perf: Take a hot regs snapshot for trace events
[linux-2.6/libata-dev.git] / kernel / perf_event.c
blob45b4b6e558912da4987a3863e0944b99491df1c5
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 * max perf event sample rate
64 int sysctl_perf_event_sample_rate __read_mostly = 100000;
66 static atomic64_t perf_event_id;
69 * Lock for (sysadmin-configurable) event reservations:
71 static DEFINE_SPINLOCK(perf_resource_lock);
74 * Architecture provided APIs - weak aliases:
76 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
78 return NULL;
81 void __weak hw_perf_disable(void) { barrier(); }
82 void __weak hw_perf_enable(void) { barrier(); }
84 int __weak
85 hw_perf_group_sched_in(struct perf_event *group_leader,
86 struct perf_cpu_context *cpuctx,
87 struct perf_event_context *ctx)
89 return 0;
92 void __weak perf_event_print_debug(void) { }
94 static DEFINE_PER_CPU(int, perf_disable_count);
96 void perf_disable(void)
98 if (!__get_cpu_var(perf_disable_count)++)
99 hw_perf_disable();
102 void perf_enable(void)
104 if (!--__get_cpu_var(perf_disable_count))
105 hw_perf_enable();
108 static void get_ctx(struct perf_event_context *ctx)
110 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
113 static void free_ctx(struct rcu_head *head)
115 struct perf_event_context *ctx;
117 ctx = container_of(head, struct perf_event_context, rcu_head);
118 kfree(ctx);
121 static void put_ctx(struct perf_event_context *ctx)
123 if (atomic_dec_and_test(&ctx->refcount)) {
124 if (ctx->parent_ctx)
125 put_ctx(ctx->parent_ctx);
126 if (ctx->task)
127 put_task_struct(ctx->task);
128 call_rcu(&ctx->rcu_head, free_ctx);
132 static void unclone_ctx(struct perf_event_context *ctx)
134 if (ctx->parent_ctx) {
135 put_ctx(ctx->parent_ctx);
136 ctx->parent_ctx = NULL;
141 * If we inherit events we want to return the parent event id
142 * to userspace.
144 static u64 primary_event_id(struct perf_event *event)
146 u64 id = event->id;
148 if (event->parent)
149 id = event->parent->id;
151 return id;
155 * Get the perf_event_context for a task and lock it.
156 * This has to cope with with the fact that until it is locked,
157 * the context could get moved to another task.
159 static struct perf_event_context *
160 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
162 struct perf_event_context *ctx;
164 rcu_read_lock();
165 retry:
166 ctx = rcu_dereference(task->perf_event_ctxp);
167 if (ctx) {
169 * If this context is a clone of another, it might
170 * get swapped for another underneath us by
171 * perf_event_task_sched_out, though the
172 * rcu_read_lock() protects us from any context
173 * getting freed. Lock the context and check if it
174 * got swapped before we could get the lock, and retry
175 * if so. If we locked the right context, then it
176 * can't get swapped on us any more.
178 raw_spin_lock_irqsave(&ctx->lock, *flags);
179 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 goto retry;
184 if (!atomic_inc_not_zero(&ctx->refcount)) {
185 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 ctx = NULL;
189 rcu_read_unlock();
190 return ctx;
194 * Get the context for a task and increment its pin_count so it
195 * can't get swapped to another task. This also increments its
196 * reference count so that the context can't get freed.
198 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
200 struct perf_event_context *ctx;
201 unsigned long flags;
203 ctx = perf_lock_task_context(task, &flags);
204 if (ctx) {
205 ++ctx->pin_count;
206 raw_spin_unlock_irqrestore(&ctx->lock, flags);
208 return ctx;
211 static void perf_unpin_context(struct perf_event_context *ctx)
213 unsigned long flags;
215 raw_spin_lock_irqsave(&ctx->lock, flags);
216 --ctx->pin_count;
217 raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 put_ctx(ctx);
221 static inline u64 perf_clock(void)
223 return cpu_clock(raw_smp_processor_id());
227 * Update the record of the current time in a context.
229 static void update_context_time(struct perf_event_context *ctx)
231 u64 now = perf_clock();
233 ctx->time += now - ctx->timestamp;
234 ctx->timestamp = now;
238 * Update the total_time_enabled and total_time_running fields for a event.
240 static void update_event_times(struct perf_event *event)
242 struct perf_event_context *ctx = event->ctx;
243 u64 run_end;
245 if (event->state < PERF_EVENT_STATE_INACTIVE ||
246 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
247 return;
249 if (ctx->is_active)
250 run_end = ctx->time;
251 else
252 run_end = event->tstamp_stopped;
254 event->total_time_enabled = run_end - event->tstamp_enabled;
256 if (event->state == PERF_EVENT_STATE_INACTIVE)
257 run_end = event->tstamp_stopped;
258 else
259 run_end = ctx->time;
261 event->total_time_running = run_end - event->tstamp_running;
264 static struct list_head *
265 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
267 if (event->attr.pinned)
268 return &ctx->pinned_groups;
269 else
270 return &ctx->flexible_groups;
274 * Add a event from the lists for its context.
275 * Must be called with ctx->mutex and ctx->lock held.
277 static void
278 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
280 struct perf_event *group_leader = event->group_leader;
283 * Depending on whether it is a standalone or sibling event,
284 * add it straight to the context's event list, or to the group
285 * leader's sibling list:
287 if (group_leader == event) {
288 struct list_head *list;
290 if (is_software_event(event))
291 event->group_flags |= PERF_GROUP_SOFTWARE;
293 list = ctx_group_list(event, ctx);
294 list_add_tail(&event->group_entry, list);
295 } else {
296 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
297 !is_software_event(event))
298 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
300 list_add_tail(&event->group_entry, &group_leader->sibling_list);
301 group_leader->nr_siblings++;
304 list_add_rcu(&event->event_entry, &ctx->event_list);
305 ctx->nr_events++;
306 if (event->attr.inherit_stat)
307 ctx->nr_stat++;
311 * Remove a event from the lists for its context.
312 * Must be called with ctx->mutex and ctx->lock held.
314 static void
315 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
317 struct perf_event *sibling, *tmp;
319 if (list_empty(&event->group_entry))
320 return;
321 ctx->nr_events--;
322 if (event->attr.inherit_stat)
323 ctx->nr_stat--;
325 list_del_init(&event->group_entry);
326 list_del_rcu(&event->event_entry);
328 if (event->group_leader != event)
329 event->group_leader->nr_siblings--;
331 update_event_times(event);
334 * If event was in error state, then keep it
335 * that way, otherwise bogus counts will be
336 * returned on read(). The only way to get out
337 * of error state is by explicit re-enabling
338 * of the event
340 if (event->state > PERF_EVENT_STATE_OFF)
341 event->state = PERF_EVENT_STATE_OFF;
344 * If this was a group event with sibling events then
345 * upgrade the siblings to singleton events by adding them
346 * to the context list directly:
348 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349 struct list_head *list;
351 list = ctx_group_list(event, ctx);
352 list_move_tail(&sibling->group_entry, list);
353 sibling->group_leader = sibling;
355 /* Inherit group flags from the previous leader */
356 sibling->group_flags = event->group_flags;
360 static void
361 event_sched_out(struct perf_event *event,
362 struct perf_cpu_context *cpuctx,
363 struct perf_event_context *ctx)
365 if (event->state != PERF_EVENT_STATE_ACTIVE)
366 return;
368 event->state = PERF_EVENT_STATE_INACTIVE;
369 if (event->pending_disable) {
370 event->pending_disable = 0;
371 event->state = PERF_EVENT_STATE_OFF;
373 event->tstamp_stopped = ctx->time;
374 event->pmu->disable(event);
375 event->oncpu = -1;
377 if (!is_software_event(event))
378 cpuctx->active_oncpu--;
379 ctx->nr_active--;
380 if (event->attr.exclusive || !cpuctx->active_oncpu)
381 cpuctx->exclusive = 0;
384 static void
385 group_sched_out(struct perf_event *group_event,
386 struct perf_cpu_context *cpuctx,
387 struct perf_event_context *ctx)
389 struct perf_event *event;
391 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 return;
394 event_sched_out(group_event, cpuctx, ctx);
397 * Schedule out siblings (if any):
399 list_for_each_entry(event, &group_event->sibling_list, group_entry)
400 event_sched_out(event, cpuctx, ctx);
402 if (group_event->attr.exclusive)
403 cpuctx->exclusive = 0;
407 * Cross CPU call to remove a performance event
409 * We disable the event on the hardware level first. After that we
410 * remove it from the context list.
412 static void __perf_event_remove_from_context(void *info)
414 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 struct perf_event *event = info;
416 struct perf_event_context *ctx = event->ctx;
419 * If this is a task context, we need to check whether it is
420 * the current task context of this cpu. If not it has been
421 * scheduled out before the smp call arrived.
423 if (ctx->task && cpuctx->task_ctx != ctx)
424 return;
426 raw_spin_lock(&ctx->lock);
428 * Protect the list operation against NMI by disabling the
429 * events on a global level.
431 perf_disable();
433 event_sched_out(event, cpuctx, ctx);
435 list_del_event(event, ctx);
437 if (!ctx->task) {
439 * Allow more per task events with respect to the
440 * reservation:
442 cpuctx->max_pertask =
443 min(perf_max_events - ctx->nr_events,
444 perf_max_events - perf_reserved_percpu);
447 perf_enable();
448 raw_spin_unlock(&ctx->lock);
453 * Remove the event from a task's (or a CPU's) list of events.
455 * Must be called with ctx->mutex held.
457 * CPU events are removed with a smp call. For task events we only
458 * call when the task is on a CPU.
460 * If event->ctx is a cloned context, callers must make sure that
461 * every task struct that event->ctx->task could possibly point to
462 * remains valid. This is OK when called from perf_release since
463 * that only calls us on the top-level context, which can't be a clone.
464 * When called from perf_event_exit_task, it's OK because the
465 * context has been detached from its task.
467 static void perf_event_remove_from_context(struct perf_event *event)
469 struct perf_event_context *ctx = event->ctx;
470 struct task_struct *task = ctx->task;
472 if (!task) {
474 * Per cpu events are removed via an smp call and
475 * the removal is always successful.
477 smp_call_function_single(event->cpu,
478 __perf_event_remove_from_context,
479 event, 1);
480 return;
483 retry:
484 task_oncpu_function_call(task, __perf_event_remove_from_context,
485 event);
487 raw_spin_lock_irq(&ctx->lock);
489 * If the context is active we need to retry the smp call.
491 if (ctx->nr_active && !list_empty(&event->group_entry)) {
492 raw_spin_unlock_irq(&ctx->lock);
493 goto retry;
497 * The lock prevents that this context is scheduled in so we
498 * can remove the event safely, if the call above did not
499 * succeed.
501 if (!list_empty(&event->group_entry))
502 list_del_event(event, ctx);
503 raw_spin_unlock_irq(&ctx->lock);
507 * Update total_time_enabled and total_time_running for all events in a group.
509 static void update_group_times(struct perf_event *leader)
511 struct perf_event *event;
513 update_event_times(leader);
514 list_for_each_entry(event, &leader->sibling_list, group_entry)
515 update_event_times(event);
519 * Cross CPU call to disable a performance event
521 static void __perf_event_disable(void *info)
523 struct perf_event *event = info;
524 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525 struct perf_event_context *ctx = event->ctx;
528 * If this is a per-task event, need to check whether this
529 * event's task is the current task on this cpu.
531 if (ctx->task && cpuctx->task_ctx != ctx)
532 return;
534 raw_spin_lock(&ctx->lock);
537 * If the event is on, turn it off.
538 * If it is in error state, leave it in error state.
540 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541 update_context_time(ctx);
542 update_group_times(event);
543 if (event == event->group_leader)
544 group_sched_out(event, cpuctx, ctx);
545 else
546 event_sched_out(event, cpuctx, ctx);
547 event->state = PERF_EVENT_STATE_OFF;
550 raw_spin_unlock(&ctx->lock);
554 * Disable a event.
556 * If event->ctx is a cloned context, callers must make sure that
557 * every task struct that event->ctx->task could possibly point to
558 * remains valid. This condition is satisifed when called through
559 * perf_event_for_each_child or perf_event_for_each because they
560 * hold the top-level event's child_mutex, so any descendant that
561 * goes to exit will block in sync_child_event.
562 * When called from perf_pending_event it's OK because event->ctx
563 * is the current context on this CPU and preemption is disabled,
564 * hence we can't get into perf_event_task_sched_out for this context.
566 void perf_event_disable(struct perf_event *event)
568 struct perf_event_context *ctx = event->ctx;
569 struct task_struct *task = ctx->task;
571 if (!task) {
573 * Disable the event on the cpu that it's on
575 smp_call_function_single(event->cpu, __perf_event_disable,
576 event, 1);
577 return;
580 retry:
581 task_oncpu_function_call(task, __perf_event_disable, event);
583 raw_spin_lock_irq(&ctx->lock);
585 * If the event is still active, we need to retry the cross-call.
587 if (event->state == PERF_EVENT_STATE_ACTIVE) {
588 raw_spin_unlock_irq(&ctx->lock);
589 goto retry;
593 * Since we have the lock this context can't be scheduled
594 * in, so we can change the state safely.
596 if (event->state == PERF_EVENT_STATE_INACTIVE) {
597 update_group_times(event);
598 event->state = PERF_EVENT_STATE_OFF;
601 raw_spin_unlock_irq(&ctx->lock);
604 static int
605 event_sched_in(struct perf_event *event,
606 struct perf_cpu_context *cpuctx,
607 struct perf_event_context *ctx)
609 if (event->state <= PERF_EVENT_STATE_OFF)
610 return 0;
612 event->state = PERF_EVENT_STATE_ACTIVE;
613 event->oncpu = smp_processor_id();
615 * The new state must be visible before we turn it on in the hardware:
617 smp_wmb();
619 if (event->pmu->enable(event)) {
620 event->state = PERF_EVENT_STATE_INACTIVE;
621 event->oncpu = -1;
622 return -EAGAIN;
625 event->tstamp_running += ctx->time - event->tstamp_stopped;
627 if (!is_software_event(event))
628 cpuctx->active_oncpu++;
629 ctx->nr_active++;
631 if (event->attr.exclusive)
632 cpuctx->exclusive = 1;
634 return 0;
637 static int
638 group_sched_in(struct perf_event *group_event,
639 struct perf_cpu_context *cpuctx,
640 struct perf_event_context *ctx)
642 struct perf_event *event, *partial_group;
643 int ret;
645 if (group_event->state == PERF_EVENT_STATE_OFF)
646 return 0;
648 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 if (ret)
650 return ret < 0 ? ret : 0;
652 if (event_sched_in(group_event, cpuctx, ctx))
653 return -EAGAIN;
656 * Schedule in siblings as one group (if any):
658 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659 if (event_sched_in(event, cpuctx, ctx)) {
660 partial_group = event;
661 goto group_error;
665 return 0;
667 group_error:
669 * Groups can be scheduled in as one unit only, so undo any
670 * partial group before returning:
672 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
673 if (event == partial_group)
674 break;
675 event_sched_out(event, cpuctx, ctx);
677 event_sched_out(group_event, cpuctx, ctx);
679 return -EAGAIN;
683 * Work out whether we can put this event group on the CPU now.
685 static int group_can_go_on(struct perf_event *event,
686 struct perf_cpu_context *cpuctx,
687 int can_add_hw)
690 * Groups consisting entirely of software events can always go on.
692 if (event->group_flags & PERF_GROUP_SOFTWARE)
693 return 1;
695 * If an exclusive group is already on, no other hardware
696 * events can go on.
698 if (cpuctx->exclusive)
699 return 0;
701 * If this group is exclusive and there are already
702 * events on the CPU, it can't go on.
704 if (event->attr.exclusive && cpuctx->active_oncpu)
705 return 0;
707 * Otherwise, try to add it if all previous groups were able
708 * to go on.
710 return can_add_hw;
713 static void add_event_to_ctx(struct perf_event *event,
714 struct perf_event_context *ctx)
716 list_add_event(event, ctx);
717 event->tstamp_enabled = ctx->time;
718 event->tstamp_running = ctx->time;
719 event->tstamp_stopped = ctx->time;
723 * Cross CPU call to install and enable a performance event
725 * Must be called with ctx->mutex held
727 static void __perf_install_in_context(void *info)
729 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 struct perf_event *event = info;
731 struct perf_event_context *ctx = event->ctx;
732 struct perf_event *leader = event->group_leader;
733 int err;
736 * If this is a task context, we need to check whether it is
737 * the current task context of this cpu. If not it has been
738 * scheduled out before the smp call arrived.
739 * Or possibly this is the right context but it isn't
740 * on this cpu because it had no events.
742 if (ctx->task && cpuctx->task_ctx != ctx) {
743 if (cpuctx->task_ctx || ctx->task != current)
744 return;
745 cpuctx->task_ctx = ctx;
748 raw_spin_lock(&ctx->lock);
749 ctx->is_active = 1;
750 update_context_time(ctx);
753 * Protect the list operation against NMI by disabling the
754 * events on a global level. NOP for non NMI based events.
756 perf_disable();
758 add_event_to_ctx(event, ctx);
760 if (event->cpu != -1 && event->cpu != smp_processor_id())
761 goto unlock;
764 * Don't put the event on if it is disabled or if
765 * it is in a group and the group isn't on.
767 if (event->state != PERF_EVENT_STATE_INACTIVE ||
768 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 goto unlock;
772 * An exclusive event can't go on if there are already active
773 * hardware events, and no hardware event can go on if there
774 * is already an exclusive event on.
776 if (!group_can_go_on(event, cpuctx, 1))
777 err = -EEXIST;
778 else
779 err = event_sched_in(event, cpuctx, ctx);
781 if (err) {
783 * This event couldn't go on. If it is in a group
784 * then we have to pull the whole group off.
785 * If the event group is pinned then put it in error state.
787 if (leader != event)
788 group_sched_out(leader, cpuctx, ctx);
789 if (leader->attr.pinned) {
790 update_group_times(leader);
791 leader->state = PERF_EVENT_STATE_ERROR;
795 if (!err && !ctx->task && cpuctx->max_pertask)
796 cpuctx->max_pertask--;
798 unlock:
799 perf_enable();
801 raw_spin_unlock(&ctx->lock);
805 * Attach a performance event to a context
807 * First we add the event to the list with the hardware enable bit
808 * in event->hw_config cleared.
810 * If the event is attached to a task which is on a CPU we use a smp
811 * call to enable it in the task context. The task might have been
812 * scheduled away, but we check this in the smp call again.
814 * Must be called with ctx->mutex held.
816 static void
817 perf_install_in_context(struct perf_event_context *ctx,
818 struct perf_event *event,
819 int cpu)
821 struct task_struct *task = ctx->task;
823 if (!task) {
825 * Per cpu events are installed via an smp call and
826 * the install is always successful.
828 smp_call_function_single(cpu, __perf_install_in_context,
829 event, 1);
830 return;
833 retry:
834 task_oncpu_function_call(task, __perf_install_in_context,
835 event);
837 raw_spin_lock_irq(&ctx->lock);
839 * we need to retry the smp call.
841 if (ctx->is_active && list_empty(&event->group_entry)) {
842 raw_spin_unlock_irq(&ctx->lock);
843 goto retry;
847 * The lock prevents that this context is scheduled in so we
848 * can add the event safely, if it the call above did not
849 * succeed.
851 if (list_empty(&event->group_entry))
852 add_event_to_ctx(event, ctx);
853 raw_spin_unlock_irq(&ctx->lock);
857 * Put a event into inactive state and update time fields.
858 * Enabling the leader of a group effectively enables all
859 * the group members that aren't explicitly disabled, so we
860 * have to update their ->tstamp_enabled also.
861 * Note: this works for group members as well as group leaders
862 * since the non-leader members' sibling_lists will be empty.
864 static void __perf_event_mark_enabled(struct perf_event *event,
865 struct perf_event_context *ctx)
867 struct perf_event *sub;
869 event->state = PERF_EVENT_STATE_INACTIVE;
870 event->tstamp_enabled = ctx->time - event->total_time_enabled;
871 list_for_each_entry(sub, &event->sibling_list, group_entry)
872 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 sub->tstamp_enabled =
874 ctx->time - sub->total_time_enabled;
878 * Cross CPU call to enable a performance event
880 static void __perf_event_enable(void *info)
882 struct perf_event *event = info;
883 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 struct perf_event_context *ctx = event->ctx;
885 struct perf_event *leader = event->group_leader;
886 int err;
889 * If this is a per-task event, need to check whether this
890 * event's task is the current task on this cpu.
892 if (ctx->task && cpuctx->task_ctx != ctx) {
893 if (cpuctx->task_ctx || ctx->task != current)
894 return;
895 cpuctx->task_ctx = ctx;
898 raw_spin_lock(&ctx->lock);
899 ctx->is_active = 1;
900 update_context_time(ctx);
902 if (event->state >= PERF_EVENT_STATE_INACTIVE)
903 goto unlock;
904 __perf_event_mark_enabled(event, ctx);
906 if (event->cpu != -1 && event->cpu != smp_processor_id())
907 goto unlock;
910 * If the event is in a group and isn't the group leader,
911 * then don't put it on unless the group is on.
913 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914 goto unlock;
916 if (!group_can_go_on(event, cpuctx, 1)) {
917 err = -EEXIST;
918 } else {
919 perf_disable();
920 if (event == leader)
921 err = group_sched_in(event, cpuctx, ctx);
922 else
923 err = event_sched_in(event, cpuctx, ctx);
924 perf_enable();
927 if (err) {
929 * If this event can't go on and it's part of a
930 * group, then the whole group has to come off.
932 if (leader != event)
933 group_sched_out(leader, cpuctx, ctx);
934 if (leader->attr.pinned) {
935 update_group_times(leader);
936 leader->state = PERF_EVENT_STATE_ERROR;
940 unlock:
941 raw_spin_unlock(&ctx->lock);
945 * Enable a event.
947 * If event->ctx is a cloned context, callers must make sure that
948 * every task struct that event->ctx->task could possibly point to
949 * remains valid. This condition is satisfied when called through
950 * perf_event_for_each_child or perf_event_for_each as described
951 * for perf_event_disable.
953 void perf_event_enable(struct perf_event *event)
955 struct perf_event_context *ctx = event->ctx;
956 struct task_struct *task = ctx->task;
958 if (!task) {
960 * Enable the event on the cpu that it's on
962 smp_call_function_single(event->cpu, __perf_event_enable,
963 event, 1);
964 return;
967 raw_spin_lock_irq(&ctx->lock);
968 if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 goto out;
972 * If the event is in error state, clear that first.
973 * That way, if we see the event in error state below, we
974 * know that it has gone back into error state, as distinct
975 * from the task having been scheduled away before the
976 * cross-call arrived.
978 if (event->state == PERF_EVENT_STATE_ERROR)
979 event->state = PERF_EVENT_STATE_OFF;
981 retry:
982 raw_spin_unlock_irq(&ctx->lock);
983 task_oncpu_function_call(task, __perf_event_enable, event);
985 raw_spin_lock_irq(&ctx->lock);
988 * If the context is active and the event is still off,
989 * we need to retry the cross-call.
991 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 goto retry;
995 * Since we have the lock this context can't be scheduled
996 * in, so we can change the state safely.
998 if (event->state == PERF_EVENT_STATE_OFF)
999 __perf_event_mark_enabled(event, ctx);
1001 out:
1002 raw_spin_unlock_irq(&ctx->lock);
1005 static int perf_event_refresh(struct perf_event *event, int refresh)
1008 * not supported on inherited events
1010 if (event->attr.inherit)
1011 return -EINVAL;
1013 atomic_add(refresh, &event->event_limit);
1014 perf_event_enable(event);
1016 return 0;
1019 enum event_type_t {
1020 EVENT_FLEXIBLE = 0x1,
1021 EVENT_PINNED = 0x2,
1022 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1025 static void ctx_sched_out(struct perf_event_context *ctx,
1026 struct perf_cpu_context *cpuctx,
1027 enum event_type_t event_type)
1029 struct perf_event *event;
1031 raw_spin_lock(&ctx->lock);
1032 ctx->is_active = 0;
1033 if (likely(!ctx->nr_events))
1034 goto out;
1035 update_context_time(ctx);
1037 perf_disable();
1038 if (!ctx->nr_active)
1039 goto out_enable;
1041 if (event_type & EVENT_PINNED)
1042 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1043 group_sched_out(event, cpuctx, ctx);
1045 if (event_type & EVENT_FLEXIBLE)
1046 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047 group_sched_out(event, cpuctx, ctx);
1049 out_enable:
1050 perf_enable();
1051 out:
1052 raw_spin_unlock(&ctx->lock);
1056 * Test whether two contexts are equivalent, i.e. whether they
1057 * have both been cloned from the same version of the same context
1058 * and they both have the same number of enabled events.
1059 * If the number of enabled events is the same, then the set
1060 * of enabled events should be the same, because these are both
1061 * inherited contexts, therefore we can't access individual events
1062 * in them directly with an fd; we can only enable/disable all
1063 * events via prctl, or enable/disable all events in a family
1064 * via ioctl, which will have the same effect on both contexts.
1066 static int context_equiv(struct perf_event_context *ctx1,
1067 struct perf_event_context *ctx2)
1069 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070 && ctx1->parent_gen == ctx2->parent_gen
1071 && !ctx1->pin_count && !ctx2->pin_count;
1074 static void __perf_event_sync_stat(struct perf_event *event,
1075 struct perf_event *next_event)
1077 u64 value;
1079 if (!event->attr.inherit_stat)
1080 return;
1083 * Update the event value, we cannot use perf_event_read()
1084 * because we're in the middle of a context switch and have IRQs
1085 * disabled, which upsets smp_call_function_single(), however
1086 * we know the event must be on the current CPU, therefore we
1087 * don't need to use it.
1089 switch (event->state) {
1090 case PERF_EVENT_STATE_ACTIVE:
1091 event->pmu->read(event);
1092 /* fall-through */
1094 case PERF_EVENT_STATE_INACTIVE:
1095 update_event_times(event);
1096 break;
1098 default:
1099 break;
1103 * In order to keep per-task stats reliable we need to flip the event
1104 * values when we flip the contexts.
1106 value = atomic64_read(&next_event->count);
1107 value = atomic64_xchg(&event->count, value);
1108 atomic64_set(&next_event->count, value);
1110 swap(event->total_time_enabled, next_event->total_time_enabled);
1111 swap(event->total_time_running, next_event->total_time_running);
1114 * Since we swizzled the values, update the user visible data too.
1116 perf_event_update_userpage(event);
1117 perf_event_update_userpage(next_event);
1120 #define list_next_entry(pos, member) \
1121 list_entry(pos->member.next, typeof(*pos), member)
1123 static void perf_event_sync_stat(struct perf_event_context *ctx,
1124 struct perf_event_context *next_ctx)
1126 struct perf_event *event, *next_event;
1128 if (!ctx->nr_stat)
1129 return;
1131 update_context_time(ctx);
1133 event = list_first_entry(&ctx->event_list,
1134 struct perf_event, event_entry);
1136 next_event = list_first_entry(&next_ctx->event_list,
1137 struct perf_event, event_entry);
1139 while (&event->event_entry != &ctx->event_list &&
1140 &next_event->event_entry != &next_ctx->event_list) {
1142 __perf_event_sync_stat(event, next_event);
1144 event = list_next_entry(event, event_entry);
1145 next_event = list_next_entry(next_event, event_entry);
1150 * Called from scheduler to remove the events of the current task,
1151 * with interrupts disabled.
1153 * We stop each event and update the event value in event->count.
1155 * This does not protect us against NMI, but disable()
1156 * sets the disabled bit in the control field of event _before_
1157 * accessing the event control register. If a NMI hits, then it will
1158 * not restart the event.
1160 void perf_event_task_sched_out(struct task_struct *task,
1161 struct task_struct *next)
1163 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 struct perf_event_context *ctx = task->perf_event_ctxp;
1165 struct perf_event_context *next_ctx;
1166 struct perf_event_context *parent;
1167 struct pt_regs *regs;
1168 int do_switch = 1;
1170 regs = task_pt_regs(task);
1171 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1173 if (likely(!ctx || !cpuctx->task_ctx))
1174 return;
1176 rcu_read_lock();
1177 parent = rcu_dereference(ctx->parent_ctx);
1178 next_ctx = next->perf_event_ctxp;
1179 if (parent && next_ctx &&
1180 rcu_dereference(next_ctx->parent_ctx) == parent) {
1182 * Looks like the two contexts are clones, so we might be
1183 * able to optimize the context switch. We lock both
1184 * contexts and check that they are clones under the
1185 * lock (including re-checking that neither has been
1186 * uncloned in the meantime). It doesn't matter which
1187 * order we take the locks because no other cpu could
1188 * be trying to lock both of these tasks.
1190 raw_spin_lock(&ctx->lock);
1191 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192 if (context_equiv(ctx, next_ctx)) {
1194 * XXX do we need a memory barrier of sorts
1195 * wrt to rcu_dereference() of perf_event_ctxp
1197 task->perf_event_ctxp = next_ctx;
1198 next->perf_event_ctxp = ctx;
1199 ctx->task = next;
1200 next_ctx->task = task;
1201 do_switch = 0;
1203 perf_event_sync_stat(ctx, next_ctx);
1205 raw_spin_unlock(&next_ctx->lock);
1206 raw_spin_unlock(&ctx->lock);
1208 rcu_read_unlock();
1210 if (do_switch) {
1211 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212 cpuctx->task_ctx = NULL;
1216 static void task_ctx_sched_out(struct perf_event_context *ctx,
1217 enum event_type_t event_type)
1219 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1221 if (!cpuctx->task_ctx)
1222 return;
1224 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1225 return;
1227 ctx_sched_out(ctx, cpuctx, event_type);
1228 cpuctx->task_ctx = NULL;
1232 * Called with IRQs disabled
1234 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1236 task_ctx_sched_out(ctx, EVENT_ALL);
1240 * Called with IRQs disabled
1242 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1243 enum event_type_t event_type)
1245 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1248 static void
1249 ctx_pinned_sched_in(struct perf_event_context *ctx,
1250 struct perf_cpu_context *cpuctx)
1252 struct perf_event *event;
1254 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1255 if (event->state <= PERF_EVENT_STATE_OFF)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != smp_processor_id())
1258 continue;
1260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx);
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1274 static void
1275 ctx_flexible_sched_in(struct perf_event_context *ctx,
1276 struct perf_cpu_context *cpuctx)
1278 struct perf_event *event;
1279 int can_add_hw = 1;
1281 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1282 /* Ignore events in OFF or ERROR state */
1283 if (event->state <= PERF_EVENT_STATE_OFF)
1284 continue;
1286 * Listen to the 'cpu' scheduling filter constraint
1287 * of events:
1289 if (event->cpu != -1 && event->cpu != smp_processor_id())
1290 continue;
1292 if (group_can_go_on(event, cpuctx, can_add_hw))
1293 if (group_sched_in(event, cpuctx, ctx))
1294 can_add_hw = 0;
1298 static void
1299 ctx_sched_in(struct perf_event_context *ctx,
1300 struct perf_cpu_context *cpuctx,
1301 enum event_type_t event_type)
1303 raw_spin_lock(&ctx->lock);
1304 ctx->is_active = 1;
1305 if (likely(!ctx->nr_events))
1306 goto out;
1308 ctx->timestamp = perf_clock();
1310 perf_disable();
1313 * First go through the list and put on any pinned groups
1314 * in order to give them the best chance of going on.
1316 if (event_type & EVENT_PINNED)
1317 ctx_pinned_sched_in(ctx, cpuctx);
1319 /* Then walk through the lower prio flexible groups */
1320 if (event_type & EVENT_FLEXIBLE)
1321 ctx_flexible_sched_in(ctx, cpuctx);
1323 perf_enable();
1324 out:
1325 raw_spin_unlock(&ctx->lock);
1328 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1329 enum event_type_t event_type)
1331 struct perf_event_context *ctx = &cpuctx->ctx;
1333 ctx_sched_in(ctx, cpuctx, event_type);
1336 static void task_ctx_sched_in(struct task_struct *task,
1337 enum event_type_t event_type)
1339 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1340 struct perf_event_context *ctx = task->perf_event_ctxp;
1342 if (likely(!ctx))
1343 return;
1344 if (cpuctx->task_ctx == ctx)
1345 return;
1346 ctx_sched_in(ctx, cpuctx, event_type);
1347 cpuctx->task_ctx = ctx;
1350 * Called from scheduler to add the events of the current task
1351 * with interrupts disabled.
1353 * We restore the event value and then enable it.
1355 * This does not protect us against NMI, but enable()
1356 * sets the enabled bit in the control field of event _before_
1357 * accessing the event control register. If a NMI hits, then it will
1358 * keep the event running.
1360 void perf_event_task_sched_in(struct task_struct *task)
1362 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1363 struct perf_event_context *ctx = task->perf_event_ctxp;
1365 if (likely(!ctx))
1366 return;
1368 if (cpuctx->task_ctx == ctx)
1369 return;
1372 * We want to keep the following priority order:
1373 * cpu pinned (that don't need to move), task pinned,
1374 * cpu flexible, task flexible.
1376 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1378 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1379 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1380 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1382 cpuctx->task_ctx = ctx;
1385 #define MAX_INTERRUPTS (~0ULL)
1387 static void perf_log_throttle(struct perf_event *event, int enable);
1389 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1391 u64 frequency = event->attr.sample_freq;
1392 u64 sec = NSEC_PER_SEC;
1393 u64 divisor, dividend;
1395 int count_fls, nsec_fls, frequency_fls, sec_fls;
1397 count_fls = fls64(count);
1398 nsec_fls = fls64(nsec);
1399 frequency_fls = fls64(frequency);
1400 sec_fls = 30;
1403 * We got @count in @nsec, with a target of sample_freq HZ
1404 * the target period becomes:
1406 * @count * 10^9
1407 * period = -------------------
1408 * @nsec * sample_freq
1413 * Reduce accuracy by one bit such that @a and @b converge
1414 * to a similar magnitude.
1416 #define REDUCE_FLS(a, b) \
1417 do { \
1418 if (a##_fls > b##_fls) { \
1419 a >>= 1; \
1420 a##_fls--; \
1421 } else { \
1422 b >>= 1; \
1423 b##_fls--; \
1425 } while (0)
1428 * Reduce accuracy until either term fits in a u64, then proceed with
1429 * the other, so that finally we can do a u64/u64 division.
1431 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1432 REDUCE_FLS(nsec, frequency);
1433 REDUCE_FLS(sec, count);
1436 if (count_fls + sec_fls > 64) {
1437 divisor = nsec * frequency;
1439 while (count_fls + sec_fls > 64) {
1440 REDUCE_FLS(count, sec);
1441 divisor >>= 1;
1444 dividend = count * sec;
1445 } else {
1446 dividend = count * sec;
1448 while (nsec_fls + frequency_fls > 64) {
1449 REDUCE_FLS(nsec, frequency);
1450 dividend >>= 1;
1453 divisor = nsec * frequency;
1456 return div64_u64(dividend, divisor);
1459 static void perf_event_stop(struct perf_event *event)
1461 if (!event->pmu->stop)
1462 return event->pmu->disable(event);
1464 return event->pmu->stop(event);
1467 static int perf_event_start(struct perf_event *event)
1469 if (!event->pmu->start)
1470 return event->pmu->enable(event);
1472 return event->pmu->start(event);
1475 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1477 struct hw_perf_event *hwc = &event->hw;
1478 u64 period, sample_period;
1479 s64 delta;
1481 period = perf_calculate_period(event, nsec, count);
1483 delta = (s64)(period - hwc->sample_period);
1484 delta = (delta + 7) / 8; /* low pass filter */
1486 sample_period = hwc->sample_period + delta;
1488 if (!sample_period)
1489 sample_period = 1;
1491 hwc->sample_period = sample_period;
1493 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1494 perf_disable();
1495 perf_event_stop(event);
1496 atomic64_set(&hwc->period_left, 0);
1497 perf_event_start(event);
1498 perf_enable();
1502 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1504 struct perf_event *event;
1505 struct hw_perf_event *hwc;
1506 u64 interrupts, now;
1507 s64 delta;
1509 raw_spin_lock(&ctx->lock);
1510 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1511 if (event->state != PERF_EVENT_STATE_ACTIVE)
1512 continue;
1514 if (event->cpu != -1 && event->cpu != smp_processor_id())
1515 continue;
1517 hwc = &event->hw;
1519 interrupts = hwc->interrupts;
1520 hwc->interrupts = 0;
1523 * unthrottle events on the tick
1525 if (interrupts == MAX_INTERRUPTS) {
1526 perf_log_throttle(event, 1);
1527 perf_disable();
1528 event->pmu->unthrottle(event);
1529 perf_enable();
1532 if (!event->attr.freq || !event->attr.sample_freq)
1533 continue;
1535 perf_disable();
1536 event->pmu->read(event);
1537 now = atomic64_read(&event->count);
1538 delta = now - hwc->freq_count_stamp;
1539 hwc->freq_count_stamp = now;
1541 if (delta > 0)
1542 perf_adjust_period(event, TICK_NSEC, delta);
1543 perf_enable();
1545 raw_spin_unlock(&ctx->lock);
1549 * Round-robin a context's events:
1551 static void rotate_ctx(struct perf_event_context *ctx)
1553 raw_spin_lock(&ctx->lock);
1555 /* Rotate the first entry last of non-pinned groups */
1556 list_rotate_left(&ctx->flexible_groups);
1558 raw_spin_unlock(&ctx->lock);
1561 void perf_event_task_tick(struct task_struct *curr)
1563 struct perf_cpu_context *cpuctx;
1564 struct perf_event_context *ctx;
1565 int rotate = 0;
1567 if (!atomic_read(&nr_events))
1568 return;
1570 cpuctx = &__get_cpu_var(perf_cpu_context);
1571 if (cpuctx->ctx.nr_events &&
1572 cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1573 rotate = 1;
1575 ctx = curr->perf_event_ctxp;
1576 if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
1577 rotate = 1;
1579 perf_ctx_adjust_freq(&cpuctx->ctx);
1580 if (ctx)
1581 perf_ctx_adjust_freq(ctx);
1583 if (!rotate)
1584 return;
1586 perf_disable();
1587 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1588 if (ctx)
1589 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1591 rotate_ctx(&cpuctx->ctx);
1592 if (ctx)
1593 rotate_ctx(ctx);
1595 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1596 if (ctx)
1597 task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1598 perf_enable();
1601 static int event_enable_on_exec(struct perf_event *event,
1602 struct perf_event_context *ctx)
1604 if (!event->attr.enable_on_exec)
1605 return 0;
1607 event->attr.enable_on_exec = 0;
1608 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1609 return 0;
1611 __perf_event_mark_enabled(event, ctx);
1613 return 1;
1617 * Enable all of a task's events that have been marked enable-on-exec.
1618 * This expects task == current.
1620 static void perf_event_enable_on_exec(struct task_struct *task)
1622 struct perf_event_context *ctx;
1623 struct perf_event *event;
1624 unsigned long flags;
1625 int enabled = 0;
1626 int ret;
1628 local_irq_save(flags);
1629 ctx = task->perf_event_ctxp;
1630 if (!ctx || !ctx->nr_events)
1631 goto out;
1633 __perf_event_task_sched_out(ctx);
1635 raw_spin_lock(&ctx->lock);
1637 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1638 ret = event_enable_on_exec(event, ctx);
1639 if (ret)
1640 enabled = 1;
1643 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1644 ret = event_enable_on_exec(event, ctx);
1645 if (ret)
1646 enabled = 1;
1650 * Unclone this context if we enabled any event.
1652 if (enabled)
1653 unclone_ctx(ctx);
1655 raw_spin_unlock(&ctx->lock);
1657 perf_event_task_sched_in(task);
1658 out:
1659 local_irq_restore(flags);
1663 * Cross CPU call to read the hardware event
1665 static void __perf_event_read(void *info)
1667 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1668 struct perf_event *event = info;
1669 struct perf_event_context *ctx = event->ctx;
1672 * If this is a task context, we need to check whether it is
1673 * the current task context of this cpu. If not it has been
1674 * scheduled out before the smp call arrived. In that case
1675 * event->count would have been updated to a recent sample
1676 * when the event was scheduled out.
1678 if (ctx->task && cpuctx->task_ctx != ctx)
1679 return;
1681 raw_spin_lock(&ctx->lock);
1682 update_context_time(ctx);
1683 update_event_times(event);
1684 raw_spin_unlock(&ctx->lock);
1686 event->pmu->read(event);
1689 static u64 perf_event_read(struct perf_event *event)
1692 * If event is enabled and currently active on a CPU, update the
1693 * value in the event structure:
1695 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1696 smp_call_function_single(event->oncpu,
1697 __perf_event_read, event, 1);
1698 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1699 struct perf_event_context *ctx = event->ctx;
1700 unsigned long flags;
1702 raw_spin_lock_irqsave(&ctx->lock, flags);
1703 update_context_time(ctx);
1704 update_event_times(event);
1705 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1708 return atomic64_read(&event->count);
1712 * Initialize the perf_event context in a task_struct:
1714 static void
1715 __perf_event_init_context(struct perf_event_context *ctx,
1716 struct task_struct *task)
1718 raw_spin_lock_init(&ctx->lock);
1719 mutex_init(&ctx->mutex);
1720 INIT_LIST_HEAD(&ctx->pinned_groups);
1721 INIT_LIST_HEAD(&ctx->flexible_groups);
1722 INIT_LIST_HEAD(&ctx->event_list);
1723 atomic_set(&ctx->refcount, 1);
1724 ctx->task = task;
1727 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1729 struct perf_event_context *ctx;
1730 struct perf_cpu_context *cpuctx;
1731 struct task_struct *task;
1732 unsigned long flags;
1733 int err;
1735 if (pid == -1 && cpu != -1) {
1736 /* Must be root to operate on a CPU event: */
1737 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1738 return ERR_PTR(-EACCES);
1740 if (cpu < 0 || cpu >= nr_cpumask_bits)
1741 return ERR_PTR(-EINVAL);
1744 * We could be clever and allow to attach a event to an
1745 * offline CPU and activate it when the CPU comes up, but
1746 * that's for later.
1748 if (!cpu_online(cpu))
1749 return ERR_PTR(-ENODEV);
1751 cpuctx = &per_cpu(perf_cpu_context, cpu);
1752 ctx = &cpuctx->ctx;
1753 get_ctx(ctx);
1755 return ctx;
1758 rcu_read_lock();
1759 if (!pid)
1760 task = current;
1761 else
1762 task = find_task_by_vpid(pid);
1763 if (task)
1764 get_task_struct(task);
1765 rcu_read_unlock();
1767 if (!task)
1768 return ERR_PTR(-ESRCH);
1771 * Can't attach events to a dying task.
1773 err = -ESRCH;
1774 if (task->flags & PF_EXITING)
1775 goto errout;
1777 /* Reuse ptrace permission checks for now. */
1778 err = -EACCES;
1779 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1780 goto errout;
1782 retry:
1783 ctx = perf_lock_task_context(task, &flags);
1784 if (ctx) {
1785 unclone_ctx(ctx);
1786 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1789 if (!ctx) {
1790 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1791 err = -ENOMEM;
1792 if (!ctx)
1793 goto errout;
1794 __perf_event_init_context(ctx, task);
1795 get_ctx(ctx);
1796 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1798 * We raced with some other task; use
1799 * the context they set.
1801 kfree(ctx);
1802 goto retry;
1804 get_task_struct(task);
1807 put_task_struct(task);
1808 return ctx;
1810 errout:
1811 put_task_struct(task);
1812 return ERR_PTR(err);
1815 static void perf_event_free_filter(struct perf_event *event);
1817 static void free_event_rcu(struct rcu_head *head)
1819 struct perf_event *event;
1821 event = container_of(head, struct perf_event, rcu_head);
1822 if (event->ns)
1823 put_pid_ns(event->ns);
1824 perf_event_free_filter(event);
1825 kfree(event);
1828 static void perf_pending_sync(struct perf_event *event);
1830 static void free_event(struct perf_event *event)
1832 perf_pending_sync(event);
1834 if (!event->parent) {
1835 atomic_dec(&nr_events);
1836 if (event->attr.mmap)
1837 atomic_dec(&nr_mmap_events);
1838 if (event->attr.comm)
1839 atomic_dec(&nr_comm_events);
1840 if (event->attr.task)
1841 atomic_dec(&nr_task_events);
1844 if (event->output) {
1845 fput(event->output->filp);
1846 event->output = NULL;
1849 if (event->destroy)
1850 event->destroy(event);
1852 put_ctx(event->ctx);
1853 call_rcu(&event->rcu_head, free_event_rcu);
1856 int perf_event_release_kernel(struct perf_event *event)
1858 struct perf_event_context *ctx = event->ctx;
1860 WARN_ON_ONCE(ctx->parent_ctx);
1861 mutex_lock(&ctx->mutex);
1862 perf_event_remove_from_context(event);
1863 mutex_unlock(&ctx->mutex);
1865 mutex_lock(&event->owner->perf_event_mutex);
1866 list_del_init(&event->owner_entry);
1867 mutex_unlock(&event->owner->perf_event_mutex);
1868 put_task_struct(event->owner);
1870 free_event(event);
1872 return 0;
1874 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1877 * Called when the last reference to the file is gone.
1879 static int perf_release(struct inode *inode, struct file *file)
1881 struct perf_event *event = file->private_data;
1883 file->private_data = NULL;
1885 return perf_event_release_kernel(event);
1888 static int perf_event_read_size(struct perf_event *event)
1890 int entry = sizeof(u64); /* value */
1891 int size = 0;
1892 int nr = 1;
1894 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1895 size += sizeof(u64);
1897 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1898 size += sizeof(u64);
1900 if (event->attr.read_format & PERF_FORMAT_ID)
1901 entry += sizeof(u64);
1903 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1904 nr += event->group_leader->nr_siblings;
1905 size += sizeof(u64);
1908 size += entry * nr;
1910 return size;
1913 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1915 struct perf_event *child;
1916 u64 total = 0;
1918 *enabled = 0;
1919 *running = 0;
1921 mutex_lock(&event->child_mutex);
1922 total += perf_event_read(event);
1923 *enabled += event->total_time_enabled +
1924 atomic64_read(&event->child_total_time_enabled);
1925 *running += event->total_time_running +
1926 atomic64_read(&event->child_total_time_running);
1928 list_for_each_entry(child, &event->child_list, child_list) {
1929 total += perf_event_read(child);
1930 *enabled += child->total_time_enabled;
1931 *running += child->total_time_running;
1933 mutex_unlock(&event->child_mutex);
1935 return total;
1937 EXPORT_SYMBOL_GPL(perf_event_read_value);
1939 static int perf_event_read_group(struct perf_event *event,
1940 u64 read_format, char __user *buf)
1942 struct perf_event *leader = event->group_leader, *sub;
1943 int n = 0, size = 0, ret = -EFAULT;
1944 struct perf_event_context *ctx = leader->ctx;
1945 u64 values[5];
1946 u64 count, enabled, running;
1948 mutex_lock(&ctx->mutex);
1949 count = perf_event_read_value(leader, &enabled, &running);
1951 values[n++] = 1 + leader->nr_siblings;
1952 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1953 values[n++] = enabled;
1954 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1955 values[n++] = running;
1956 values[n++] = count;
1957 if (read_format & PERF_FORMAT_ID)
1958 values[n++] = primary_event_id(leader);
1960 size = n * sizeof(u64);
1962 if (copy_to_user(buf, values, size))
1963 goto unlock;
1965 ret = size;
1967 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1968 n = 0;
1970 values[n++] = perf_event_read_value(sub, &enabled, &running);
1971 if (read_format & PERF_FORMAT_ID)
1972 values[n++] = primary_event_id(sub);
1974 size = n * sizeof(u64);
1976 if (copy_to_user(buf + ret, values, size)) {
1977 ret = -EFAULT;
1978 goto unlock;
1981 ret += size;
1983 unlock:
1984 mutex_unlock(&ctx->mutex);
1986 return ret;
1989 static int perf_event_read_one(struct perf_event *event,
1990 u64 read_format, char __user *buf)
1992 u64 enabled, running;
1993 u64 values[4];
1994 int n = 0;
1996 values[n++] = perf_event_read_value(event, &enabled, &running);
1997 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1998 values[n++] = enabled;
1999 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2000 values[n++] = running;
2001 if (read_format & PERF_FORMAT_ID)
2002 values[n++] = primary_event_id(event);
2004 if (copy_to_user(buf, values, n * sizeof(u64)))
2005 return -EFAULT;
2007 return n * sizeof(u64);
2011 * Read the performance event - simple non blocking version for now
2013 static ssize_t
2014 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2016 u64 read_format = event->attr.read_format;
2017 int ret;
2020 * Return end-of-file for a read on a event that is in
2021 * error state (i.e. because it was pinned but it couldn't be
2022 * scheduled on to the CPU at some point).
2024 if (event->state == PERF_EVENT_STATE_ERROR)
2025 return 0;
2027 if (count < perf_event_read_size(event))
2028 return -ENOSPC;
2030 WARN_ON_ONCE(event->ctx->parent_ctx);
2031 if (read_format & PERF_FORMAT_GROUP)
2032 ret = perf_event_read_group(event, read_format, buf);
2033 else
2034 ret = perf_event_read_one(event, read_format, buf);
2036 return ret;
2039 static ssize_t
2040 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2042 struct perf_event *event = file->private_data;
2044 return perf_read_hw(event, buf, count);
2047 static unsigned int perf_poll(struct file *file, poll_table *wait)
2049 struct perf_event *event = file->private_data;
2050 struct perf_mmap_data *data;
2051 unsigned int events = POLL_HUP;
2053 rcu_read_lock();
2054 data = rcu_dereference(event->data);
2055 if (data)
2056 events = atomic_xchg(&data->poll, 0);
2057 rcu_read_unlock();
2059 poll_wait(file, &event->waitq, wait);
2061 return events;
2064 static void perf_event_reset(struct perf_event *event)
2066 (void)perf_event_read(event);
2067 atomic64_set(&event->count, 0);
2068 perf_event_update_userpage(event);
2072 * Holding the top-level event's child_mutex means that any
2073 * descendant process that has inherited this event will block
2074 * in sync_child_event if it goes to exit, thus satisfying the
2075 * task existence requirements of perf_event_enable/disable.
2077 static void perf_event_for_each_child(struct perf_event *event,
2078 void (*func)(struct perf_event *))
2080 struct perf_event *child;
2082 WARN_ON_ONCE(event->ctx->parent_ctx);
2083 mutex_lock(&event->child_mutex);
2084 func(event);
2085 list_for_each_entry(child, &event->child_list, child_list)
2086 func(child);
2087 mutex_unlock(&event->child_mutex);
2090 static void perf_event_for_each(struct perf_event *event,
2091 void (*func)(struct perf_event *))
2093 struct perf_event_context *ctx = event->ctx;
2094 struct perf_event *sibling;
2096 WARN_ON_ONCE(ctx->parent_ctx);
2097 mutex_lock(&ctx->mutex);
2098 event = event->group_leader;
2100 perf_event_for_each_child(event, func);
2101 func(event);
2102 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2103 perf_event_for_each_child(event, func);
2104 mutex_unlock(&ctx->mutex);
2107 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2109 struct perf_event_context *ctx = event->ctx;
2110 unsigned long size;
2111 int ret = 0;
2112 u64 value;
2114 if (!event->attr.sample_period)
2115 return -EINVAL;
2117 size = copy_from_user(&value, arg, sizeof(value));
2118 if (size != sizeof(value))
2119 return -EFAULT;
2121 if (!value)
2122 return -EINVAL;
2124 raw_spin_lock_irq(&ctx->lock);
2125 if (event->attr.freq) {
2126 if (value > sysctl_perf_event_sample_rate) {
2127 ret = -EINVAL;
2128 goto unlock;
2131 event->attr.sample_freq = value;
2132 } else {
2133 event->attr.sample_period = value;
2134 event->hw.sample_period = value;
2136 unlock:
2137 raw_spin_unlock_irq(&ctx->lock);
2139 return ret;
2142 static int perf_event_set_output(struct perf_event *event, int output_fd);
2143 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2145 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2147 struct perf_event *event = file->private_data;
2148 void (*func)(struct perf_event *);
2149 u32 flags = arg;
2151 switch (cmd) {
2152 case PERF_EVENT_IOC_ENABLE:
2153 func = perf_event_enable;
2154 break;
2155 case PERF_EVENT_IOC_DISABLE:
2156 func = perf_event_disable;
2157 break;
2158 case PERF_EVENT_IOC_RESET:
2159 func = perf_event_reset;
2160 break;
2162 case PERF_EVENT_IOC_REFRESH:
2163 return perf_event_refresh(event, arg);
2165 case PERF_EVENT_IOC_PERIOD:
2166 return perf_event_period(event, (u64 __user *)arg);
2168 case PERF_EVENT_IOC_SET_OUTPUT:
2169 return perf_event_set_output(event, arg);
2171 case PERF_EVENT_IOC_SET_FILTER:
2172 return perf_event_set_filter(event, (void __user *)arg);
2174 default:
2175 return -ENOTTY;
2178 if (flags & PERF_IOC_FLAG_GROUP)
2179 perf_event_for_each(event, func);
2180 else
2181 perf_event_for_each_child(event, func);
2183 return 0;
2186 int perf_event_task_enable(void)
2188 struct perf_event *event;
2190 mutex_lock(&current->perf_event_mutex);
2191 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2192 perf_event_for_each_child(event, perf_event_enable);
2193 mutex_unlock(&current->perf_event_mutex);
2195 return 0;
2198 int perf_event_task_disable(void)
2200 struct perf_event *event;
2202 mutex_lock(&current->perf_event_mutex);
2203 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2204 perf_event_for_each_child(event, perf_event_disable);
2205 mutex_unlock(&current->perf_event_mutex);
2207 return 0;
2210 #ifndef PERF_EVENT_INDEX_OFFSET
2211 # define PERF_EVENT_INDEX_OFFSET 0
2212 #endif
2214 static int perf_event_index(struct perf_event *event)
2216 if (event->state != PERF_EVENT_STATE_ACTIVE)
2217 return 0;
2219 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2223 * Callers need to ensure there can be no nesting of this function, otherwise
2224 * the seqlock logic goes bad. We can not serialize this because the arch
2225 * code calls this from NMI context.
2227 void perf_event_update_userpage(struct perf_event *event)
2229 struct perf_event_mmap_page *userpg;
2230 struct perf_mmap_data *data;
2232 rcu_read_lock();
2233 data = rcu_dereference(event->data);
2234 if (!data)
2235 goto unlock;
2237 userpg = data->user_page;
2240 * Disable preemption so as to not let the corresponding user-space
2241 * spin too long if we get preempted.
2243 preempt_disable();
2244 ++userpg->lock;
2245 barrier();
2246 userpg->index = perf_event_index(event);
2247 userpg->offset = atomic64_read(&event->count);
2248 if (event->state == PERF_EVENT_STATE_ACTIVE)
2249 userpg->offset -= atomic64_read(&event->hw.prev_count);
2251 userpg->time_enabled = event->total_time_enabled +
2252 atomic64_read(&event->child_total_time_enabled);
2254 userpg->time_running = event->total_time_running +
2255 atomic64_read(&event->child_total_time_running);
2257 barrier();
2258 ++userpg->lock;
2259 preempt_enable();
2260 unlock:
2261 rcu_read_unlock();
2264 static unsigned long perf_data_size(struct perf_mmap_data *data)
2266 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2269 #ifndef CONFIG_PERF_USE_VMALLOC
2272 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2275 static struct page *
2276 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2278 if (pgoff > data->nr_pages)
2279 return NULL;
2281 if (pgoff == 0)
2282 return virt_to_page(data->user_page);
2284 return virt_to_page(data->data_pages[pgoff - 1]);
2287 static struct perf_mmap_data *
2288 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2290 struct perf_mmap_data *data;
2291 unsigned long size;
2292 int i;
2294 WARN_ON(atomic_read(&event->mmap_count));
2296 size = sizeof(struct perf_mmap_data);
2297 size += nr_pages * sizeof(void *);
2299 data = kzalloc(size, GFP_KERNEL);
2300 if (!data)
2301 goto fail;
2303 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2304 if (!data->user_page)
2305 goto fail_user_page;
2307 for (i = 0; i < nr_pages; i++) {
2308 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2309 if (!data->data_pages[i])
2310 goto fail_data_pages;
2313 data->data_order = 0;
2314 data->nr_pages = nr_pages;
2316 return data;
2318 fail_data_pages:
2319 for (i--; i >= 0; i--)
2320 free_page((unsigned long)data->data_pages[i]);
2322 free_page((unsigned long)data->user_page);
2324 fail_user_page:
2325 kfree(data);
2327 fail:
2328 return NULL;
2331 static void perf_mmap_free_page(unsigned long addr)
2333 struct page *page = virt_to_page((void *)addr);
2335 page->mapping = NULL;
2336 __free_page(page);
2339 static void perf_mmap_data_free(struct perf_mmap_data *data)
2341 int i;
2343 perf_mmap_free_page((unsigned long)data->user_page);
2344 for (i = 0; i < data->nr_pages; i++)
2345 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2346 kfree(data);
2349 #else
2352 * Back perf_mmap() with vmalloc memory.
2354 * Required for architectures that have d-cache aliasing issues.
2357 static struct page *
2358 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2360 if (pgoff > (1UL << data->data_order))
2361 return NULL;
2363 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2366 static void perf_mmap_unmark_page(void *addr)
2368 struct page *page = vmalloc_to_page(addr);
2370 page->mapping = NULL;
2373 static void perf_mmap_data_free_work(struct work_struct *work)
2375 struct perf_mmap_data *data;
2376 void *base;
2377 int i, nr;
2379 data = container_of(work, struct perf_mmap_data, work);
2380 nr = 1 << data->data_order;
2382 base = data->user_page;
2383 for (i = 0; i < nr + 1; i++)
2384 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2386 vfree(base);
2387 kfree(data);
2390 static void perf_mmap_data_free(struct perf_mmap_data *data)
2392 schedule_work(&data->work);
2395 static struct perf_mmap_data *
2396 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2398 struct perf_mmap_data *data;
2399 unsigned long size;
2400 void *all_buf;
2402 WARN_ON(atomic_read(&event->mmap_count));
2404 size = sizeof(struct perf_mmap_data);
2405 size += sizeof(void *);
2407 data = kzalloc(size, GFP_KERNEL);
2408 if (!data)
2409 goto fail;
2411 INIT_WORK(&data->work, perf_mmap_data_free_work);
2413 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2414 if (!all_buf)
2415 goto fail_all_buf;
2417 data->user_page = all_buf;
2418 data->data_pages[0] = all_buf + PAGE_SIZE;
2419 data->data_order = ilog2(nr_pages);
2420 data->nr_pages = 1;
2422 return data;
2424 fail_all_buf:
2425 kfree(data);
2427 fail:
2428 return NULL;
2431 #endif
2433 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2435 struct perf_event *event = vma->vm_file->private_data;
2436 struct perf_mmap_data *data;
2437 int ret = VM_FAULT_SIGBUS;
2439 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2440 if (vmf->pgoff == 0)
2441 ret = 0;
2442 return ret;
2445 rcu_read_lock();
2446 data = rcu_dereference(event->data);
2447 if (!data)
2448 goto unlock;
2450 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2451 goto unlock;
2453 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2454 if (!vmf->page)
2455 goto unlock;
2457 get_page(vmf->page);
2458 vmf->page->mapping = vma->vm_file->f_mapping;
2459 vmf->page->index = vmf->pgoff;
2461 ret = 0;
2462 unlock:
2463 rcu_read_unlock();
2465 return ret;
2468 static void
2469 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2471 long max_size = perf_data_size(data);
2473 atomic_set(&data->lock, -1);
2475 if (event->attr.watermark) {
2476 data->watermark = min_t(long, max_size,
2477 event->attr.wakeup_watermark);
2480 if (!data->watermark)
2481 data->watermark = max_size / 2;
2484 rcu_assign_pointer(event->data, data);
2487 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2489 struct perf_mmap_data *data;
2491 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2492 perf_mmap_data_free(data);
2495 static void perf_mmap_data_release(struct perf_event *event)
2497 struct perf_mmap_data *data = event->data;
2499 WARN_ON(atomic_read(&event->mmap_count));
2501 rcu_assign_pointer(event->data, NULL);
2502 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2505 static void perf_mmap_open(struct vm_area_struct *vma)
2507 struct perf_event *event = vma->vm_file->private_data;
2509 atomic_inc(&event->mmap_count);
2512 static void perf_mmap_close(struct vm_area_struct *vma)
2514 struct perf_event *event = vma->vm_file->private_data;
2516 WARN_ON_ONCE(event->ctx->parent_ctx);
2517 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2518 unsigned long size = perf_data_size(event->data);
2519 struct user_struct *user = current_user();
2521 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2522 vma->vm_mm->locked_vm -= event->data->nr_locked;
2523 perf_mmap_data_release(event);
2524 mutex_unlock(&event->mmap_mutex);
2528 static const struct vm_operations_struct perf_mmap_vmops = {
2529 .open = perf_mmap_open,
2530 .close = perf_mmap_close,
2531 .fault = perf_mmap_fault,
2532 .page_mkwrite = perf_mmap_fault,
2535 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2537 struct perf_event *event = file->private_data;
2538 unsigned long user_locked, user_lock_limit;
2539 struct user_struct *user = current_user();
2540 unsigned long locked, lock_limit;
2541 struct perf_mmap_data *data;
2542 unsigned long vma_size;
2543 unsigned long nr_pages;
2544 long user_extra, extra;
2545 int ret = 0;
2547 if (!(vma->vm_flags & VM_SHARED))
2548 return -EINVAL;
2550 vma_size = vma->vm_end - vma->vm_start;
2551 nr_pages = (vma_size / PAGE_SIZE) - 1;
2554 * If we have data pages ensure they're a power-of-two number, so we
2555 * can do bitmasks instead of modulo.
2557 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2558 return -EINVAL;
2560 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2561 return -EINVAL;
2563 if (vma->vm_pgoff != 0)
2564 return -EINVAL;
2566 WARN_ON_ONCE(event->ctx->parent_ctx);
2567 mutex_lock(&event->mmap_mutex);
2568 if (event->output) {
2569 ret = -EINVAL;
2570 goto unlock;
2573 if (atomic_inc_not_zero(&event->mmap_count)) {
2574 if (nr_pages != event->data->nr_pages)
2575 ret = -EINVAL;
2576 goto unlock;
2579 user_extra = nr_pages + 1;
2580 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2583 * Increase the limit linearly with more CPUs:
2585 user_lock_limit *= num_online_cpus();
2587 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2589 extra = 0;
2590 if (user_locked > user_lock_limit)
2591 extra = user_locked - user_lock_limit;
2593 lock_limit = rlimit(RLIMIT_MEMLOCK);
2594 lock_limit >>= PAGE_SHIFT;
2595 locked = vma->vm_mm->locked_vm + extra;
2597 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2598 !capable(CAP_IPC_LOCK)) {
2599 ret = -EPERM;
2600 goto unlock;
2603 WARN_ON(event->data);
2605 data = perf_mmap_data_alloc(event, nr_pages);
2606 ret = -ENOMEM;
2607 if (!data)
2608 goto unlock;
2610 ret = 0;
2611 perf_mmap_data_init(event, data);
2613 atomic_set(&event->mmap_count, 1);
2614 atomic_long_add(user_extra, &user->locked_vm);
2615 vma->vm_mm->locked_vm += extra;
2616 event->data->nr_locked = extra;
2617 if (vma->vm_flags & VM_WRITE)
2618 event->data->writable = 1;
2620 unlock:
2621 mutex_unlock(&event->mmap_mutex);
2623 vma->vm_flags |= VM_RESERVED;
2624 vma->vm_ops = &perf_mmap_vmops;
2626 return ret;
2629 static int perf_fasync(int fd, struct file *filp, int on)
2631 struct inode *inode = filp->f_path.dentry->d_inode;
2632 struct perf_event *event = filp->private_data;
2633 int retval;
2635 mutex_lock(&inode->i_mutex);
2636 retval = fasync_helper(fd, filp, on, &event->fasync);
2637 mutex_unlock(&inode->i_mutex);
2639 if (retval < 0)
2640 return retval;
2642 return 0;
2645 static const struct file_operations perf_fops = {
2646 .release = perf_release,
2647 .read = perf_read,
2648 .poll = perf_poll,
2649 .unlocked_ioctl = perf_ioctl,
2650 .compat_ioctl = perf_ioctl,
2651 .mmap = perf_mmap,
2652 .fasync = perf_fasync,
2656 * Perf event wakeup
2658 * If there's data, ensure we set the poll() state and publish everything
2659 * to user-space before waking everybody up.
2662 void perf_event_wakeup(struct perf_event *event)
2664 wake_up_all(&event->waitq);
2666 if (event->pending_kill) {
2667 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2668 event->pending_kill = 0;
2673 * Pending wakeups
2675 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2677 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2678 * single linked list and use cmpxchg() to add entries lockless.
2681 static void perf_pending_event(struct perf_pending_entry *entry)
2683 struct perf_event *event = container_of(entry,
2684 struct perf_event, pending);
2686 if (event->pending_disable) {
2687 event->pending_disable = 0;
2688 __perf_event_disable(event);
2691 if (event->pending_wakeup) {
2692 event->pending_wakeup = 0;
2693 perf_event_wakeup(event);
2697 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2699 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2700 PENDING_TAIL,
2703 static void perf_pending_queue(struct perf_pending_entry *entry,
2704 void (*func)(struct perf_pending_entry *))
2706 struct perf_pending_entry **head;
2708 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2709 return;
2711 entry->func = func;
2713 head = &get_cpu_var(perf_pending_head);
2715 do {
2716 entry->next = *head;
2717 } while (cmpxchg(head, entry->next, entry) != entry->next);
2719 set_perf_event_pending();
2721 put_cpu_var(perf_pending_head);
2724 static int __perf_pending_run(void)
2726 struct perf_pending_entry *list;
2727 int nr = 0;
2729 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2730 while (list != PENDING_TAIL) {
2731 void (*func)(struct perf_pending_entry *);
2732 struct perf_pending_entry *entry = list;
2734 list = list->next;
2736 func = entry->func;
2737 entry->next = NULL;
2739 * Ensure we observe the unqueue before we issue the wakeup,
2740 * so that we won't be waiting forever.
2741 * -- see perf_not_pending().
2743 smp_wmb();
2745 func(entry);
2746 nr++;
2749 return nr;
2752 static inline int perf_not_pending(struct perf_event *event)
2755 * If we flush on whatever cpu we run, there is a chance we don't
2756 * need to wait.
2758 get_cpu();
2759 __perf_pending_run();
2760 put_cpu();
2763 * Ensure we see the proper queue state before going to sleep
2764 * so that we do not miss the wakeup. -- see perf_pending_handle()
2766 smp_rmb();
2767 return event->pending.next == NULL;
2770 static void perf_pending_sync(struct perf_event *event)
2772 wait_event(event->waitq, perf_not_pending(event));
2775 void perf_event_do_pending(void)
2777 __perf_pending_run();
2781 * Callchain support -- arch specific
2784 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2786 return NULL;
2789 __weak
2790 void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
2795 * Output
2797 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2798 unsigned long offset, unsigned long head)
2800 unsigned long mask;
2802 if (!data->writable)
2803 return true;
2805 mask = perf_data_size(data) - 1;
2807 offset = (offset - tail) & mask;
2808 head = (head - tail) & mask;
2810 if ((int)(head - offset) < 0)
2811 return false;
2813 return true;
2816 static void perf_output_wakeup(struct perf_output_handle *handle)
2818 atomic_set(&handle->data->poll, POLL_IN);
2820 if (handle->nmi) {
2821 handle->event->pending_wakeup = 1;
2822 perf_pending_queue(&handle->event->pending,
2823 perf_pending_event);
2824 } else
2825 perf_event_wakeup(handle->event);
2829 * Curious locking construct.
2831 * We need to ensure a later event_id doesn't publish a head when a former
2832 * event_id isn't done writing. However since we need to deal with NMIs we
2833 * cannot fully serialize things.
2835 * What we do is serialize between CPUs so we only have to deal with NMI
2836 * nesting on a single CPU.
2838 * We only publish the head (and generate a wakeup) when the outer-most
2839 * event_id completes.
2841 static void perf_output_lock(struct perf_output_handle *handle)
2843 struct perf_mmap_data *data = handle->data;
2844 int cur, cpu = get_cpu();
2846 handle->locked = 0;
2848 for (;;) {
2849 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2850 if (cur == -1) {
2851 handle->locked = 1;
2852 break;
2854 if (cur == cpu)
2855 break;
2857 cpu_relax();
2861 static void perf_output_unlock(struct perf_output_handle *handle)
2863 struct perf_mmap_data *data = handle->data;
2864 unsigned long head;
2865 int cpu;
2867 data->done_head = data->head;
2869 if (!handle->locked)
2870 goto out;
2872 again:
2874 * The xchg implies a full barrier that ensures all writes are done
2875 * before we publish the new head, matched by a rmb() in userspace when
2876 * reading this position.
2878 while ((head = atomic_long_xchg(&data->done_head, 0)))
2879 data->user_page->data_head = head;
2882 * NMI can happen here, which means we can miss a done_head update.
2885 cpu = atomic_xchg(&data->lock, -1);
2886 WARN_ON_ONCE(cpu != smp_processor_id());
2889 * Therefore we have to validate we did not indeed do so.
2891 if (unlikely(atomic_long_read(&data->done_head))) {
2893 * Since we had it locked, we can lock it again.
2895 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2896 cpu_relax();
2898 goto again;
2901 if (atomic_xchg(&data->wakeup, 0))
2902 perf_output_wakeup(handle);
2903 out:
2904 put_cpu();
2907 void perf_output_copy(struct perf_output_handle *handle,
2908 const void *buf, unsigned int len)
2910 unsigned int pages_mask;
2911 unsigned long offset;
2912 unsigned int size;
2913 void **pages;
2915 offset = handle->offset;
2916 pages_mask = handle->data->nr_pages - 1;
2917 pages = handle->data->data_pages;
2919 do {
2920 unsigned long page_offset;
2921 unsigned long page_size;
2922 int nr;
2924 nr = (offset >> PAGE_SHIFT) & pages_mask;
2925 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2926 page_offset = offset & (page_size - 1);
2927 size = min_t(unsigned int, page_size - page_offset, len);
2929 memcpy(pages[nr] + page_offset, buf, size);
2931 len -= size;
2932 buf += size;
2933 offset += size;
2934 } while (len);
2936 handle->offset = offset;
2939 * Check we didn't copy past our reservation window, taking the
2940 * possible unsigned int wrap into account.
2942 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2945 int perf_output_begin(struct perf_output_handle *handle,
2946 struct perf_event *event, unsigned int size,
2947 int nmi, int sample)
2949 struct perf_event *output_event;
2950 struct perf_mmap_data *data;
2951 unsigned long tail, offset, head;
2952 int have_lost;
2953 struct {
2954 struct perf_event_header header;
2955 u64 id;
2956 u64 lost;
2957 } lost_event;
2959 rcu_read_lock();
2961 * For inherited events we send all the output towards the parent.
2963 if (event->parent)
2964 event = event->parent;
2966 output_event = rcu_dereference(event->output);
2967 if (output_event)
2968 event = output_event;
2970 data = rcu_dereference(event->data);
2971 if (!data)
2972 goto out;
2974 handle->data = data;
2975 handle->event = event;
2976 handle->nmi = nmi;
2977 handle->sample = sample;
2979 if (!data->nr_pages)
2980 goto fail;
2982 have_lost = atomic_read(&data->lost);
2983 if (have_lost)
2984 size += sizeof(lost_event);
2986 perf_output_lock(handle);
2988 do {
2990 * Userspace could choose to issue a mb() before updating the
2991 * tail pointer. So that all reads will be completed before the
2992 * write is issued.
2994 tail = ACCESS_ONCE(data->user_page->data_tail);
2995 smp_rmb();
2996 offset = head = atomic_long_read(&data->head);
2997 head += size;
2998 if (unlikely(!perf_output_space(data, tail, offset, head)))
2999 goto fail;
3000 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3002 handle->offset = offset;
3003 handle->head = head;
3005 if (head - tail > data->watermark)
3006 atomic_set(&data->wakeup, 1);
3008 if (have_lost) {
3009 lost_event.header.type = PERF_RECORD_LOST;
3010 lost_event.header.misc = 0;
3011 lost_event.header.size = sizeof(lost_event);
3012 lost_event.id = event->id;
3013 lost_event.lost = atomic_xchg(&data->lost, 0);
3015 perf_output_put(handle, lost_event);
3018 return 0;
3020 fail:
3021 atomic_inc(&data->lost);
3022 perf_output_unlock(handle);
3023 out:
3024 rcu_read_unlock();
3026 return -ENOSPC;
3029 void perf_output_end(struct perf_output_handle *handle)
3031 struct perf_event *event = handle->event;
3032 struct perf_mmap_data *data = handle->data;
3034 int wakeup_events = event->attr.wakeup_events;
3036 if (handle->sample && wakeup_events) {
3037 int events = atomic_inc_return(&data->events);
3038 if (events >= wakeup_events) {
3039 atomic_sub(wakeup_events, &data->events);
3040 atomic_set(&data->wakeup, 1);
3044 perf_output_unlock(handle);
3045 rcu_read_unlock();
3048 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3051 * only top level events have the pid namespace they were created in
3053 if (event->parent)
3054 event = event->parent;
3056 return task_tgid_nr_ns(p, event->ns);
3059 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3062 * only top level events have the pid namespace they were created in
3064 if (event->parent)
3065 event = event->parent;
3067 return task_pid_nr_ns(p, event->ns);
3070 static void perf_output_read_one(struct perf_output_handle *handle,
3071 struct perf_event *event)
3073 u64 read_format = event->attr.read_format;
3074 u64 values[4];
3075 int n = 0;
3077 values[n++] = atomic64_read(&event->count);
3078 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3079 values[n++] = event->total_time_enabled +
3080 atomic64_read(&event->child_total_time_enabled);
3082 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3083 values[n++] = event->total_time_running +
3084 atomic64_read(&event->child_total_time_running);
3086 if (read_format & PERF_FORMAT_ID)
3087 values[n++] = primary_event_id(event);
3089 perf_output_copy(handle, values, n * sizeof(u64));
3093 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3095 static void perf_output_read_group(struct perf_output_handle *handle,
3096 struct perf_event *event)
3098 struct perf_event *leader = event->group_leader, *sub;
3099 u64 read_format = event->attr.read_format;
3100 u64 values[5];
3101 int n = 0;
3103 values[n++] = 1 + leader->nr_siblings;
3105 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3106 values[n++] = leader->total_time_enabled;
3108 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3109 values[n++] = leader->total_time_running;
3111 if (leader != event)
3112 leader->pmu->read(leader);
3114 values[n++] = atomic64_read(&leader->count);
3115 if (read_format & PERF_FORMAT_ID)
3116 values[n++] = primary_event_id(leader);
3118 perf_output_copy(handle, values, n * sizeof(u64));
3120 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3121 n = 0;
3123 if (sub != event)
3124 sub->pmu->read(sub);
3126 values[n++] = atomic64_read(&sub->count);
3127 if (read_format & PERF_FORMAT_ID)
3128 values[n++] = primary_event_id(sub);
3130 perf_output_copy(handle, values, n * sizeof(u64));
3134 static void perf_output_read(struct perf_output_handle *handle,
3135 struct perf_event *event)
3137 if (event->attr.read_format & PERF_FORMAT_GROUP)
3138 perf_output_read_group(handle, event);
3139 else
3140 perf_output_read_one(handle, event);
3143 void perf_output_sample(struct perf_output_handle *handle,
3144 struct perf_event_header *header,
3145 struct perf_sample_data *data,
3146 struct perf_event *event)
3148 u64 sample_type = data->type;
3150 perf_output_put(handle, *header);
3152 if (sample_type & PERF_SAMPLE_IP)
3153 perf_output_put(handle, data->ip);
3155 if (sample_type & PERF_SAMPLE_TID)
3156 perf_output_put(handle, data->tid_entry);
3158 if (sample_type & PERF_SAMPLE_TIME)
3159 perf_output_put(handle, data->time);
3161 if (sample_type & PERF_SAMPLE_ADDR)
3162 perf_output_put(handle, data->addr);
3164 if (sample_type & PERF_SAMPLE_ID)
3165 perf_output_put(handle, data->id);
3167 if (sample_type & PERF_SAMPLE_STREAM_ID)
3168 perf_output_put(handle, data->stream_id);
3170 if (sample_type & PERF_SAMPLE_CPU)
3171 perf_output_put(handle, data->cpu_entry);
3173 if (sample_type & PERF_SAMPLE_PERIOD)
3174 perf_output_put(handle, data->period);
3176 if (sample_type & PERF_SAMPLE_READ)
3177 perf_output_read(handle, event);
3179 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3180 if (data->callchain) {
3181 int size = 1;
3183 if (data->callchain)
3184 size += data->callchain->nr;
3186 size *= sizeof(u64);
3188 perf_output_copy(handle, data->callchain, size);
3189 } else {
3190 u64 nr = 0;
3191 perf_output_put(handle, nr);
3195 if (sample_type & PERF_SAMPLE_RAW) {
3196 if (data->raw) {
3197 perf_output_put(handle, data->raw->size);
3198 perf_output_copy(handle, data->raw->data,
3199 data->raw->size);
3200 } else {
3201 struct {
3202 u32 size;
3203 u32 data;
3204 } raw = {
3205 .size = sizeof(u32),
3206 .data = 0,
3208 perf_output_put(handle, raw);
3213 void perf_prepare_sample(struct perf_event_header *header,
3214 struct perf_sample_data *data,
3215 struct perf_event *event,
3216 struct pt_regs *regs)
3218 u64 sample_type = event->attr.sample_type;
3220 data->type = sample_type;
3222 header->type = PERF_RECORD_SAMPLE;
3223 header->size = sizeof(*header);
3225 header->misc = 0;
3226 header->misc |= perf_misc_flags(regs);
3228 if (sample_type & PERF_SAMPLE_IP) {
3229 data->ip = perf_instruction_pointer(regs);
3231 header->size += sizeof(data->ip);
3234 if (sample_type & PERF_SAMPLE_TID) {
3235 /* namespace issues */
3236 data->tid_entry.pid = perf_event_pid(event, current);
3237 data->tid_entry.tid = perf_event_tid(event, current);
3239 header->size += sizeof(data->tid_entry);
3242 if (sample_type & PERF_SAMPLE_TIME) {
3243 data->time = perf_clock();
3245 header->size += sizeof(data->time);
3248 if (sample_type & PERF_SAMPLE_ADDR)
3249 header->size += sizeof(data->addr);
3251 if (sample_type & PERF_SAMPLE_ID) {
3252 data->id = primary_event_id(event);
3254 header->size += sizeof(data->id);
3257 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3258 data->stream_id = event->id;
3260 header->size += sizeof(data->stream_id);
3263 if (sample_type & PERF_SAMPLE_CPU) {
3264 data->cpu_entry.cpu = raw_smp_processor_id();
3265 data->cpu_entry.reserved = 0;
3267 header->size += sizeof(data->cpu_entry);
3270 if (sample_type & PERF_SAMPLE_PERIOD)
3271 header->size += sizeof(data->period);
3273 if (sample_type & PERF_SAMPLE_READ)
3274 header->size += perf_event_read_size(event);
3276 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3277 int size = 1;
3279 data->callchain = perf_callchain(regs);
3281 if (data->callchain)
3282 size += data->callchain->nr;
3284 header->size += size * sizeof(u64);
3287 if (sample_type & PERF_SAMPLE_RAW) {
3288 int size = sizeof(u32);
3290 if (data->raw)
3291 size += data->raw->size;
3292 else
3293 size += sizeof(u32);
3295 WARN_ON_ONCE(size & (sizeof(u64)-1));
3296 header->size += size;
3300 static void perf_event_output(struct perf_event *event, int nmi,
3301 struct perf_sample_data *data,
3302 struct pt_regs *regs)
3304 struct perf_output_handle handle;
3305 struct perf_event_header header;
3307 perf_prepare_sample(&header, data, event, regs);
3309 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3310 return;
3312 perf_output_sample(&handle, &header, data, event);
3314 perf_output_end(&handle);
3318 * read event_id
3321 struct perf_read_event {
3322 struct perf_event_header header;
3324 u32 pid;
3325 u32 tid;
3328 static void
3329 perf_event_read_event(struct perf_event *event,
3330 struct task_struct *task)
3332 struct perf_output_handle handle;
3333 struct perf_read_event read_event = {
3334 .header = {
3335 .type = PERF_RECORD_READ,
3336 .misc = 0,
3337 .size = sizeof(read_event) + perf_event_read_size(event),
3339 .pid = perf_event_pid(event, task),
3340 .tid = perf_event_tid(event, task),
3342 int ret;
3344 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3345 if (ret)
3346 return;
3348 perf_output_put(&handle, read_event);
3349 perf_output_read(&handle, event);
3351 perf_output_end(&handle);
3355 * task tracking -- fork/exit
3357 * enabled by: attr.comm | attr.mmap | attr.task
3360 struct perf_task_event {
3361 struct task_struct *task;
3362 struct perf_event_context *task_ctx;
3364 struct {
3365 struct perf_event_header header;
3367 u32 pid;
3368 u32 ppid;
3369 u32 tid;
3370 u32 ptid;
3371 u64 time;
3372 } event_id;
3375 static void perf_event_task_output(struct perf_event *event,
3376 struct perf_task_event *task_event)
3378 struct perf_output_handle handle;
3379 int size;
3380 struct task_struct *task = task_event->task;
3381 int ret;
3383 size = task_event->event_id.header.size;
3384 ret = perf_output_begin(&handle, event, size, 0, 0);
3386 if (ret)
3387 return;
3389 task_event->event_id.pid = perf_event_pid(event, task);
3390 task_event->event_id.ppid = perf_event_pid(event, current);
3392 task_event->event_id.tid = perf_event_tid(event, task);
3393 task_event->event_id.ptid = perf_event_tid(event, current);
3395 perf_output_put(&handle, task_event->event_id);
3397 perf_output_end(&handle);
3400 static int perf_event_task_match(struct perf_event *event)
3402 if (event->state < PERF_EVENT_STATE_INACTIVE)
3403 return 0;
3405 if (event->cpu != -1 && event->cpu != smp_processor_id())
3406 return 0;
3408 if (event->attr.comm || event->attr.mmap || event->attr.task)
3409 return 1;
3411 return 0;
3414 static void perf_event_task_ctx(struct perf_event_context *ctx,
3415 struct perf_task_event *task_event)
3417 struct perf_event *event;
3419 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3420 if (perf_event_task_match(event))
3421 perf_event_task_output(event, task_event);
3425 static void perf_event_task_event(struct perf_task_event *task_event)
3427 struct perf_cpu_context *cpuctx;
3428 struct perf_event_context *ctx = task_event->task_ctx;
3430 rcu_read_lock();
3431 cpuctx = &get_cpu_var(perf_cpu_context);
3432 perf_event_task_ctx(&cpuctx->ctx, task_event);
3433 if (!ctx)
3434 ctx = rcu_dereference(current->perf_event_ctxp);
3435 if (ctx)
3436 perf_event_task_ctx(ctx, task_event);
3437 put_cpu_var(perf_cpu_context);
3438 rcu_read_unlock();
3441 static void perf_event_task(struct task_struct *task,
3442 struct perf_event_context *task_ctx,
3443 int new)
3445 struct perf_task_event task_event;
3447 if (!atomic_read(&nr_comm_events) &&
3448 !atomic_read(&nr_mmap_events) &&
3449 !atomic_read(&nr_task_events))
3450 return;
3452 task_event = (struct perf_task_event){
3453 .task = task,
3454 .task_ctx = task_ctx,
3455 .event_id = {
3456 .header = {
3457 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3458 .misc = 0,
3459 .size = sizeof(task_event.event_id),
3461 /* .pid */
3462 /* .ppid */
3463 /* .tid */
3464 /* .ptid */
3465 .time = perf_clock(),
3469 perf_event_task_event(&task_event);
3472 void perf_event_fork(struct task_struct *task)
3474 perf_event_task(task, NULL, 1);
3478 * comm tracking
3481 struct perf_comm_event {
3482 struct task_struct *task;
3483 char *comm;
3484 int comm_size;
3486 struct {
3487 struct perf_event_header header;
3489 u32 pid;
3490 u32 tid;
3491 } event_id;
3494 static void perf_event_comm_output(struct perf_event *event,
3495 struct perf_comm_event *comm_event)
3497 struct perf_output_handle handle;
3498 int size = comm_event->event_id.header.size;
3499 int ret = perf_output_begin(&handle, event, size, 0, 0);
3501 if (ret)
3502 return;
3504 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3505 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3507 perf_output_put(&handle, comm_event->event_id);
3508 perf_output_copy(&handle, comm_event->comm,
3509 comm_event->comm_size);
3510 perf_output_end(&handle);
3513 static int perf_event_comm_match(struct perf_event *event)
3515 if (event->state < PERF_EVENT_STATE_INACTIVE)
3516 return 0;
3518 if (event->cpu != -1 && event->cpu != smp_processor_id())
3519 return 0;
3521 if (event->attr.comm)
3522 return 1;
3524 return 0;
3527 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3528 struct perf_comm_event *comm_event)
3530 struct perf_event *event;
3532 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3533 if (perf_event_comm_match(event))
3534 perf_event_comm_output(event, comm_event);
3538 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3540 struct perf_cpu_context *cpuctx;
3541 struct perf_event_context *ctx;
3542 unsigned int size;
3543 char comm[TASK_COMM_LEN];
3545 memset(comm, 0, sizeof(comm));
3546 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3547 size = ALIGN(strlen(comm)+1, sizeof(u64));
3549 comm_event->comm = comm;
3550 comm_event->comm_size = size;
3552 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3554 rcu_read_lock();
3555 cpuctx = &get_cpu_var(perf_cpu_context);
3556 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3557 ctx = rcu_dereference(current->perf_event_ctxp);
3558 if (ctx)
3559 perf_event_comm_ctx(ctx, comm_event);
3560 put_cpu_var(perf_cpu_context);
3561 rcu_read_unlock();
3564 void perf_event_comm(struct task_struct *task)
3566 struct perf_comm_event comm_event;
3568 if (task->perf_event_ctxp)
3569 perf_event_enable_on_exec(task);
3571 if (!atomic_read(&nr_comm_events))
3572 return;
3574 comm_event = (struct perf_comm_event){
3575 .task = task,
3576 /* .comm */
3577 /* .comm_size */
3578 .event_id = {
3579 .header = {
3580 .type = PERF_RECORD_COMM,
3581 .misc = 0,
3582 /* .size */
3584 /* .pid */
3585 /* .tid */
3589 perf_event_comm_event(&comm_event);
3593 * mmap tracking
3596 struct perf_mmap_event {
3597 struct vm_area_struct *vma;
3599 const char *file_name;
3600 int file_size;
3602 struct {
3603 struct perf_event_header header;
3605 u32 pid;
3606 u32 tid;
3607 u64 start;
3608 u64 len;
3609 u64 pgoff;
3610 } event_id;
3613 static void perf_event_mmap_output(struct perf_event *event,
3614 struct perf_mmap_event *mmap_event)
3616 struct perf_output_handle handle;
3617 int size = mmap_event->event_id.header.size;
3618 int ret = perf_output_begin(&handle, event, size, 0, 0);
3620 if (ret)
3621 return;
3623 mmap_event->event_id.pid = perf_event_pid(event, current);
3624 mmap_event->event_id.tid = perf_event_tid(event, current);
3626 perf_output_put(&handle, mmap_event->event_id);
3627 perf_output_copy(&handle, mmap_event->file_name,
3628 mmap_event->file_size);
3629 perf_output_end(&handle);
3632 static int perf_event_mmap_match(struct perf_event *event,
3633 struct perf_mmap_event *mmap_event)
3635 if (event->state < PERF_EVENT_STATE_INACTIVE)
3636 return 0;
3638 if (event->cpu != -1 && event->cpu != smp_processor_id())
3639 return 0;
3641 if (event->attr.mmap)
3642 return 1;
3644 return 0;
3647 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3648 struct perf_mmap_event *mmap_event)
3650 struct perf_event *event;
3652 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3653 if (perf_event_mmap_match(event, mmap_event))
3654 perf_event_mmap_output(event, mmap_event);
3658 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3660 struct perf_cpu_context *cpuctx;
3661 struct perf_event_context *ctx;
3662 struct vm_area_struct *vma = mmap_event->vma;
3663 struct file *file = vma->vm_file;
3664 unsigned int size;
3665 char tmp[16];
3666 char *buf = NULL;
3667 const char *name;
3669 memset(tmp, 0, sizeof(tmp));
3671 if (file) {
3673 * d_path works from the end of the buffer backwards, so we
3674 * need to add enough zero bytes after the string to handle
3675 * the 64bit alignment we do later.
3677 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3678 if (!buf) {
3679 name = strncpy(tmp, "//enomem", sizeof(tmp));
3680 goto got_name;
3682 name = d_path(&file->f_path, buf, PATH_MAX);
3683 if (IS_ERR(name)) {
3684 name = strncpy(tmp, "//toolong", sizeof(tmp));
3685 goto got_name;
3687 } else {
3688 if (arch_vma_name(mmap_event->vma)) {
3689 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3690 sizeof(tmp));
3691 goto got_name;
3694 if (!vma->vm_mm) {
3695 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3696 goto got_name;
3699 name = strncpy(tmp, "//anon", sizeof(tmp));
3700 goto got_name;
3703 got_name:
3704 size = ALIGN(strlen(name)+1, sizeof(u64));
3706 mmap_event->file_name = name;
3707 mmap_event->file_size = size;
3709 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3711 rcu_read_lock();
3712 cpuctx = &get_cpu_var(perf_cpu_context);
3713 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3714 ctx = rcu_dereference(current->perf_event_ctxp);
3715 if (ctx)
3716 perf_event_mmap_ctx(ctx, mmap_event);
3717 put_cpu_var(perf_cpu_context);
3718 rcu_read_unlock();
3720 kfree(buf);
3723 void __perf_event_mmap(struct vm_area_struct *vma)
3725 struct perf_mmap_event mmap_event;
3727 if (!atomic_read(&nr_mmap_events))
3728 return;
3730 mmap_event = (struct perf_mmap_event){
3731 .vma = vma,
3732 /* .file_name */
3733 /* .file_size */
3734 .event_id = {
3735 .header = {
3736 .type = PERF_RECORD_MMAP,
3737 .misc = 0,
3738 /* .size */
3740 /* .pid */
3741 /* .tid */
3742 .start = vma->vm_start,
3743 .len = vma->vm_end - vma->vm_start,
3744 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
3748 perf_event_mmap_event(&mmap_event);
3752 * IRQ throttle logging
3755 static void perf_log_throttle(struct perf_event *event, int enable)
3757 struct perf_output_handle handle;
3758 int ret;
3760 struct {
3761 struct perf_event_header header;
3762 u64 time;
3763 u64 id;
3764 u64 stream_id;
3765 } throttle_event = {
3766 .header = {
3767 .type = PERF_RECORD_THROTTLE,
3768 .misc = 0,
3769 .size = sizeof(throttle_event),
3771 .time = perf_clock(),
3772 .id = primary_event_id(event),
3773 .stream_id = event->id,
3776 if (enable)
3777 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3779 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3780 if (ret)
3781 return;
3783 perf_output_put(&handle, throttle_event);
3784 perf_output_end(&handle);
3788 * Generic event overflow handling, sampling.
3791 static int __perf_event_overflow(struct perf_event *event, int nmi,
3792 int throttle, struct perf_sample_data *data,
3793 struct pt_regs *regs)
3795 int events = atomic_read(&event->event_limit);
3796 struct hw_perf_event *hwc = &event->hw;
3797 int ret = 0;
3799 throttle = (throttle && event->pmu->unthrottle != NULL);
3801 if (!throttle) {
3802 hwc->interrupts++;
3803 } else {
3804 if (hwc->interrupts != MAX_INTERRUPTS) {
3805 hwc->interrupts++;
3806 if (HZ * hwc->interrupts >
3807 (u64)sysctl_perf_event_sample_rate) {
3808 hwc->interrupts = MAX_INTERRUPTS;
3809 perf_log_throttle(event, 0);
3810 ret = 1;
3812 } else {
3814 * Keep re-disabling events even though on the previous
3815 * pass we disabled it - just in case we raced with a
3816 * sched-in and the event got enabled again:
3818 ret = 1;
3822 if (event->attr.freq) {
3823 u64 now = perf_clock();
3824 s64 delta = now - hwc->freq_time_stamp;
3826 hwc->freq_time_stamp = now;
3828 if (delta > 0 && delta < 2*TICK_NSEC)
3829 perf_adjust_period(event, delta, hwc->last_period);
3833 * XXX event_limit might not quite work as expected on inherited
3834 * events
3837 event->pending_kill = POLL_IN;
3838 if (events && atomic_dec_and_test(&event->event_limit)) {
3839 ret = 1;
3840 event->pending_kill = POLL_HUP;
3841 if (nmi) {
3842 event->pending_disable = 1;
3843 perf_pending_queue(&event->pending,
3844 perf_pending_event);
3845 } else
3846 perf_event_disable(event);
3849 if (event->overflow_handler)
3850 event->overflow_handler(event, nmi, data, regs);
3851 else
3852 perf_event_output(event, nmi, data, regs);
3854 return ret;
3857 int perf_event_overflow(struct perf_event *event, int nmi,
3858 struct perf_sample_data *data,
3859 struct pt_regs *regs)
3861 return __perf_event_overflow(event, nmi, 1, data, regs);
3865 * Generic software event infrastructure
3869 * We directly increment event->count and keep a second value in
3870 * event->hw.period_left to count intervals. This period event
3871 * is kept in the range [-sample_period, 0] so that we can use the
3872 * sign as trigger.
3875 static u64 perf_swevent_set_period(struct perf_event *event)
3877 struct hw_perf_event *hwc = &event->hw;
3878 u64 period = hwc->last_period;
3879 u64 nr, offset;
3880 s64 old, val;
3882 hwc->last_period = hwc->sample_period;
3884 again:
3885 old = val = atomic64_read(&hwc->period_left);
3886 if (val < 0)
3887 return 0;
3889 nr = div64_u64(period + val, period);
3890 offset = nr * period;
3891 val -= offset;
3892 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3893 goto again;
3895 return nr;
3898 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3899 int nmi, struct perf_sample_data *data,
3900 struct pt_regs *regs)
3902 struct hw_perf_event *hwc = &event->hw;
3903 int throttle = 0;
3905 data->period = event->hw.last_period;
3906 if (!overflow)
3907 overflow = perf_swevent_set_period(event);
3909 if (hwc->interrupts == MAX_INTERRUPTS)
3910 return;
3912 for (; overflow; overflow--) {
3913 if (__perf_event_overflow(event, nmi, throttle,
3914 data, regs)) {
3916 * We inhibit the overflow from happening when
3917 * hwc->interrupts == MAX_INTERRUPTS.
3919 break;
3921 throttle = 1;
3925 static void perf_swevent_unthrottle(struct perf_event *event)
3928 * Nothing to do, we already reset hwc->interrupts.
3932 static void perf_swevent_add(struct perf_event *event, u64 nr,
3933 int nmi, struct perf_sample_data *data,
3934 struct pt_regs *regs)
3936 struct hw_perf_event *hwc = &event->hw;
3938 atomic64_add(nr, &event->count);
3940 if (!regs)
3941 return;
3943 if (!hwc->sample_period)
3944 return;
3946 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3947 return perf_swevent_overflow(event, 1, nmi, data, regs);
3949 if (atomic64_add_negative(nr, &hwc->period_left))
3950 return;
3952 perf_swevent_overflow(event, 0, nmi, data, regs);
3955 static int perf_swevent_is_counting(struct perf_event *event)
3958 * The event is active, we're good!
3960 if (event->state == PERF_EVENT_STATE_ACTIVE)
3961 return 1;
3964 * The event is off/error, not counting.
3966 if (event->state != PERF_EVENT_STATE_INACTIVE)
3967 return 0;
3970 * The event is inactive, if the context is active
3971 * we're part of a group that didn't make it on the 'pmu',
3972 * not counting.
3974 if (event->ctx->is_active)
3975 return 0;
3978 * We're inactive and the context is too, this means the
3979 * task is scheduled out, we're counting events that happen
3980 * to us, like migration events.
3982 return 1;
3985 static int perf_tp_event_match(struct perf_event *event,
3986 struct perf_sample_data *data);
3988 static int perf_exclude_event(struct perf_event *event,
3989 struct pt_regs *regs)
3991 if (regs) {
3992 if (event->attr.exclude_user && user_mode(regs))
3993 return 1;
3995 if (event->attr.exclude_kernel && !user_mode(regs))
3996 return 1;
3999 return 0;
4002 static int perf_swevent_match(struct perf_event *event,
4003 enum perf_type_id type,
4004 u32 event_id,
4005 struct perf_sample_data *data,
4006 struct pt_regs *regs)
4008 if (event->cpu != -1 && event->cpu != smp_processor_id())
4009 return 0;
4011 if (!perf_swevent_is_counting(event))
4012 return 0;
4014 if (event->attr.type != type)
4015 return 0;
4017 if (event->attr.config != event_id)
4018 return 0;
4020 if (perf_exclude_event(event, regs))
4021 return 0;
4023 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
4024 !perf_tp_event_match(event, data))
4025 return 0;
4027 return 1;
4030 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4031 enum perf_type_id type,
4032 u32 event_id, u64 nr, int nmi,
4033 struct perf_sample_data *data,
4034 struct pt_regs *regs)
4036 struct perf_event *event;
4038 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4039 if (perf_swevent_match(event, type, event_id, data, regs))
4040 perf_swevent_add(event, nr, nmi, data, regs);
4044 int perf_swevent_get_recursion_context(void)
4046 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
4047 int rctx;
4049 if (in_nmi())
4050 rctx = 3;
4051 else if (in_irq())
4052 rctx = 2;
4053 else if (in_softirq())
4054 rctx = 1;
4055 else
4056 rctx = 0;
4058 if (cpuctx->recursion[rctx]) {
4059 put_cpu_var(perf_cpu_context);
4060 return -1;
4063 cpuctx->recursion[rctx]++;
4064 barrier();
4066 return rctx;
4068 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4070 void perf_swevent_put_recursion_context(int rctx)
4072 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4073 barrier();
4074 cpuctx->recursion[rctx]--;
4075 put_cpu_var(perf_cpu_context);
4077 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4079 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4080 u64 nr, int nmi,
4081 struct perf_sample_data *data,
4082 struct pt_regs *regs)
4084 struct perf_cpu_context *cpuctx;
4085 struct perf_event_context *ctx;
4087 cpuctx = &__get_cpu_var(perf_cpu_context);
4088 rcu_read_lock();
4089 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4090 nr, nmi, data, regs);
4092 * doesn't really matter which of the child contexts the
4093 * events ends up in.
4095 ctx = rcu_dereference(current->perf_event_ctxp);
4096 if (ctx)
4097 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4098 rcu_read_unlock();
4101 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4102 struct pt_regs *regs, u64 addr)
4104 struct perf_sample_data data;
4105 int rctx;
4107 rctx = perf_swevent_get_recursion_context();
4108 if (rctx < 0)
4109 return;
4111 perf_sample_data_init(&data, addr);
4113 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4115 perf_swevent_put_recursion_context(rctx);
4118 static void perf_swevent_read(struct perf_event *event)
4122 static int perf_swevent_enable(struct perf_event *event)
4124 struct hw_perf_event *hwc = &event->hw;
4126 if (hwc->sample_period) {
4127 hwc->last_period = hwc->sample_period;
4128 perf_swevent_set_period(event);
4130 return 0;
4133 static void perf_swevent_disable(struct perf_event *event)
4137 static const struct pmu perf_ops_generic = {
4138 .enable = perf_swevent_enable,
4139 .disable = perf_swevent_disable,
4140 .read = perf_swevent_read,
4141 .unthrottle = perf_swevent_unthrottle,
4145 * hrtimer based swevent callback
4148 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4150 enum hrtimer_restart ret = HRTIMER_RESTART;
4151 struct perf_sample_data data;
4152 struct pt_regs *regs;
4153 struct perf_event *event;
4154 u64 period;
4156 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4157 event->pmu->read(event);
4159 perf_sample_data_init(&data, 0);
4160 data.period = event->hw.last_period;
4161 regs = get_irq_regs();
4163 * In case we exclude kernel IPs or are somehow not in interrupt
4164 * context, provide the next best thing, the user IP.
4166 if ((event->attr.exclude_kernel || !regs) &&
4167 !event->attr.exclude_user)
4168 regs = task_pt_regs(current);
4170 if (regs) {
4171 if (!(event->attr.exclude_idle && current->pid == 0))
4172 if (perf_event_overflow(event, 0, &data, regs))
4173 ret = HRTIMER_NORESTART;
4176 period = max_t(u64, 10000, event->hw.sample_period);
4177 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4179 return ret;
4182 static void perf_swevent_start_hrtimer(struct perf_event *event)
4184 struct hw_perf_event *hwc = &event->hw;
4186 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4187 hwc->hrtimer.function = perf_swevent_hrtimer;
4188 if (hwc->sample_period) {
4189 u64 period;
4191 if (hwc->remaining) {
4192 if (hwc->remaining < 0)
4193 period = 10000;
4194 else
4195 period = hwc->remaining;
4196 hwc->remaining = 0;
4197 } else {
4198 period = max_t(u64, 10000, hwc->sample_period);
4200 __hrtimer_start_range_ns(&hwc->hrtimer,
4201 ns_to_ktime(period), 0,
4202 HRTIMER_MODE_REL, 0);
4206 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4208 struct hw_perf_event *hwc = &event->hw;
4210 if (hwc->sample_period) {
4211 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4212 hwc->remaining = ktime_to_ns(remaining);
4214 hrtimer_cancel(&hwc->hrtimer);
4219 * Software event: cpu wall time clock
4222 static void cpu_clock_perf_event_update(struct perf_event *event)
4224 int cpu = raw_smp_processor_id();
4225 s64 prev;
4226 u64 now;
4228 now = cpu_clock(cpu);
4229 prev = atomic64_xchg(&event->hw.prev_count, now);
4230 atomic64_add(now - prev, &event->count);
4233 static int cpu_clock_perf_event_enable(struct perf_event *event)
4235 struct hw_perf_event *hwc = &event->hw;
4236 int cpu = raw_smp_processor_id();
4238 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4239 perf_swevent_start_hrtimer(event);
4241 return 0;
4244 static void cpu_clock_perf_event_disable(struct perf_event *event)
4246 perf_swevent_cancel_hrtimer(event);
4247 cpu_clock_perf_event_update(event);
4250 static void cpu_clock_perf_event_read(struct perf_event *event)
4252 cpu_clock_perf_event_update(event);
4255 static const struct pmu perf_ops_cpu_clock = {
4256 .enable = cpu_clock_perf_event_enable,
4257 .disable = cpu_clock_perf_event_disable,
4258 .read = cpu_clock_perf_event_read,
4262 * Software event: task time clock
4265 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4267 u64 prev;
4268 s64 delta;
4270 prev = atomic64_xchg(&event->hw.prev_count, now);
4271 delta = now - prev;
4272 atomic64_add(delta, &event->count);
4275 static int task_clock_perf_event_enable(struct perf_event *event)
4277 struct hw_perf_event *hwc = &event->hw;
4278 u64 now;
4280 now = event->ctx->time;
4282 atomic64_set(&hwc->prev_count, now);
4284 perf_swevent_start_hrtimer(event);
4286 return 0;
4289 static void task_clock_perf_event_disable(struct perf_event *event)
4291 perf_swevent_cancel_hrtimer(event);
4292 task_clock_perf_event_update(event, event->ctx->time);
4296 static void task_clock_perf_event_read(struct perf_event *event)
4298 u64 time;
4300 if (!in_nmi()) {
4301 update_context_time(event->ctx);
4302 time = event->ctx->time;
4303 } else {
4304 u64 now = perf_clock();
4305 u64 delta = now - event->ctx->timestamp;
4306 time = event->ctx->time + delta;
4309 task_clock_perf_event_update(event, time);
4312 static const struct pmu perf_ops_task_clock = {
4313 .enable = task_clock_perf_event_enable,
4314 .disable = task_clock_perf_event_disable,
4315 .read = task_clock_perf_event_read,
4318 #ifdef CONFIG_EVENT_TRACING
4320 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4321 int entry_size, struct pt_regs *regs)
4323 struct perf_sample_data data;
4324 struct perf_raw_record raw = {
4325 .size = entry_size,
4326 .data = record,
4329 perf_sample_data_init(&data, addr);
4330 data.raw = &raw;
4332 /* Trace events already protected against recursion */
4333 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4334 &data, regs);
4336 EXPORT_SYMBOL_GPL(perf_tp_event);
4338 static int perf_tp_event_match(struct perf_event *event,
4339 struct perf_sample_data *data)
4341 void *record = data->raw->data;
4343 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4344 return 1;
4345 return 0;
4348 static void tp_perf_event_destroy(struct perf_event *event)
4350 ftrace_profile_disable(event->attr.config);
4353 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4356 * Raw tracepoint data is a severe data leak, only allow root to
4357 * have these.
4359 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4360 perf_paranoid_tracepoint_raw() &&
4361 !capable(CAP_SYS_ADMIN))
4362 return ERR_PTR(-EPERM);
4364 if (ftrace_profile_enable(event->attr.config))
4365 return NULL;
4367 event->destroy = tp_perf_event_destroy;
4369 return &perf_ops_generic;
4372 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4374 char *filter_str;
4375 int ret;
4377 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4378 return -EINVAL;
4380 filter_str = strndup_user(arg, PAGE_SIZE);
4381 if (IS_ERR(filter_str))
4382 return PTR_ERR(filter_str);
4384 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4386 kfree(filter_str);
4387 return ret;
4390 static void perf_event_free_filter(struct perf_event *event)
4392 ftrace_profile_free_filter(event);
4395 #else
4397 static int perf_tp_event_match(struct perf_event *event,
4398 struct perf_sample_data *data)
4400 return 1;
4403 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4405 return NULL;
4408 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4410 return -ENOENT;
4413 static void perf_event_free_filter(struct perf_event *event)
4417 #endif /* CONFIG_EVENT_TRACING */
4419 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4420 static void bp_perf_event_destroy(struct perf_event *event)
4422 release_bp_slot(event);
4425 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4427 int err;
4429 err = register_perf_hw_breakpoint(bp);
4430 if (err)
4431 return ERR_PTR(err);
4433 bp->destroy = bp_perf_event_destroy;
4435 return &perf_ops_bp;
4438 void perf_bp_event(struct perf_event *bp, void *data)
4440 struct perf_sample_data sample;
4441 struct pt_regs *regs = data;
4443 perf_sample_data_init(&sample, bp->attr.bp_addr);
4445 if (!perf_exclude_event(bp, regs))
4446 perf_swevent_add(bp, 1, 1, &sample, regs);
4448 #else
4449 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4451 return NULL;
4454 void perf_bp_event(struct perf_event *bp, void *regs)
4457 #endif
4459 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4461 static void sw_perf_event_destroy(struct perf_event *event)
4463 u64 event_id = event->attr.config;
4465 WARN_ON(event->parent);
4467 atomic_dec(&perf_swevent_enabled[event_id]);
4470 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4472 const struct pmu *pmu = NULL;
4473 u64 event_id = event->attr.config;
4476 * Software events (currently) can't in general distinguish
4477 * between user, kernel and hypervisor events.
4478 * However, context switches and cpu migrations are considered
4479 * to be kernel events, and page faults are never hypervisor
4480 * events.
4482 switch (event_id) {
4483 case PERF_COUNT_SW_CPU_CLOCK:
4484 pmu = &perf_ops_cpu_clock;
4486 break;
4487 case PERF_COUNT_SW_TASK_CLOCK:
4489 * If the user instantiates this as a per-cpu event,
4490 * use the cpu_clock event instead.
4492 if (event->ctx->task)
4493 pmu = &perf_ops_task_clock;
4494 else
4495 pmu = &perf_ops_cpu_clock;
4497 break;
4498 case PERF_COUNT_SW_PAGE_FAULTS:
4499 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4500 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4501 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4502 case PERF_COUNT_SW_CPU_MIGRATIONS:
4503 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4504 case PERF_COUNT_SW_EMULATION_FAULTS:
4505 if (!event->parent) {
4506 atomic_inc(&perf_swevent_enabled[event_id]);
4507 event->destroy = sw_perf_event_destroy;
4509 pmu = &perf_ops_generic;
4510 break;
4513 return pmu;
4517 * Allocate and initialize a event structure
4519 static struct perf_event *
4520 perf_event_alloc(struct perf_event_attr *attr,
4521 int cpu,
4522 struct perf_event_context *ctx,
4523 struct perf_event *group_leader,
4524 struct perf_event *parent_event,
4525 perf_overflow_handler_t overflow_handler,
4526 gfp_t gfpflags)
4528 const struct pmu *pmu;
4529 struct perf_event *event;
4530 struct hw_perf_event *hwc;
4531 long err;
4533 event = kzalloc(sizeof(*event), gfpflags);
4534 if (!event)
4535 return ERR_PTR(-ENOMEM);
4538 * Single events are their own group leaders, with an
4539 * empty sibling list:
4541 if (!group_leader)
4542 group_leader = event;
4544 mutex_init(&event->child_mutex);
4545 INIT_LIST_HEAD(&event->child_list);
4547 INIT_LIST_HEAD(&event->group_entry);
4548 INIT_LIST_HEAD(&event->event_entry);
4549 INIT_LIST_HEAD(&event->sibling_list);
4550 init_waitqueue_head(&event->waitq);
4552 mutex_init(&event->mmap_mutex);
4554 event->cpu = cpu;
4555 event->attr = *attr;
4556 event->group_leader = group_leader;
4557 event->pmu = NULL;
4558 event->ctx = ctx;
4559 event->oncpu = -1;
4561 event->parent = parent_event;
4563 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4564 event->id = atomic64_inc_return(&perf_event_id);
4566 event->state = PERF_EVENT_STATE_INACTIVE;
4568 if (!overflow_handler && parent_event)
4569 overflow_handler = parent_event->overflow_handler;
4571 event->overflow_handler = overflow_handler;
4573 if (attr->disabled)
4574 event->state = PERF_EVENT_STATE_OFF;
4576 pmu = NULL;
4578 hwc = &event->hw;
4579 hwc->sample_period = attr->sample_period;
4580 if (attr->freq && attr->sample_freq)
4581 hwc->sample_period = 1;
4582 hwc->last_period = hwc->sample_period;
4584 atomic64_set(&hwc->period_left, hwc->sample_period);
4587 * we currently do not support PERF_FORMAT_GROUP on inherited events
4589 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4590 goto done;
4592 switch (attr->type) {
4593 case PERF_TYPE_RAW:
4594 case PERF_TYPE_HARDWARE:
4595 case PERF_TYPE_HW_CACHE:
4596 pmu = hw_perf_event_init(event);
4597 break;
4599 case PERF_TYPE_SOFTWARE:
4600 pmu = sw_perf_event_init(event);
4601 break;
4603 case PERF_TYPE_TRACEPOINT:
4604 pmu = tp_perf_event_init(event);
4605 break;
4607 case PERF_TYPE_BREAKPOINT:
4608 pmu = bp_perf_event_init(event);
4609 break;
4612 default:
4613 break;
4615 done:
4616 err = 0;
4617 if (!pmu)
4618 err = -EINVAL;
4619 else if (IS_ERR(pmu))
4620 err = PTR_ERR(pmu);
4622 if (err) {
4623 if (event->ns)
4624 put_pid_ns(event->ns);
4625 kfree(event);
4626 return ERR_PTR(err);
4629 event->pmu = pmu;
4631 if (!event->parent) {
4632 atomic_inc(&nr_events);
4633 if (event->attr.mmap)
4634 atomic_inc(&nr_mmap_events);
4635 if (event->attr.comm)
4636 atomic_inc(&nr_comm_events);
4637 if (event->attr.task)
4638 atomic_inc(&nr_task_events);
4641 return event;
4644 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4645 struct perf_event_attr *attr)
4647 u32 size;
4648 int ret;
4650 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4651 return -EFAULT;
4654 * zero the full structure, so that a short copy will be nice.
4656 memset(attr, 0, sizeof(*attr));
4658 ret = get_user(size, &uattr->size);
4659 if (ret)
4660 return ret;
4662 if (size > PAGE_SIZE) /* silly large */
4663 goto err_size;
4665 if (!size) /* abi compat */
4666 size = PERF_ATTR_SIZE_VER0;
4668 if (size < PERF_ATTR_SIZE_VER0)
4669 goto err_size;
4672 * If we're handed a bigger struct than we know of,
4673 * ensure all the unknown bits are 0 - i.e. new
4674 * user-space does not rely on any kernel feature
4675 * extensions we dont know about yet.
4677 if (size > sizeof(*attr)) {
4678 unsigned char __user *addr;
4679 unsigned char __user *end;
4680 unsigned char val;
4682 addr = (void __user *)uattr + sizeof(*attr);
4683 end = (void __user *)uattr + size;
4685 for (; addr < end; addr++) {
4686 ret = get_user(val, addr);
4687 if (ret)
4688 return ret;
4689 if (val)
4690 goto err_size;
4692 size = sizeof(*attr);
4695 ret = copy_from_user(attr, uattr, size);
4696 if (ret)
4697 return -EFAULT;
4700 * If the type exists, the corresponding creation will verify
4701 * the attr->config.
4703 if (attr->type >= PERF_TYPE_MAX)
4704 return -EINVAL;
4706 if (attr->__reserved_1)
4707 return -EINVAL;
4709 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4710 return -EINVAL;
4712 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4713 return -EINVAL;
4715 out:
4716 return ret;
4718 err_size:
4719 put_user(sizeof(*attr), &uattr->size);
4720 ret = -E2BIG;
4721 goto out;
4724 static int perf_event_set_output(struct perf_event *event, int output_fd)
4726 struct perf_event *output_event = NULL;
4727 struct file *output_file = NULL;
4728 struct perf_event *old_output;
4729 int fput_needed = 0;
4730 int ret = -EINVAL;
4732 if (!output_fd)
4733 goto set;
4735 output_file = fget_light(output_fd, &fput_needed);
4736 if (!output_file)
4737 return -EBADF;
4739 if (output_file->f_op != &perf_fops)
4740 goto out;
4742 output_event = output_file->private_data;
4744 /* Don't chain output fds */
4745 if (output_event->output)
4746 goto out;
4748 /* Don't set an output fd when we already have an output channel */
4749 if (event->data)
4750 goto out;
4752 atomic_long_inc(&output_file->f_count);
4754 set:
4755 mutex_lock(&event->mmap_mutex);
4756 old_output = event->output;
4757 rcu_assign_pointer(event->output, output_event);
4758 mutex_unlock(&event->mmap_mutex);
4760 if (old_output) {
4762 * we need to make sure no existing perf_output_*()
4763 * is still referencing this event.
4765 synchronize_rcu();
4766 fput(old_output->filp);
4769 ret = 0;
4770 out:
4771 fput_light(output_file, fput_needed);
4772 return ret;
4776 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4778 * @attr_uptr: event_id type attributes for monitoring/sampling
4779 * @pid: target pid
4780 * @cpu: target cpu
4781 * @group_fd: group leader event fd
4783 SYSCALL_DEFINE5(perf_event_open,
4784 struct perf_event_attr __user *, attr_uptr,
4785 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4787 struct perf_event *event, *group_leader;
4788 struct perf_event_attr attr;
4789 struct perf_event_context *ctx;
4790 struct file *event_file = NULL;
4791 struct file *group_file = NULL;
4792 int fput_needed = 0;
4793 int fput_needed2 = 0;
4794 int err;
4796 /* for future expandability... */
4797 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4798 return -EINVAL;
4800 err = perf_copy_attr(attr_uptr, &attr);
4801 if (err)
4802 return err;
4804 if (!attr.exclude_kernel) {
4805 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4806 return -EACCES;
4809 if (attr.freq) {
4810 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4811 return -EINVAL;
4815 * Get the target context (task or percpu):
4817 ctx = find_get_context(pid, cpu);
4818 if (IS_ERR(ctx))
4819 return PTR_ERR(ctx);
4822 * Look up the group leader (we will attach this event to it):
4824 group_leader = NULL;
4825 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4826 err = -EINVAL;
4827 group_file = fget_light(group_fd, &fput_needed);
4828 if (!group_file)
4829 goto err_put_context;
4830 if (group_file->f_op != &perf_fops)
4831 goto err_put_context;
4833 group_leader = group_file->private_data;
4835 * Do not allow a recursive hierarchy (this new sibling
4836 * becoming part of another group-sibling):
4838 if (group_leader->group_leader != group_leader)
4839 goto err_put_context;
4841 * Do not allow to attach to a group in a different
4842 * task or CPU context:
4844 if (group_leader->ctx != ctx)
4845 goto err_put_context;
4847 * Only a group leader can be exclusive or pinned
4849 if (attr.exclusive || attr.pinned)
4850 goto err_put_context;
4853 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4854 NULL, NULL, GFP_KERNEL);
4855 err = PTR_ERR(event);
4856 if (IS_ERR(event))
4857 goto err_put_context;
4859 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4860 if (err < 0)
4861 goto err_free_put_context;
4863 event_file = fget_light(err, &fput_needed2);
4864 if (!event_file)
4865 goto err_free_put_context;
4867 if (flags & PERF_FLAG_FD_OUTPUT) {
4868 err = perf_event_set_output(event, group_fd);
4869 if (err)
4870 goto err_fput_free_put_context;
4873 event->filp = event_file;
4874 WARN_ON_ONCE(ctx->parent_ctx);
4875 mutex_lock(&ctx->mutex);
4876 perf_install_in_context(ctx, event, cpu);
4877 ++ctx->generation;
4878 mutex_unlock(&ctx->mutex);
4880 event->owner = current;
4881 get_task_struct(current);
4882 mutex_lock(&current->perf_event_mutex);
4883 list_add_tail(&event->owner_entry, &current->perf_event_list);
4884 mutex_unlock(&current->perf_event_mutex);
4886 err_fput_free_put_context:
4887 fput_light(event_file, fput_needed2);
4889 err_free_put_context:
4890 if (err < 0)
4891 kfree(event);
4893 err_put_context:
4894 if (err < 0)
4895 put_ctx(ctx);
4897 fput_light(group_file, fput_needed);
4899 return err;
4903 * perf_event_create_kernel_counter
4905 * @attr: attributes of the counter to create
4906 * @cpu: cpu in which the counter is bound
4907 * @pid: task to profile
4909 struct perf_event *
4910 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4911 pid_t pid,
4912 perf_overflow_handler_t overflow_handler)
4914 struct perf_event *event;
4915 struct perf_event_context *ctx;
4916 int err;
4919 * Get the target context (task or percpu):
4922 ctx = find_get_context(pid, cpu);
4923 if (IS_ERR(ctx)) {
4924 err = PTR_ERR(ctx);
4925 goto err_exit;
4928 event = perf_event_alloc(attr, cpu, ctx, NULL,
4929 NULL, overflow_handler, GFP_KERNEL);
4930 if (IS_ERR(event)) {
4931 err = PTR_ERR(event);
4932 goto err_put_context;
4935 event->filp = NULL;
4936 WARN_ON_ONCE(ctx->parent_ctx);
4937 mutex_lock(&ctx->mutex);
4938 perf_install_in_context(ctx, event, cpu);
4939 ++ctx->generation;
4940 mutex_unlock(&ctx->mutex);
4942 event->owner = current;
4943 get_task_struct(current);
4944 mutex_lock(&current->perf_event_mutex);
4945 list_add_tail(&event->owner_entry, &current->perf_event_list);
4946 mutex_unlock(&current->perf_event_mutex);
4948 return event;
4950 err_put_context:
4951 put_ctx(ctx);
4952 err_exit:
4953 return ERR_PTR(err);
4955 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4958 * inherit a event from parent task to child task:
4960 static struct perf_event *
4961 inherit_event(struct perf_event *parent_event,
4962 struct task_struct *parent,
4963 struct perf_event_context *parent_ctx,
4964 struct task_struct *child,
4965 struct perf_event *group_leader,
4966 struct perf_event_context *child_ctx)
4968 struct perf_event *child_event;
4971 * Instead of creating recursive hierarchies of events,
4972 * we link inherited events back to the original parent,
4973 * which has a filp for sure, which we use as the reference
4974 * count:
4976 if (parent_event->parent)
4977 parent_event = parent_event->parent;
4979 child_event = perf_event_alloc(&parent_event->attr,
4980 parent_event->cpu, child_ctx,
4981 group_leader, parent_event,
4982 NULL, GFP_KERNEL);
4983 if (IS_ERR(child_event))
4984 return child_event;
4985 get_ctx(child_ctx);
4988 * Make the child state follow the state of the parent event,
4989 * not its attr.disabled bit. We hold the parent's mutex,
4990 * so we won't race with perf_event_{en, dis}able_family.
4992 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4993 child_event->state = PERF_EVENT_STATE_INACTIVE;
4994 else
4995 child_event->state = PERF_EVENT_STATE_OFF;
4997 if (parent_event->attr.freq) {
4998 u64 sample_period = parent_event->hw.sample_period;
4999 struct hw_perf_event *hwc = &child_event->hw;
5001 hwc->sample_period = sample_period;
5002 hwc->last_period = sample_period;
5004 atomic64_set(&hwc->period_left, sample_period);
5007 child_event->overflow_handler = parent_event->overflow_handler;
5010 * Link it up in the child's context:
5012 add_event_to_ctx(child_event, child_ctx);
5015 * Get a reference to the parent filp - we will fput it
5016 * when the child event exits. This is safe to do because
5017 * we are in the parent and we know that the filp still
5018 * exists and has a nonzero count:
5020 atomic_long_inc(&parent_event->filp->f_count);
5023 * Link this into the parent event's child list
5025 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5026 mutex_lock(&parent_event->child_mutex);
5027 list_add_tail(&child_event->child_list, &parent_event->child_list);
5028 mutex_unlock(&parent_event->child_mutex);
5030 return child_event;
5033 static int inherit_group(struct perf_event *parent_event,
5034 struct task_struct *parent,
5035 struct perf_event_context *parent_ctx,
5036 struct task_struct *child,
5037 struct perf_event_context *child_ctx)
5039 struct perf_event *leader;
5040 struct perf_event *sub;
5041 struct perf_event *child_ctr;
5043 leader = inherit_event(parent_event, parent, parent_ctx,
5044 child, NULL, child_ctx);
5045 if (IS_ERR(leader))
5046 return PTR_ERR(leader);
5047 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
5048 child_ctr = inherit_event(sub, parent, parent_ctx,
5049 child, leader, child_ctx);
5050 if (IS_ERR(child_ctr))
5051 return PTR_ERR(child_ctr);
5053 return 0;
5056 static void sync_child_event(struct perf_event *child_event,
5057 struct task_struct *child)
5059 struct perf_event *parent_event = child_event->parent;
5060 u64 child_val;
5062 if (child_event->attr.inherit_stat)
5063 perf_event_read_event(child_event, child);
5065 child_val = atomic64_read(&child_event->count);
5068 * Add back the child's count to the parent's count:
5070 atomic64_add(child_val, &parent_event->count);
5071 atomic64_add(child_event->total_time_enabled,
5072 &parent_event->child_total_time_enabled);
5073 atomic64_add(child_event->total_time_running,
5074 &parent_event->child_total_time_running);
5077 * Remove this event from the parent's list
5079 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5080 mutex_lock(&parent_event->child_mutex);
5081 list_del_init(&child_event->child_list);
5082 mutex_unlock(&parent_event->child_mutex);
5085 * Release the parent event, if this was the last
5086 * reference to it.
5088 fput(parent_event->filp);
5091 static void
5092 __perf_event_exit_task(struct perf_event *child_event,
5093 struct perf_event_context *child_ctx,
5094 struct task_struct *child)
5096 struct perf_event *parent_event;
5098 perf_event_remove_from_context(child_event);
5100 parent_event = child_event->parent;
5102 * It can happen that parent exits first, and has events
5103 * that are still around due to the child reference. These
5104 * events need to be zapped - but otherwise linger.
5106 if (parent_event) {
5107 sync_child_event(child_event, child);
5108 free_event(child_event);
5113 * When a child task exits, feed back event values to parent events.
5115 void perf_event_exit_task(struct task_struct *child)
5117 struct perf_event *child_event, *tmp;
5118 struct perf_event_context *child_ctx;
5119 unsigned long flags;
5121 if (likely(!child->perf_event_ctxp)) {
5122 perf_event_task(child, NULL, 0);
5123 return;
5126 local_irq_save(flags);
5128 * We can't reschedule here because interrupts are disabled,
5129 * and either child is current or it is a task that can't be
5130 * scheduled, so we are now safe from rescheduling changing
5131 * our context.
5133 child_ctx = child->perf_event_ctxp;
5134 __perf_event_task_sched_out(child_ctx);
5137 * Take the context lock here so that if find_get_context is
5138 * reading child->perf_event_ctxp, we wait until it has
5139 * incremented the context's refcount before we do put_ctx below.
5141 raw_spin_lock(&child_ctx->lock);
5142 child->perf_event_ctxp = NULL;
5144 * If this context is a clone; unclone it so it can't get
5145 * swapped to another process while we're removing all
5146 * the events from it.
5148 unclone_ctx(child_ctx);
5149 update_context_time(child_ctx);
5150 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5153 * Report the task dead after unscheduling the events so that we
5154 * won't get any samples after PERF_RECORD_EXIT. We can however still
5155 * get a few PERF_RECORD_READ events.
5157 perf_event_task(child, child_ctx, 0);
5160 * We can recurse on the same lock type through:
5162 * __perf_event_exit_task()
5163 * sync_child_event()
5164 * fput(parent_event->filp)
5165 * perf_release()
5166 * mutex_lock(&ctx->mutex)
5168 * But since its the parent context it won't be the same instance.
5170 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5172 again:
5173 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5174 group_entry)
5175 __perf_event_exit_task(child_event, child_ctx, child);
5177 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5178 group_entry)
5179 __perf_event_exit_task(child_event, child_ctx, child);
5182 * If the last event was a group event, it will have appended all
5183 * its siblings to the list, but we obtained 'tmp' before that which
5184 * will still point to the list head terminating the iteration.
5186 if (!list_empty(&child_ctx->pinned_groups) ||
5187 !list_empty(&child_ctx->flexible_groups))
5188 goto again;
5190 mutex_unlock(&child_ctx->mutex);
5192 put_ctx(child_ctx);
5195 static void perf_free_event(struct perf_event *event,
5196 struct perf_event_context *ctx)
5198 struct perf_event *parent = event->parent;
5200 if (WARN_ON_ONCE(!parent))
5201 return;
5203 mutex_lock(&parent->child_mutex);
5204 list_del_init(&event->child_list);
5205 mutex_unlock(&parent->child_mutex);
5207 fput(parent->filp);
5209 list_del_event(event, ctx);
5210 free_event(event);
5214 * free an unexposed, unused context as created by inheritance by
5215 * init_task below, used by fork() in case of fail.
5217 void perf_event_free_task(struct task_struct *task)
5219 struct perf_event_context *ctx = task->perf_event_ctxp;
5220 struct perf_event *event, *tmp;
5222 if (!ctx)
5223 return;
5225 mutex_lock(&ctx->mutex);
5226 again:
5227 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5228 perf_free_event(event, ctx);
5230 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5231 group_entry)
5232 perf_free_event(event, ctx);
5234 if (!list_empty(&ctx->pinned_groups) ||
5235 !list_empty(&ctx->flexible_groups))
5236 goto again;
5238 mutex_unlock(&ctx->mutex);
5240 put_ctx(ctx);
5243 static int
5244 inherit_task_group(struct perf_event *event, struct task_struct *parent,
5245 struct perf_event_context *parent_ctx,
5246 struct task_struct *child,
5247 int *inherited_all)
5249 int ret;
5250 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5252 if (!event->attr.inherit) {
5253 *inherited_all = 0;
5254 return 0;
5257 if (!child_ctx) {
5259 * This is executed from the parent task context, so
5260 * inherit events that have been marked for cloning.
5261 * First allocate and initialize a context for the
5262 * child.
5265 child_ctx = kzalloc(sizeof(struct perf_event_context),
5266 GFP_KERNEL);
5267 if (!child_ctx)
5268 return -ENOMEM;
5270 __perf_event_init_context(child_ctx, child);
5271 child->perf_event_ctxp = child_ctx;
5272 get_task_struct(child);
5275 ret = inherit_group(event, parent, parent_ctx,
5276 child, child_ctx);
5278 if (ret)
5279 *inherited_all = 0;
5281 return ret;
5286 * Initialize the perf_event context in task_struct
5288 int perf_event_init_task(struct task_struct *child)
5290 struct perf_event_context *child_ctx, *parent_ctx;
5291 struct perf_event_context *cloned_ctx;
5292 struct perf_event *event;
5293 struct task_struct *parent = current;
5294 int inherited_all = 1;
5295 int ret = 0;
5297 child->perf_event_ctxp = NULL;
5299 mutex_init(&child->perf_event_mutex);
5300 INIT_LIST_HEAD(&child->perf_event_list);
5302 if (likely(!parent->perf_event_ctxp))
5303 return 0;
5306 * If the parent's context is a clone, pin it so it won't get
5307 * swapped under us.
5309 parent_ctx = perf_pin_task_context(parent);
5312 * No need to check if parent_ctx != NULL here; since we saw
5313 * it non-NULL earlier, the only reason for it to become NULL
5314 * is if we exit, and since we're currently in the middle of
5315 * a fork we can't be exiting at the same time.
5319 * Lock the parent list. No need to lock the child - not PID
5320 * hashed yet and not running, so nobody can access it.
5322 mutex_lock(&parent_ctx->mutex);
5325 * We dont have to disable NMIs - we are only looking at
5326 * the list, not manipulating it:
5328 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5329 ret = inherit_task_group(event, parent, parent_ctx, child,
5330 &inherited_all);
5331 if (ret)
5332 break;
5335 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5336 ret = inherit_task_group(event, parent, parent_ctx, child,
5337 &inherited_all);
5338 if (ret)
5339 break;
5342 child_ctx = child->perf_event_ctxp;
5344 if (child_ctx && inherited_all) {
5346 * Mark the child context as a clone of the parent
5347 * context, or of whatever the parent is a clone of.
5348 * Note that if the parent is a clone, it could get
5349 * uncloned at any point, but that doesn't matter
5350 * because the list of events and the generation
5351 * count can't have changed since we took the mutex.
5353 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5354 if (cloned_ctx) {
5355 child_ctx->parent_ctx = cloned_ctx;
5356 child_ctx->parent_gen = parent_ctx->parent_gen;
5357 } else {
5358 child_ctx->parent_ctx = parent_ctx;
5359 child_ctx->parent_gen = parent_ctx->generation;
5361 get_ctx(child_ctx->parent_ctx);
5364 mutex_unlock(&parent_ctx->mutex);
5366 perf_unpin_context(parent_ctx);
5368 return ret;
5371 static void __cpuinit perf_event_init_cpu(int cpu)
5373 struct perf_cpu_context *cpuctx;
5375 cpuctx = &per_cpu(perf_cpu_context, cpu);
5376 __perf_event_init_context(&cpuctx->ctx, NULL);
5378 spin_lock(&perf_resource_lock);
5379 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5380 spin_unlock(&perf_resource_lock);
5383 #ifdef CONFIG_HOTPLUG_CPU
5384 static void __perf_event_exit_cpu(void *info)
5386 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5387 struct perf_event_context *ctx = &cpuctx->ctx;
5388 struct perf_event *event, *tmp;
5390 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5391 __perf_event_remove_from_context(event);
5392 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5393 __perf_event_remove_from_context(event);
5395 static void perf_event_exit_cpu(int cpu)
5397 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5398 struct perf_event_context *ctx = &cpuctx->ctx;
5400 mutex_lock(&ctx->mutex);
5401 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5402 mutex_unlock(&ctx->mutex);
5404 #else
5405 static inline void perf_event_exit_cpu(int cpu) { }
5406 #endif
5408 static int __cpuinit
5409 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5411 unsigned int cpu = (long)hcpu;
5413 switch (action) {
5415 case CPU_UP_PREPARE:
5416 case CPU_UP_PREPARE_FROZEN:
5417 perf_event_init_cpu(cpu);
5418 break;
5420 case CPU_DOWN_PREPARE:
5421 case CPU_DOWN_PREPARE_FROZEN:
5422 perf_event_exit_cpu(cpu);
5423 break;
5425 default:
5426 break;
5429 return NOTIFY_OK;
5433 * This has to have a higher priority than migration_notifier in sched.c.
5435 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5436 .notifier_call = perf_cpu_notify,
5437 .priority = 20,
5440 void __init perf_event_init(void)
5442 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5443 (void *)(long)smp_processor_id());
5444 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5445 (void *)(long)smp_processor_id());
5446 register_cpu_notifier(&perf_cpu_nb);
5449 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
5450 struct sysdev_class_attribute *attr,
5451 char *buf)
5453 return sprintf(buf, "%d\n", perf_reserved_percpu);
5456 static ssize_t
5457 perf_set_reserve_percpu(struct sysdev_class *class,
5458 struct sysdev_class_attribute *attr,
5459 const char *buf,
5460 size_t count)
5462 struct perf_cpu_context *cpuctx;
5463 unsigned long val;
5464 int err, cpu, mpt;
5466 err = strict_strtoul(buf, 10, &val);
5467 if (err)
5468 return err;
5469 if (val > perf_max_events)
5470 return -EINVAL;
5472 spin_lock(&perf_resource_lock);
5473 perf_reserved_percpu = val;
5474 for_each_online_cpu(cpu) {
5475 cpuctx = &per_cpu(perf_cpu_context, cpu);
5476 raw_spin_lock_irq(&cpuctx->ctx.lock);
5477 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5478 perf_max_events - perf_reserved_percpu);
5479 cpuctx->max_pertask = mpt;
5480 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5482 spin_unlock(&perf_resource_lock);
5484 return count;
5487 static ssize_t perf_show_overcommit(struct sysdev_class *class,
5488 struct sysdev_class_attribute *attr,
5489 char *buf)
5491 return sprintf(buf, "%d\n", perf_overcommit);
5494 static ssize_t
5495 perf_set_overcommit(struct sysdev_class *class,
5496 struct sysdev_class_attribute *attr,
5497 const char *buf, size_t count)
5499 unsigned long val;
5500 int err;
5502 err = strict_strtoul(buf, 10, &val);
5503 if (err)
5504 return err;
5505 if (val > 1)
5506 return -EINVAL;
5508 spin_lock(&perf_resource_lock);
5509 perf_overcommit = val;
5510 spin_unlock(&perf_resource_lock);
5512 return count;
5515 static SYSDEV_CLASS_ATTR(
5516 reserve_percpu,
5517 0644,
5518 perf_show_reserve_percpu,
5519 perf_set_reserve_percpu
5522 static SYSDEV_CLASS_ATTR(
5523 overcommit,
5524 0644,
5525 perf_show_overcommit,
5526 perf_set_overcommit
5529 static struct attribute *perfclass_attrs[] = {
5530 &attr_reserve_percpu.attr,
5531 &attr_overcommit.attr,
5532 NULL
5535 static struct attribute_group perfclass_attr_group = {
5536 .attrs = perfclass_attrs,
5537 .name = "perf_events",
5540 static int __init perf_event_sysfs_init(void)
5542 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5543 &perfclass_attr_group);
5545 device_initcall(perf_event_sysfs_init);