raid1_unplug(conf->mddev->queue));
600 conf->next_resync = sect;
601 spin_unlock_irq(&conf->resync_lock);
604 /* duplicate the data pages for behind I/O */
605 static struct page **alloc_behind_pages(struct bio *bio)
607 int i;
608 struct bio_vec *bvec;
609 struct page **pages = kmalloc(bio->bi_vcnt * sizeof(struct page *),
610 GFP_NOIO);
611 if (unlikely(!pages))
612 goto do_sync_io;
614 memset(pages, 0, bio->bi_vcnt * sizeof(struct page *));
616 bio_for_each_segment(bvec, bio, i) {
617 pages[i] = alloc_page(GFP_NOIO);
618 if (unlikely(!pages[i]))
619 goto do_sync_io;
620 memcpy(kmap(pages[i]) + bvec->bv_offset,
621 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
622 kunmap(pages[i]);
623 kunmap(bvec->bv_page);
626 return pages;
628 do_sync_io:
629 if (pages)
630 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
631 __free_page(pages[i]);
632 kfree(pages);
633 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
634 return NULL;
637 static int make_request(request_queue_t *q, struct bio * bio)
639 mddev_t *mddev = q->queuedata;
640 conf_t *conf = mddev_to_conf(mddev);
641 mirror_info_t *mirror;
642 r1bio_t *r1_bio;
643 struct bio *read_bio;
644 int i, targets = 0, disks;
645 mdk_rdev_t *rdev;
646 struct bitmap *bitmap = mddev->bitmap;
647 unsigned long flags;
648 struct bio_list bl;
649 struct page **behind_pages = NULL;
651 if (unlikely(bio_barrier(bio))) {
652 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
653 return 0;
657 * Register the new request and wait if the reconstruction
658 * thread has put up a bar for new requests.
659 * Continue immediately if no resync is active currently.
661 md_write_start(mddev, bio); /* wait on superblock update early */
663 spin_lock_irq(&conf->resync_lock);
664 wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
665 conf->nr_pending++;
666 spin_unlock_irq(&conf->resync_lock);
668 if (bio_data_dir(bio)==WRITE) {
669 disk_stat_inc(mddev->gendisk, writes);
670 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
671 } else {
672 disk_stat_inc(mddev->gendisk, reads);
673 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
677 * make_request() can abort the operation when READA is being
678 * used and no empty request is available.
681 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
683 r1_bio->master_bio = bio;
684 r1_bio->sectors = bio->bi_size >> 9;
685 r1_bio->state = 0;
686 r1_bio->mddev = mddev;
687 r1_bio->sector = bio->bi_sector;
689 if (bio_data_dir(bio) == READ) {
691 * read balancing logic:
693 int rdisk = read_balance(conf, r1_bio);
695 if (rdisk < 0) {
696 /* couldn't find anywhere to read from */
697 raid_end_bio_io(r1_bio);
698 return 0;
700 mirror = conf->mirrors + rdisk;
702 r1_bio->read_disk = rdisk;
704 read_bio = bio_clone(bio, GFP_NOIO);
706 r1_bio->bios[rdisk] = read_bio;
708 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
709 read_bio->bi_bdev = mirror->rdev->bdev;
710 read_bio->bi_end_io = raid1_end_read_request;
711 read_bio->bi_rw = READ;
712 read_bio->bi_private = r1_bio;
714 generic_make_request(read_bio);
715 return 0;
719 * WRITE:
721 /* first select target devices under spinlock and
722 * inc refcount on their rdev. Record them by setting
723 * bios[x] to bio
725 disks = conf->raid_disks;
726 #if 0
727 { static int first=1;
728 if (first) printk("First Write sector %llu disks %d\n",
729 (unsigned long long)r1_bio->sector, disks);
730 first = 0;
732 #endif
733 rcu_read_lock();
734 for (i = 0; i < disks; i++) {
735 if ((rdev=conf->mirrors[i].rdev) != NULL &&
736 !rdev->faulty) {
737 atomic_inc(&rdev->nr_pending);
738 if (rdev->faulty) {
739 atomic_dec(&rdev->nr_pending);
740 r1_bio->bios[i] = NULL;
741 } else
742 r1_bio->bios[i] = bio;
743 targets++;
744 } else
745 r1_bio->bios[i] = NULL;
747 rcu_read_unlock();
749 BUG_ON(targets == 0); /* we never fail the last device */
751 if (targets < conf->raid_disks) {
752 /* array is degraded, we will not clear the bitmap
753 * on I/O completion (see raid1_end_write_request) */
754 set_bit(R1BIO_Degraded, &r1_bio->state);
757 /* do behind I/O ? */
758 if (bitmap &&
759 atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
760 (behind_pages = alloc_behind_pages(bio)) != NULL)
761 set_bit(R1BIO_BehindIO, &r1_bio->state);
763 atomic_set(&r1_bio->remaining, 0);
764 atomic_set(&r1_bio->behind_remaining, 0);
766 bio_list_init(&bl);
767 for (i = 0; i < disks; i++) {
768 struct bio *mbio;
769 if (!r1_bio->bios[i])
770 continue;
772 mbio = bio_clone(bio, GFP_NOIO);
773 r1_bio->bios[i] = mbio;
775 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
776 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
777 mbio->bi_end_io = raid1_end_write_request;
778 mbio->bi_rw = WRITE;
779 mbio->bi_private = r1_bio;
781 if (behind_pages) {
782 struct bio_vec *bvec;
783 int j;
785 /* Yes, I really want the '__' version so that
786 * we clear any unused pointer in the io_vec, rather
787 * than leave them unchanged. This is important
788 * because when we come to free the pages, we won't
789 * know the originial bi_idx, so we just free
790 * them all
792 __bio_for_each_segment(bvec, mbio, j, 0)
793 bvec->bv_page = behind_pages[j];
794 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
795 atomic_inc(&r1_bio->behind_remaining);
798 atomic_inc(&r1_bio->remaining);
800 bio_list_add(&bl, mbio);
802 kfree(behind_pages); /* the behind pages are attached to the bios now */
804 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
805 test_bit(R1BIO_BehindIO, &r1_bio->state));
806 spin_lock_irqsave(&conf->device_lock, flags);
807 bio_list_merge(&conf->pending_bio_list, &bl);
808 bio_list_init(&bl);
810 blk_plug_device(mddev->queue);
811 spin_unlock_irqrestore(&conf->device_lock, flags);
813 #if 0
814 while ((bio = bio_list_pop(&bl)) != NULL)
815 generic_make_request(bio);
816 #endif
818 return 0;
821 static void status(struct seq_file *seq, mddev_t *mddev)
823 conf_t *conf = mddev_to_conf(mddev);
824 int i;
826 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
827 conf->working_disks);
828 for (i = 0; i < conf->raid_disks; i++)
829 seq_printf(seq, "%s",
830 conf->mirrors[i].rdev &&
831 conf->mirrors[i].rdev->in_sync ? "U" : "_");
832 seq_printf(seq, "]");
836 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
838 char b[BDEVNAME_SIZE];
839 conf_t *conf = mddev_to_conf(mddev);
842 * If it is not operational, then we have already marked it as dead
843 * else if it is the last working disks, ignore the error, let the
844 * next level up know.
845 * else mark the drive as failed
847 if (rdev->in_sync
848 && conf->working_disks == 1)
850 * Don't fail the drive, act as though we were just a
851 * normal single drive
853 return;
854 if (rdev->in_sync) {
855 mddev->degraded++;
856 conf->working_disks--;
858 * if recovery is running, make sure it aborts.
860 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
862 rdev->in_sync = 0;
863 rdev->faulty = 1;
864 mddev->sb_dirty = 1;
865 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
866 " Operation continuing on %d devices\n",
867 bdevname(rdev->bdev,b), conf->working_disks);
870 static void print_conf(conf_t *conf)
872 int i;
873 mirror_info_t *tmp;
875 printk("RAID1 conf printout:\n");
876 if (!conf) {
877 printk("(!conf)\n");
878 return;
880 printk(" --- wd:%d rd:%d\n", conf->working_disks,
881 conf->raid_disks);
883 for (i = 0; i < conf->raid_disks; i++) {
884 char b[BDEVNAME_SIZE];
885 tmp = conf->mirrors + i;
886 if (tmp->rdev)
887 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
888 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
889 bdevname(tmp->rdev->bdev,b));
893 static void close_sync(conf_t *conf)
895 spin_lock_irq(&conf->resync_lock);
896 wait_event_lock_irq(conf->wait_resume, !conf->barrier,
897 conf->resync_lock, raid1_unplug(conf->mddev->queue));
898 spin_unlock_irq(&conf->resync_lock);
900 if (conf->barrier) BUG();
901 if (waitqueue_active(&conf->wait_idle)) BUG();
903 mempool_destroy(conf->r1buf_pool);
904 conf->r1buf_pool = NULL;
907 static int raid1_spare_active(mddev_t *mddev)
909 int i;
910 conf_t *conf = mddev->private;
911 mirror_info_t *tmp;
914 * Find all failed disks within the RAID1 configuration
915 * and mark them readable
917 for (i = 0; i < conf->raid_disks; i++) {
918 tmp = conf->mirrors + i;
919 if (tmp->rdev
920 && !tmp->rdev->faulty
921 && !tmp->rdev->in_sync) {
922 conf->working_disks++;
923 mddev->degraded--;
924 tmp->rdev->in_sync = 1;
928 print_conf(conf);
929 return 0;
933 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
935 conf_t *conf = mddev->private;
936 int found = 0;
937 int mirror = 0;
938 mirror_info_t *p;
940 if (rdev->saved_raid_disk >= 0 &&
941 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
942 mirror = rdev->saved_raid_disk;
943 for (mirror=0; mirror < mddev->raid_disks; mirror++)
944 if ( !(p=conf->mirrors+mirror)->rdev) {
946 blk_queue_stack_limits(mddev->queue,
947 rdev->bdev->bd_disk->queue);
948 /* as we don't honour merge_bvec_fn, we must never risk
949 * violating it, so limit ->max_sector to one PAGE, as
950 * a one page request is never in violation.
952 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
953 mddev->queue->max_sectors > (PAGE_SIZE>>9))
954 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
956 p->head_position = 0;
957 rdev->raid_disk = mirror;
958 found = 1;
959 if (rdev->saved_raid_disk != mirror)
960 conf->fullsync = 1;
961 p->rdev = rdev;
962 break;
965 print_conf(conf);
966 return found;
969 static int raid1_remove_disk(mddev_t *mddev, int number)
971 conf_t *conf = mddev->private;
972 int err = 0;
973 mdk_rdev_t *rdev;
974 mirror_info_t *p = conf->mirrors+ number;
976 print_conf(conf);
977 rdev = p->rdev;
978 if (rdev) {
979 if (rdev->in_sync ||
980 atomic_read(&rdev->nr_pending)) {
981 err = -EBUSY;
982 goto abort;
984 p->rdev = NULL;
985 synchronize_rcu();
986 if (atomic_read(&rdev->nr_pending)) {
987 /* lost the race, try later */
988 err = -EBUSY;
989 p->rdev = rdev;
992 abort:
994 print_conf(conf);
995 return err;
999 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1001 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1002 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1003 conf_t *conf = mddev_to_conf(r1_bio->mddev);
1005 if (bio->bi_size)
1006 return 1;
1008 if (r1_bio->bios[r1_bio->read_disk] != bio)
1009 BUG();
1010 update_head_pos(r1_bio->read_disk, r1_bio);
1012 * we have read a block, now it needs to be re-written,
1013 * or re-read if the read failed.
1014 * We don't do much here, just schedule handling by raid1d
1016 if (!uptodate) {
1017 md_error(r1_bio->mddev,
1018 conf->mirrors[r1_bio->read_disk].rdev);
1019 } else
1020 set_bit(R1BIO_Uptodate, &r1_bio->state);
1021 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
1022 reschedule_retry(r1_bio);
1023 return 0;
1026 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1028 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1029 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1030 mddev_t *mddev = r1_bio->mddev;
1031 conf_t *conf = mddev_to_conf(mddev);
1032 int i;
1033 int mirror=0;
1035 if (bio->bi_size)
1036 return 1;
1038 for (i = 0; i < conf->raid_disks; i++)
1039 if (r1_bio->bios[i] == bio) {
1040 mirror = i;
1041 break;
1043 if (!uptodate)
1044 md_error(mddev, conf->mirrors[mirror].rdev);
1046 update_head_pos(mirror, r1_bio);
1048 if (atomic_dec_and_test(&r1_bio->remaining)) {
1049 md_done_sync(mddev, r1_bio->sectors, uptodate);
1050 put_buf(r1_bio);
1052 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1053 return 0;
1056 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1058 conf_t *conf = mddev_to_conf(mddev);
1059 int i;
1060 int disks = conf->raid_disks;
1061 struct bio *bio, *wbio;
1063 bio = r1_bio->bios[r1_bio->read_disk];
1066 if (r1_bio->sector == 0) printk("First sync write startss\n");
1069 * schedule writes
1071 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1073 * There is no point trying a read-for-reconstruct as
1074 * reconstruct is about to be aborted
1076 char b[BDEVNAME_SIZE];
1077 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1078 " for block %llu\n",
1079 bdevname(bio->bi_bdev,b),
1080 (unsigned long long)r1_bio->sector);
1081 md_done_sync(mddev, r1_bio->sectors, 0);
1082 put_buf(r1_bio);
1083 return;
1086 atomic_set(&r1_bio->remaining, 1);
1087 for (i = 0; i < disks ; i++) {
1088 wbio = r1_bio->bios[i];
1089 if (wbio->bi_end_io != end_sync_write)
1090 continue;
1092 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
1093 atomic_inc(&r1_bio->remaining);
1094 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1096 generic_make_request(wbio);
1099 if (atomic_dec_and_test(&r1_bio->remaining)) {
1100 /* if we're here, all write(s) have completed, so clean up */
1101 md_done_sync(mddev, r1_bio->sectors, 1);
1102 put_buf(r1_bio);
1107 * This is a kernel thread which:
1109 * 1. Retries failed read operations on working mirrors.
1110 * 2. Updates the raid superblock when problems encounter.
1111 * 3. Performs writes following reads for array syncronising.
1114 static void raid1d(mddev_t *mddev)
1116 r1bio_t *r1_bio;
1117 struct bio *bio;
1118 unsigned long flags;
1119 conf_t *conf = mddev_to_conf(mddev);
1120 struct list_head *head = &conf->retry_list;
1121 int unplug=0;
1122 mdk_rdev_t *rdev;
1124 md_check_recovery(mddev);
1126 for (;;) {
1127 char b[BDEVNAME_SIZE];
1128 spin_lock_irqsave(&conf->device_lock, flags);
1130 if (conf->pending_bio_list.head) {
1131 bio = bio_list_get(&conf->pending_bio_list);
1132 blk_remove_plug(mddev->queue);
1133 spin_unlock_irqrestore(&conf->device_lock, flags);
1134 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1135 if (bitmap_unplug(mddev->bitmap) != 0)
1136 printk("%s: bitmap file write failed!\n", mdname(mddev));
1138 while (bio) { /* submit pending writes */
1139 struct bio *next = bio->bi_next;
1140 bio->bi_next = NULL;
1141 generic_make_request(bio);
1142 bio = next;
1144 unplug = 1;
1146 continue;
1149 if (list_empty(head))
1150 break;
1151 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1152 list_del(head->prev);
1153 spin_unlock_irqrestore(&conf->device_lock, flags);
1155 mddev = r1_bio->mddev;
1156 conf = mddev_to_conf(mddev);
1157 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1158 sync_request_write(mddev, r1_bio);
1159 unplug = 1;
1160 } else {
1161 int disk;
1162 bio = r1_bio->bios[r1_bio->read_disk];
1163 if ((disk=read_balance(conf, r1_bio)) == -1) {
1164 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1165 " read error for block %llu\n",
1166 bdevname(bio->bi_bdev,b),
1167 (unsigned long long)r1_bio->sector);
1168 raid_end_bio_io(r1_bio);
1169 } else {
1170 r1_bio->bios[r1_bio->read_disk] = NULL;
1171 r1_bio->read_disk = disk;
1172 bio_put(bio);
1173 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1174 r1_bio->bios[r1_bio->read_disk] = bio;
1175 rdev = conf->mirrors[disk].rdev;
1176 if (printk_ratelimit())
1177 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1178 " another mirror\n",
1179 bdevname(rdev->bdev,b),
1180 (unsigned long long)r1_bio->sector);
1181 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1182 bio->bi_bdev = rdev->bdev;
1183 bio->bi_end_io = raid1_end_read_request;
1184 bio->bi_rw = READ;
1185 bio->bi_private = r1_bio;
1186 unplug = 1;
1187 generic_make_request(bio);
1191 spin_unlock_irqrestore(&conf->device_lock, flags);
1192 if (unplug)
1193 unplug_slaves(mddev);
1197 static int init_resync(conf_t *conf)
1199 int buffs;
1201 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1202 if (conf->r1buf_pool)
1203 BUG();
1204 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1205 conf->poolinfo);
1206 if (!conf->r1buf_pool)
1207 return -ENOMEM;
1208 conf->next_resync = 0;
1209 return 0;
1213 * perform a "sync" on one "block"
1215 * We need to make sure that no normal I/O request - particularly write
1216 * requests - conflict with active sync requests.
1218 * This is achieved by tracking pending requests and a 'barrier' concept
1219 * that can be installed to exclude normal IO requests.
1222 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1224 conf_t *conf = mddev_to_conf(mddev);
1225 mirror_info_t *mirror;
1226 r1bio_t *r1_bio;
1227 struct bio *bio;
1228 sector_t max_sector, nr_sectors;
1229 int disk;
1230 int i;
1231 int wonly;
1232 int write_targets = 0;
1233 int sync_blocks;
1234 int still_degraded = 0;
1236 if (!conf->r1buf_pool)
1239 printk("sync start - bitmap %p\n", mddev->bitmap);
1241 if (init_resync(conf))
1242 return 0;
1245 max_sector = mddev->size << 1;
1246 if (sector_nr >= max_sector) {
1247 /* If we aborted, we need to abort the
1248 * sync on the 'current' bitmap chunk (there will
1249 * only be one in raid1 resync.
1250 * We can find the current addess in mddev->curr_resync
1252 if (mddev->curr_resync < max_sector) /* aborted */
1253 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1254 &sync_blocks, 1);
1255 else /* completed sync */
1256 conf->fullsync = 0;
1258 bitmap_close_sync(mddev->bitmap);
1259 close_sync(conf);
1260 return 0;
1263 /* before building a request, check if we can skip these blocks..
1264 * This call the bitmap_start_sync doesn't actually record anything
1266 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1267 !conf->fullsync) {
1268 /* We can skip this block, and probably several more */
1269 *skipped = 1;
1270 return sync_blocks;
1273 * If there is non-resync activity waiting for us then
1274 * put in a delay to throttle resync.
1276 if (!go_faster && waitqueue_active(&conf->wait_resume))
1277 msleep_interruptible(1000);
1278 device_barrier(conf, sector_nr + RESYNC_SECTORS);
1281 * If reconstructing, and >1 working disc,
1282 * could dedicate one to rebuild and others to
1283 * service read requests ..
1285 disk = conf->last_used;
1286 /* make sure disk is operational */
1287 wonly = disk;
1288 while (conf->mirrors[disk].rdev == NULL ||
1289 !conf->mirrors[disk].rdev->in_sync ||
1290 test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags)
1292 if (conf->mirrors[disk].rdev &&
1293 conf->mirrors[disk].rdev->in_sync)
1294 wonly = disk;
1295 if (disk <= 0)
1296 disk = conf->raid_disks;
1297 disk--;
1298 if (disk == conf->last_used) {
1299 disk = wonly;
1300 break;
1303 conf->last_used = disk;
1304 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1307 mirror = conf->mirrors + disk;
1309 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1311 spin_lock_irq(&conf->resync_lock);
1312 conf->nr_pending++;
1313 spin_unlock_irq(&conf->resync_lock);
1315 r1_bio->mddev = mddev;
1316 r1_bio->sector = sector_nr;
1317 r1_bio->state = 0;
1318 set_bit(R1BIO_IsSync, &r1_bio->state);
1319 r1_bio->read_disk = disk;
1321 for (i=0; i < conf->raid_disks; i++) {
1322 bio = r1_bio->bios[i];
1324 /* take from bio_init */
1325 bio->bi_next = NULL;
1326 bio->bi_flags |= 1 << BIO_UPTODATE;
1327 bio->bi_rw = 0;
1328 bio->bi_vcnt = 0;
1329 bio->bi_idx = 0;
1330 bio->bi_phys_segments = 0;
1331 bio->bi_hw_segments = 0;
1332 bio->bi_size = 0;
1333 bio->bi_end_io = NULL;
1334 bio->bi_private = NULL;
1336 if (i == disk) {
1337 bio->bi_rw = READ;
1338 bio->bi_end_io = end_sync_read;
1339 } else if (conf->mirrors[i].rdev == NULL ||
1340 conf->mirrors[i].rdev->faulty) {
1341 still_degraded = 1;
1342 continue;
1343 } else if (!conf->mirrors[i].rdev->in_sync ||
1344 sector_nr + RESYNC_SECTORS > mddev->recovery_cp) {
1345 bio->bi_rw = WRITE;
1346 bio->bi_end_io = end_sync_write;
1347 write_targets ++;
1348 } else
1349 /* no need to read or write here */
1350 continue;
1351 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1352 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1353 bio->bi_private = r1_bio;
1356 if (write_targets == 0) {
1357 /* There is nowhere to write, so all non-sync
1358 * drives must be failed - so we are finished
1360 sector_t rv = max_sector - sector_nr;
1361 *skipped = 1;
1362 put_buf(r1_bio);
1363 rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1364 return rv;
1367 nr_sectors = 0;
1368 sync_blocks = 0;
1369 do {
1370 struct page *page;
1371 int len = PAGE_SIZE;
1372 if (sector_nr + (len>>9) > max_sector)
1373 len = (max_sector - sector_nr) << 9;
1374 if (len == 0)
1375 break;
1376 if (sync_blocks == 0) {
1377 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1378 &sync_blocks, still_degraded) &&
1379 !conf->fullsync)
1380 break;
1381 if (sync_blocks < (PAGE_SIZE>>9))
1382 BUG();
1383 if (len > (sync_blocks<<9))
1384 len = sync_blocks<<9;
1387 for (i=0 ; i < conf->raid_disks; i++) {
1388 bio = r1_bio->bios[i];
1389 if (bio->bi_end_io) {
1390 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1391 if (bio_add_page(bio, page, len, 0) == 0) {
1392 /* stop here */
1393 r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1394 while (i > 0) {
1395 i--;
1396 bio = r1_bio->bios[i];
1397 if (bio->bi_end_io==NULL)
1398 continue;
1399 /* remove last page from this bio */
1400 bio->bi_vcnt--;
1401 bio->bi_size -= len;
1402 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1404 goto bio_full;
1408 nr_sectors += len>>9;
1409 sector_nr += len>>9;
1410 sync_blocks -= (len>>9);
1411 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1412 bio_full:
1413 bio = r1_bio->bios[disk];
1414 r1_bio->sectors = nr_sectors;
1416 md_sync_acct(mirror->rdev->bdev, nr_sectors);
1418 generic_make_request(bio);
1420 return nr_sectors;
1423 static int run(mddev_t *mddev)
1425 conf_t *conf;
1426 int i, j, disk_idx;
1427 mirror_info_t *disk;
1428 mdk_rdev_t *rdev;
1429 struct list_head *tmp;
1431 if (mddev->level != 1) {
1432 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1433 mdname(mddev), mddev->level);
1434 goto out;
1437 * copy the already verified devices into our private RAID1
1438 * bookkeeping area. [whatever we allocate in run(),
1439 * should be freed in stop()]
1441 conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1442 mddev->private = conf;
1443 if (!conf)
1444 goto out_no_mem;
1446 memset(conf, 0, sizeof(*conf));
1447 conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1448 GFP_KERNEL);
1449 if (!conf->mirrors)
1450 goto out_no_mem;
1452 memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1454 conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1455 if (!conf->poolinfo)
1456 goto out_no_mem;
1457 conf->poolinfo->mddev = mddev;
1458 conf->poolinfo->raid_disks = mddev->raid_disks;
1459 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1460 r1bio_pool_free,
1461 conf->poolinfo);
1462 if (!conf->r1bio_pool)
1463 goto out_no_mem;
1465 ITERATE_RDEV(mddev, rdev, tmp) {
1466 disk_idx = rdev->raid_disk;
1467 if (disk_idx >= mddev->raid_disks
1468 || disk_idx < 0)
1469 continue;
1470 disk = conf->mirrors + disk_idx;
1472 disk->rdev = rdev;
1474 blk_queue_stack_limits(mddev->queue,
1475 rdev->bdev->bd_disk->queue);
1476 /* as we don't honour merge_bvec_fn, we must never risk
1477 * violating it, so limit ->max_sector to one PAGE, as
1478 * a one page request is never in violation.
1480 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1481 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1482 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1484 disk->head_position = 0;
1485 if (!rdev->faulty && rdev->in_sync)
1486 conf->working_disks++;
1488 conf->raid_disks = mddev->raid_disks;
1489 conf->mddev = mddev;
1490 spin_lock_init(&conf->device_lock);
1491 INIT_LIST_HEAD(&conf->retry_list);
1492 if (conf->working_disks == 1)
1493 mddev->recovery_cp = MaxSector;
1495 spin_lock_init(&conf->resync_lock);
1496 init_waitqueue_head(&conf->wait_idle);
1497 init_waitqueue_head(&conf->wait_resume);
1499 bio_list_init(&conf->pending_bio_list);
1500 bio_list_init(&conf->flushing_bio_list);
1502 if (!conf->working_disks) {
1503 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1504 mdname(mddev));
1505 goto out_free_conf;
1508 mddev->degraded = 0;
1509 for (i = 0; i < conf->raid_disks; i++) {
1511 disk = conf->mirrors + i;
1513 if (!disk->rdev) {
1514 disk->head_position = 0;
1515 mddev->degraded++;
1520 * find the first working one and use it as a starting point
1521 * to read balancing.
1523 for (j = 0; j < conf->raid_disks &&
1524 (!conf->mirrors[j].rdev ||
1525 !conf->mirrors[j].rdev->in_sync) ; j++)
1526 /* nothing */;
1527 conf->last_used = j;
1530 mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1531 if (!mddev->thread) {
1532 printk(KERN_ERR
1533 "raid1: couldn't allocate thread for %s\n",
1534 mdname(mddev));
1535 goto out_free_conf;
1537 if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1539 printk(KERN_INFO
1540 "raid1: raid set %s active with %d out of %d mirrors\n",
1541 mdname(mddev), mddev->raid_disks - mddev->degraded,
1542 mddev->raid_disks);
1544 * Ok, everything is just fine now
1546 mddev->array_size = mddev->size;
1548 mddev->queue->unplug_fn = raid1_unplug;
1549 mddev->queue->issue_flush_fn = raid1_issue_flush;
1551 return 0;
1553 out_no_mem:
1554 printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1555 mdname(mddev));
1557 out_free_conf:
1558 if (conf) {
1559 if (conf->r1bio_pool)
1560 mempool_destroy(conf->r1bio_pool);
1561 kfree(conf->mirrors);
1562 kfree(conf->poolinfo);
1563 kfree(conf);
1564 mddev->private = NULL;
1566 out:
1567 return -EIO;
1570 static int stop(mddev_t *mddev)
1572 conf_t *conf = mddev_to_conf(mddev);
1573 struct bitmap *bitmap = mddev->bitmap;
1574 int behind_wait = 0;
1576 /* wait for behind writes to complete */
1577 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1578 behind_wait++;
1579 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1580 set_current_state(TASK_UNINTERRUPTIBLE);
1581 schedule_timeout(HZ); /* wait a second */
1582 /* need to kick something here to make sure I/O goes? */
1585 md_unregister_thread(mddev->thread);
1586 mddev->thread = NULL;
1587 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1588 if (conf->r1bio_pool)
1589 mempool_destroy(conf->r1bio_pool);
1590 kfree(conf->mirrors);
1591 kfree(conf->poolinfo);
1592 kfree(conf);
1593 mddev->private = NULL;
1594 return 0;
1597 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1599 /* no resync is happening, and there is enough space
1600 * on all devices, so we can resize.
1601 * We need to make sure resync covers any new space.
1602 * If the array is shrinking we should possibly wait until
1603 * any io in the removed space completes, but it hardly seems
1604 * worth it.
1606 mddev->array_size = sectors>>1;
1607 set_capacity(mddev->gendisk, mddev->array_size << 1);
1608 mddev->changed = 1;
1609 if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1610 mddev->recovery_cp = mddev->size << 1;
1611 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1613 mddev->size = mddev->array_size;
1614 mddev->resync_max_sectors = sectors;
1615 return 0;
1618 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1620 /* We need to:
1621 * 1/ resize the r1bio_pool
1622 * 2/ resize conf->mirrors
1624 * We allocate a new r1bio_pool if we can.
1625 * Then raise a device barrier and wait until all IO stops.
1626 * Then resize conf->mirrors and swap in the new r1bio pool.
1628 * At the same time, we "pack" the devices so that all the missing
1629 * devices have the higher raid_disk numbers.
1631 mempool_t *newpool, *oldpool;
1632 struct pool_info *newpoolinfo;
1633 mirror_info_t *newmirrors;
1634 conf_t *conf = mddev_to_conf(mddev);
1635 int cnt;
1637 int d, d2;
1639 if (raid_disks < conf->raid_disks) {
1640 cnt=0;
1641 for (d= 0; d < conf->raid_disks; d++)
1642 if (conf->mirrors[d].rdev)
1643 cnt++;
1644 if (cnt > raid_disks)
1645 return -EBUSY;
1648 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1649 if (!newpoolinfo)
1650 return -ENOMEM;
1651 newpoolinfo->mddev = mddev;
1652 newpoolinfo->raid_disks = raid_disks;
1654 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1655 r1bio_pool_free, newpoolinfo);
1656 if (!newpool) {
1657 kfree(newpoolinfo);
1658 return -ENOMEM;
1660 newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1661 if (!newmirrors) {
1662 kfree(newpoolinfo);
1663 mempool_destroy(newpool);
1664 return -ENOMEM;
1666 memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1668 spin_lock_irq(&conf->resync_lock);
1669 conf->barrier++;
1670 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1671 conf->resync_lock, raid1_unplug(mddev->queue));
1672 spin_unlock_irq(&conf->resync_lock);
1674 /* ok, everything is stopped */
1675 oldpool = conf->r1bio_pool;
1676 conf->r1bio_pool = newpool;
1678 for (d=d2=0; d < conf->raid_disks; d++)
1679 if (conf->mirrors[d].rdev) {
1680 conf->mirrors[d].rdev->raid_disk = d2;
1681 newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1683 kfree(conf->mirrors);
1684 conf->mirrors = newmirrors;
1685 kfree(conf->poolinfo);
1686 conf->poolinfo = newpoolinfo;
1688 mddev->degraded += (raid_disks - conf->raid_disks);
1689 conf->raid_disks = mddev->raid_disks = raid_disks;
1691 conf->last_used = 0; /* just make sure it is in-range */
1692 spin_lock_irq(&conf->resync_lock);
1693 conf->barrier--;
1694 spin_unlock_irq(&conf->resync_lock);
1695 wake_up(&conf->wait_resume);
1696 wake_up(&conf->wait_idle);
1699 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1700 md_wakeup_thread(mddev->thread);
1702 mempool_destroy(oldpool);
1703 return 0;
1706 static void raid1_quiesce(mddev_t *mddev, int state)
1708 conf_t *conf = mddev_to_conf(mddev);
1710 switch(state) {
1711 case 1:
1712 spin_lock_irq(&conf->resync_lock);
1713 conf->barrier++;
1714 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1715 conf->resync_lock, raid1_unplug(mddev->queue));
1716 spin_unlock_irq(&conf->resync_lock);
1717 break;
1718 case 0:
1719 spin_lock_irq(&conf->resync_lock);
1720 conf->barrier--;
1721 spin_unlock_irq(&conf->resync_lock);
1722 wake_up(&conf->wait_resume);
1723 wake_up(&conf->wait_idle);
1724 break;
1726 if (mddev->thread) {
1727 if (mddev->bitmap)
1728 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1729 else
1730 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1731 md_wakeup_thread(mddev->thread);
1736 static mdk_personality_t raid1_personality =
1738 .name = "raid1",
1739 .owner = THIS_MODULE,
1740 .make_request = make_request,
1741 .run = run,
1742 .stop = stop,
1743 .status = status,
1744 .error_handler = error,
1745 .hot_add_disk = raid1_add_disk,
1746 .hot_remove_disk= raid1_remove_disk,
1747 .spare_active = raid1_spare_active,
1748 .sync_request = sync_request,
1749 .resize = raid1_resize,
1750 .reshape = raid1_reshape,
1751 .quiesce = raid1_quiesce,
1754 static int __init raid_init(void)
1756 return register_md_personality(RAID1, &raid1_personality);
1759 static void raid_exit(void)
1761 unregister_md_personality(RAID1);
1764 module_init(raid_init);
1765 module_exit(raid_exit);
1766 MODULE_LICENSE("GPL");
1767 MODULE_ALIAS("md-personality-3"); /* RAID1 */