uprobes: __replace_page() should not use page_address_in_vma()
[linux-2.6/libata-dev.git] / kernel / events / uprobes.c
blob6fda7996892ba2703201fae6bf1cafde5bc14627
1 /*
2 * User-space Probes (UProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
36 #include <linux/uprobes.h>
38 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
39 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41 static struct rb_root uprobes_tree = RB_ROOT;
43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45 #define UPROBES_HASH_SZ 13
48 * We need separate register/unregister and mmap/munmap lock hashes because
49 * of mmap_sem nesting.
51 * uprobe_register() needs to install probes on (potentially) all processes
52 * and thus needs to acquire multiple mmap_sems (consequtively, not
53 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
54 * for the particular process doing the mmap.
56 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
57 * because of lock order against i_mmap_mutex. This means there's a hole in
58 * the register vma iteration where a mmap() can happen.
60 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
61 * install a probe where one is already installed.
64 /* serialize (un)register */
65 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69 /* serialize uprobe->pending_list */
70 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
71 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
74 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
75 * events active at this time. Probably a fine grained per inode count is
76 * better?
78 static atomic_t uprobe_events = ATOMIC_INIT(0);
80 struct uprobe {
81 struct rb_node rb_node; /* node in the rb tree */
82 atomic_t ref;
83 struct rw_semaphore consumer_rwsem;
84 struct list_head pending_list;
85 struct uprobe_consumer *consumers;
86 struct inode *inode; /* Also hold a ref to inode */
87 loff_t offset;
88 int flags;
89 struct arch_uprobe arch;
93 * valid_vma: Verify if the specified vma is an executable vma
94 * Relax restrictions while unregistering: vm_flags might have
95 * changed after breakpoint was inserted.
96 * - is_register: indicates if we are in register context.
97 * - Return 1 if the specified virtual address is in an
98 * executable vma.
100 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 if (!vma->vm_file)
103 return false;
105 if (!is_register)
106 return true;
108 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
109 == (VM_READ|VM_EXEC))
110 return true;
112 return false;
115 static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
117 loff_t vaddr;
119 vaddr = vma->vm_start + offset;
120 vaddr -= vma->vm_pgoff << PAGE_SHIFT;
122 return vaddr;
126 * __replace_page - replace page in vma by new page.
127 * based on replace_page in mm/ksm.c
129 * @vma: vma that holds the pte pointing to page
130 * @addr: address the old @page is mapped at
131 * @page: the cowed page we are replacing by kpage
132 * @kpage: the modified page we replace page by
134 * Returns 0 on success, -EFAULT on failure.
136 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
137 struct page *page, struct page *kpage)
139 struct mm_struct *mm = vma->vm_mm;
140 spinlock_t *ptl;
141 pte_t *ptep;
143 ptep = page_check_address(page, mm, addr, &ptl, 0);
144 if (!ptep)
145 return -EAGAIN;
147 get_page(kpage);
148 page_add_new_anon_rmap(kpage, vma, addr);
150 if (!PageAnon(page)) {
151 dec_mm_counter(mm, MM_FILEPAGES);
152 inc_mm_counter(mm, MM_ANONPAGES);
155 flush_cache_page(vma, addr, pte_pfn(*ptep));
156 ptep_clear_flush(vma, addr, ptep);
157 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
159 page_remove_rmap(page);
160 if (!page_mapped(page))
161 try_to_free_swap(page);
162 put_page(page);
163 pte_unmap_unlock(ptep, ptl);
165 return 0;
169 * is_swbp_insn - check if instruction is breakpoint instruction.
170 * @insn: instruction to be checked.
171 * Default implementation of is_swbp_insn
172 * Returns true if @insn is a breakpoint instruction.
174 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
176 return *insn == UPROBE_SWBP_INSN;
180 * NOTE:
181 * Expect the breakpoint instruction to be the smallest size instruction for
182 * the architecture. If an arch has variable length instruction and the
183 * breakpoint instruction is not of the smallest length instruction
184 * supported by that architecture then we need to modify read_opcode /
185 * write_opcode accordingly. This would never be a problem for archs that
186 * have fixed length instructions.
190 * write_opcode - write the opcode at a given virtual address.
191 * @auprobe: arch breakpointing information.
192 * @mm: the probed process address space.
193 * @vaddr: the virtual address to store the opcode.
194 * @opcode: opcode to be written at @vaddr.
196 * Called with mm->mmap_sem held (for read and with a reference to
197 * mm).
199 * For mm @mm, write the opcode at @vaddr.
200 * Return 0 (success) or a negative errno.
202 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
203 unsigned long vaddr, uprobe_opcode_t opcode)
205 struct page *old_page, *new_page;
206 void *vaddr_old, *vaddr_new;
207 struct vm_area_struct *vma;
208 int ret;
210 retry:
211 /* Read the page with vaddr into memory */
212 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
213 if (ret <= 0)
214 return ret;
216 ret = -ENOMEM;
217 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
218 if (!new_page)
219 goto put_out;
221 __SetPageUptodate(new_page);
224 * lock page will serialize against do_wp_page()'s
225 * PageAnon() handling
227 lock_page(old_page);
228 /* copy the page now that we've got it stable */
229 vaddr_old = kmap_atomic(old_page);
230 vaddr_new = kmap_atomic(new_page);
232 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
233 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
235 kunmap_atomic(vaddr_new);
236 kunmap_atomic(vaddr_old);
238 ret = anon_vma_prepare(vma);
239 if (ret)
240 goto unlock_out;
242 lock_page(new_page);
243 ret = __replace_page(vma, vaddr, old_page, new_page);
244 unlock_page(new_page);
246 unlock_out:
247 unlock_page(old_page);
248 page_cache_release(new_page);
250 put_out:
251 put_page(old_page);
253 if (unlikely(ret == -EAGAIN))
254 goto retry;
255 return ret;
259 * read_opcode - read the opcode at a given virtual address.
260 * @mm: the probed process address space.
261 * @vaddr: the virtual address to read the opcode.
262 * @opcode: location to store the read opcode.
264 * Called with mm->mmap_sem held (for read and with a reference to
265 * mm.
267 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
268 * Return 0 (success) or a negative errno.
270 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
272 struct page *page;
273 void *vaddr_new;
274 int ret;
276 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
277 if (ret <= 0)
278 return ret;
280 lock_page(page);
281 vaddr_new = kmap_atomic(page);
282 vaddr &= ~PAGE_MASK;
283 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
284 kunmap_atomic(vaddr_new);
285 unlock_page(page);
287 put_page(page);
289 return 0;
292 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
294 uprobe_opcode_t opcode;
295 int result;
297 if (current->mm == mm) {
298 pagefault_disable();
299 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
300 sizeof(opcode));
301 pagefault_enable();
303 if (likely(result == 0))
304 goto out;
307 result = read_opcode(mm, vaddr, &opcode);
308 if (result)
309 return result;
310 out:
311 if (is_swbp_insn(&opcode))
312 return 1;
314 return 0;
318 * set_swbp - store breakpoint at a given address.
319 * @auprobe: arch specific probepoint information.
320 * @mm: the probed process address space.
321 * @vaddr: the virtual address to insert the opcode.
323 * For mm @mm, store the breakpoint instruction at @vaddr.
324 * Return 0 (success) or a negative errno.
326 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
328 int result;
330 * See the comment near uprobes_hash().
332 result = is_swbp_at_addr(mm, vaddr);
333 if (result == 1)
334 return -EEXIST;
336 if (result)
337 return result;
339 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
343 * set_orig_insn - Restore the original instruction.
344 * @mm: the probed process address space.
345 * @auprobe: arch specific probepoint information.
346 * @vaddr: the virtual address to insert the opcode.
347 * @verify: if true, verify existance of breakpoint instruction.
349 * For mm @mm, restore the original opcode (opcode) at @vaddr.
350 * Return 0 (success) or a negative errno.
352 int __weak
353 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
355 if (verify) {
356 int result;
358 result = is_swbp_at_addr(mm, vaddr);
359 if (!result)
360 return -EINVAL;
362 if (result != 1)
363 return result;
365 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
368 static int match_uprobe(struct uprobe *l, struct uprobe *r)
370 if (l->inode < r->inode)
371 return -1;
373 if (l->inode > r->inode)
374 return 1;
376 if (l->offset < r->offset)
377 return -1;
379 if (l->offset > r->offset)
380 return 1;
382 return 0;
385 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387 struct uprobe u = { .inode = inode, .offset = offset };
388 struct rb_node *n = uprobes_tree.rb_node;
389 struct uprobe *uprobe;
390 int match;
392 while (n) {
393 uprobe = rb_entry(n, struct uprobe, rb_node);
394 match = match_uprobe(&u, uprobe);
395 if (!match) {
396 atomic_inc(&uprobe->ref);
397 return uprobe;
400 if (match < 0)
401 n = n->rb_left;
402 else
403 n = n->rb_right;
405 return NULL;
409 * Find a uprobe corresponding to a given inode:offset
410 * Acquires uprobes_treelock
412 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414 struct uprobe *uprobe;
415 unsigned long flags;
417 spin_lock_irqsave(&uprobes_treelock, flags);
418 uprobe = __find_uprobe(inode, offset);
419 spin_unlock_irqrestore(&uprobes_treelock, flags);
421 return uprobe;
424 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426 struct rb_node **p = &uprobes_tree.rb_node;
427 struct rb_node *parent = NULL;
428 struct uprobe *u;
429 int match;
431 while (*p) {
432 parent = *p;
433 u = rb_entry(parent, struct uprobe, rb_node);
434 match = match_uprobe(uprobe, u);
435 if (!match) {
436 atomic_inc(&u->ref);
437 return u;
440 if (match < 0)
441 p = &parent->rb_left;
442 else
443 p = &parent->rb_right;
447 u = NULL;
448 rb_link_node(&uprobe->rb_node, parent, p);
449 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
450 /* get access + creation ref */
451 atomic_set(&uprobe->ref, 2);
453 return u;
457 * Acquire uprobes_treelock.
458 * Matching uprobe already exists in rbtree;
459 * increment (access refcount) and return the matching uprobe.
461 * No matching uprobe; insert the uprobe in rb_tree;
462 * get a double refcount (access + creation) and return NULL.
464 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 unsigned long flags;
467 struct uprobe *u;
469 spin_lock_irqsave(&uprobes_treelock, flags);
470 u = __insert_uprobe(uprobe);
471 spin_unlock_irqrestore(&uprobes_treelock, flags);
473 /* For now assume that the instruction need not be single-stepped */
474 uprobe->flags |= UPROBE_SKIP_SSTEP;
476 return u;
479 static void put_uprobe(struct uprobe *uprobe)
481 if (atomic_dec_and_test(&uprobe->ref))
482 kfree(uprobe);
485 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
487 struct uprobe *uprobe, *cur_uprobe;
489 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
490 if (!uprobe)
491 return NULL;
493 uprobe->inode = igrab(inode);
494 uprobe->offset = offset;
495 init_rwsem(&uprobe->consumer_rwsem);
497 /* add to uprobes_tree, sorted on inode:offset */
498 cur_uprobe = insert_uprobe(uprobe);
500 /* a uprobe exists for this inode:offset combination */
501 if (cur_uprobe) {
502 kfree(uprobe);
503 uprobe = cur_uprobe;
504 iput(inode);
505 } else {
506 atomic_inc(&uprobe_events);
509 return uprobe;
512 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
514 struct uprobe_consumer *uc;
516 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
517 return;
519 down_read(&uprobe->consumer_rwsem);
520 for (uc = uprobe->consumers; uc; uc = uc->next) {
521 if (!uc->filter || uc->filter(uc, current))
522 uc->handler(uc, regs);
524 up_read(&uprobe->consumer_rwsem);
527 /* Returns the previous consumer */
528 static struct uprobe_consumer *
529 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
531 down_write(&uprobe->consumer_rwsem);
532 uc->next = uprobe->consumers;
533 uprobe->consumers = uc;
534 up_write(&uprobe->consumer_rwsem);
536 return uc->next;
540 * For uprobe @uprobe, delete the consumer @uc.
541 * Return true if the @uc is deleted successfully
542 * or return false.
544 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
546 struct uprobe_consumer **con;
547 bool ret = false;
549 down_write(&uprobe->consumer_rwsem);
550 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
551 if (*con == uc) {
552 *con = uc->next;
553 ret = true;
554 break;
557 up_write(&uprobe->consumer_rwsem);
559 return ret;
562 static int
563 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
564 unsigned long nbytes, loff_t offset)
566 struct page *page;
567 void *vaddr;
568 unsigned long off;
569 pgoff_t idx;
571 if (!filp)
572 return -EINVAL;
574 if (!mapping->a_ops->readpage)
575 return -EIO;
577 idx = offset >> PAGE_CACHE_SHIFT;
578 off = offset & ~PAGE_MASK;
581 * Ensure that the page that has the original instruction is
582 * populated and in page-cache.
584 page = read_mapping_page(mapping, idx, filp);
585 if (IS_ERR(page))
586 return PTR_ERR(page);
588 vaddr = kmap_atomic(page);
589 memcpy(insn, vaddr + off, nbytes);
590 kunmap_atomic(vaddr);
591 page_cache_release(page);
593 return 0;
596 static int copy_insn(struct uprobe *uprobe, struct file *filp)
598 struct address_space *mapping;
599 unsigned long nbytes;
600 int bytes;
602 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
603 mapping = uprobe->inode->i_mapping;
605 /* Instruction at end of binary; copy only available bytes */
606 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
607 bytes = uprobe->inode->i_size - uprobe->offset;
608 else
609 bytes = MAX_UINSN_BYTES;
611 /* Instruction at the page-boundary; copy bytes in second page */
612 if (nbytes < bytes) {
613 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
614 bytes - nbytes, uprobe->offset + nbytes);
615 if (err)
616 return err;
617 bytes = nbytes;
619 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
623 * How mm->uprobes_state.count gets updated
624 * uprobe_mmap() increments the count if
625 * - it successfully adds a breakpoint.
626 * - it cannot add a breakpoint, but sees that there is a underlying
627 * breakpoint (via a is_swbp_at_addr()).
629 * uprobe_munmap() decrements the count if
630 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
631 * (Subsequent uprobe_unregister wouldnt find the breakpoint
632 * unless a uprobe_mmap kicks in, since the old vma would be
633 * dropped just after uprobe_munmap.)
635 * uprobe_register increments the count if:
636 * - it successfully adds a breakpoint.
638 * uprobe_unregister decrements the count if:
639 * - it sees a underlying breakpoint and removes successfully.
640 * (via is_swbp_at_addr)
641 * (Subsequent uprobe_munmap wouldnt find the breakpoint
642 * since there is no underlying breakpoint after the
643 * breakpoint removal.)
645 static int
646 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
647 struct vm_area_struct *vma, unsigned long vaddr)
649 int ret;
652 * If probe is being deleted, unregister thread could be done with
653 * the vma-rmap-walk through. Adding a probe now can be fatal since
654 * nobody will be able to cleanup. Also we could be from fork or
655 * mremap path, where the probe might have already been inserted.
656 * Hence behave as if probe already existed.
658 if (!uprobe->consumers)
659 return -EEXIST;
661 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
662 ret = copy_insn(uprobe, vma->vm_file);
663 if (ret)
664 return ret;
666 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
667 return -ENOTSUPP;
669 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
670 if (ret)
671 return ret;
673 /* write_opcode() assumes we don't cross page boundary */
674 BUG_ON((uprobe->offset & ~PAGE_MASK) +
675 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
677 uprobe->flags |= UPROBE_COPY_INSN;
681 * Ideally, should be updating the probe count after the breakpoint
682 * has been successfully inserted. However a thread could hit the
683 * breakpoint we just inserted even before the probe count is
684 * incremented. If this is the first breakpoint placed, breakpoint
685 * notifier might ignore uprobes and pass the trap to the thread.
686 * Hence increment before and decrement on failure.
688 atomic_inc(&mm->uprobes_state.count);
689 ret = set_swbp(&uprobe->arch, mm, vaddr);
690 if (ret)
691 atomic_dec(&mm->uprobes_state.count);
693 return ret;
696 static void
697 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
699 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
700 atomic_dec(&mm->uprobes_state.count);
704 * There could be threads that have already hit the breakpoint. They
705 * will recheck the current insn and restart if find_uprobe() fails.
706 * See find_active_uprobe().
708 static void delete_uprobe(struct uprobe *uprobe)
710 unsigned long flags;
712 spin_lock_irqsave(&uprobes_treelock, flags);
713 rb_erase(&uprobe->rb_node, &uprobes_tree);
714 spin_unlock_irqrestore(&uprobes_treelock, flags);
715 iput(uprobe->inode);
716 put_uprobe(uprobe);
717 atomic_dec(&uprobe_events);
720 struct map_info {
721 struct map_info *next;
722 struct mm_struct *mm;
723 unsigned long vaddr;
726 static inline struct map_info *free_map_info(struct map_info *info)
728 struct map_info *next = info->next;
729 kfree(info);
730 return next;
733 static struct map_info *
734 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
736 unsigned long pgoff = offset >> PAGE_SHIFT;
737 struct prio_tree_iter iter;
738 struct vm_area_struct *vma;
739 struct map_info *curr = NULL;
740 struct map_info *prev = NULL;
741 struct map_info *info;
742 int more = 0;
744 again:
745 mutex_lock(&mapping->i_mmap_mutex);
746 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
747 if (!valid_vma(vma, is_register))
748 continue;
750 if (!prev && !more) {
752 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
753 * reclaim. This is optimistic, no harm done if it fails.
755 prev = kmalloc(sizeof(struct map_info),
756 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
757 if (prev)
758 prev->next = NULL;
760 if (!prev) {
761 more++;
762 continue;
765 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
766 continue;
768 info = prev;
769 prev = prev->next;
770 info->next = curr;
771 curr = info;
773 info->mm = vma->vm_mm;
774 info->vaddr = vma_address(vma, offset);
776 mutex_unlock(&mapping->i_mmap_mutex);
778 if (!more)
779 goto out;
781 prev = curr;
782 while (curr) {
783 mmput(curr->mm);
784 curr = curr->next;
787 do {
788 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
789 if (!info) {
790 curr = ERR_PTR(-ENOMEM);
791 goto out;
793 info->next = prev;
794 prev = info;
795 } while (--more);
797 goto again;
798 out:
799 while (prev)
800 prev = free_map_info(prev);
801 return curr;
804 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
806 struct map_info *info;
807 int err = 0;
809 info = build_map_info(uprobe->inode->i_mapping,
810 uprobe->offset, is_register);
811 if (IS_ERR(info))
812 return PTR_ERR(info);
814 while (info) {
815 struct mm_struct *mm = info->mm;
816 struct vm_area_struct *vma;
818 if (err)
819 goto free;
821 down_write(&mm->mmap_sem);
822 vma = find_vma(mm, (unsigned long)info->vaddr);
823 if (!vma || !valid_vma(vma, is_register))
824 goto unlock;
826 if (vma->vm_file->f_mapping->host != uprobe->inode ||
827 vma_address(vma, uprobe->offset) != info->vaddr)
828 goto unlock;
830 if (is_register) {
831 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
833 * We can race against uprobe_mmap(), see the
834 * comment near uprobe_hash().
836 if (err == -EEXIST)
837 err = 0;
838 } else {
839 remove_breakpoint(uprobe, mm, info->vaddr);
841 unlock:
842 up_write(&mm->mmap_sem);
843 free:
844 mmput(mm);
845 info = free_map_info(info);
848 return err;
851 static int __uprobe_register(struct uprobe *uprobe)
853 return register_for_each_vma(uprobe, true);
856 static void __uprobe_unregister(struct uprobe *uprobe)
858 if (!register_for_each_vma(uprobe, false))
859 delete_uprobe(uprobe);
861 /* TODO : cant unregister? schedule a worker thread */
865 * uprobe_register - register a probe
866 * @inode: the file in which the probe has to be placed.
867 * @offset: offset from the start of the file.
868 * @uc: information on howto handle the probe..
870 * Apart from the access refcount, uprobe_register() takes a creation
871 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
872 * inserted into the rbtree (i.e first consumer for a @inode:@offset
873 * tuple). Creation refcount stops uprobe_unregister from freeing the
874 * @uprobe even before the register operation is complete. Creation
875 * refcount is released when the last @uc for the @uprobe
876 * unregisters.
878 * Return errno if it cannot successully install probes
879 * else return 0 (success)
881 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
883 struct uprobe *uprobe;
884 int ret;
886 if (!inode || !uc || uc->next)
887 return -EINVAL;
889 if (offset > i_size_read(inode))
890 return -EINVAL;
892 ret = 0;
893 mutex_lock(uprobes_hash(inode));
894 uprobe = alloc_uprobe(inode, offset);
896 if (uprobe && !consumer_add(uprobe, uc)) {
897 ret = __uprobe_register(uprobe);
898 if (ret) {
899 uprobe->consumers = NULL;
900 __uprobe_unregister(uprobe);
901 } else {
902 uprobe->flags |= UPROBE_RUN_HANDLER;
906 mutex_unlock(uprobes_hash(inode));
907 put_uprobe(uprobe);
909 return ret;
913 * uprobe_unregister - unregister a already registered probe.
914 * @inode: the file in which the probe has to be removed.
915 * @offset: offset from the start of the file.
916 * @uc: identify which probe if multiple probes are colocated.
918 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
920 struct uprobe *uprobe;
922 if (!inode || !uc)
923 return;
925 uprobe = find_uprobe(inode, offset);
926 if (!uprobe)
927 return;
929 mutex_lock(uprobes_hash(inode));
931 if (consumer_del(uprobe, uc)) {
932 if (!uprobe->consumers) {
933 __uprobe_unregister(uprobe);
934 uprobe->flags &= ~UPROBE_RUN_HANDLER;
938 mutex_unlock(uprobes_hash(inode));
939 if (uprobe)
940 put_uprobe(uprobe);
944 * Of all the nodes that correspond to the given inode, return the node
945 * with the least offset.
947 static struct rb_node *find_least_offset_node(struct inode *inode)
949 struct uprobe u = { .inode = inode, .offset = 0};
950 struct rb_node *n = uprobes_tree.rb_node;
951 struct rb_node *close_node = NULL;
952 struct uprobe *uprobe;
953 int match;
955 while (n) {
956 uprobe = rb_entry(n, struct uprobe, rb_node);
957 match = match_uprobe(&u, uprobe);
959 if (uprobe->inode == inode)
960 close_node = n;
962 if (!match)
963 return close_node;
965 if (match < 0)
966 n = n->rb_left;
967 else
968 n = n->rb_right;
971 return close_node;
975 * For a given inode, build a list of probes that need to be inserted.
977 static void build_probe_list(struct inode *inode, struct list_head *head)
979 struct uprobe *uprobe;
980 unsigned long flags;
981 struct rb_node *n;
983 spin_lock_irqsave(&uprobes_treelock, flags);
985 n = find_least_offset_node(inode);
987 for (; n; n = rb_next(n)) {
988 uprobe = rb_entry(n, struct uprobe, rb_node);
989 if (uprobe->inode != inode)
990 break;
992 list_add(&uprobe->pending_list, head);
993 atomic_inc(&uprobe->ref);
996 spin_unlock_irqrestore(&uprobes_treelock, flags);
1000 * Called from mmap_region.
1001 * called with mm->mmap_sem acquired.
1003 * Return -ve no if we fail to insert probes and we cannot
1004 * bail-out.
1005 * Return 0 otherwise. i.e:
1007 * - successful insertion of probes
1008 * - (or) no possible probes to be inserted.
1009 * - (or) insertion of probes failed but we can bail-out.
1011 int uprobe_mmap(struct vm_area_struct *vma)
1013 struct list_head tmp_list;
1014 struct uprobe *uprobe;
1015 struct inode *inode;
1016 int ret, count;
1018 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1019 return 0;
1021 inode = vma->vm_file->f_mapping->host;
1022 if (!inode)
1023 return 0;
1025 INIT_LIST_HEAD(&tmp_list);
1026 mutex_lock(uprobes_mmap_hash(inode));
1027 build_probe_list(inode, &tmp_list);
1029 ret = 0;
1030 count = 0;
1032 list_for_each_entry(uprobe, &tmp_list, pending_list) {
1033 if (!ret) {
1034 loff_t vaddr = vma_address(vma, uprobe->offset);
1036 if (vaddr < vma->vm_start || vaddr >= vma->vm_end) {
1037 put_uprobe(uprobe);
1038 continue;
1041 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1043 * We can race against uprobe_register(), see the
1044 * comment near uprobe_hash().
1046 if (ret == -EEXIST) {
1047 ret = 0;
1049 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1050 continue;
1053 * Unable to insert a breakpoint, but
1054 * breakpoint lies underneath. Increment the
1055 * probe count.
1057 atomic_inc(&vma->vm_mm->uprobes_state.count);
1060 if (!ret)
1061 count++;
1063 put_uprobe(uprobe);
1066 mutex_unlock(uprobes_mmap_hash(inode));
1068 if (ret)
1069 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1071 return ret;
1075 * Called in context of a munmap of a vma.
1077 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1079 struct list_head tmp_list;
1080 struct uprobe *uprobe;
1081 struct inode *inode;
1083 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1084 return;
1086 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1087 return;
1089 inode = vma->vm_file->f_mapping->host;
1090 if (!inode)
1091 return;
1093 INIT_LIST_HEAD(&tmp_list);
1094 mutex_lock(uprobes_mmap_hash(inode));
1095 build_probe_list(inode, &tmp_list);
1097 list_for_each_entry(uprobe, &tmp_list, pending_list) {
1098 loff_t vaddr = vma_address(vma, uprobe->offset);
1100 if (vaddr >= start && vaddr < end) {
1102 * An unregister could have removed the probe before
1103 * unmap. So check before we decrement the count.
1105 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1106 atomic_dec(&vma->vm_mm->uprobes_state.count);
1108 put_uprobe(uprobe);
1110 mutex_unlock(uprobes_mmap_hash(inode));
1113 /* Slot allocation for XOL */
1114 static int xol_add_vma(struct xol_area *area)
1116 struct mm_struct *mm;
1117 int ret;
1119 area->page = alloc_page(GFP_HIGHUSER);
1120 if (!area->page)
1121 return -ENOMEM;
1123 ret = -EALREADY;
1124 mm = current->mm;
1126 down_write(&mm->mmap_sem);
1127 if (mm->uprobes_state.xol_area)
1128 goto fail;
1130 ret = -ENOMEM;
1132 /* Try to map as high as possible, this is only a hint. */
1133 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1134 if (area->vaddr & ~PAGE_MASK) {
1135 ret = area->vaddr;
1136 goto fail;
1139 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1140 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1141 if (ret)
1142 goto fail;
1144 smp_wmb(); /* pairs with get_xol_area() */
1145 mm->uprobes_state.xol_area = area;
1146 ret = 0;
1148 fail:
1149 up_write(&mm->mmap_sem);
1150 if (ret)
1151 __free_page(area->page);
1153 return ret;
1156 static struct xol_area *get_xol_area(struct mm_struct *mm)
1158 struct xol_area *area;
1160 area = mm->uprobes_state.xol_area;
1161 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1163 return area;
1167 * xol_alloc_area - Allocate process's xol_area.
1168 * This area will be used for storing instructions for execution out of
1169 * line.
1171 * Returns the allocated area or NULL.
1173 static struct xol_area *xol_alloc_area(void)
1175 struct xol_area *area;
1177 area = kzalloc(sizeof(*area), GFP_KERNEL);
1178 if (unlikely(!area))
1179 return NULL;
1181 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1183 if (!area->bitmap)
1184 goto fail;
1186 init_waitqueue_head(&area->wq);
1187 if (!xol_add_vma(area))
1188 return area;
1190 fail:
1191 kfree(area->bitmap);
1192 kfree(area);
1194 return get_xol_area(current->mm);
1198 * uprobe_clear_state - Free the area allocated for slots.
1200 void uprobe_clear_state(struct mm_struct *mm)
1202 struct xol_area *area = mm->uprobes_state.xol_area;
1204 if (!area)
1205 return;
1207 put_page(area->page);
1208 kfree(area->bitmap);
1209 kfree(area);
1213 * uprobe_reset_state - Free the area allocated for slots.
1215 void uprobe_reset_state(struct mm_struct *mm)
1217 mm->uprobes_state.xol_area = NULL;
1218 atomic_set(&mm->uprobes_state.count, 0);
1222 * - search for a free slot.
1224 static unsigned long xol_take_insn_slot(struct xol_area *area)
1226 unsigned long slot_addr;
1227 int slot_nr;
1229 do {
1230 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1231 if (slot_nr < UINSNS_PER_PAGE) {
1232 if (!test_and_set_bit(slot_nr, area->bitmap))
1233 break;
1235 slot_nr = UINSNS_PER_PAGE;
1236 continue;
1238 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1239 } while (slot_nr >= UINSNS_PER_PAGE);
1241 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1242 atomic_inc(&area->slot_count);
1244 return slot_addr;
1248 * xol_get_insn_slot - If was not allocated a slot, then
1249 * allocate a slot.
1250 * Returns the allocated slot address or 0.
1252 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1254 struct xol_area *area;
1255 unsigned long offset;
1256 void *vaddr;
1258 area = get_xol_area(current->mm);
1259 if (!area) {
1260 area = xol_alloc_area();
1261 if (!area)
1262 return 0;
1264 current->utask->xol_vaddr = xol_take_insn_slot(area);
1267 * Initialize the slot if xol_vaddr points to valid
1268 * instruction slot.
1270 if (unlikely(!current->utask->xol_vaddr))
1271 return 0;
1273 current->utask->vaddr = slot_addr;
1274 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1275 vaddr = kmap_atomic(area->page);
1276 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1277 kunmap_atomic(vaddr);
1279 return current->utask->xol_vaddr;
1283 * xol_free_insn_slot - If slot was earlier allocated by
1284 * @xol_get_insn_slot(), make the slot available for
1285 * subsequent requests.
1287 static void xol_free_insn_slot(struct task_struct *tsk)
1289 struct xol_area *area;
1290 unsigned long vma_end;
1291 unsigned long slot_addr;
1293 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1294 return;
1296 slot_addr = tsk->utask->xol_vaddr;
1298 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1299 return;
1301 area = tsk->mm->uprobes_state.xol_area;
1302 vma_end = area->vaddr + PAGE_SIZE;
1303 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1304 unsigned long offset;
1305 int slot_nr;
1307 offset = slot_addr - area->vaddr;
1308 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1309 if (slot_nr >= UINSNS_PER_PAGE)
1310 return;
1312 clear_bit(slot_nr, area->bitmap);
1313 atomic_dec(&area->slot_count);
1314 if (waitqueue_active(&area->wq))
1315 wake_up(&area->wq);
1317 tsk->utask->xol_vaddr = 0;
1322 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1323 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1324 * instruction.
1325 * Return the address of the breakpoint instruction.
1327 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1329 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1333 * Called with no locks held.
1334 * Called in context of a exiting or a exec-ing thread.
1336 void uprobe_free_utask(struct task_struct *t)
1338 struct uprobe_task *utask = t->utask;
1340 if (!utask)
1341 return;
1343 if (utask->active_uprobe)
1344 put_uprobe(utask->active_uprobe);
1346 xol_free_insn_slot(t);
1347 kfree(utask);
1348 t->utask = NULL;
1352 * Called in context of a new clone/fork from copy_process.
1354 void uprobe_copy_process(struct task_struct *t)
1356 t->utask = NULL;
1360 * Allocate a uprobe_task object for the task.
1361 * Called when the thread hits a breakpoint for the first time.
1363 * Returns:
1364 * - pointer to new uprobe_task on success
1365 * - NULL otherwise
1367 static struct uprobe_task *add_utask(void)
1369 struct uprobe_task *utask;
1371 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1372 if (unlikely(!utask))
1373 return NULL;
1375 current->utask = utask;
1376 return utask;
1379 /* Prepare to single-step probed instruction out of line. */
1380 static int
1381 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1383 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1384 return 0;
1386 return -EFAULT;
1390 * If we are singlestepping, then ensure this thread is not connected to
1391 * non-fatal signals until completion of singlestep. When xol insn itself
1392 * triggers the signal, restart the original insn even if the task is
1393 * already SIGKILL'ed (since coredump should report the correct ip). This
1394 * is even more important if the task has a handler for SIGSEGV/etc, The
1395 * _same_ instruction should be repeated again after return from the signal
1396 * handler, and SSTEP can never finish in this case.
1398 bool uprobe_deny_signal(void)
1400 struct task_struct *t = current;
1401 struct uprobe_task *utask = t->utask;
1403 if (likely(!utask || !utask->active_uprobe))
1404 return false;
1406 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1408 if (signal_pending(t)) {
1409 spin_lock_irq(&t->sighand->siglock);
1410 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1411 spin_unlock_irq(&t->sighand->siglock);
1413 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1414 utask->state = UTASK_SSTEP_TRAPPED;
1415 set_tsk_thread_flag(t, TIF_UPROBE);
1416 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1420 return true;
1424 * Avoid singlestepping the original instruction if the original instruction
1425 * is a NOP or can be emulated.
1427 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1429 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1430 return true;
1432 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1433 return false;
1436 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1438 struct mm_struct *mm = current->mm;
1439 struct uprobe *uprobe = NULL;
1440 struct vm_area_struct *vma;
1442 down_read(&mm->mmap_sem);
1443 vma = find_vma(mm, bp_vaddr);
1444 if (vma && vma->vm_start <= bp_vaddr) {
1445 if (valid_vma(vma, false)) {
1446 struct inode *inode;
1447 loff_t offset;
1449 inode = vma->vm_file->f_mapping->host;
1450 offset = bp_vaddr - vma->vm_start;
1451 offset += (vma->vm_pgoff << PAGE_SHIFT);
1452 uprobe = find_uprobe(inode, offset);
1455 if (!uprobe)
1456 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1457 } else {
1458 *is_swbp = -EFAULT;
1460 up_read(&mm->mmap_sem);
1462 return uprobe;
1466 * Run handler and ask thread to singlestep.
1467 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1469 static void handle_swbp(struct pt_regs *regs)
1471 struct uprobe_task *utask;
1472 struct uprobe *uprobe;
1473 unsigned long bp_vaddr;
1474 int uninitialized_var(is_swbp);
1476 bp_vaddr = uprobe_get_swbp_addr(regs);
1477 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1479 if (!uprobe) {
1480 if (is_swbp > 0) {
1481 /* No matching uprobe; signal SIGTRAP. */
1482 send_sig(SIGTRAP, current, 0);
1483 } else {
1485 * Either we raced with uprobe_unregister() or we can't
1486 * access this memory. The latter is only possible if
1487 * another thread plays with our ->mm. In both cases
1488 * we can simply restart. If this vma was unmapped we
1489 * can pretend this insn was not executed yet and get
1490 * the (correct) SIGSEGV after restart.
1492 instruction_pointer_set(regs, bp_vaddr);
1494 return;
1497 utask = current->utask;
1498 if (!utask) {
1499 utask = add_utask();
1500 /* Cannot allocate; re-execute the instruction. */
1501 if (!utask)
1502 goto cleanup_ret;
1504 utask->active_uprobe = uprobe;
1505 handler_chain(uprobe, regs);
1506 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1507 goto cleanup_ret;
1509 utask->state = UTASK_SSTEP;
1510 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1511 user_enable_single_step(current);
1512 return;
1515 cleanup_ret:
1516 if (utask) {
1517 utask->active_uprobe = NULL;
1518 utask->state = UTASK_RUNNING;
1520 if (uprobe) {
1521 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1524 * cannot singlestep; cannot skip instruction;
1525 * re-execute the instruction.
1527 instruction_pointer_set(regs, bp_vaddr);
1529 put_uprobe(uprobe);
1534 * Perform required fix-ups and disable singlestep.
1535 * Allow pending signals to take effect.
1537 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1539 struct uprobe *uprobe;
1541 uprobe = utask->active_uprobe;
1542 if (utask->state == UTASK_SSTEP_ACK)
1543 arch_uprobe_post_xol(&uprobe->arch, regs);
1544 else if (utask->state == UTASK_SSTEP_TRAPPED)
1545 arch_uprobe_abort_xol(&uprobe->arch, regs);
1546 else
1547 WARN_ON_ONCE(1);
1549 put_uprobe(uprobe);
1550 utask->active_uprobe = NULL;
1551 utask->state = UTASK_RUNNING;
1552 user_disable_single_step(current);
1553 xol_free_insn_slot(current);
1555 spin_lock_irq(&current->sighand->siglock);
1556 recalc_sigpending(); /* see uprobe_deny_signal() */
1557 spin_unlock_irq(&current->sighand->siglock);
1561 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1562 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1563 * allows the thread to return from interrupt.
1565 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1566 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1567 * interrupt.
1569 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1570 * uprobe_notify_resume().
1572 void uprobe_notify_resume(struct pt_regs *regs)
1574 struct uprobe_task *utask;
1576 utask = current->utask;
1577 if (!utask || utask->state == UTASK_BP_HIT)
1578 handle_swbp(regs);
1579 else
1580 handle_singlestep(utask, regs);
1584 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1585 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1587 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1589 struct uprobe_task *utask;
1591 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1592 /* task is currently not uprobed */
1593 return 0;
1595 utask = current->utask;
1596 if (utask)
1597 utask->state = UTASK_BP_HIT;
1599 set_thread_flag(TIF_UPROBE);
1601 return 1;
1605 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1606 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1608 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1610 struct uprobe_task *utask = current->utask;
1612 if (!current->mm || !utask || !utask->active_uprobe)
1613 /* task is currently not uprobed */
1614 return 0;
1616 utask->state = UTASK_SSTEP_ACK;
1617 set_thread_flag(TIF_UPROBE);
1618 return 1;
1621 static struct notifier_block uprobe_exception_nb = {
1622 .notifier_call = arch_uprobe_exception_notify,
1623 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1626 static int __init init_uprobes(void)
1628 int i;
1630 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1631 mutex_init(&uprobes_mutex[i]);
1632 mutex_init(&uprobes_mmap_mutex[i]);
1635 return register_die_notifier(&uprobe_exception_nb);
1637 module_init(init_uprobes);
1639 static void __exit exit_uprobes(void)
1642 module_exit(exit_uprobes);