2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
12 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
15 * Alan Cox : Verify area fixes.
16 * Alan Cox : cli() protects routing changes
17 * Rui Oliveira : ICMP routing table updates
18 * (rco@di.uminho.pt) Routing table insertion and update
19 * Linus Torvalds : Rewrote bits to be sensible
20 * Alan Cox : Added BSD route gw semantics
21 * Alan Cox : Super /proc >4K
22 * Alan Cox : MTU in route table
23 * Alan Cox : MSS actually. Also added the window
25 * Sam Lantinga : Fixed route matching in rt_del()
26 * Alan Cox : Routing cache support.
27 * Alan Cox : Removed compatibility cruft.
28 * Alan Cox : RTF_REJECT support.
29 * Alan Cox : TCP irtt support.
30 * Jonathan Naylor : Added Metric support.
31 * Miquel van Smoorenburg : BSD API fixes.
32 * Miquel van Smoorenburg : Metrics.
33 * Alan Cox : Use __u32 properly
34 * Alan Cox : Aligned routing errors more closely with BSD
35 * our system is still very different.
36 * Alan Cox : Faster /proc handling
37 * Alexey Kuznetsov : Massive rework to support tree based routing,
38 * routing caches and better behaviour.
40 * Olaf Erb : irtt wasn't being copied right.
41 * Bjorn Ekwall : Kerneld route support.
42 * Alan Cox : Multicast fixed (I hope)
43 * Pavel Krauz : Limited broadcast fixed
44 * Mike McLagan : Routing by source
45 * Alexey Kuznetsov : End of old history. Split to fib.c and
46 * route.c and rewritten from scratch.
47 * Andi Kleen : Load-limit warning messages.
48 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
49 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
50 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
51 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
52 * Marc Boucher : routing by fwmark
53 * Robert Olsson : Added rt_cache statistics
54 * Arnaldo C. Melo : Convert proc stuff to seq_file
55 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
56 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
57 * Ilia Sotnikov : Removed TOS from hash calculations
59 * This program is free software; you can redistribute it and/or
60 * modify it under the terms of the GNU General Public License
61 * as published by the Free Software Foundation; either version
62 * 2 of the License, or (at your option) any later version.
65 #include <linux/module.h>
66 #include <asm/uaccess.h>
67 #include <asm/system.h>
68 #include <linux/bitops.h>
69 #include <linux/types.h>
70 #include <linux/kernel.h>
72 #include <linux/bootmem.h>
73 #include <linux/string.h>
74 #include <linux/socket.h>
75 #include <linux/sockios.h>
76 #include <linux/errno.h>
78 #include <linux/inet.h>
79 #include <linux/netdevice.h>
80 #include <linux/proc_fs.h>
81 #include <linux/init.h>
82 #include <linux/workqueue.h>
83 #include <linux/skbuff.h>
84 #include <linux/inetdevice.h>
85 #include <linux/igmp.h>
86 #include <linux/pkt_sched.h>
87 #include <linux/mroute.h>
88 #include <linux/netfilter_ipv4.h>
89 #include <linux/random.h>
90 #include <linux/jhash.h>
91 #include <linux/rcupdate.h>
92 #include <linux/times.h>
93 #include <linux/slab.h>
95 #include <net/net_namespace.h>
96 #include <net/protocol.h>
98 #include <net/route.h>
99 #include <net/inetpeer.h>
100 #include <net/sock.h>
101 #include <net/ip_fib.h>
104 #include <net/icmp.h>
105 #include <net/xfrm.h>
106 #include <net/netevent.h>
107 #include <net/rtnetlink.h>
109 #include <linux/sysctl.h>
112 #define RT_FL_TOS(oldflp) \
113 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
115 #define IP_MAX_MTU 0xFFF0
117 #define RT_GC_TIMEOUT (300*HZ)
119 static int ip_rt_max_size
;
120 static int ip_rt_gc_timeout __read_mostly
= RT_GC_TIMEOUT
;
121 static int ip_rt_gc_interval __read_mostly
= 60 * HZ
;
122 static int ip_rt_gc_min_interval __read_mostly
= HZ
/ 2;
123 static int ip_rt_redirect_number __read_mostly
= 9;
124 static int ip_rt_redirect_load __read_mostly
= HZ
/ 50;
125 static int ip_rt_redirect_silence __read_mostly
= ((HZ
/ 50) << (9 + 1));
126 static int ip_rt_error_cost __read_mostly
= HZ
;
127 static int ip_rt_error_burst __read_mostly
= 5 * HZ
;
128 static int ip_rt_gc_elasticity __read_mostly
= 8;
129 static int ip_rt_mtu_expires __read_mostly
= 10 * 60 * HZ
;
130 static int ip_rt_min_pmtu __read_mostly
= 512 + 20 + 20;
131 static int ip_rt_min_advmss __read_mostly
= 256;
132 static int rt_chain_length_max __read_mostly
= 20;
134 static struct delayed_work expires_work
;
135 static unsigned long expires_ljiffies
;
138 * Interface to generic destination cache.
141 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
142 static void ipv4_dst_destroy(struct dst_entry
*dst
);
143 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
144 struct net_device
*dev
, int how
);
145 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
146 static void ipv4_link_failure(struct sk_buff
*skb
);
147 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
148 static int rt_garbage_collect(struct dst_ops
*ops
);
151 static struct dst_ops ipv4_dst_ops
= {
153 .protocol
= cpu_to_be16(ETH_P_IP
),
154 .gc
= rt_garbage_collect
,
155 .check
= ipv4_dst_check
,
156 .destroy
= ipv4_dst_destroy
,
157 .ifdown
= ipv4_dst_ifdown
,
158 .negative_advice
= ipv4_negative_advice
,
159 .link_failure
= ipv4_link_failure
,
160 .update_pmtu
= ip_rt_update_pmtu
,
161 .local_out
= __ip_local_out
,
162 .entries
= ATOMIC_INIT(0),
165 #define ECN_OR_COST(class) TC_PRIO_##class
167 const __u8 ip_tos2prio
[16] = {
171 ECN_OR_COST(BESTEFFORT
),
177 ECN_OR_COST(INTERACTIVE
),
179 ECN_OR_COST(INTERACTIVE
),
180 TC_PRIO_INTERACTIVE_BULK
,
181 ECN_OR_COST(INTERACTIVE_BULK
),
182 TC_PRIO_INTERACTIVE_BULK
,
183 ECN_OR_COST(INTERACTIVE_BULK
)
191 /* The locking scheme is rather straight forward:
193 * 1) Read-Copy Update protects the buckets of the central route hash.
194 * 2) Only writers remove entries, and they hold the lock
195 * as they look at rtable reference counts.
196 * 3) Only readers acquire references to rtable entries,
197 * they do so with atomic increments and with the
201 struct rt_hash_bucket
{
202 struct rtable
*chain
;
205 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
206 defined(CONFIG_PROVE_LOCKING)
208 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
209 * The size of this table is a power of two and depends on the number of CPUS.
210 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
212 #ifdef CONFIG_LOCKDEP
213 # define RT_HASH_LOCK_SZ 256
216 # define RT_HASH_LOCK_SZ 4096
218 # define RT_HASH_LOCK_SZ 2048
220 # define RT_HASH_LOCK_SZ 1024
222 # define RT_HASH_LOCK_SZ 512
224 # define RT_HASH_LOCK_SZ 256
228 static spinlock_t
*rt_hash_locks
;
229 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
231 static __init
void rt_hash_lock_init(void)
235 rt_hash_locks
= kmalloc(sizeof(spinlock_t
) * RT_HASH_LOCK_SZ
,
238 panic("IP: failed to allocate rt_hash_locks\n");
240 for (i
= 0; i
< RT_HASH_LOCK_SZ
; i
++)
241 spin_lock_init(&rt_hash_locks
[i
]);
244 # define rt_hash_lock_addr(slot) NULL
246 static inline void rt_hash_lock_init(void)
251 static struct rt_hash_bucket
*rt_hash_table __read_mostly
;
252 static unsigned rt_hash_mask __read_mostly
;
253 static unsigned int rt_hash_log __read_mostly
;
255 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
256 #define RT_CACHE_STAT_INC(field) __this_cpu_inc(rt_cache_stat.field)
258 static inline unsigned int rt_hash(__be32 daddr
, __be32 saddr
, int idx
,
261 return jhash_3words((__force u32
)daddr
, (__force u32
)saddr
,
266 static inline int rt_genid(struct net
*net
)
268 return atomic_read(&net
->ipv4
.rt_genid
);
271 #ifdef CONFIG_PROC_FS
272 struct rt_cache_iter_state
{
273 struct seq_net_private p
;
278 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
280 struct rt_cache_iter_state
*st
= seq
->private;
281 struct rtable
*r
= NULL
;
283 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
284 if (!rt_hash_table
[st
->bucket
].chain
)
287 r
= rcu_dereference_bh(rt_hash_table
[st
->bucket
].chain
);
289 if (dev_net(r
->u
.dst
.dev
) == seq_file_net(seq
) &&
290 r
->rt_genid
== st
->genid
)
292 r
= rcu_dereference_bh(r
->u
.dst
.rt_next
);
294 rcu_read_unlock_bh();
299 static struct rtable
*__rt_cache_get_next(struct seq_file
*seq
,
302 struct rt_cache_iter_state
*st
= seq
->private;
304 r
= r
->u
.dst
.rt_next
;
306 rcu_read_unlock_bh();
308 if (--st
->bucket
< 0)
310 } while (!rt_hash_table
[st
->bucket
].chain
);
312 r
= rt_hash_table
[st
->bucket
].chain
;
314 return rcu_dereference_bh(r
);
317 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
,
320 struct rt_cache_iter_state
*st
= seq
->private;
321 while ((r
= __rt_cache_get_next(seq
, r
)) != NULL
) {
322 if (dev_net(r
->u
.dst
.dev
) != seq_file_net(seq
))
324 if (r
->rt_genid
== st
->genid
)
330 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
332 struct rtable
*r
= rt_cache_get_first(seq
);
335 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
337 return pos
? NULL
: r
;
340 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
342 struct rt_cache_iter_state
*st
= seq
->private;
344 return rt_cache_get_idx(seq
, *pos
- 1);
345 st
->genid
= rt_genid(seq_file_net(seq
));
346 return SEQ_START_TOKEN
;
349 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
353 if (v
== SEQ_START_TOKEN
)
354 r
= rt_cache_get_first(seq
);
356 r
= rt_cache_get_next(seq
, v
);
361 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
363 if (v
&& v
!= SEQ_START_TOKEN
)
364 rcu_read_unlock_bh();
367 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
369 if (v
== SEQ_START_TOKEN
)
370 seq_printf(seq
, "%-127s\n",
371 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
372 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
375 struct rtable
*r
= v
;
378 seq_printf(seq
, "%s\t%08X\t%08X\t%8X\t%d\t%u\t%d\t"
379 "%08X\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X%n",
380 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
381 (__force u32
)r
->rt_dst
,
382 (__force u32
)r
->rt_gateway
,
383 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
384 r
->u
.dst
.__use
, 0, (__force u32
)r
->rt_src
,
385 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
386 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
387 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
388 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
389 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
391 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
392 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
394 r
->rt_spec_dst
, &len
);
396 seq_printf(seq
, "%*s\n", 127 - len
, "");
401 static const struct seq_operations rt_cache_seq_ops
= {
402 .start
= rt_cache_seq_start
,
403 .next
= rt_cache_seq_next
,
404 .stop
= rt_cache_seq_stop
,
405 .show
= rt_cache_seq_show
,
408 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
410 return seq_open_net(inode
, file
, &rt_cache_seq_ops
,
411 sizeof(struct rt_cache_iter_state
));
414 static const struct file_operations rt_cache_seq_fops
= {
415 .owner
= THIS_MODULE
,
416 .open
= rt_cache_seq_open
,
419 .release
= seq_release_net
,
423 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
428 return SEQ_START_TOKEN
;
430 for (cpu
= *pos
-1; cpu
< nr_cpu_ids
; ++cpu
) {
431 if (!cpu_possible(cpu
))
434 return &per_cpu(rt_cache_stat
, cpu
);
439 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
443 for (cpu
= *pos
; cpu
< nr_cpu_ids
; ++cpu
) {
444 if (!cpu_possible(cpu
))
447 return &per_cpu(rt_cache_stat
, cpu
);
453 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
458 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
460 struct rt_cache_stat
*st
= v
;
462 if (v
== SEQ_START_TOKEN
) {
463 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
467 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
468 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
469 atomic_read(&ipv4_dst_ops
.entries
),
492 static const struct seq_operations rt_cpu_seq_ops
= {
493 .start
= rt_cpu_seq_start
,
494 .next
= rt_cpu_seq_next
,
495 .stop
= rt_cpu_seq_stop
,
496 .show
= rt_cpu_seq_show
,
500 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
502 return seq_open(file
, &rt_cpu_seq_ops
);
505 static const struct file_operations rt_cpu_seq_fops
= {
506 .owner
= THIS_MODULE
,
507 .open
= rt_cpu_seq_open
,
510 .release
= seq_release
,
513 #ifdef CONFIG_NET_CLS_ROUTE
514 static int rt_acct_proc_show(struct seq_file
*m
, void *v
)
516 struct ip_rt_acct
*dst
, *src
;
519 dst
= kcalloc(256, sizeof(struct ip_rt_acct
), GFP_KERNEL
);
523 for_each_possible_cpu(i
) {
524 src
= (struct ip_rt_acct
*)per_cpu_ptr(ip_rt_acct
, i
);
525 for (j
= 0; j
< 256; j
++) {
526 dst
[j
].o_bytes
+= src
[j
].o_bytes
;
527 dst
[j
].o_packets
+= src
[j
].o_packets
;
528 dst
[j
].i_bytes
+= src
[j
].i_bytes
;
529 dst
[j
].i_packets
+= src
[j
].i_packets
;
533 seq_write(m
, dst
, 256 * sizeof(struct ip_rt_acct
));
538 static int rt_acct_proc_open(struct inode
*inode
, struct file
*file
)
540 return single_open(file
, rt_acct_proc_show
, NULL
);
543 static const struct file_operations rt_acct_proc_fops
= {
544 .owner
= THIS_MODULE
,
545 .open
= rt_acct_proc_open
,
548 .release
= single_release
,
552 static int __net_init
ip_rt_do_proc_init(struct net
*net
)
554 struct proc_dir_entry
*pde
;
556 pde
= proc_net_fops_create(net
, "rt_cache", S_IRUGO
,
561 pde
= proc_create("rt_cache", S_IRUGO
,
562 net
->proc_net_stat
, &rt_cpu_seq_fops
);
566 #ifdef CONFIG_NET_CLS_ROUTE
567 pde
= proc_create("rt_acct", 0, net
->proc_net
, &rt_acct_proc_fops
);
573 #ifdef CONFIG_NET_CLS_ROUTE
575 remove_proc_entry("rt_cache", net
->proc_net_stat
);
578 remove_proc_entry("rt_cache", net
->proc_net
);
583 static void __net_exit
ip_rt_do_proc_exit(struct net
*net
)
585 remove_proc_entry("rt_cache", net
->proc_net_stat
);
586 remove_proc_entry("rt_cache", net
->proc_net
);
587 #ifdef CONFIG_NET_CLS_ROUTE
588 remove_proc_entry("rt_acct", net
->proc_net
);
592 static struct pernet_operations ip_rt_proc_ops __net_initdata
= {
593 .init
= ip_rt_do_proc_init
,
594 .exit
= ip_rt_do_proc_exit
,
597 static int __init
ip_rt_proc_init(void)
599 return register_pernet_subsys(&ip_rt_proc_ops
);
603 static inline int ip_rt_proc_init(void)
607 #endif /* CONFIG_PROC_FS */
609 static inline void rt_free(struct rtable
*rt
)
611 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
614 static inline void rt_drop(struct rtable
*rt
)
617 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
620 static inline int rt_fast_clean(struct rtable
*rth
)
622 /* Kill broadcast/multicast entries very aggresively, if they
623 collide in hash table with more useful entries */
624 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
625 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
628 static inline int rt_valuable(struct rtable
*rth
)
630 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
634 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
639 if (atomic_read(&rth
->u
.dst
.__refcnt
))
643 if (rth
->u
.dst
.expires
&&
644 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
647 age
= jiffies
- rth
->u
.dst
.lastuse
;
649 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
650 (age
<= tmo2
&& rt_valuable(rth
)))
656 /* Bits of score are:
658 * 30: not quite useless
659 * 29..0: usage counter
661 static inline u32
rt_score(struct rtable
*rt
)
663 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
665 score
= ~score
& ~(3<<30);
671 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
677 static inline bool rt_caching(const struct net
*net
)
679 return net
->ipv4
.current_rt_cache_rebuild_count
<=
680 net
->ipv4
.sysctl_rt_cache_rebuild_count
;
683 static inline bool compare_hash_inputs(const struct flowi
*fl1
,
684 const struct flowi
*fl2
)
686 return ((((__force u32
)fl1
->nl_u
.ip4_u
.daddr
^ (__force u32
)fl2
->nl_u
.ip4_u
.daddr
) |
687 ((__force u32
)fl1
->nl_u
.ip4_u
.saddr
^ (__force u32
)fl2
->nl_u
.ip4_u
.saddr
) |
688 (fl1
->iif
^ fl2
->iif
)) == 0);
691 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
693 return (((__force u32
)fl1
->nl_u
.ip4_u
.daddr
^ (__force u32
)fl2
->nl_u
.ip4_u
.daddr
) |
694 ((__force u32
)fl1
->nl_u
.ip4_u
.saddr
^ (__force u32
)fl2
->nl_u
.ip4_u
.saddr
) |
695 (fl1
->mark
^ fl2
->mark
) |
696 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^ *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
697 (fl1
->oif
^ fl2
->oif
) |
698 (fl1
->iif
^ fl2
->iif
)) == 0;
701 static inline int compare_netns(struct rtable
*rt1
, struct rtable
*rt2
)
703 return net_eq(dev_net(rt1
->u
.dst
.dev
), dev_net(rt2
->u
.dst
.dev
));
706 static inline int rt_is_expired(struct rtable
*rth
)
708 return rth
->rt_genid
!= rt_genid(dev_net(rth
->u
.dst
.dev
));
712 * Perform a full scan of hash table and free all entries.
713 * Can be called by a softirq or a process.
714 * In the later case, we want to be reschedule if necessary
716 static void rt_do_flush(int process_context
)
719 struct rtable
*rth
, *next
;
720 struct rtable
* tail
;
722 for (i
= 0; i
<= rt_hash_mask
; i
++) {
723 if (process_context
&& need_resched())
725 rth
= rt_hash_table
[i
].chain
;
729 spin_lock_bh(rt_hash_lock_addr(i
));
732 struct rtable
** prev
, * p
;
734 rth
= rt_hash_table
[i
].chain
;
736 /* defer releasing the head of the list after spin_unlock */
737 for (tail
= rth
; tail
; tail
= tail
->u
.dst
.rt_next
)
738 if (!rt_is_expired(tail
))
741 rt_hash_table
[i
].chain
= tail
;
743 /* call rt_free on entries after the tail requiring flush */
744 prev
= &rt_hash_table
[i
].chain
;
745 for (p
= *prev
; p
; p
= next
) {
746 next
= p
->u
.dst
.rt_next
;
747 if (!rt_is_expired(p
)) {
748 prev
= &p
->u
.dst
.rt_next
;
756 rth
= rt_hash_table
[i
].chain
;
757 rt_hash_table
[i
].chain
= NULL
;
760 spin_unlock_bh(rt_hash_lock_addr(i
));
762 for (; rth
!= tail
; rth
= next
) {
763 next
= rth
->u
.dst
.rt_next
;
770 * While freeing expired entries, we compute average chain length
771 * and standard deviation, using fixed-point arithmetic.
772 * This to have an estimation of rt_chain_length_max
773 * rt_chain_length_max = max(elasticity, AVG + 4*SD)
774 * We use 3 bits for frational part, and 29 (or 61) for magnitude.
778 #define ONE (1UL << FRACT_BITS)
781 * Given a hash chain and an item in this hash chain,
782 * find if a previous entry has the same hash_inputs
783 * (but differs on tos, mark or oif)
784 * Returns 0 if an alias is found.
785 * Returns ONE if rth has no alias before itself.
787 static int has_noalias(const struct rtable
*head
, const struct rtable
*rth
)
789 const struct rtable
*aux
= head
;
792 if (compare_hash_inputs(&aux
->fl
, &rth
->fl
))
794 aux
= aux
->u
.dst
.rt_next
;
799 static void rt_check_expire(void)
801 static unsigned int rover
;
802 unsigned int i
= rover
, goal
;
803 struct rtable
*rth
, **rthp
;
804 unsigned long samples
= 0;
805 unsigned long sum
= 0, sum2
= 0;
809 delta
= jiffies
- expires_ljiffies
;
810 expires_ljiffies
= jiffies
;
811 mult
= ((u64
)delta
) << rt_hash_log
;
812 if (ip_rt_gc_timeout
> 1)
813 do_div(mult
, ip_rt_gc_timeout
);
814 goal
= (unsigned int)mult
;
815 if (goal
> rt_hash_mask
)
816 goal
= rt_hash_mask
+ 1;
817 for (; goal
> 0; goal
--) {
818 unsigned long tmo
= ip_rt_gc_timeout
;
819 unsigned long length
;
821 i
= (i
+ 1) & rt_hash_mask
;
822 rthp
= &rt_hash_table
[i
].chain
;
832 spin_lock_bh(rt_hash_lock_addr(i
));
833 while ((rth
= *rthp
) != NULL
) {
834 prefetch(rth
->u
.dst
.rt_next
);
835 if (rt_is_expired(rth
)) {
836 *rthp
= rth
->u
.dst
.rt_next
;
840 if (rth
->u
.dst
.expires
) {
841 /* Entry is expired even if it is in use */
842 if (time_before_eq(jiffies
, rth
->u
.dst
.expires
)) {
845 rthp
= &rth
->u
.dst
.rt_next
;
847 * We only count entries on
848 * a chain with equal hash inputs once
849 * so that entries for different QOS
850 * levels, and other non-hash input
851 * attributes don't unfairly skew
852 * the length computation
854 length
+= has_noalias(rt_hash_table
[i
].chain
, rth
);
857 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
))
860 /* Cleanup aged off entries. */
861 *rthp
= rth
->u
.dst
.rt_next
;
864 spin_unlock_bh(rt_hash_lock_addr(i
));
866 sum2
+= length
*length
;
869 unsigned long avg
= sum
/ samples
;
870 unsigned long sd
= int_sqrt(sum2
/ samples
- avg
*avg
);
871 rt_chain_length_max
= max_t(unsigned long,
873 (avg
+ 4*sd
) >> FRACT_BITS
);
879 * rt_worker_func() is run in process context.
880 * we call rt_check_expire() to scan part of the hash table
882 static void rt_worker_func(struct work_struct
*work
)
885 schedule_delayed_work(&expires_work
, ip_rt_gc_interval
);
889 * Pertubation of rt_genid by a small quantity [1..256]
890 * Using 8 bits of shuffling ensure we can call rt_cache_invalidate()
891 * many times (2^24) without giving recent rt_genid.
892 * Jenkins hash is strong enough that litle changes of rt_genid are OK.
894 static void rt_cache_invalidate(struct net
*net
)
896 unsigned char shuffle
;
898 get_random_bytes(&shuffle
, sizeof(shuffle
));
899 atomic_add(shuffle
+ 1U, &net
->ipv4
.rt_genid
);
903 * delay < 0 : invalidate cache (fast : entries will be deleted later)
904 * delay >= 0 : invalidate & flush cache (can be long)
906 void rt_cache_flush(struct net
*net
, int delay
)
908 rt_cache_invalidate(net
);
910 rt_do_flush(!in_softirq());
913 /* Flush previous cache invalidated entries from the cache */
914 void rt_cache_flush_batch(void)
916 rt_do_flush(!in_softirq());
919 static void rt_emergency_hash_rebuild(struct net
*net
)
922 printk(KERN_WARNING
"Route hash chain too long!\n");
923 rt_cache_invalidate(net
);
927 Short description of GC goals.
929 We want to build algorithm, which will keep routing cache
930 at some equilibrium point, when number of aged off entries
931 is kept approximately equal to newly generated ones.
933 Current expiration strength is variable "expire".
934 We try to adjust it dynamically, so that if networking
935 is idle expires is large enough to keep enough of warm entries,
936 and when load increases it reduces to limit cache size.
939 static int rt_garbage_collect(struct dst_ops
*ops
)
941 static unsigned long expire
= RT_GC_TIMEOUT
;
942 static unsigned long last_gc
;
944 static int equilibrium
;
945 struct rtable
*rth
, **rthp
;
946 unsigned long now
= jiffies
;
950 * Garbage collection is pretty expensive,
951 * do not make it too frequently.
954 RT_CACHE_STAT_INC(gc_total
);
956 if (now
- last_gc
< ip_rt_gc_min_interval
&&
957 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
958 RT_CACHE_STAT_INC(gc_ignored
);
962 /* Calculate number of entries, which we want to expire now. */
963 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
964 (ip_rt_gc_elasticity
<< rt_hash_log
);
966 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
967 equilibrium
= ipv4_dst_ops
.gc_thresh
;
968 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
970 equilibrium
+= min_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
971 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
974 /* We are in dangerous area. Try to reduce cache really
977 goal
= max_t(unsigned int, goal
>> 1, rt_hash_mask
+ 1);
978 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
981 if (now
- last_gc
>= ip_rt_gc_min_interval
)
992 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
993 unsigned long tmo
= expire
;
995 k
= (k
+ 1) & rt_hash_mask
;
996 rthp
= &rt_hash_table
[k
].chain
;
997 spin_lock_bh(rt_hash_lock_addr(k
));
998 while ((rth
= *rthp
) != NULL
) {
999 if (!rt_is_expired(rth
) &&
1000 !rt_may_expire(rth
, tmo
, expire
)) {
1002 rthp
= &rth
->u
.dst
.rt_next
;
1005 *rthp
= rth
->u
.dst
.rt_next
;
1009 spin_unlock_bh(rt_hash_lock_addr(k
));
1018 /* Goal is not achieved. We stop process if:
1020 - if expire reduced to zero. Otherwise, expire is halfed.
1021 - if table is not full.
1022 - if we are called from interrupt.
1023 - jiffies check is just fallback/debug loop breaker.
1024 We will not spin here for long time in any case.
1027 RT_CACHE_STAT_INC(gc_goal_miss
);
1033 #if RT_CACHE_DEBUG >= 2
1034 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
1035 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
1038 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
1040 } while (!in_softirq() && time_before_eq(jiffies
, now
));
1042 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
1044 if (net_ratelimit())
1045 printk(KERN_WARNING
"dst cache overflow\n");
1046 RT_CACHE_STAT_INC(gc_dst_overflow
);
1050 expire
+= ip_rt_gc_min_interval
;
1051 if (expire
> ip_rt_gc_timeout
||
1052 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
1053 expire
= ip_rt_gc_timeout
;
1054 #if RT_CACHE_DEBUG >= 2
1055 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
1056 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
1062 * Returns number of entries in a hash chain that have different hash_inputs
1064 static int slow_chain_length(const struct rtable
*head
)
1067 const struct rtable
*rth
= head
;
1070 length
+= has_noalias(head
, rth
);
1071 rth
= rth
->u
.dst
.rt_next
;
1073 return length
>> FRACT_BITS
;
1076 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
,
1077 struct rtable
**rp
, struct sk_buff
*skb
, int ifindex
)
1079 struct rtable
*rth
, **rthp
;
1081 struct rtable
*cand
, **candp
;
1084 int attempts
= !in_softirq();
1088 min_score
= ~(u32
)0;
1093 if (!rt_caching(dev_net(rt
->u
.dst
.dev
))) {
1095 * If we're not caching, just tell the caller we
1096 * were successful and don't touch the route. The
1097 * caller hold the sole reference to the cache entry, and
1098 * it will be released when the caller is done with it.
1099 * If we drop it here, the callers have no way to resolve routes
1100 * when we're not caching. Instead, just point *rp at rt, so
1101 * the caller gets a single use out of the route
1102 * Note that we do rt_free on this new route entry, so that
1103 * once its refcount hits zero, we are still able to reap it
1105 * Note also the rt_free uses call_rcu. We don't actually
1106 * need rcu protection here, this is just our path to get
1107 * on the route gc list.
1110 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1111 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1113 if (net_ratelimit())
1115 "Neighbour table failure & not caching routes.\n");
1125 rthp
= &rt_hash_table
[hash
].chain
;
1127 spin_lock_bh(rt_hash_lock_addr(hash
));
1128 while ((rth
= *rthp
) != NULL
) {
1129 if (rt_is_expired(rth
)) {
1130 *rthp
= rth
->u
.dst
.rt_next
;
1134 if (compare_keys(&rth
->fl
, &rt
->fl
) && compare_netns(rth
, rt
)) {
1136 *rthp
= rth
->u
.dst
.rt_next
;
1138 * Since lookup is lockfree, the deletion
1139 * must be visible to another weakly ordered CPU before
1140 * the insertion at the start of the hash chain.
1142 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
1143 rt_hash_table
[hash
].chain
);
1145 * Since lookup is lockfree, the update writes
1146 * must be ordered for consistency on SMP.
1148 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
1150 dst_use(&rth
->u
.dst
, now
);
1151 spin_unlock_bh(rt_hash_lock_addr(hash
));
1157 skb_dst_set(skb
, &rth
->u
.dst
);
1161 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
1162 u32 score
= rt_score(rth
);
1164 if (score
<= min_score
) {
1173 rthp
= &rth
->u
.dst
.rt_next
;
1177 /* ip_rt_gc_elasticity used to be average length of chain
1178 * length, when exceeded gc becomes really aggressive.
1180 * The second limit is less certain. At the moment it allows
1181 * only 2 entries per bucket. We will see.
1183 if (chain_length
> ip_rt_gc_elasticity
) {
1184 *candp
= cand
->u
.dst
.rt_next
;
1188 if (chain_length
> rt_chain_length_max
&&
1189 slow_chain_length(rt_hash_table
[hash
].chain
) > rt_chain_length_max
) {
1190 struct net
*net
= dev_net(rt
->u
.dst
.dev
);
1191 int num
= ++net
->ipv4
.current_rt_cache_rebuild_count
;
1192 if (!rt_caching(net
)) {
1193 printk(KERN_WARNING
"%s: %d rebuilds is over limit, route caching disabled\n",
1194 rt
->u
.dst
.dev
->name
, num
);
1196 rt_emergency_hash_rebuild(net
);
1197 spin_unlock_bh(rt_hash_lock_addr(hash
));
1199 hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1200 ifindex
, rt_genid(net
));
1205 /* Try to bind route to arp only if it is output
1206 route or unicast forwarding path.
1208 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
1209 int err
= arp_bind_neighbour(&rt
->u
.dst
);
1211 spin_unlock_bh(rt_hash_lock_addr(hash
));
1213 if (err
!= -ENOBUFS
) {
1218 /* Neighbour tables are full and nothing
1219 can be released. Try to shrink route cache,
1220 it is most likely it holds some neighbour records.
1222 if (attempts
-- > 0) {
1223 int saved_elasticity
= ip_rt_gc_elasticity
;
1224 int saved_int
= ip_rt_gc_min_interval
;
1225 ip_rt_gc_elasticity
= 1;
1226 ip_rt_gc_min_interval
= 0;
1227 rt_garbage_collect(&ipv4_dst_ops
);
1228 ip_rt_gc_min_interval
= saved_int
;
1229 ip_rt_gc_elasticity
= saved_elasticity
;
1233 if (net_ratelimit())
1234 printk(KERN_WARNING
"Neighbour table overflow.\n");
1240 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
1242 #if RT_CACHE_DEBUG >= 2
1243 if (rt
->u
.dst
.rt_next
) {
1245 printk(KERN_DEBUG
"rt_cache @%02x: %pI4",
1247 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
1248 printk(" . %pI4", &trt
->rt_dst
);
1253 * Since lookup is lockfree, we must make sure
1254 * previous writes to rt are comitted to memory
1255 * before making rt visible to other CPUS.
1257 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rt
);
1259 spin_unlock_bh(rt_hash_lock_addr(hash
));
1265 skb_dst_set(skb
, &rt
->u
.dst
);
1269 void rt_bind_peer(struct rtable
*rt
, int create
)
1271 static DEFINE_SPINLOCK(rt_peer_lock
);
1272 struct inet_peer
*peer
;
1274 peer
= inet_getpeer(rt
->rt_dst
, create
);
1276 spin_lock_bh(&rt_peer_lock
);
1277 if (rt
->peer
== NULL
) {
1281 spin_unlock_bh(&rt_peer_lock
);
1287 * Peer allocation may fail only in serious out-of-memory conditions. However
1288 * we still can generate some output.
1289 * Random ID selection looks a bit dangerous because we have no chances to
1290 * select ID being unique in a reasonable period of time.
1291 * But broken packet identifier may be better than no packet at all.
1293 static void ip_select_fb_ident(struct iphdr
*iph
)
1295 static DEFINE_SPINLOCK(ip_fb_id_lock
);
1296 static u32 ip_fallback_id
;
1299 spin_lock_bh(&ip_fb_id_lock
);
1300 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
1301 iph
->id
= htons(salt
& 0xFFFF);
1302 ip_fallback_id
= salt
;
1303 spin_unlock_bh(&ip_fb_id_lock
);
1306 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1308 struct rtable
*rt
= (struct rtable
*) dst
;
1311 if (rt
->peer
== NULL
)
1312 rt_bind_peer(rt
, 1);
1314 /* If peer is attached to destination, it is never detached,
1315 so that we need not to grab a lock to dereference it.
1318 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1322 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1323 __builtin_return_address(0));
1325 ip_select_fb_ident(iph
);
1328 static void rt_del(unsigned hash
, struct rtable
*rt
)
1330 struct rtable
**rthp
, *aux
;
1332 rthp
= &rt_hash_table
[hash
].chain
;
1333 spin_lock_bh(rt_hash_lock_addr(hash
));
1335 while ((aux
= *rthp
) != NULL
) {
1336 if (aux
== rt
|| rt_is_expired(aux
)) {
1337 *rthp
= aux
->u
.dst
.rt_next
;
1341 rthp
= &aux
->u
.dst
.rt_next
;
1343 spin_unlock_bh(rt_hash_lock_addr(hash
));
1346 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1347 __be32 saddr
, struct net_device
*dev
)
1350 struct in_device
*in_dev
= in_dev_get(dev
);
1351 struct rtable
*rth
, **rthp
;
1352 __be32 skeys
[2] = { saddr
, 0 };
1353 int ikeys
[2] = { dev
->ifindex
, 0 };
1354 struct netevent_redirect netevent
;
1361 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
) ||
1362 ipv4_is_multicast(new_gw
) || ipv4_is_lbcast(new_gw
) ||
1363 ipv4_is_zeronet(new_gw
))
1364 goto reject_redirect
;
1366 if (!rt_caching(net
))
1367 goto reject_redirect
;
1369 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1370 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1371 goto reject_redirect
;
1372 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1373 goto reject_redirect
;
1375 if (inet_addr_type(net
, new_gw
) != RTN_UNICAST
)
1376 goto reject_redirect
;
1379 for (i
= 0; i
< 2; i
++) {
1380 for (k
= 0; k
< 2; k
++) {
1381 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1384 rthp
=&rt_hash_table
[hash
].chain
;
1387 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1390 if (rth
->fl
.fl4_dst
!= daddr
||
1391 rth
->fl
.fl4_src
!= skeys
[i
] ||
1392 rth
->fl
.oif
!= ikeys
[k
] ||
1394 rt_is_expired(rth
) ||
1395 !net_eq(dev_net(rth
->u
.dst
.dev
), net
)) {
1396 rthp
= &rth
->u
.dst
.rt_next
;
1400 if (rth
->rt_dst
!= daddr
||
1401 rth
->rt_src
!= saddr
||
1403 rth
->rt_gateway
!= old_gw
||
1404 rth
->u
.dst
.dev
!= dev
)
1407 dst_hold(&rth
->u
.dst
);
1410 rt
= dst_alloc(&ipv4_dst_ops
);
1417 /* Copy all the information. */
1419 rt
->u
.dst
.__use
= 1;
1420 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1421 rt
->u
.dst
.child
= NULL
;
1423 dev_hold(rt
->u
.dst
.dev
);
1425 in_dev_hold(rt
->idev
);
1426 rt
->u
.dst
.obsolete
= -1;
1427 rt
->u
.dst
.lastuse
= jiffies
;
1428 rt
->u
.dst
.path
= &rt
->u
.dst
;
1429 rt
->u
.dst
.neighbour
= NULL
;
1430 rt
->u
.dst
.hh
= NULL
;
1432 rt
->u
.dst
.xfrm
= NULL
;
1434 rt
->rt_genid
= rt_genid(net
);
1435 rt
->rt_flags
|= RTCF_REDIRECTED
;
1437 /* Gateway is different ... */
1438 rt
->rt_gateway
= new_gw
;
1440 /* Redirect received -> path was valid */
1441 dst_confirm(&rth
->u
.dst
);
1444 atomic_inc(&rt
->peer
->refcnt
);
1446 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1447 !(rt
->u
.dst
.neighbour
->nud_state
&
1449 if (rt
->u
.dst
.neighbour
)
1450 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1456 netevent
.old
= &rth
->u
.dst
;
1457 netevent
.new = &rt
->u
.dst
;
1458 call_netevent_notifiers(NETEVENT_REDIRECT
,
1462 if (!rt_intern_hash(hash
, rt
, &rt
, NULL
, rt
->fl
.oif
))
1475 #ifdef CONFIG_IP_ROUTE_VERBOSE
1476 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1477 printk(KERN_INFO
"Redirect from %pI4 on %s about %pI4 ignored.\n"
1478 " Advised path = %pI4 -> %pI4\n",
1479 &old_gw
, dev
->name
, &new_gw
,
1485 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1487 struct rtable
*rt
= (struct rtable
*)dst
;
1488 struct dst_entry
*ret
= dst
;
1491 if (dst
->obsolete
> 0) {
1494 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1495 (rt
->u
.dst
.expires
&&
1496 time_after_eq(jiffies
, rt
->u
.dst
.expires
))) {
1497 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1499 rt_genid(dev_net(dst
->dev
)));
1500 #if RT_CACHE_DEBUG >= 1
1501 printk(KERN_DEBUG
"ipv4_negative_advice: redirect to %pI4/%02x dropped\n",
1502 &rt
->rt_dst
, rt
->fl
.fl4_tos
);
1513 * 1. The first ip_rt_redirect_number redirects are sent
1514 * with exponential backoff, then we stop sending them at all,
1515 * assuming that the host ignores our redirects.
1516 * 2. If we did not see packets requiring redirects
1517 * during ip_rt_redirect_silence, we assume that the host
1518 * forgot redirected route and start to send redirects again.
1520 * This algorithm is much cheaper and more intelligent than dumb load limiting
1523 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1524 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1527 void ip_rt_send_redirect(struct sk_buff
*skb
)
1529 struct rtable
*rt
= skb_rtable(skb
);
1530 struct in_device
*in_dev
;
1534 in_dev
= __in_dev_get_rcu(rt
->u
.dst
.dev
);
1535 if (!in_dev
|| !IN_DEV_TX_REDIRECTS(in_dev
)) {
1539 log_martians
= IN_DEV_LOG_MARTIANS(in_dev
);
1542 /* No redirected packets during ip_rt_redirect_silence;
1543 * reset the algorithm.
1545 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1546 rt
->u
.dst
.rate_tokens
= 0;
1548 /* Too many ignored redirects; do not send anything
1549 * set u.dst.rate_last to the last seen redirected packet.
1551 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1552 rt
->u
.dst
.rate_last
= jiffies
;
1556 /* Check for load limit; set rate_last to the latest sent
1559 if (rt
->u
.dst
.rate_tokens
== 0 ||
1561 (rt
->u
.dst
.rate_last
+
1562 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1563 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1564 rt
->u
.dst
.rate_last
= jiffies
;
1565 ++rt
->u
.dst
.rate_tokens
;
1566 #ifdef CONFIG_IP_ROUTE_VERBOSE
1568 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1570 printk(KERN_WARNING
"host %pI4/if%d ignores redirects for %pI4 to %pI4.\n",
1571 &rt
->rt_src
, rt
->rt_iif
,
1572 &rt
->rt_dst
, &rt
->rt_gateway
);
1577 static int ip_error(struct sk_buff
*skb
)
1579 struct rtable
*rt
= skb_rtable(skb
);
1583 switch (rt
->u
.dst
.error
) {
1588 code
= ICMP_HOST_UNREACH
;
1591 code
= ICMP_NET_UNREACH
;
1592 IP_INC_STATS_BH(dev_net(rt
->u
.dst
.dev
),
1593 IPSTATS_MIB_INNOROUTES
);
1596 code
= ICMP_PKT_FILTERED
;
1601 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1602 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1603 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1604 rt
->u
.dst
.rate_last
= now
;
1605 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1606 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1607 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1610 out
: kfree_skb(skb
);
1615 * The last two values are not from the RFC but
1616 * are needed for AMPRnet AX.25 paths.
1619 static const unsigned short mtu_plateau
[] =
1620 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1622 static inline unsigned short guess_mtu(unsigned short old_mtu
)
1626 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1627 if (old_mtu
> mtu_plateau
[i
])
1628 return mtu_plateau
[i
];
1632 unsigned short ip_rt_frag_needed(struct net
*net
, struct iphdr
*iph
,
1633 unsigned short new_mtu
,
1634 struct net_device
*dev
)
1637 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1639 int ikeys
[2] = { dev
->ifindex
, 0 };
1640 __be32 skeys
[2] = { iph
->saddr
, 0, };
1641 __be32 daddr
= iph
->daddr
;
1642 unsigned short est_mtu
= 0;
1644 for (k
= 0; k
< 2; k
++) {
1645 for (i
= 0; i
< 2; i
++) {
1646 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
],
1650 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1651 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1652 unsigned short mtu
= new_mtu
;
1654 if (rth
->fl
.fl4_dst
!= daddr
||
1655 rth
->fl
.fl4_src
!= skeys
[i
] ||
1656 rth
->rt_dst
!= daddr
||
1657 rth
->rt_src
!= iph
->saddr
||
1658 rth
->fl
.oif
!= ikeys
[k
] ||
1660 dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
) ||
1661 !net_eq(dev_net(rth
->u
.dst
.dev
), net
) ||
1665 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1667 /* BSD 4.2 compatibility hack :-( */
1669 old_mtu
>= dst_mtu(&rth
->u
.dst
) &&
1670 old_mtu
>= 68 + (iph
->ihl
<< 2))
1671 old_mtu
-= iph
->ihl
<< 2;
1673 mtu
= guess_mtu(old_mtu
);
1675 if (mtu
<= dst_mtu(&rth
->u
.dst
)) {
1676 if (mtu
< dst_mtu(&rth
->u
.dst
)) {
1677 dst_confirm(&rth
->u
.dst
);
1678 if (mtu
< ip_rt_min_pmtu
) {
1679 mtu
= ip_rt_min_pmtu
;
1680 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1683 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1684 dst_set_expires(&rth
->u
.dst
,
1693 return est_mtu
? : new_mtu
;
1696 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1698 if (dst_mtu(dst
) > mtu
&& mtu
>= 68 &&
1699 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1700 if (mtu
< ip_rt_min_pmtu
) {
1701 mtu
= ip_rt_min_pmtu
;
1702 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1704 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1705 dst_set_expires(dst
, ip_rt_mtu_expires
);
1706 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1710 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1712 if (rt_is_expired((struct rtable
*)dst
))
1717 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1719 struct rtable
*rt
= (struct rtable
*) dst
;
1720 struct inet_peer
*peer
= rt
->peer
;
1721 struct in_device
*idev
= rt
->idev
;
1734 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1737 struct rtable
*rt
= (struct rtable
*) dst
;
1738 struct in_device
*idev
= rt
->idev
;
1739 if (dev
!= dev_net(dev
)->loopback_dev
&& idev
&& idev
->dev
== dev
) {
1740 struct in_device
*loopback_idev
=
1741 in_dev_get(dev_net(dev
)->loopback_dev
);
1742 if (loopback_idev
) {
1743 rt
->idev
= loopback_idev
;
1749 static void ipv4_link_failure(struct sk_buff
*skb
)
1753 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1755 rt
= skb_rtable(skb
);
1757 dst_set_expires(&rt
->u
.dst
, 0);
1760 static int ip_rt_bug(struct sk_buff
*skb
)
1762 printk(KERN_DEBUG
"ip_rt_bug: %pI4 -> %pI4, %s\n",
1763 &ip_hdr(skb
)->saddr
, &ip_hdr(skb
)->daddr
,
1764 skb
->dev
? skb
->dev
->name
: "?");
1770 We do not cache source address of outgoing interface,
1771 because it is used only by IP RR, TS and SRR options,
1772 so that it out of fast path.
1774 BTW remember: "addr" is allowed to be not aligned
1778 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1781 struct fib_result res
;
1783 if (rt
->fl
.iif
== 0)
1785 else if (fib_lookup(dev_net(rt
->u
.dst
.dev
), &rt
->fl
, &res
) == 0) {
1786 src
= FIB_RES_PREFSRC(res
);
1789 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1791 memcpy(addr
, &src
, 4);
1794 #ifdef CONFIG_NET_CLS_ROUTE
1795 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1797 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1798 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1799 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1800 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1804 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1806 struct fib_info
*fi
= res
->fi
;
1809 if (FIB_RES_GW(*res
) &&
1810 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1811 rt
->rt_gateway
= FIB_RES_GW(*res
);
1812 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1813 sizeof(rt
->u
.dst
.metrics
));
1814 if (fi
->fib_mtu
== 0) {
1815 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1816 if (dst_metric_locked(&rt
->u
.dst
, RTAX_MTU
) &&
1817 rt
->rt_gateway
!= rt
->rt_dst
&&
1818 rt
->u
.dst
.dev
->mtu
> 576)
1819 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1821 #ifdef CONFIG_NET_CLS_ROUTE
1822 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1825 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1827 if (dst_metric(&rt
->u
.dst
, RTAX_HOPLIMIT
) == 0)
1828 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1829 if (dst_mtu(&rt
->u
.dst
) > IP_MAX_MTU
)
1830 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1831 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) == 0)
1832 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1834 if (dst_metric(&rt
->u
.dst
, RTAX_ADVMSS
) > 65535 - 40)
1835 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1837 #ifdef CONFIG_NET_CLS_ROUTE
1838 #ifdef CONFIG_IP_MULTIPLE_TABLES
1839 set_class_tag(rt
, fib_rules_tclass(res
));
1841 set_class_tag(rt
, itag
);
1843 rt
->rt_type
= res
->type
;
1846 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1847 u8 tos
, struct net_device
*dev
, int our
)
1852 struct in_device
*in_dev
= in_dev_get(dev
);
1855 /* Primary sanity checks. */
1860 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
1861 ipv4_is_loopback(saddr
) || skb
->protocol
!= htons(ETH_P_IP
))
1864 if (ipv4_is_zeronet(saddr
)) {
1865 if (!ipv4_is_local_multicast(daddr
))
1867 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1868 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1869 dev
, &spec_dst
, &itag
, 0) < 0)
1872 rth
= dst_alloc(&ipv4_dst_ops
);
1876 rth
->u
.dst
.output
= ip_rt_bug
;
1877 rth
->u
.dst
.obsolete
= -1;
1879 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1880 rth
->u
.dst
.flags
= DST_HOST
;
1881 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1882 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1883 rth
->fl
.fl4_dst
= daddr
;
1884 rth
->rt_dst
= daddr
;
1885 rth
->fl
.fl4_tos
= tos
;
1886 rth
->fl
.mark
= skb
->mark
;
1887 rth
->fl
.fl4_src
= saddr
;
1888 rth
->rt_src
= saddr
;
1889 #ifdef CONFIG_NET_CLS_ROUTE
1890 rth
->u
.dst
.tclassid
= itag
;
1893 rth
->fl
.iif
= dev
->ifindex
;
1894 rth
->u
.dst
.dev
= init_net
.loopback_dev
;
1895 dev_hold(rth
->u
.dst
.dev
);
1896 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1898 rth
->rt_gateway
= daddr
;
1899 rth
->rt_spec_dst
= spec_dst
;
1900 rth
->rt_genid
= rt_genid(dev_net(dev
));
1901 rth
->rt_flags
= RTCF_MULTICAST
;
1902 rth
->rt_type
= RTN_MULTICAST
;
1904 rth
->u
.dst
.input
= ip_local_deliver
;
1905 rth
->rt_flags
|= RTCF_LOCAL
;
1908 #ifdef CONFIG_IP_MROUTE
1909 if (!ipv4_is_local_multicast(daddr
) && IN_DEV_MFORWARD(in_dev
))
1910 rth
->u
.dst
.input
= ip_mr_input
;
1912 RT_CACHE_STAT_INC(in_slow_mc
);
1915 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
, rt_genid(dev_net(dev
)));
1916 return rt_intern_hash(hash
, rth
, NULL
, skb
, dev
->ifindex
);
1928 static void ip_handle_martian_source(struct net_device
*dev
,
1929 struct in_device
*in_dev
,
1930 struct sk_buff
*skb
,
1934 RT_CACHE_STAT_INC(in_martian_src
);
1935 #ifdef CONFIG_IP_ROUTE_VERBOSE
1936 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1938 * RFC1812 recommendation, if source is martian,
1939 * the only hint is MAC header.
1941 printk(KERN_WARNING
"martian source %pI4 from %pI4, on dev %s\n",
1942 &daddr
, &saddr
, dev
->name
);
1943 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1945 const unsigned char *p
= skb_mac_header(skb
);
1946 printk(KERN_WARNING
"ll header: ");
1947 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1949 if (i
< (dev
->hard_header_len
- 1))
1958 static int __mkroute_input(struct sk_buff
*skb
,
1959 struct fib_result
*res
,
1960 struct in_device
*in_dev
,
1961 __be32 daddr
, __be32 saddr
, u32 tos
,
1962 struct rtable
**result
)
1967 struct in_device
*out_dev
;
1972 /* get a working reference to the output device */
1973 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1974 if (out_dev
== NULL
) {
1975 if (net_ratelimit())
1976 printk(KERN_CRIT
"Bug in ip_route_input" \
1977 "_slow(). Please, report\n");
1982 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1983 in_dev
->dev
, &spec_dst
, &itag
, skb
->mark
);
1985 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1993 flags
|= RTCF_DIRECTSRC
;
1995 if (out_dev
== in_dev
&& err
&&
1996 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1997 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1998 flags
|= RTCF_DOREDIRECT
;
2000 if (skb
->protocol
!= htons(ETH_P_IP
)) {
2001 /* Not IP (i.e. ARP). Do not create route, if it is
2002 * invalid for proxy arp. DNAT routes are always valid.
2004 * Proxy arp feature have been extended to allow, ARP
2005 * replies back to the same interface, to support
2006 * Private VLAN switch technologies. See arp.c.
2008 if (out_dev
== in_dev
&&
2009 IN_DEV_PROXY_ARP_PVLAN(in_dev
) == 0) {
2016 rth
= dst_alloc(&ipv4_dst_ops
);
2022 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2023 rth
->u
.dst
.flags
= DST_HOST
;
2024 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2025 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2026 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
2027 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2028 rth
->fl
.fl4_dst
= daddr
;
2029 rth
->rt_dst
= daddr
;
2030 rth
->fl
.fl4_tos
= tos
;
2031 rth
->fl
.mark
= skb
->mark
;
2032 rth
->fl
.fl4_src
= saddr
;
2033 rth
->rt_src
= saddr
;
2034 rth
->rt_gateway
= daddr
;
2036 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
2037 rth
->u
.dst
.dev
= (out_dev
)->dev
;
2038 dev_hold(rth
->u
.dst
.dev
);
2039 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2041 rth
->rt_spec_dst
= spec_dst
;
2043 rth
->u
.dst
.obsolete
= -1;
2044 rth
->u
.dst
.input
= ip_forward
;
2045 rth
->u
.dst
.output
= ip_output
;
2046 rth
->rt_genid
= rt_genid(dev_net(rth
->u
.dst
.dev
));
2048 rt_set_nexthop(rth
, res
, itag
);
2050 rth
->rt_flags
= flags
;
2055 /* release the working reference to the output device */
2056 in_dev_put(out_dev
);
2060 static int ip_mkroute_input(struct sk_buff
*skb
,
2061 struct fib_result
*res
,
2062 const struct flowi
*fl
,
2063 struct in_device
*in_dev
,
2064 __be32 daddr
, __be32 saddr
, u32 tos
)
2066 struct rtable
* rth
= NULL
;
2070 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2071 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
2072 fib_select_multipath(fl
, res
);
2075 /* create a routing cache entry */
2076 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
2080 /* put it into the cache */
2081 hash
= rt_hash(daddr
, saddr
, fl
->iif
,
2082 rt_genid(dev_net(rth
->u
.dst
.dev
)));
2083 return rt_intern_hash(hash
, rth
, NULL
, skb
, fl
->iif
);
2087 * NOTE. We drop all the packets that has local source
2088 * addresses, because every properly looped back packet
2089 * must have correct destination already attached by output routine.
2091 * Such approach solves two big problems:
2092 * 1. Not simplex devices are handled properly.
2093 * 2. IP spoofing attempts are filtered with 100% of guarantee.
2096 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2097 u8 tos
, struct net_device
*dev
)
2099 struct fib_result res
;
2100 struct in_device
*in_dev
= in_dev_get(dev
);
2101 struct flowi fl
= { .nl_u
= { .ip4_u
=
2105 .scope
= RT_SCOPE_UNIVERSE
,
2108 .iif
= dev
->ifindex
};
2111 struct rtable
* rth
;
2116 struct net
* net
= dev_net(dev
);
2118 /* IP on this device is disabled. */
2123 /* Check for the most weird martians, which can be not detected
2127 if (ipv4_is_multicast(saddr
) || ipv4_is_lbcast(saddr
) ||
2128 ipv4_is_loopback(saddr
))
2129 goto martian_source
;
2131 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
2134 /* Accept zero addresses only to limited broadcast;
2135 * I even do not know to fix it or not. Waiting for complains :-)
2137 if (ipv4_is_zeronet(saddr
))
2138 goto martian_source
;
2140 if (ipv4_is_lbcast(daddr
) || ipv4_is_zeronet(daddr
) ||
2141 ipv4_is_loopback(daddr
))
2142 goto martian_destination
;
2145 * Now we are ready to route packet.
2147 if ((err
= fib_lookup(net
, &fl
, &res
)) != 0) {
2148 if (!IN_DEV_FORWARD(in_dev
))
2154 RT_CACHE_STAT_INC(in_slow_tot
);
2156 if (res
.type
== RTN_BROADCAST
)
2159 if (res
.type
== RTN_LOCAL
) {
2161 result
= fib_validate_source(saddr
, daddr
, tos
,
2162 net
->loopback_dev
->ifindex
,
2163 dev
, &spec_dst
, &itag
, skb
->mark
);
2165 goto martian_source
;
2167 flags
|= RTCF_DIRECTSRC
;
2172 if (!IN_DEV_FORWARD(in_dev
))
2174 if (res
.type
!= RTN_UNICAST
)
2175 goto martian_destination
;
2177 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
2185 if (skb
->protocol
!= htons(ETH_P_IP
))
2188 if (ipv4_is_zeronet(saddr
))
2189 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
2191 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
2194 goto martian_source
;
2196 flags
|= RTCF_DIRECTSRC
;
2198 flags
|= RTCF_BROADCAST
;
2199 res
.type
= RTN_BROADCAST
;
2200 RT_CACHE_STAT_INC(in_brd
);
2203 rth
= dst_alloc(&ipv4_dst_ops
);
2207 rth
->u
.dst
.output
= ip_rt_bug
;
2208 rth
->u
.dst
.obsolete
= -1;
2209 rth
->rt_genid
= rt_genid(net
);
2211 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2212 rth
->u
.dst
.flags
= DST_HOST
;
2213 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2214 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2215 rth
->fl
.fl4_dst
= daddr
;
2216 rth
->rt_dst
= daddr
;
2217 rth
->fl
.fl4_tos
= tos
;
2218 rth
->fl
.mark
= skb
->mark
;
2219 rth
->fl
.fl4_src
= saddr
;
2220 rth
->rt_src
= saddr
;
2221 #ifdef CONFIG_NET_CLS_ROUTE
2222 rth
->u
.dst
.tclassid
= itag
;
2225 rth
->fl
.iif
= dev
->ifindex
;
2226 rth
->u
.dst
.dev
= net
->loopback_dev
;
2227 dev_hold(rth
->u
.dst
.dev
);
2228 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
2229 rth
->rt_gateway
= daddr
;
2230 rth
->rt_spec_dst
= spec_dst
;
2231 rth
->u
.dst
.input
= ip_local_deliver
;
2232 rth
->rt_flags
= flags
|RTCF_LOCAL
;
2233 if (res
.type
== RTN_UNREACHABLE
) {
2234 rth
->u
.dst
.input
= ip_error
;
2235 rth
->u
.dst
.error
= -err
;
2236 rth
->rt_flags
&= ~RTCF_LOCAL
;
2238 rth
->rt_type
= res
.type
;
2239 hash
= rt_hash(daddr
, saddr
, fl
.iif
, rt_genid(net
));
2240 err
= rt_intern_hash(hash
, rth
, NULL
, skb
, fl
.iif
);
2244 RT_CACHE_STAT_INC(in_no_route
);
2245 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
2246 res
.type
= RTN_UNREACHABLE
;
2252 * Do not cache martian addresses: they should be logged (RFC1812)
2254 martian_destination
:
2255 RT_CACHE_STAT_INC(in_martian_dst
);
2256 #ifdef CONFIG_IP_ROUTE_VERBOSE
2257 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
2258 printk(KERN_WARNING
"martian destination %pI4 from %pI4, dev %s\n",
2259 &daddr
, &saddr
, dev
->name
);
2263 err
= -EHOSTUNREACH
;
2275 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
2279 int ip_route_input_common(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
2280 u8 tos
, struct net_device
*dev
, bool noref
)
2282 struct rtable
* rth
;
2284 int iif
= dev
->ifindex
;
2289 if (!rt_caching(net
))
2292 tos
&= IPTOS_RT_MASK
;
2293 hash
= rt_hash(daddr
, saddr
, iif
, rt_genid(net
));
2296 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2297 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2298 if ((((__force u32
)rth
->fl
.fl4_dst
^ (__force u32
)daddr
) |
2299 ((__force u32
)rth
->fl
.fl4_src
^ (__force u32
)saddr
) |
2300 (rth
->fl
.iif
^ iif
) |
2302 (rth
->fl
.fl4_tos
^ tos
)) == 0 &&
2303 rth
->fl
.mark
== skb
->mark
&&
2304 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2305 !rt_is_expired(rth
)) {
2307 dst_use_noref(&rth
->u
.dst
, jiffies
);
2308 skb_dst_set_noref(skb
, &rth
->u
.dst
);
2310 dst_use(&rth
->u
.dst
, jiffies
);
2311 skb_dst_set(skb
, &rth
->u
.dst
);
2313 RT_CACHE_STAT_INC(in_hit
);
2317 RT_CACHE_STAT_INC(in_hlist_search
);
2322 /* Multicast recognition logic is moved from route cache to here.
2323 The problem was that too many Ethernet cards have broken/missing
2324 hardware multicast filters :-( As result the host on multicasting
2325 network acquires a lot of useless route cache entries, sort of
2326 SDR messages from all the world. Now we try to get rid of them.
2327 Really, provided software IP multicast filter is organized
2328 reasonably (at least, hashed), it does not result in a slowdown
2329 comparing with route cache reject entries.
2330 Note, that multicast routers are not affected, because
2331 route cache entry is created eventually.
2333 if (ipv4_is_multicast(daddr
)) {
2334 struct in_device
*in_dev
;
2337 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
2338 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
2339 ip_hdr(skb
)->protocol
);
2341 #ifdef CONFIG_IP_MROUTE
2343 (!ipv4_is_local_multicast(daddr
) &&
2344 IN_DEV_MFORWARD(in_dev
))
2348 return ip_route_input_mc(skb
, daddr
, saddr
,
2355 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2357 EXPORT_SYMBOL(ip_route_input_common
);
2359 static int __mkroute_output(struct rtable
**result
,
2360 struct fib_result
*res
,
2361 const struct flowi
*fl
,
2362 const struct flowi
*oldflp
,
2363 struct net_device
*dev_out
,
2367 struct in_device
*in_dev
;
2368 u32 tos
= RT_FL_TOS(oldflp
);
2371 if (ipv4_is_loopback(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2374 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2375 res
->type
= RTN_BROADCAST
;
2376 else if (ipv4_is_multicast(fl
->fl4_dst
))
2377 res
->type
= RTN_MULTICAST
;
2378 else if (ipv4_is_lbcast(fl
->fl4_dst
) || ipv4_is_zeronet(fl
->fl4_dst
))
2381 if (dev_out
->flags
& IFF_LOOPBACK
)
2382 flags
|= RTCF_LOCAL
;
2384 /* get work reference to inet device */
2385 in_dev
= in_dev_get(dev_out
);
2389 if (res
->type
== RTN_BROADCAST
) {
2390 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2392 fib_info_put(res
->fi
);
2395 } else if (res
->type
== RTN_MULTICAST
) {
2396 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2397 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2399 flags
&= ~RTCF_LOCAL
;
2400 /* If multicast route do not exist use
2401 default one, but do not gateway in this case.
2404 if (res
->fi
&& res
->prefixlen
< 4) {
2405 fib_info_put(res
->fi
);
2411 rth
= dst_alloc(&ipv4_dst_ops
);
2417 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2418 rth
->u
.dst
.flags
= DST_HOST
;
2419 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2420 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2421 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2422 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2424 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2425 rth
->fl
.fl4_tos
= tos
;
2426 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2427 rth
->fl
.oif
= oldflp
->oif
;
2428 rth
->fl
.mark
= oldflp
->mark
;
2429 rth
->rt_dst
= fl
->fl4_dst
;
2430 rth
->rt_src
= fl
->fl4_src
;
2431 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2432 /* get references to the devices that are to be hold by the routing
2434 rth
->u
.dst
.dev
= dev_out
;
2436 rth
->idev
= in_dev_get(dev_out
);
2437 rth
->rt_gateway
= fl
->fl4_dst
;
2438 rth
->rt_spec_dst
= fl
->fl4_src
;
2440 rth
->u
.dst
.output
=ip_output
;
2441 rth
->u
.dst
.obsolete
= -1;
2442 rth
->rt_genid
= rt_genid(dev_net(dev_out
));
2444 RT_CACHE_STAT_INC(out_slow_tot
);
2446 if (flags
& RTCF_LOCAL
) {
2447 rth
->u
.dst
.input
= ip_local_deliver
;
2448 rth
->rt_spec_dst
= fl
->fl4_dst
;
2450 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2451 rth
->rt_spec_dst
= fl
->fl4_src
;
2452 if (flags
& RTCF_LOCAL
&&
2453 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2454 rth
->u
.dst
.output
= ip_mc_output
;
2455 RT_CACHE_STAT_INC(out_slow_mc
);
2457 #ifdef CONFIG_IP_MROUTE
2458 if (res
->type
== RTN_MULTICAST
) {
2459 if (IN_DEV_MFORWARD(in_dev
) &&
2460 !ipv4_is_local_multicast(oldflp
->fl4_dst
)) {
2461 rth
->u
.dst
.input
= ip_mr_input
;
2462 rth
->u
.dst
.output
= ip_mc_output
;
2468 rt_set_nexthop(rth
, res
, 0);
2470 rth
->rt_flags
= flags
;
2474 /* release work reference to inet device */
2480 static int ip_mkroute_output(struct rtable
**rp
,
2481 struct fib_result
*res
,
2482 const struct flowi
*fl
,
2483 const struct flowi
*oldflp
,
2484 struct net_device
*dev_out
,
2487 struct rtable
*rth
= NULL
;
2488 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2491 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
,
2492 rt_genid(dev_net(dev_out
)));
2493 err
= rt_intern_hash(hash
, rth
, rp
, NULL
, oldflp
->oif
);
2500 * Major route resolver routine.
2503 static int ip_route_output_slow(struct net
*net
, struct rtable
**rp
,
2504 const struct flowi
*oldflp
)
2506 u32 tos
= RT_FL_TOS(oldflp
);
2507 struct flowi fl
= { .nl_u
= { .ip4_u
=
2508 { .daddr
= oldflp
->fl4_dst
,
2509 .saddr
= oldflp
->fl4_src
,
2510 .tos
= tos
& IPTOS_RT_MASK
,
2511 .scope
= ((tos
& RTO_ONLINK
) ?
2515 .mark
= oldflp
->mark
,
2516 .iif
= net
->loopback_dev
->ifindex
,
2517 .oif
= oldflp
->oif
};
2518 struct fib_result res
;
2520 struct net_device
*dev_out
= NULL
;
2526 #ifdef CONFIG_IP_MULTIPLE_TABLES
2530 if (oldflp
->fl4_src
) {
2532 if (ipv4_is_multicast(oldflp
->fl4_src
) ||
2533 ipv4_is_lbcast(oldflp
->fl4_src
) ||
2534 ipv4_is_zeronet(oldflp
->fl4_src
))
2537 /* I removed check for oif == dev_out->oif here.
2538 It was wrong for two reasons:
2539 1. ip_dev_find(net, saddr) can return wrong iface, if saddr
2540 is assigned to multiple interfaces.
2541 2. Moreover, we are allowed to send packets with saddr
2542 of another iface. --ANK
2545 if (oldflp
->oif
== 0 &&
2546 (ipv4_is_multicast(oldflp
->fl4_dst
) ||
2547 oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2548 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2549 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2550 if (dev_out
== NULL
)
2553 /* Special hack: user can direct multicasts
2554 and limited broadcast via necessary interface
2555 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2556 This hack is not just for fun, it allows
2557 vic,vat and friends to work.
2558 They bind socket to loopback, set ttl to zero
2559 and expect that it will work.
2560 From the viewpoint of routing cache they are broken,
2561 because we are not allowed to build multicast path
2562 with loopback source addr (look, routing cache
2563 cannot know, that ttl is zero, so that packet
2564 will not leave this host and route is valid).
2565 Luckily, this hack is good workaround.
2568 fl
.oif
= dev_out
->ifindex
;
2572 if (!(oldflp
->flags
& FLOWI_FLAG_ANYSRC
)) {
2573 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2574 dev_out
= ip_dev_find(net
, oldflp
->fl4_src
);
2575 if (dev_out
== NULL
)
2584 dev_out
= dev_get_by_index(net
, oldflp
->oif
);
2586 if (dev_out
== NULL
)
2589 /* RACE: Check return value of inet_select_addr instead. */
2590 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2592 goto out
; /* Wrong error code */
2595 if (ipv4_is_local_multicast(oldflp
->fl4_dst
) ||
2596 oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2598 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2603 if (ipv4_is_multicast(oldflp
->fl4_dst
))
2604 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2606 else if (!oldflp
->fl4_dst
)
2607 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2613 fl
.fl4_dst
= fl
.fl4_src
;
2615 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2618 dev_out
= net
->loopback_dev
;
2620 fl
.oif
= net
->loopback_dev
->ifindex
;
2621 res
.type
= RTN_LOCAL
;
2622 flags
|= RTCF_LOCAL
;
2626 if (fib_lookup(net
, &fl
, &res
)) {
2629 /* Apparently, routing tables are wrong. Assume,
2630 that the destination is on link.
2633 Because we are allowed to send to iface
2634 even if it has NO routes and NO assigned
2635 addresses. When oif is specified, routing
2636 tables are looked up with only one purpose:
2637 to catch if destination is gatewayed, rather than
2638 direct. Moreover, if MSG_DONTROUTE is set,
2639 we send packet, ignoring both routing tables
2640 and ifaddr state. --ANK
2643 We could make it even if oif is unknown,
2644 likely IPv6, but we do not.
2647 if (fl
.fl4_src
== 0)
2648 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2650 res
.type
= RTN_UNICAST
;
2660 if (res
.type
== RTN_LOCAL
) {
2662 fl
.fl4_src
= fl
.fl4_dst
;
2665 dev_out
= net
->loopback_dev
;
2667 fl
.oif
= dev_out
->ifindex
;
2669 fib_info_put(res
.fi
);
2671 flags
|= RTCF_LOCAL
;
2675 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2676 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2677 fib_select_multipath(&fl
, &res
);
2680 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2681 fib_select_default(net
, &fl
, &res
);
2684 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2688 dev_out
= FIB_RES_DEV(res
);
2690 fl
.oif
= dev_out
->ifindex
;
2694 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2704 int __ip_route_output_key(struct net
*net
, struct rtable
**rp
,
2705 const struct flowi
*flp
)
2710 if (!rt_caching(net
))
2713 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
, rt_genid(net
));
2716 for (rth
= rcu_dereference_bh(rt_hash_table
[hash
].chain
); rth
;
2717 rth
= rcu_dereference_bh(rth
->u
.dst
.rt_next
)) {
2718 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2719 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2721 rth
->fl
.oif
== flp
->oif
&&
2722 rth
->fl
.mark
== flp
->mark
&&
2723 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2724 (IPTOS_RT_MASK
| RTO_ONLINK
)) &&
2725 net_eq(dev_net(rth
->u
.dst
.dev
), net
) &&
2726 !rt_is_expired(rth
)) {
2727 dst_use(&rth
->u
.dst
, jiffies
);
2728 RT_CACHE_STAT_INC(out_hit
);
2729 rcu_read_unlock_bh();
2733 RT_CACHE_STAT_INC(out_hlist_search
);
2735 rcu_read_unlock_bh();
2738 return ip_route_output_slow(net
, rp
, flp
);
2741 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2743 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2747 static struct dst_ops ipv4_dst_blackhole_ops
= {
2749 .protocol
= cpu_to_be16(ETH_P_IP
),
2750 .destroy
= ipv4_dst_destroy
,
2751 .check
= ipv4_dst_check
,
2752 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2753 .entries
= ATOMIC_INIT(0),
2757 static int ipv4_dst_blackhole(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2759 struct rtable
*ort
= *rp
;
2760 struct rtable
*rt
= (struct rtable
*)
2761 dst_alloc(&ipv4_dst_blackhole_ops
);
2764 struct dst_entry
*new = &rt
->u
.dst
;
2766 atomic_set(&new->__refcnt
, 1);
2768 new->input
= dst_discard
;
2769 new->output
= dst_discard
;
2770 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2772 new->dev
= ort
->u
.dst
.dev
;
2778 rt
->idev
= ort
->idev
;
2780 in_dev_hold(rt
->idev
);
2781 rt
->rt_genid
= rt_genid(net
);
2782 rt
->rt_flags
= ort
->rt_flags
;
2783 rt
->rt_type
= ort
->rt_type
;
2784 rt
->rt_dst
= ort
->rt_dst
;
2785 rt
->rt_src
= ort
->rt_src
;
2786 rt
->rt_iif
= ort
->rt_iif
;
2787 rt
->rt_gateway
= ort
->rt_gateway
;
2788 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2789 rt
->peer
= ort
->peer
;
2791 atomic_inc(&rt
->peer
->refcnt
);
2796 dst_release(&(*rp
)->u
.dst
);
2798 return (rt
? 0 : -ENOMEM
);
2801 int ip_route_output_flow(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
,
2802 struct sock
*sk
, int flags
)
2806 if ((err
= __ip_route_output_key(net
, rp
, flp
)) != 0)
2811 flp
->fl4_src
= (*rp
)->rt_src
;
2813 flp
->fl4_dst
= (*rp
)->rt_dst
;
2814 err
= __xfrm_lookup(net
, (struct dst_entry
**)rp
, flp
, sk
,
2815 flags
? XFRM_LOOKUP_WAIT
: 0);
2816 if (err
== -EREMOTE
)
2817 err
= ipv4_dst_blackhole(net
, rp
, flp
);
2825 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2827 int ip_route_output_key(struct net
*net
, struct rtable
**rp
, struct flowi
*flp
)
2829 return ip_route_output_flow(net
, rp
, flp
, NULL
, 0);
2832 static int rt_fill_info(struct net
*net
,
2833 struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2834 int nowait
, unsigned int flags
)
2836 struct rtable
*rt
= skb_rtable(skb
);
2838 struct nlmsghdr
*nlh
;
2840 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2842 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2846 r
= nlmsg_data(nlh
);
2847 r
->rtm_family
= AF_INET
;
2848 r
->rtm_dst_len
= 32;
2850 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2851 r
->rtm_table
= RT_TABLE_MAIN
;
2852 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2853 r
->rtm_type
= rt
->rt_type
;
2854 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2855 r
->rtm_protocol
= RTPROT_UNSPEC
;
2856 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2857 if (rt
->rt_flags
& RTCF_NOTIFY
)
2858 r
->rtm_flags
|= RTM_F_NOTIFY
;
2860 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2862 if (rt
->fl
.fl4_src
) {
2863 r
->rtm_src_len
= 32;
2864 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2867 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2868 #ifdef CONFIG_NET_CLS_ROUTE
2869 if (rt
->u
.dst
.tclassid
)
2870 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2873 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2874 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2875 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2877 if (rt
->rt_dst
!= rt
->rt_gateway
)
2878 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2880 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2881 goto nla_put_failure
;
2883 error
= rt
->u
.dst
.error
;
2884 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2886 id
= atomic_read(&rt
->peer
->ip_id_count
) & 0xffff;
2887 if (rt
->peer
->tcp_ts_stamp
) {
2888 ts
= rt
->peer
->tcp_ts
;
2889 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2894 #ifdef CONFIG_IP_MROUTE
2895 __be32 dst
= rt
->rt_dst
;
2897 if (ipv4_is_multicast(dst
) && !ipv4_is_local_multicast(dst
) &&
2898 IPV4_DEVCONF_ALL(net
, MC_FORWARDING
)) {
2899 int err
= ipmr_get_route(net
, skb
, r
, nowait
);
2904 goto nla_put_failure
;
2906 if (err
== -EMSGSIZE
)
2907 goto nla_put_failure
;
2913 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2916 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2917 expires
, error
) < 0)
2918 goto nla_put_failure
;
2920 return nlmsg_end(skb
, nlh
);
2923 nlmsg_cancel(skb
, nlh
);
2927 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2929 struct net
*net
= sock_net(in_skb
->sk
);
2931 struct nlattr
*tb
[RTA_MAX
+1];
2932 struct rtable
*rt
= NULL
;
2937 struct sk_buff
*skb
;
2939 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2943 rtm
= nlmsg_data(nlh
);
2945 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2951 /* Reserve room for dummy headers, this skb can pass
2952 through good chunk of routing engine.
2954 skb_reset_mac_header(skb
);
2955 skb_reset_network_header(skb
);
2957 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2958 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2959 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2961 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2962 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2963 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2966 struct net_device
*dev
;
2968 dev
= __dev_get_by_index(net
, iif
);
2974 skb
->protocol
= htons(ETH_P_IP
);
2977 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2980 rt
= skb_rtable(skb
);
2981 if (err
== 0 && rt
->u
.dst
.error
)
2982 err
= -rt
->u
.dst
.error
;
2989 .tos
= rtm
->rtm_tos
,
2992 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2994 err
= ip_route_output_key(net
, &rt
, &fl
);
3000 skb_dst_set(skb
, &rt
->u
.dst
);
3001 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
3002 rt
->rt_flags
|= RTCF_NOTIFY
;
3004 err
= rt_fill_info(net
, skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
3005 RTM_NEWROUTE
, 0, 0);
3009 err
= rtnl_unicast(skb
, net
, NETLINK_CB(in_skb
).pid
);
3018 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
3025 net
= sock_net(skb
->sk
);
3030 s_idx
= idx
= cb
->args
[1];
3031 for (h
= s_h
; h
<= rt_hash_mask
; h
++, s_idx
= 0) {
3032 if (!rt_hash_table
[h
].chain
)
3035 for (rt
= rcu_dereference_bh(rt_hash_table
[h
].chain
), idx
= 0; rt
;
3036 rt
= rcu_dereference_bh(rt
->u
.dst
.rt_next
), idx
++) {
3037 if (!net_eq(dev_net(rt
->u
.dst
.dev
), net
) || idx
< s_idx
)
3039 if (rt_is_expired(rt
))
3041 skb_dst_set_noref(skb
, &rt
->u
.dst
);
3042 if (rt_fill_info(net
, skb
, NETLINK_CB(cb
->skb
).pid
,
3043 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
3044 1, NLM_F_MULTI
) <= 0) {
3046 rcu_read_unlock_bh();
3051 rcu_read_unlock_bh();
3060 void ip_rt_multicast_event(struct in_device
*in_dev
)
3062 rt_cache_flush(dev_net(in_dev
->dev
), 0);
3065 #ifdef CONFIG_SYSCTL
3066 static int ipv4_sysctl_rtcache_flush(ctl_table
*__ctl
, int write
,
3067 void __user
*buffer
,
3068 size_t *lenp
, loff_t
*ppos
)
3075 memcpy(&ctl
, __ctl
, sizeof(ctl
));
3076 ctl
.data
= &flush_delay
;
3077 proc_dointvec(&ctl
, write
, buffer
, lenp
, ppos
);
3079 net
= (struct net
*)__ctl
->extra1
;
3080 rt_cache_flush(net
, flush_delay
);
3087 static ctl_table ipv4_route_table
[] = {
3089 .procname
= "gc_thresh",
3090 .data
= &ipv4_dst_ops
.gc_thresh
,
3091 .maxlen
= sizeof(int),
3093 .proc_handler
= proc_dointvec
,
3096 .procname
= "max_size",
3097 .data
= &ip_rt_max_size
,
3098 .maxlen
= sizeof(int),
3100 .proc_handler
= proc_dointvec
,
3103 /* Deprecated. Use gc_min_interval_ms */
3105 .procname
= "gc_min_interval",
3106 .data
= &ip_rt_gc_min_interval
,
3107 .maxlen
= sizeof(int),
3109 .proc_handler
= proc_dointvec_jiffies
,
3112 .procname
= "gc_min_interval_ms",
3113 .data
= &ip_rt_gc_min_interval
,
3114 .maxlen
= sizeof(int),
3116 .proc_handler
= proc_dointvec_ms_jiffies
,
3119 .procname
= "gc_timeout",
3120 .data
= &ip_rt_gc_timeout
,
3121 .maxlen
= sizeof(int),
3123 .proc_handler
= proc_dointvec_jiffies
,
3126 .procname
= "gc_interval",
3127 .data
= &ip_rt_gc_interval
,
3128 .maxlen
= sizeof(int),
3130 .proc_handler
= proc_dointvec_jiffies
,
3133 .procname
= "redirect_load",
3134 .data
= &ip_rt_redirect_load
,
3135 .maxlen
= sizeof(int),
3137 .proc_handler
= proc_dointvec
,
3140 .procname
= "redirect_number",
3141 .data
= &ip_rt_redirect_number
,
3142 .maxlen
= sizeof(int),
3144 .proc_handler
= proc_dointvec
,
3147 .procname
= "redirect_silence",
3148 .data
= &ip_rt_redirect_silence
,
3149 .maxlen
= sizeof(int),
3151 .proc_handler
= proc_dointvec
,
3154 .procname
= "error_cost",
3155 .data
= &ip_rt_error_cost
,
3156 .maxlen
= sizeof(int),
3158 .proc_handler
= proc_dointvec
,
3161 .procname
= "error_burst",
3162 .data
= &ip_rt_error_burst
,
3163 .maxlen
= sizeof(int),
3165 .proc_handler
= proc_dointvec
,
3168 .procname
= "gc_elasticity",
3169 .data
= &ip_rt_gc_elasticity
,
3170 .maxlen
= sizeof(int),
3172 .proc_handler
= proc_dointvec
,
3175 .procname
= "mtu_expires",
3176 .data
= &ip_rt_mtu_expires
,
3177 .maxlen
= sizeof(int),
3179 .proc_handler
= proc_dointvec_jiffies
,
3182 .procname
= "min_pmtu",
3183 .data
= &ip_rt_min_pmtu
,
3184 .maxlen
= sizeof(int),
3186 .proc_handler
= proc_dointvec
,
3189 .procname
= "min_adv_mss",
3190 .data
= &ip_rt_min_advmss
,
3191 .maxlen
= sizeof(int),
3193 .proc_handler
= proc_dointvec
,
3198 static struct ctl_table empty
[1];
3200 static struct ctl_table ipv4_skeleton
[] =
3202 { .procname
= "route",
3203 .mode
= 0555, .child
= ipv4_route_table
},
3204 { .procname
= "neigh",
3205 .mode
= 0555, .child
= empty
},
3209 static __net_initdata
struct ctl_path ipv4_path
[] = {
3210 { .procname
= "net", },
3211 { .procname
= "ipv4", },
3215 static struct ctl_table ipv4_route_flush_table
[] = {
3217 .procname
= "flush",
3218 .maxlen
= sizeof(int),
3220 .proc_handler
= ipv4_sysctl_rtcache_flush
,
3225 static __net_initdata
struct ctl_path ipv4_route_path
[] = {
3226 { .procname
= "net", },
3227 { .procname
= "ipv4", },
3228 { .procname
= "route", },
3232 static __net_init
int sysctl_route_net_init(struct net
*net
)
3234 struct ctl_table
*tbl
;
3236 tbl
= ipv4_route_flush_table
;
3237 if (!net_eq(net
, &init_net
)) {
3238 tbl
= kmemdup(tbl
, sizeof(ipv4_route_flush_table
), GFP_KERNEL
);
3242 tbl
[0].extra1
= net
;
3244 net
->ipv4
.route_hdr
=
3245 register_net_sysctl_table(net
, ipv4_route_path
, tbl
);
3246 if (net
->ipv4
.route_hdr
== NULL
)
3251 if (tbl
!= ipv4_route_flush_table
)
3257 static __net_exit
void sysctl_route_net_exit(struct net
*net
)
3259 struct ctl_table
*tbl
;
3261 tbl
= net
->ipv4
.route_hdr
->ctl_table_arg
;
3262 unregister_net_sysctl_table(net
->ipv4
.route_hdr
);
3263 BUG_ON(tbl
== ipv4_route_flush_table
);
3267 static __net_initdata
struct pernet_operations sysctl_route_ops
= {
3268 .init
= sysctl_route_net_init
,
3269 .exit
= sysctl_route_net_exit
,
3273 static __net_init
int rt_genid_init(struct net
*net
)
3275 get_random_bytes(&net
->ipv4
.rt_genid
,
3276 sizeof(net
->ipv4
.rt_genid
));
3280 static __net_initdata
struct pernet_operations rt_genid_ops
= {
3281 .init
= rt_genid_init
,
3285 #ifdef CONFIG_NET_CLS_ROUTE
3286 struct ip_rt_acct __percpu
*ip_rt_acct __read_mostly
;
3287 #endif /* CONFIG_NET_CLS_ROUTE */
3289 static __initdata
unsigned long rhash_entries
;
3290 static int __init
set_rhash_entries(char *str
)
3294 rhash_entries
= simple_strtoul(str
, &str
, 0);
3297 __setup("rhash_entries=", set_rhash_entries
);
3299 int __init
ip_rt_init(void)
3303 #ifdef CONFIG_NET_CLS_ROUTE
3304 ip_rt_acct
= __alloc_percpu(256 * sizeof(struct ip_rt_acct
), __alignof__(struct ip_rt_acct
));
3306 panic("IP: failed to allocate ip_rt_acct\n");
3309 ipv4_dst_ops
.kmem_cachep
=
3310 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
3311 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3313 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
3315 rt_hash_table
= (struct rt_hash_bucket
*)
3316 alloc_large_system_hash("IP route cache",
3317 sizeof(struct rt_hash_bucket
),
3319 (totalram_pages
>= 128 * 1024) ?
3324 rhash_entries
? 0 : 512 * 1024);
3325 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
3326 rt_hash_lock_init();
3328 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
3329 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
3334 /* All the timers, started at system startup tend
3335 to synchronize. Perturb it a bit.
3337 INIT_DELAYED_WORK_DEFERRABLE(&expires_work
, rt_worker_func
);
3338 expires_ljiffies
= jiffies
;
3339 schedule_delayed_work(&expires_work
,
3340 net_random() % ip_rt_gc_interval
+ ip_rt_gc_interval
);
3342 if (ip_rt_proc_init())
3343 printk(KERN_ERR
"Unable to create route proc files\n");
3346 xfrm4_init(ip_rt_max_size
);
3348 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3350 #ifdef CONFIG_SYSCTL
3351 register_pernet_subsys(&sysctl_route_ops
);
3353 register_pernet_subsys(&rt_genid_ops
);
3357 #ifdef CONFIG_SYSCTL
3359 * We really need to sanitize the damn ipv4 init order, then all
3360 * this nonsense will go away.
3362 void __init
ip_static_sysctl_init(void)
3364 register_sysctl_paths(ipv4_path
, ipv4_skeleton
);
3368 EXPORT_SYMBOL(__ip_select_ident
);
3369 EXPORT_SYMBOL(ip_route_output_key
);