2 #include <linux/fsnotify_backend.h>
3 #include <linux/namei.h>
4 #include <linux/mount.h>
5 #include <linux/kthread.h>
6 #include <linux/slab.h>
14 struct audit_chunk
*root
;
15 struct list_head chunks
;
16 struct list_head rules
;
17 struct list_head list
;
18 struct list_head same_root
;
24 struct list_head hash
;
25 struct fsnotify_mark mark
;
26 struct list_head trees
; /* with root here */
32 struct list_head list
;
33 struct audit_tree
*owner
;
34 unsigned index
; /* index; upper bit indicates 'will prune' */
38 static LIST_HEAD(tree_list
);
39 static LIST_HEAD(prune_list
);
42 * One struct chunk is attached to each inode of interest.
43 * We replace struct chunk on tagging/untagging.
44 * Rules have pointer to struct audit_tree.
45 * Rules have struct list_head rlist forming a list of rules over
47 * References to struct chunk are collected at audit_inode{,_child}()
48 * time and used in AUDIT_TREE rule matching.
49 * These references are dropped at the same time we are calling
50 * audit_free_names(), etc.
52 * Cyclic lists galore:
53 * tree.chunks anchors chunk.owners[].list hash_lock
54 * tree.rules anchors rule.rlist audit_filter_mutex
55 * chunk.trees anchors tree.same_root hash_lock
56 * chunk.hash is a hash with middle bits of watch.inode as
57 * a hash function. RCU, hash_lock
59 * tree is refcounted; one reference for "some rules on rules_list refer to
60 * it", one for each chunk with pointer to it.
62 * chunk is refcounted by embedded fsnotify_mark + .refs (non-zero refcount
63 * of watch contributes 1 to .refs).
65 * node.index allows to get from node.list to containing chunk.
66 * MSB of that sucker is stolen to mark taggings that we might have to
67 * revert - several operations have very unpleasant cleanup logics and
68 * that makes a difference. Some.
71 static struct fsnotify_group
*audit_tree_group
;
73 static struct audit_tree
*alloc_tree(const char *s
)
75 struct audit_tree
*tree
;
77 tree
= kmalloc(sizeof(struct audit_tree
) + strlen(s
) + 1, GFP_KERNEL
);
79 atomic_set(&tree
->count
, 1);
81 INIT_LIST_HEAD(&tree
->chunks
);
82 INIT_LIST_HEAD(&tree
->rules
);
83 INIT_LIST_HEAD(&tree
->list
);
84 INIT_LIST_HEAD(&tree
->same_root
);
86 strcpy(tree
->pathname
, s
);
91 static inline void get_tree(struct audit_tree
*tree
)
93 atomic_inc(&tree
->count
);
96 static inline void put_tree(struct audit_tree
*tree
)
98 if (atomic_dec_and_test(&tree
->count
))
99 kfree_rcu(tree
, head
);
102 /* to avoid bringing the entire thing in audit.h */
103 const char *audit_tree_path(struct audit_tree
*tree
)
105 return tree
->pathname
;
108 static void free_chunk(struct audit_chunk
*chunk
)
112 for (i
= 0; i
< chunk
->count
; i
++) {
113 if (chunk
->owners
[i
].owner
)
114 put_tree(chunk
->owners
[i
].owner
);
119 void audit_put_chunk(struct audit_chunk
*chunk
)
121 if (atomic_long_dec_and_test(&chunk
->refs
))
125 static void __put_chunk(struct rcu_head
*rcu
)
127 struct audit_chunk
*chunk
= container_of(rcu
, struct audit_chunk
, head
);
128 audit_put_chunk(chunk
);
131 static void audit_tree_destroy_watch(struct fsnotify_mark
*entry
)
133 struct audit_chunk
*chunk
= container_of(entry
, struct audit_chunk
, mark
);
134 call_rcu(&chunk
->head
, __put_chunk
);
137 static struct audit_chunk
*alloc_chunk(int count
)
139 struct audit_chunk
*chunk
;
143 size
= offsetof(struct audit_chunk
, owners
) + count
* sizeof(struct node
);
144 chunk
= kzalloc(size
, GFP_KERNEL
);
148 INIT_LIST_HEAD(&chunk
->hash
);
149 INIT_LIST_HEAD(&chunk
->trees
);
150 chunk
->count
= count
;
151 atomic_long_set(&chunk
->refs
, 1);
152 for (i
= 0; i
< count
; i
++) {
153 INIT_LIST_HEAD(&chunk
->owners
[i
].list
);
154 chunk
->owners
[i
].index
= i
;
156 fsnotify_init_mark(&chunk
->mark
, audit_tree_destroy_watch
);
160 enum {HASH_SIZE
= 128};
161 static struct list_head chunk_hash_heads
[HASH_SIZE
];
162 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(hash_lock
);
164 static inline struct list_head
*chunk_hash(const struct inode
*inode
)
166 unsigned long n
= (unsigned long)inode
/ L1_CACHE_BYTES
;
167 return chunk_hash_heads
+ n
% HASH_SIZE
;
170 /* hash_lock & entry->lock is held by caller */
171 static void insert_hash(struct audit_chunk
*chunk
)
173 struct fsnotify_mark
*entry
= &chunk
->mark
;
174 struct list_head
*list
;
178 list
= chunk_hash(entry
->i
.inode
);
179 list_add_rcu(&chunk
->hash
, list
);
182 /* called under rcu_read_lock */
183 struct audit_chunk
*audit_tree_lookup(const struct inode
*inode
)
185 struct list_head
*list
= chunk_hash(inode
);
186 struct audit_chunk
*p
;
188 list_for_each_entry_rcu(p
, list
, hash
) {
189 /* mark.inode may have gone NULL, but who cares? */
190 if (p
->mark
.i
.inode
== inode
) {
191 atomic_long_inc(&p
->refs
);
198 int audit_tree_match(struct audit_chunk
*chunk
, struct audit_tree
*tree
)
201 for (n
= 0; n
< chunk
->count
; n
++)
202 if (chunk
->owners
[n
].owner
== tree
)
207 /* tagging and untagging inodes with trees */
209 static struct audit_chunk
*find_chunk(struct node
*p
)
211 int index
= p
->index
& ~(1U<<31);
213 return container_of(p
, struct audit_chunk
, owners
[0]);
216 static void untag_chunk(struct node
*p
)
218 struct audit_chunk
*chunk
= find_chunk(p
);
219 struct fsnotify_mark
*entry
= &chunk
->mark
;
220 struct audit_chunk
*new = NULL
;
221 struct audit_tree
*owner
;
222 int size
= chunk
->count
- 1;
225 fsnotify_get_mark(entry
);
227 spin_unlock(&hash_lock
);
230 new = alloc_chunk(size
);
232 spin_lock(&entry
->lock
);
233 if (chunk
->dead
|| !entry
->i
.inode
) {
234 spin_unlock(&entry
->lock
);
244 spin_lock(&hash_lock
);
245 list_del_init(&chunk
->trees
);
246 if (owner
->root
== chunk
)
248 list_del_init(&p
->list
);
249 list_del_rcu(&chunk
->hash
);
250 spin_unlock(&hash_lock
);
251 spin_unlock(&entry
->lock
);
252 fsnotify_destroy_mark(entry
);
259 fsnotify_duplicate_mark(&new->mark
, entry
);
260 if (fsnotify_add_mark(&new->mark
, new->mark
.group
, new->mark
.i
.inode
, NULL
, 1)) {
261 fsnotify_put_mark(&new->mark
);
266 spin_lock(&hash_lock
);
267 list_replace_init(&chunk
->trees
, &new->trees
);
268 if (owner
->root
== chunk
) {
269 list_del_init(&owner
->same_root
);
273 for (i
= j
= 0; j
<= size
; i
++, j
++) {
274 struct audit_tree
*s
;
275 if (&chunk
->owners
[j
] == p
) {
276 list_del_init(&p
->list
);
280 s
= chunk
->owners
[j
].owner
;
281 new->owners
[i
].owner
= s
;
282 new->owners
[i
].index
= chunk
->owners
[j
].index
- j
+ i
;
283 if (!s
) /* result of earlier fallback */
286 list_replace_init(&chunk
->owners
[j
].list
, &new->owners
[i
].list
);
289 list_replace_rcu(&chunk
->hash
, &new->hash
);
290 list_for_each_entry(owner
, &new->trees
, same_root
)
292 spin_unlock(&hash_lock
);
293 spin_unlock(&entry
->lock
);
294 fsnotify_destroy_mark(entry
);
295 fsnotify_put_mark(&new->mark
); /* drop initial reference */
299 // do the best we can
300 spin_lock(&hash_lock
);
301 if (owner
->root
== chunk
) {
302 list_del_init(&owner
->same_root
);
305 list_del_init(&p
->list
);
308 spin_unlock(&hash_lock
);
309 spin_unlock(&entry
->lock
);
311 fsnotify_put_mark(entry
);
312 spin_lock(&hash_lock
);
315 static int create_chunk(struct inode
*inode
, struct audit_tree
*tree
)
317 struct fsnotify_mark
*entry
;
318 struct audit_chunk
*chunk
= alloc_chunk(1);
322 entry
= &chunk
->mark
;
323 if (fsnotify_add_mark(entry
, audit_tree_group
, inode
, NULL
, 0)) {
324 fsnotify_put_mark(entry
);
328 spin_lock(&entry
->lock
);
329 spin_lock(&hash_lock
);
331 spin_unlock(&hash_lock
);
333 spin_unlock(&entry
->lock
);
334 fsnotify_destroy_mark(entry
);
335 fsnotify_put_mark(entry
);
338 chunk
->owners
[0].index
= (1U << 31);
339 chunk
->owners
[0].owner
= tree
;
341 list_add(&chunk
->owners
[0].list
, &tree
->chunks
);
344 list_add(&tree
->same_root
, &chunk
->trees
);
347 spin_unlock(&hash_lock
);
348 spin_unlock(&entry
->lock
);
349 fsnotify_put_mark(entry
); /* drop initial reference */
353 /* the first tagged inode becomes root of tree */
354 static int tag_chunk(struct inode
*inode
, struct audit_tree
*tree
)
356 struct fsnotify_mark
*old_entry
, *chunk_entry
;
357 struct audit_tree
*owner
;
358 struct audit_chunk
*chunk
, *old
;
362 old_entry
= fsnotify_find_inode_mark(audit_tree_group
, inode
);
364 return create_chunk(inode
, tree
);
366 old
= container_of(old_entry
, struct audit_chunk
, mark
);
368 /* are we already there? */
369 spin_lock(&hash_lock
);
370 for (n
= 0; n
< old
->count
; n
++) {
371 if (old
->owners
[n
].owner
== tree
) {
372 spin_unlock(&hash_lock
);
373 fsnotify_put_mark(old_entry
);
377 spin_unlock(&hash_lock
);
379 chunk
= alloc_chunk(old
->count
+ 1);
381 fsnotify_put_mark(old_entry
);
385 chunk_entry
= &chunk
->mark
;
387 spin_lock(&old_entry
->lock
);
388 if (!old_entry
->i
.inode
) {
389 /* old_entry is being shot, lets just lie */
390 spin_unlock(&old_entry
->lock
);
391 fsnotify_put_mark(old_entry
);
396 fsnotify_duplicate_mark(chunk_entry
, old_entry
);
397 if (fsnotify_add_mark(chunk_entry
, chunk_entry
->group
, chunk_entry
->i
.inode
, NULL
, 1)) {
398 spin_unlock(&old_entry
->lock
);
399 fsnotify_put_mark(chunk_entry
);
400 fsnotify_put_mark(old_entry
);
404 /* even though we hold old_entry->lock, this is safe since chunk_entry->lock could NEVER have been grabbed before */
405 spin_lock(&chunk_entry
->lock
);
406 spin_lock(&hash_lock
);
408 /* we now hold old_entry->lock, chunk_entry->lock, and hash_lock */
410 spin_unlock(&hash_lock
);
412 spin_unlock(&chunk_entry
->lock
);
413 spin_unlock(&old_entry
->lock
);
415 fsnotify_destroy_mark(chunk_entry
);
417 fsnotify_put_mark(chunk_entry
);
418 fsnotify_put_mark(old_entry
);
421 list_replace_init(&old
->trees
, &chunk
->trees
);
422 for (n
= 0, p
= chunk
->owners
; n
< old
->count
; n
++, p
++) {
423 struct audit_tree
*s
= old
->owners
[n
].owner
;
425 p
->index
= old
->owners
[n
].index
;
426 if (!s
) /* result of fallback in untag */
429 list_replace_init(&old
->owners
[n
].list
, &p
->list
);
431 p
->index
= (chunk
->count
- 1) | (1U<<31);
434 list_add(&p
->list
, &tree
->chunks
);
435 list_replace_rcu(&old
->hash
, &chunk
->hash
);
436 list_for_each_entry(owner
, &chunk
->trees
, same_root
)
441 list_add(&tree
->same_root
, &chunk
->trees
);
443 spin_unlock(&hash_lock
);
444 spin_unlock(&chunk_entry
->lock
);
445 spin_unlock(&old_entry
->lock
);
446 fsnotify_destroy_mark(old_entry
);
447 fsnotify_put_mark(chunk_entry
); /* drop initial reference */
448 fsnotify_put_mark(old_entry
); /* pair to fsnotify_find mark_entry */
452 static void kill_rules(struct audit_tree
*tree
)
454 struct audit_krule
*rule
, *next
;
455 struct audit_entry
*entry
;
456 struct audit_buffer
*ab
;
458 list_for_each_entry_safe(rule
, next
, &tree
->rules
, rlist
) {
459 entry
= container_of(rule
, struct audit_entry
, rule
);
461 list_del_init(&rule
->rlist
);
463 /* not a half-baked one */
464 ab
= audit_log_start(NULL
, GFP_KERNEL
, AUDIT_CONFIG_CHANGE
);
465 audit_log_format(ab
, "op=");
466 audit_log_string(ab
, "remove rule");
467 audit_log_format(ab
, " dir=");
468 audit_log_untrustedstring(ab
, rule
->tree
->pathname
);
469 audit_log_key(ab
, rule
->filterkey
);
470 audit_log_format(ab
, " list=%d res=1", rule
->listnr
);
473 list_del_rcu(&entry
->list
);
474 list_del(&entry
->rule
.list
);
475 call_rcu(&entry
->rcu
, audit_free_rule_rcu
);
481 * finish killing struct audit_tree
483 static void prune_one(struct audit_tree
*victim
)
485 spin_lock(&hash_lock
);
486 while (!list_empty(&victim
->chunks
)) {
489 p
= list_entry(victim
->chunks
.next
, struct node
, list
);
493 spin_unlock(&hash_lock
);
497 /* trim the uncommitted chunks from tree */
499 static void trim_marked(struct audit_tree
*tree
)
501 struct list_head
*p
, *q
;
502 spin_lock(&hash_lock
);
504 spin_unlock(&hash_lock
);
508 for (p
= tree
->chunks
.next
; p
!= &tree
->chunks
; p
= q
) {
509 struct node
*node
= list_entry(p
, struct node
, list
);
511 if (node
->index
& (1U<<31)) {
513 list_add(p
, &tree
->chunks
);
517 while (!list_empty(&tree
->chunks
)) {
520 node
= list_entry(tree
->chunks
.next
, struct node
, list
);
522 /* have we run out of marked? */
523 if (!(node
->index
& (1U<<31)))
528 if (!tree
->root
&& !tree
->goner
) {
530 spin_unlock(&hash_lock
);
531 mutex_lock(&audit_filter_mutex
);
533 list_del_init(&tree
->list
);
534 mutex_unlock(&audit_filter_mutex
);
537 spin_unlock(&hash_lock
);
541 static void audit_schedule_prune(void);
543 /* called with audit_filter_mutex */
544 int audit_remove_tree_rule(struct audit_krule
*rule
)
546 struct audit_tree
*tree
;
549 spin_lock(&hash_lock
);
550 list_del_init(&rule
->rlist
);
551 if (list_empty(&tree
->rules
) && !tree
->goner
) {
553 list_del_init(&tree
->same_root
);
555 list_move(&tree
->list
, &prune_list
);
557 spin_unlock(&hash_lock
);
558 audit_schedule_prune();
562 spin_unlock(&hash_lock
);
568 static int compare_root(struct vfsmount
*mnt
, void *arg
)
570 return mnt
->mnt_root
->d_inode
== arg
;
573 void audit_trim_trees(void)
575 struct list_head cursor
;
577 mutex_lock(&audit_filter_mutex
);
578 list_add(&cursor
, &tree_list
);
579 while (cursor
.next
!= &tree_list
) {
580 struct audit_tree
*tree
;
582 struct vfsmount
*root_mnt
;
586 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
589 list_add(&cursor
, &tree
->list
);
590 mutex_unlock(&audit_filter_mutex
);
592 err
= kern_path(tree
->pathname
, 0, &path
);
596 root_mnt
= collect_mounts(&path
);
598 if (IS_ERR(root_mnt
))
601 spin_lock(&hash_lock
);
602 list_for_each_entry(node
, &tree
->chunks
, list
) {
603 struct audit_chunk
*chunk
= find_chunk(node
);
604 /* this could be NULL if the watch is dying else where... */
605 struct inode
*inode
= chunk
->mark
.i
.inode
;
606 node
->index
|= 1U<<31;
607 if (iterate_mounts(compare_root
, inode
, root_mnt
))
608 node
->index
&= ~(1U<<31);
610 spin_unlock(&hash_lock
);
613 drop_collected_mounts(root_mnt
);
615 mutex_lock(&audit_filter_mutex
);
618 mutex_unlock(&audit_filter_mutex
);
621 int audit_make_tree(struct audit_krule
*rule
, char *pathname
, u32 op
)
624 if (pathname
[0] != '/' ||
625 rule
->listnr
!= AUDIT_FILTER_EXIT
||
627 rule
->inode_f
|| rule
->watch
|| rule
->tree
)
629 rule
->tree
= alloc_tree(pathname
);
635 void audit_put_tree(struct audit_tree
*tree
)
640 static int tag_mount(struct vfsmount
*mnt
, void *arg
)
642 return tag_chunk(mnt
->mnt_root
->d_inode
, arg
);
645 /* called with audit_filter_mutex */
646 int audit_add_tree_rule(struct audit_krule
*rule
)
648 struct audit_tree
*seed
= rule
->tree
, *tree
;
650 struct vfsmount
*mnt
;
653 list_for_each_entry(tree
, &tree_list
, list
) {
654 if (!strcmp(seed
->pathname
, tree
->pathname
)) {
657 list_add(&rule
->rlist
, &tree
->rules
);
662 list_add(&tree
->list
, &tree_list
);
663 list_add(&rule
->rlist
, &tree
->rules
);
664 /* do not set rule->tree yet */
665 mutex_unlock(&audit_filter_mutex
);
667 err
= kern_path(tree
->pathname
, 0, &path
);
670 mnt
= collect_mounts(&path
);
678 err
= iterate_mounts(tag_mount
, tree
, mnt
);
679 drop_collected_mounts(mnt
);
683 spin_lock(&hash_lock
);
684 list_for_each_entry(node
, &tree
->chunks
, list
)
685 node
->index
&= ~(1U<<31);
686 spin_unlock(&hash_lock
);
692 mutex_lock(&audit_filter_mutex
);
693 if (list_empty(&rule
->rlist
)) {
702 mutex_lock(&audit_filter_mutex
);
703 list_del_init(&tree
->list
);
704 list_del_init(&tree
->rules
);
709 int audit_tag_tree(char *old
, char *new)
711 struct list_head cursor
, barrier
;
713 struct path path1
, path2
;
714 struct vfsmount
*tagged
;
717 err
= kern_path(new, 0, &path2
);
720 tagged
= collect_mounts(&path2
);
723 return PTR_ERR(tagged
);
725 err
= kern_path(old
, 0, &path1
);
727 drop_collected_mounts(tagged
);
731 mutex_lock(&audit_filter_mutex
);
732 list_add(&barrier
, &tree_list
);
733 list_add(&cursor
, &barrier
);
735 while (cursor
.next
!= &tree_list
) {
736 struct audit_tree
*tree
;
739 tree
= container_of(cursor
.next
, struct audit_tree
, list
);
742 list_add(&cursor
, &tree
->list
);
743 mutex_unlock(&audit_filter_mutex
);
745 err
= kern_path(tree
->pathname
, 0, &path2
);
747 good_one
= path_is_under(&path1
, &path2
);
753 mutex_lock(&audit_filter_mutex
);
757 failed
= iterate_mounts(tag_mount
, tree
, tagged
);
760 mutex_lock(&audit_filter_mutex
);
764 mutex_lock(&audit_filter_mutex
);
765 spin_lock(&hash_lock
);
767 list_del(&tree
->list
);
768 list_add(&tree
->list
, &tree_list
);
770 spin_unlock(&hash_lock
);
774 while (barrier
.prev
!= &tree_list
) {
775 struct audit_tree
*tree
;
777 tree
= container_of(barrier
.prev
, struct audit_tree
, list
);
779 list_del(&tree
->list
);
780 list_add(&tree
->list
, &barrier
);
781 mutex_unlock(&audit_filter_mutex
);
785 spin_lock(&hash_lock
);
786 list_for_each_entry(node
, &tree
->chunks
, list
)
787 node
->index
&= ~(1U<<31);
788 spin_unlock(&hash_lock
);
794 mutex_lock(&audit_filter_mutex
);
798 mutex_unlock(&audit_filter_mutex
);
800 drop_collected_mounts(tagged
);
805 * That gets run when evict_chunk() ends up needing to kill audit_tree.
806 * Runs from a separate thread.
808 static int prune_tree_thread(void *unused
)
810 mutex_lock(&audit_cmd_mutex
);
811 mutex_lock(&audit_filter_mutex
);
813 while (!list_empty(&prune_list
)) {
814 struct audit_tree
*victim
;
816 victim
= list_entry(prune_list
.next
, struct audit_tree
, list
);
817 list_del_init(&victim
->list
);
819 mutex_unlock(&audit_filter_mutex
);
823 mutex_lock(&audit_filter_mutex
);
826 mutex_unlock(&audit_filter_mutex
);
827 mutex_unlock(&audit_cmd_mutex
);
831 static void audit_schedule_prune(void)
833 kthread_run(prune_tree_thread
, NULL
, "audit_prune_tree");
837 * ... and that one is done if evict_chunk() decides to delay until the end
838 * of syscall. Runs synchronously.
840 void audit_kill_trees(struct list_head
*list
)
842 mutex_lock(&audit_cmd_mutex
);
843 mutex_lock(&audit_filter_mutex
);
845 while (!list_empty(list
)) {
846 struct audit_tree
*victim
;
848 victim
= list_entry(list
->next
, struct audit_tree
, list
);
850 list_del_init(&victim
->list
);
852 mutex_unlock(&audit_filter_mutex
);
856 mutex_lock(&audit_filter_mutex
);
859 mutex_unlock(&audit_filter_mutex
);
860 mutex_unlock(&audit_cmd_mutex
);
864 * Here comes the stuff asynchronous to auditctl operations
867 static void evict_chunk(struct audit_chunk
*chunk
)
869 struct audit_tree
*owner
;
870 struct list_head
*postponed
= audit_killed_trees();
878 mutex_lock(&audit_filter_mutex
);
879 spin_lock(&hash_lock
);
880 while (!list_empty(&chunk
->trees
)) {
881 owner
= list_entry(chunk
->trees
.next
,
882 struct audit_tree
, same_root
);
885 list_del_init(&owner
->same_root
);
886 spin_unlock(&hash_lock
);
889 list_move(&owner
->list
, &prune_list
);
892 list_move(&owner
->list
, postponed
);
894 spin_lock(&hash_lock
);
896 list_del_rcu(&chunk
->hash
);
897 for (n
= 0; n
< chunk
->count
; n
++)
898 list_del_init(&chunk
->owners
[n
].list
);
899 spin_unlock(&hash_lock
);
901 audit_schedule_prune();
902 mutex_unlock(&audit_filter_mutex
);
905 static int audit_tree_handle_event(struct fsnotify_group
*group
,
906 struct fsnotify_mark
*inode_mark
,
907 struct fsnotify_mark
*vfsmonut_mark
,
908 struct fsnotify_event
*event
)
914 static void audit_tree_freeing_mark(struct fsnotify_mark
*entry
, struct fsnotify_group
*group
)
916 struct audit_chunk
*chunk
= container_of(entry
, struct audit_chunk
, mark
);
921 * We are guaranteed to have at least one reference to the mark from
922 * either the inode or the caller of fsnotify_destroy_mark().
924 BUG_ON(atomic_read(&entry
->refcnt
) < 1);
927 static bool audit_tree_send_event(struct fsnotify_group
*group
, struct inode
*inode
,
928 struct fsnotify_mark
*inode_mark
,
929 struct fsnotify_mark
*vfsmount_mark
,
930 __u32 mask
, void *data
, int data_type
)
935 static const struct fsnotify_ops audit_tree_ops
= {
936 .handle_event
= audit_tree_handle_event
,
937 .should_send_event
= audit_tree_send_event
,
938 .free_group_priv
= NULL
,
939 .free_event_priv
= NULL
,
940 .freeing_mark
= audit_tree_freeing_mark
,
943 static int __init
audit_tree_init(void)
947 audit_tree_group
= fsnotify_alloc_group(&audit_tree_ops
);
948 if (IS_ERR(audit_tree_group
))
949 audit_panic("cannot initialize fsnotify group for rectree watches");
951 for (i
= 0; i
< HASH_SIZE
; i
++)
952 INIT_LIST_HEAD(&chunk_hash_heads
[i
]);
956 __initcall(audit_tree_init
);