Linux 2.6.22-rc3
[linux-2.6/libata-dev.git] / net / ipv4 / tcp_ipv4.c
blob5a3e7f839fc52f838122a88a40209566ce2e3ab7
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
65 #include <net/icmp.h>
66 #include <net/inet_hashtables.h>
67 #include <net/tcp.h>
68 #include <net/transp_v6.h>
69 #include <net/ipv6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
72 #include <net/xfrm.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
87 /* Check TCP sequence numbers in ICMP packets. */
88 #define ICMP_MIN_LENGTH 8
90 /* Socket used for sending RSTs */
91 static struct socket *tcp_socket __read_mostly;
93 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb);
95 #ifdef CONFIG_TCP_MD5SIG
96 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
97 __be32 addr);
98 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
99 __be32 saddr, __be32 daddr,
100 struct tcphdr *th, int protocol,
101 int tcplen);
102 #endif
104 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
105 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
106 .lhash_users = ATOMIC_INIT(0),
107 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
110 static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
112 return inet_csk_get_port(&tcp_hashinfo, sk, snum,
113 inet_csk_bind_conflict);
116 static void tcp_v4_hash(struct sock *sk)
118 inet_hash(&tcp_hashinfo, sk);
121 void tcp_unhash(struct sock *sk)
123 inet_unhash(&tcp_hashinfo, sk);
126 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
128 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
129 ip_hdr(skb)->saddr,
130 tcp_hdr(skb)->dest,
131 tcp_hdr(skb)->source);
134 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
136 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
137 struct tcp_sock *tp = tcp_sk(sk);
139 /* With PAWS, it is safe from the viewpoint
140 of data integrity. Even without PAWS it is safe provided sequence
141 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
143 Actually, the idea is close to VJ's one, only timestamp cache is
144 held not per host, but per port pair and TW bucket is used as state
145 holder.
147 If TW bucket has been already destroyed we fall back to VJ's scheme
148 and use initial timestamp retrieved from peer table.
150 if (tcptw->tw_ts_recent_stamp &&
151 (twp == NULL || (sysctl_tcp_tw_reuse &&
152 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
153 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
154 if (tp->write_seq == 0)
155 tp->write_seq = 1;
156 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
157 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
158 sock_hold(sktw);
159 return 1;
162 return 0;
165 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
167 /* This will initiate an outgoing connection. */
168 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
170 struct inet_sock *inet = inet_sk(sk);
171 struct tcp_sock *tp = tcp_sk(sk);
172 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
173 struct rtable *rt;
174 __be32 daddr, nexthop;
175 int tmp;
176 int err;
178 if (addr_len < sizeof(struct sockaddr_in))
179 return -EINVAL;
181 if (usin->sin_family != AF_INET)
182 return -EAFNOSUPPORT;
184 nexthop = daddr = usin->sin_addr.s_addr;
185 if (inet->opt && inet->opt->srr) {
186 if (!daddr)
187 return -EINVAL;
188 nexthop = inet->opt->faddr;
191 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
192 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
193 IPPROTO_TCP,
194 inet->sport, usin->sin_port, sk, 1);
195 if (tmp < 0)
196 return tmp;
198 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
199 ip_rt_put(rt);
200 return -ENETUNREACH;
203 if (!inet->opt || !inet->opt->srr)
204 daddr = rt->rt_dst;
206 if (!inet->saddr)
207 inet->saddr = rt->rt_src;
208 inet->rcv_saddr = inet->saddr;
210 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
211 /* Reset inherited state */
212 tp->rx_opt.ts_recent = 0;
213 tp->rx_opt.ts_recent_stamp = 0;
214 tp->write_seq = 0;
217 if (tcp_death_row.sysctl_tw_recycle &&
218 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
219 struct inet_peer *peer = rt_get_peer(rt);
221 * VJ's idea. We save last timestamp seen from
222 * the destination in peer table, when entering state
223 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
224 * when trying new connection.
226 if (peer != NULL &&
227 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
228 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
229 tp->rx_opt.ts_recent = peer->tcp_ts;
233 inet->dport = usin->sin_port;
234 inet->daddr = daddr;
236 inet_csk(sk)->icsk_ext_hdr_len = 0;
237 if (inet->opt)
238 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
240 tp->rx_opt.mss_clamp = 536;
242 /* Socket identity is still unknown (sport may be zero).
243 * However we set state to SYN-SENT and not releasing socket
244 * lock select source port, enter ourselves into the hash tables and
245 * complete initialization after this.
247 tcp_set_state(sk, TCP_SYN_SENT);
248 err = inet_hash_connect(&tcp_death_row, sk);
249 if (err)
250 goto failure;
252 err = ip_route_newports(&rt, IPPROTO_TCP,
253 inet->sport, inet->dport, sk);
254 if (err)
255 goto failure;
257 /* OK, now commit destination to socket. */
258 sk->sk_gso_type = SKB_GSO_TCPV4;
259 sk_setup_caps(sk, &rt->u.dst);
261 if (!tp->write_seq)
262 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
263 inet->daddr,
264 inet->sport,
265 usin->sin_port);
267 inet->id = tp->write_seq ^ jiffies;
269 err = tcp_connect(sk);
270 rt = NULL;
271 if (err)
272 goto failure;
274 return 0;
276 failure:
278 * This unhashes the socket and releases the local port,
279 * if necessary.
281 tcp_set_state(sk, TCP_CLOSE);
282 ip_rt_put(rt);
283 sk->sk_route_caps = 0;
284 inet->dport = 0;
285 return err;
289 * This routine does path mtu discovery as defined in RFC1191.
291 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
293 struct dst_entry *dst;
294 struct inet_sock *inet = inet_sk(sk);
296 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
297 * send out by Linux are always <576bytes so they should go through
298 * unfragmented).
300 if (sk->sk_state == TCP_LISTEN)
301 return;
303 /* We don't check in the destentry if pmtu discovery is forbidden
304 * on this route. We just assume that no packet_to_big packets
305 * are send back when pmtu discovery is not active.
306 * There is a small race when the user changes this flag in the
307 * route, but I think that's acceptable.
309 if ((dst = __sk_dst_check(sk, 0)) == NULL)
310 return;
312 dst->ops->update_pmtu(dst, mtu);
314 /* Something is about to be wrong... Remember soft error
315 * for the case, if this connection will not able to recover.
317 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
318 sk->sk_err_soft = EMSGSIZE;
320 mtu = dst_mtu(dst);
322 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
323 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
324 tcp_sync_mss(sk, mtu);
326 /* Resend the TCP packet because it's
327 * clear that the old packet has been
328 * dropped. This is the new "fast" path mtu
329 * discovery.
331 tcp_simple_retransmit(sk);
332 } /* else let the usual retransmit timer handle it */
336 * This routine is called by the ICMP module when it gets some
337 * sort of error condition. If err < 0 then the socket should
338 * be closed and the error returned to the user. If err > 0
339 * it's just the icmp type << 8 | icmp code. After adjustment
340 * header points to the first 8 bytes of the tcp header. We need
341 * to find the appropriate port.
343 * The locking strategy used here is very "optimistic". When
344 * someone else accesses the socket the ICMP is just dropped
345 * and for some paths there is no check at all.
346 * A more general error queue to queue errors for later handling
347 * is probably better.
351 void tcp_v4_err(struct sk_buff *skb, u32 info)
353 struct iphdr *iph = (struct iphdr *)skb->data;
354 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
355 struct tcp_sock *tp;
356 struct inet_sock *inet;
357 const int type = icmp_hdr(skb)->type;
358 const int code = icmp_hdr(skb)->code;
359 struct sock *sk;
360 __u32 seq;
361 int err;
363 if (skb->len < (iph->ihl << 2) + 8) {
364 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
365 return;
368 sk = inet_lookup(&tcp_hashinfo, iph->daddr, th->dest, iph->saddr,
369 th->source, inet_iif(skb));
370 if (!sk) {
371 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
372 return;
374 if (sk->sk_state == TCP_TIME_WAIT) {
375 inet_twsk_put(inet_twsk(sk));
376 return;
379 bh_lock_sock(sk);
380 /* If too many ICMPs get dropped on busy
381 * servers this needs to be solved differently.
383 if (sock_owned_by_user(sk))
384 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
386 if (sk->sk_state == TCP_CLOSE)
387 goto out;
389 tp = tcp_sk(sk);
390 seq = ntohl(th->seq);
391 if (sk->sk_state != TCP_LISTEN &&
392 !between(seq, tp->snd_una, tp->snd_nxt)) {
393 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
394 goto out;
397 switch (type) {
398 case ICMP_SOURCE_QUENCH:
399 /* Just silently ignore these. */
400 goto out;
401 case ICMP_PARAMETERPROB:
402 err = EPROTO;
403 break;
404 case ICMP_DEST_UNREACH:
405 if (code > NR_ICMP_UNREACH)
406 goto out;
408 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
409 if (!sock_owned_by_user(sk))
410 do_pmtu_discovery(sk, iph, info);
411 goto out;
414 err = icmp_err_convert[code].errno;
415 break;
416 case ICMP_TIME_EXCEEDED:
417 err = EHOSTUNREACH;
418 break;
419 default:
420 goto out;
423 switch (sk->sk_state) {
424 struct request_sock *req, **prev;
425 case TCP_LISTEN:
426 if (sock_owned_by_user(sk))
427 goto out;
429 req = inet_csk_search_req(sk, &prev, th->dest,
430 iph->daddr, iph->saddr);
431 if (!req)
432 goto out;
434 /* ICMPs are not backlogged, hence we cannot get
435 an established socket here.
437 BUG_TRAP(!req->sk);
439 if (seq != tcp_rsk(req)->snt_isn) {
440 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
441 goto out;
445 * Still in SYN_RECV, just remove it silently.
446 * There is no good way to pass the error to the newly
447 * created socket, and POSIX does not want network
448 * errors returned from accept().
450 inet_csk_reqsk_queue_drop(sk, req, prev);
451 goto out;
453 case TCP_SYN_SENT:
454 case TCP_SYN_RECV: /* Cannot happen.
455 It can f.e. if SYNs crossed.
457 if (!sock_owned_by_user(sk)) {
458 sk->sk_err = err;
460 sk->sk_error_report(sk);
462 tcp_done(sk);
463 } else {
464 sk->sk_err_soft = err;
466 goto out;
469 /* If we've already connected we will keep trying
470 * until we time out, or the user gives up.
472 * rfc1122 4.2.3.9 allows to consider as hard errors
473 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
474 * but it is obsoleted by pmtu discovery).
476 * Note, that in modern internet, where routing is unreliable
477 * and in each dark corner broken firewalls sit, sending random
478 * errors ordered by their masters even this two messages finally lose
479 * their original sense (even Linux sends invalid PORT_UNREACHs)
481 * Now we are in compliance with RFCs.
482 * --ANK (980905)
485 inet = inet_sk(sk);
486 if (!sock_owned_by_user(sk) && inet->recverr) {
487 sk->sk_err = err;
488 sk->sk_error_report(sk);
489 } else { /* Only an error on timeout */
490 sk->sk_err_soft = err;
493 out:
494 bh_unlock_sock(sk);
495 sock_put(sk);
498 /* This routine computes an IPv4 TCP checksum. */
499 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
501 struct inet_sock *inet = inet_sk(sk);
502 struct tcphdr *th = tcp_hdr(skb);
504 if (skb->ip_summed == CHECKSUM_PARTIAL) {
505 th->check = ~tcp_v4_check(len, inet->saddr,
506 inet->daddr, 0);
507 skb->csum_start = skb_transport_header(skb) - skb->head;
508 skb->csum_offset = offsetof(struct tcphdr, check);
509 } else {
510 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
511 csum_partial((char *)th,
512 th->doff << 2,
513 skb->csum));
517 int tcp_v4_gso_send_check(struct sk_buff *skb)
519 const struct iphdr *iph;
520 struct tcphdr *th;
522 if (!pskb_may_pull(skb, sizeof(*th)))
523 return -EINVAL;
525 iph = ip_hdr(skb);
526 th = tcp_hdr(skb);
528 th->check = 0;
529 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
530 skb->csum_start = skb_transport_header(skb) - skb->head;
531 skb->csum_offset = offsetof(struct tcphdr, check);
532 skb->ip_summed = CHECKSUM_PARTIAL;
533 return 0;
537 * This routine will send an RST to the other tcp.
539 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
540 * for reset.
541 * Answer: if a packet caused RST, it is not for a socket
542 * existing in our system, if it is matched to a socket,
543 * it is just duplicate segment or bug in other side's TCP.
544 * So that we build reply only basing on parameters
545 * arrived with segment.
546 * Exception: precedence violation. We do not implement it in any case.
549 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
551 struct tcphdr *th = tcp_hdr(skb);
552 struct {
553 struct tcphdr th;
554 #ifdef CONFIG_TCP_MD5SIG
555 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
556 #endif
557 } rep;
558 struct ip_reply_arg arg;
559 #ifdef CONFIG_TCP_MD5SIG
560 struct tcp_md5sig_key *key;
561 #endif
563 /* Never send a reset in response to a reset. */
564 if (th->rst)
565 return;
567 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
568 return;
570 /* Swap the send and the receive. */
571 memset(&rep, 0, sizeof(rep));
572 rep.th.dest = th->source;
573 rep.th.source = th->dest;
574 rep.th.doff = sizeof(struct tcphdr) / 4;
575 rep.th.rst = 1;
577 if (th->ack) {
578 rep.th.seq = th->ack_seq;
579 } else {
580 rep.th.ack = 1;
581 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
582 skb->len - (th->doff << 2));
585 memset(&arg, 0, sizeof(arg));
586 arg.iov[0].iov_base = (unsigned char *)&rep;
587 arg.iov[0].iov_len = sizeof(rep.th);
589 #ifdef CONFIG_TCP_MD5SIG
590 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
591 if (key) {
592 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
593 (TCPOPT_NOP << 16) |
594 (TCPOPT_MD5SIG << 8) |
595 TCPOLEN_MD5SIG);
596 /* Update length and the length the header thinks exists */
597 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
598 rep.th.doff = arg.iov[0].iov_len / 4;
600 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
601 key,
602 ip_hdr(skb)->daddr,
603 ip_hdr(skb)->saddr,
604 &rep.th, IPPROTO_TCP,
605 arg.iov[0].iov_len);
607 #endif
608 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
609 ip_hdr(skb)->saddr, /* XXX */
610 sizeof(struct tcphdr), IPPROTO_TCP, 0);
611 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
613 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
615 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
616 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
619 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
620 outside socket context is ugly, certainly. What can I do?
623 static void tcp_v4_send_ack(struct tcp_timewait_sock *twsk,
624 struct sk_buff *skb, u32 seq, u32 ack,
625 u32 win, u32 ts)
627 struct tcphdr *th = tcp_hdr(skb);
628 struct {
629 struct tcphdr th;
630 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
631 #ifdef CONFIG_TCP_MD5SIG
632 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
633 #endif
635 } rep;
636 struct ip_reply_arg arg;
637 #ifdef CONFIG_TCP_MD5SIG
638 struct tcp_md5sig_key *key;
639 struct tcp_md5sig_key tw_key;
640 #endif
642 memset(&rep.th, 0, sizeof(struct tcphdr));
643 memset(&arg, 0, sizeof(arg));
645 arg.iov[0].iov_base = (unsigned char *)&rep;
646 arg.iov[0].iov_len = sizeof(rep.th);
647 if (ts) {
648 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
649 (TCPOPT_TIMESTAMP << 8) |
650 TCPOLEN_TIMESTAMP);
651 rep.opt[1] = htonl(tcp_time_stamp);
652 rep.opt[2] = htonl(ts);
653 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
656 /* Swap the send and the receive. */
657 rep.th.dest = th->source;
658 rep.th.source = th->dest;
659 rep.th.doff = arg.iov[0].iov_len / 4;
660 rep.th.seq = htonl(seq);
661 rep.th.ack_seq = htonl(ack);
662 rep.th.ack = 1;
663 rep.th.window = htons(win);
665 #ifdef CONFIG_TCP_MD5SIG
667 * The SKB holds an imcoming packet, but may not have a valid ->sk
668 * pointer. This is especially the case when we're dealing with a
669 * TIME_WAIT ack, because the sk structure is long gone, and only
670 * the tcp_timewait_sock remains. So the md5 key is stashed in that
671 * structure, and we use it in preference. I believe that (twsk ||
672 * skb->sk) holds true, but we program defensively.
674 if (!twsk && skb->sk) {
675 key = tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr);
676 } else if (twsk && twsk->tw_md5_keylen) {
677 tw_key.key = twsk->tw_md5_key;
678 tw_key.keylen = twsk->tw_md5_keylen;
679 key = &tw_key;
680 } else
681 key = NULL;
683 if (key) {
684 int offset = (ts) ? 3 : 0;
686 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
687 (TCPOPT_NOP << 16) |
688 (TCPOPT_MD5SIG << 8) |
689 TCPOLEN_MD5SIG);
690 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
691 rep.th.doff = arg.iov[0].iov_len/4;
693 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
694 key,
695 ip_hdr(skb)->daddr,
696 ip_hdr(skb)->saddr,
697 &rep.th, IPPROTO_TCP,
698 arg.iov[0].iov_len);
700 #endif
701 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
702 ip_hdr(skb)->saddr, /* XXX */
703 arg.iov[0].iov_len, IPPROTO_TCP, 0);
704 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
706 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
708 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
711 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
713 struct inet_timewait_sock *tw = inet_twsk(sk);
714 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
716 tcp_v4_send_ack(tcptw, skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
717 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
718 tcptw->tw_ts_recent);
720 inet_twsk_put(tw);
723 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
724 struct request_sock *req)
726 tcp_v4_send_ack(NULL, skb, tcp_rsk(req)->snt_isn + 1,
727 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
728 req->ts_recent);
732 * Send a SYN-ACK after having received an ACK.
733 * This still operates on a request_sock only, not on a big
734 * socket.
736 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
737 struct dst_entry *dst)
739 const struct inet_request_sock *ireq = inet_rsk(req);
740 int err = -1;
741 struct sk_buff * skb;
743 /* First, grab a route. */
744 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
745 goto out;
747 skb = tcp_make_synack(sk, dst, req);
749 if (skb) {
750 struct tcphdr *th = tcp_hdr(skb);
752 th->check = tcp_v4_check(skb->len,
753 ireq->loc_addr,
754 ireq->rmt_addr,
755 csum_partial((char *)th, skb->len,
756 skb->csum));
758 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
759 ireq->rmt_addr,
760 ireq->opt);
761 err = net_xmit_eval(err);
764 out:
765 dst_release(dst);
766 return err;
770 * IPv4 request_sock destructor.
772 static void tcp_v4_reqsk_destructor(struct request_sock *req)
774 kfree(inet_rsk(req)->opt);
777 #ifdef CONFIG_SYN_COOKIES
778 static void syn_flood_warning(struct sk_buff *skb)
780 static unsigned long warntime;
782 if (time_after(jiffies, (warntime + HZ * 60))) {
783 warntime = jiffies;
784 printk(KERN_INFO
785 "possible SYN flooding on port %d. Sending cookies.\n",
786 ntohs(tcp_hdr(skb)->dest));
789 #endif
792 * Save and compile IPv4 options into the request_sock if needed.
794 static struct ip_options *tcp_v4_save_options(struct sock *sk,
795 struct sk_buff *skb)
797 struct ip_options *opt = &(IPCB(skb)->opt);
798 struct ip_options *dopt = NULL;
800 if (opt && opt->optlen) {
801 int opt_size = optlength(opt);
802 dopt = kmalloc(opt_size, GFP_ATOMIC);
803 if (dopt) {
804 if (ip_options_echo(dopt, skb)) {
805 kfree(dopt);
806 dopt = NULL;
810 return dopt;
813 #ifdef CONFIG_TCP_MD5SIG
815 * RFC2385 MD5 checksumming requires a mapping of
816 * IP address->MD5 Key.
817 * We need to maintain these in the sk structure.
820 /* Find the Key structure for an address. */
821 static struct tcp_md5sig_key *
822 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
824 struct tcp_sock *tp = tcp_sk(sk);
825 int i;
827 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
828 return NULL;
829 for (i = 0; i < tp->md5sig_info->entries4; i++) {
830 if (tp->md5sig_info->keys4[i].addr == addr)
831 return (struct tcp_md5sig_key *)
832 &tp->md5sig_info->keys4[i];
834 return NULL;
837 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
838 struct sock *addr_sk)
840 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
843 EXPORT_SYMBOL(tcp_v4_md5_lookup);
845 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
846 struct request_sock *req)
848 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
851 /* This can be called on a newly created socket, from other files */
852 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
853 u8 *newkey, u8 newkeylen)
855 /* Add Key to the list */
856 struct tcp4_md5sig_key *key;
857 struct tcp_sock *tp = tcp_sk(sk);
858 struct tcp4_md5sig_key *keys;
860 key = (struct tcp4_md5sig_key *)tcp_v4_md5_do_lookup(sk, addr);
861 if (key) {
862 /* Pre-existing entry - just update that one. */
863 kfree(key->key);
864 key->key = newkey;
865 key->keylen = newkeylen;
866 } else {
867 struct tcp_md5sig_info *md5sig;
869 if (!tp->md5sig_info) {
870 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
871 GFP_ATOMIC);
872 if (!tp->md5sig_info) {
873 kfree(newkey);
874 return -ENOMEM;
877 if (tcp_alloc_md5sig_pool() == NULL) {
878 kfree(newkey);
879 return -ENOMEM;
881 md5sig = tp->md5sig_info;
883 if (md5sig->alloced4 == md5sig->entries4) {
884 keys = kmalloc((sizeof(*keys) *
885 (md5sig->entries4 + 1)), GFP_ATOMIC);
886 if (!keys) {
887 kfree(newkey);
888 tcp_free_md5sig_pool();
889 return -ENOMEM;
892 if (md5sig->entries4)
893 memcpy(keys, md5sig->keys4,
894 sizeof(*keys) * md5sig->entries4);
896 /* Free old key list, and reference new one */
897 if (md5sig->keys4)
898 kfree(md5sig->keys4);
899 md5sig->keys4 = keys;
900 md5sig->alloced4++;
902 md5sig->entries4++;
903 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
904 md5sig->keys4[md5sig->entries4 - 1].key = newkey;
905 md5sig->keys4[md5sig->entries4 - 1].keylen = newkeylen;
907 return 0;
910 EXPORT_SYMBOL(tcp_v4_md5_do_add);
912 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
913 u8 *newkey, u8 newkeylen)
915 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
916 newkey, newkeylen);
919 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
921 struct tcp_sock *tp = tcp_sk(sk);
922 int i;
924 for (i = 0; i < tp->md5sig_info->entries4; i++) {
925 if (tp->md5sig_info->keys4[i].addr == addr) {
926 /* Free the key */
927 kfree(tp->md5sig_info->keys4[i].key);
928 tp->md5sig_info->entries4--;
930 if (tp->md5sig_info->entries4 == 0) {
931 kfree(tp->md5sig_info->keys4);
932 tp->md5sig_info->keys4 = NULL;
933 tp->md5sig_info->alloced4 = 0;
934 } else if (tp->md5sig_info->entries4 != i) {
935 /* Need to do some manipulation */
936 memcpy(&tp->md5sig_info->keys4[i],
937 &tp->md5sig_info->keys4[i+1],
938 (tp->md5sig_info->entries4 - i) *
939 sizeof(struct tcp4_md5sig_key));
941 tcp_free_md5sig_pool();
942 return 0;
945 return -ENOENT;
948 EXPORT_SYMBOL(tcp_v4_md5_do_del);
950 static void tcp_v4_clear_md5_list(struct sock *sk)
952 struct tcp_sock *tp = tcp_sk(sk);
954 /* Free each key, then the set of key keys,
955 * the crypto element, and then decrement our
956 * hold on the last resort crypto.
958 if (tp->md5sig_info->entries4) {
959 int i;
960 for (i = 0; i < tp->md5sig_info->entries4; i++)
961 kfree(tp->md5sig_info->keys4[i].key);
962 tp->md5sig_info->entries4 = 0;
963 tcp_free_md5sig_pool();
965 if (tp->md5sig_info->keys4) {
966 kfree(tp->md5sig_info->keys4);
967 tp->md5sig_info->keys4 = NULL;
968 tp->md5sig_info->alloced4 = 0;
972 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
973 int optlen)
975 struct tcp_md5sig cmd;
976 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
977 u8 *newkey;
979 if (optlen < sizeof(cmd))
980 return -EINVAL;
982 if (copy_from_user(&cmd, optval, sizeof(cmd)))
983 return -EFAULT;
985 if (sin->sin_family != AF_INET)
986 return -EINVAL;
988 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
989 if (!tcp_sk(sk)->md5sig_info)
990 return -ENOENT;
991 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
994 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
995 return -EINVAL;
997 if (!tcp_sk(sk)->md5sig_info) {
998 struct tcp_sock *tp = tcp_sk(sk);
999 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
1001 if (!p)
1002 return -EINVAL;
1004 tp->md5sig_info = p;
1008 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
1009 if (!newkey)
1010 return -ENOMEM;
1011 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1012 newkey, cmd.tcpm_keylen);
1015 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1016 __be32 saddr, __be32 daddr,
1017 struct tcphdr *th, int protocol,
1018 int tcplen)
1020 struct scatterlist sg[4];
1021 __u16 data_len;
1022 int block = 0;
1023 __sum16 old_checksum;
1024 struct tcp_md5sig_pool *hp;
1025 struct tcp4_pseudohdr *bp;
1026 struct hash_desc *desc;
1027 int err;
1028 unsigned int nbytes = 0;
1031 * Okay, so RFC2385 is turned on for this connection,
1032 * so we need to generate the MD5 hash for the packet now.
1035 hp = tcp_get_md5sig_pool();
1036 if (!hp)
1037 goto clear_hash_noput;
1039 bp = &hp->md5_blk.ip4;
1040 desc = &hp->md5_desc;
1043 * 1. the TCP pseudo-header (in the order: source IP address,
1044 * destination IP address, zero-padded protocol number, and
1045 * segment length)
1047 bp->saddr = saddr;
1048 bp->daddr = daddr;
1049 bp->pad = 0;
1050 bp->protocol = protocol;
1051 bp->len = htons(tcplen);
1052 sg_set_buf(&sg[block++], bp, sizeof(*bp));
1053 nbytes += sizeof(*bp);
1055 /* 2. the TCP header, excluding options, and assuming a
1056 * checksum of zero/
1058 old_checksum = th->check;
1059 th->check = 0;
1060 sg_set_buf(&sg[block++], th, sizeof(struct tcphdr));
1061 nbytes += sizeof(struct tcphdr);
1063 /* 3. the TCP segment data (if any) */
1064 data_len = tcplen - (th->doff << 2);
1065 if (data_len > 0) {
1066 unsigned char *data = (unsigned char *)th + (th->doff << 2);
1067 sg_set_buf(&sg[block++], data, data_len);
1068 nbytes += data_len;
1071 /* 4. an independently-specified key or password, known to both
1072 * TCPs and presumably connection-specific
1074 sg_set_buf(&sg[block++], key->key, key->keylen);
1075 nbytes += key->keylen;
1077 /* Now store the Hash into the packet */
1078 err = crypto_hash_init(desc);
1079 if (err)
1080 goto clear_hash;
1081 err = crypto_hash_update(desc, sg, nbytes);
1082 if (err)
1083 goto clear_hash;
1084 err = crypto_hash_final(desc, md5_hash);
1085 if (err)
1086 goto clear_hash;
1088 /* Reset header, and free up the crypto */
1089 tcp_put_md5sig_pool();
1090 th->check = old_checksum;
1092 out:
1093 return 0;
1094 clear_hash:
1095 tcp_put_md5sig_pool();
1096 clear_hash_noput:
1097 memset(md5_hash, 0, 16);
1098 goto out;
1101 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1102 struct sock *sk,
1103 struct dst_entry *dst,
1104 struct request_sock *req,
1105 struct tcphdr *th, int protocol,
1106 int tcplen)
1108 __be32 saddr, daddr;
1110 if (sk) {
1111 saddr = inet_sk(sk)->saddr;
1112 daddr = inet_sk(sk)->daddr;
1113 } else {
1114 struct rtable *rt = (struct rtable *)dst;
1115 BUG_ON(!rt);
1116 saddr = rt->rt_src;
1117 daddr = rt->rt_dst;
1119 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1120 saddr, daddr,
1121 th, protocol, tcplen);
1124 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1126 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1129 * This gets called for each TCP segment that arrives
1130 * so we want to be efficient.
1131 * We have 3 drop cases:
1132 * o No MD5 hash and one expected.
1133 * o MD5 hash and we're not expecting one.
1134 * o MD5 hash and its wrong.
1136 __u8 *hash_location = NULL;
1137 struct tcp_md5sig_key *hash_expected;
1138 const struct iphdr *iph = ip_hdr(skb);
1139 struct tcphdr *th = tcp_hdr(skb);
1140 int length = (th->doff << 2) - sizeof(struct tcphdr);
1141 int genhash;
1142 unsigned char *ptr;
1143 unsigned char newhash[16];
1145 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1148 * If the TCP option length is less than the TCP_MD5SIG
1149 * option length, then we can shortcut
1151 if (length < TCPOLEN_MD5SIG) {
1152 if (hash_expected)
1153 return 1;
1154 else
1155 return 0;
1158 /* Okay, we can't shortcut - we have to grub through the options */
1159 ptr = (unsigned char *)(th + 1);
1160 while (length > 0) {
1161 int opcode = *ptr++;
1162 int opsize;
1164 switch (opcode) {
1165 case TCPOPT_EOL:
1166 goto done_opts;
1167 case TCPOPT_NOP:
1168 length--;
1169 continue;
1170 default:
1171 opsize = *ptr++;
1172 if (opsize < 2)
1173 goto done_opts;
1174 if (opsize > length)
1175 goto done_opts;
1177 if (opcode == TCPOPT_MD5SIG) {
1178 hash_location = ptr;
1179 goto done_opts;
1182 ptr += opsize-2;
1183 length -= opsize;
1185 done_opts:
1186 /* We've parsed the options - do we have a hash? */
1187 if (!hash_expected && !hash_location)
1188 return 0;
1190 if (hash_expected && !hash_location) {
1191 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1192 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1193 NIPQUAD(iph->saddr), ntohs(th->source),
1194 NIPQUAD(iph->daddr), ntohs(th->dest));
1195 return 1;
1198 if (!hash_expected && hash_location) {
1199 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1200 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1201 NIPQUAD(iph->saddr), ntohs(th->source),
1202 NIPQUAD(iph->daddr), ntohs(th->dest));
1203 return 1;
1206 /* Okay, so this is hash_expected and hash_location -
1207 * so we need to calculate the checksum.
1209 genhash = tcp_v4_do_calc_md5_hash(newhash,
1210 hash_expected,
1211 iph->saddr, iph->daddr,
1212 th, sk->sk_protocol,
1213 skb->len);
1215 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1216 if (net_ratelimit()) {
1217 printk(KERN_INFO "MD5 Hash failed for "
1218 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1219 NIPQUAD(iph->saddr), ntohs(th->source),
1220 NIPQUAD(iph->daddr), ntohs(th->dest),
1221 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1223 return 1;
1225 return 0;
1228 #endif
1230 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1231 .family = PF_INET,
1232 .obj_size = sizeof(struct tcp_request_sock),
1233 .rtx_syn_ack = tcp_v4_send_synack,
1234 .send_ack = tcp_v4_reqsk_send_ack,
1235 .destructor = tcp_v4_reqsk_destructor,
1236 .send_reset = tcp_v4_send_reset,
1239 #ifdef CONFIG_TCP_MD5SIG
1240 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1241 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1243 #endif
1245 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1246 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1247 .twsk_unique = tcp_twsk_unique,
1248 .twsk_destructor= tcp_twsk_destructor,
1251 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1253 struct inet_request_sock *ireq;
1254 struct tcp_options_received tmp_opt;
1255 struct request_sock *req;
1256 __be32 saddr = ip_hdr(skb)->saddr;
1257 __be32 daddr = ip_hdr(skb)->daddr;
1258 __u32 isn = TCP_SKB_CB(skb)->when;
1259 struct dst_entry *dst = NULL;
1260 #ifdef CONFIG_SYN_COOKIES
1261 int want_cookie = 0;
1262 #else
1263 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1264 #endif
1266 /* Never answer to SYNs send to broadcast or multicast */
1267 if (((struct rtable *)skb->dst)->rt_flags &
1268 (RTCF_BROADCAST | RTCF_MULTICAST))
1269 goto drop;
1271 /* TW buckets are converted to open requests without
1272 * limitations, they conserve resources and peer is
1273 * evidently real one.
1275 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1276 #ifdef CONFIG_SYN_COOKIES
1277 if (sysctl_tcp_syncookies) {
1278 want_cookie = 1;
1279 } else
1280 #endif
1281 goto drop;
1284 /* Accept backlog is full. If we have already queued enough
1285 * of warm entries in syn queue, drop request. It is better than
1286 * clogging syn queue with openreqs with exponentially increasing
1287 * timeout.
1289 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1290 goto drop;
1292 req = reqsk_alloc(&tcp_request_sock_ops);
1293 if (!req)
1294 goto drop;
1296 #ifdef CONFIG_TCP_MD5SIG
1297 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1298 #endif
1300 tcp_clear_options(&tmp_opt);
1301 tmp_opt.mss_clamp = 536;
1302 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1304 tcp_parse_options(skb, &tmp_opt, 0);
1306 if (want_cookie) {
1307 tcp_clear_options(&tmp_opt);
1308 tmp_opt.saw_tstamp = 0;
1311 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1312 /* Some OSes (unknown ones, but I see them on web server, which
1313 * contains information interesting only for windows'
1314 * users) do not send their stamp in SYN. It is easy case.
1315 * We simply do not advertise TS support.
1317 tmp_opt.saw_tstamp = 0;
1318 tmp_opt.tstamp_ok = 0;
1320 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1322 tcp_openreq_init(req, &tmp_opt, skb);
1324 if (security_inet_conn_request(sk, skb, req))
1325 goto drop_and_free;
1327 ireq = inet_rsk(req);
1328 ireq->loc_addr = daddr;
1329 ireq->rmt_addr = saddr;
1330 ireq->opt = tcp_v4_save_options(sk, skb);
1331 if (!want_cookie)
1332 TCP_ECN_create_request(req, tcp_hdr(skb));
1334 if (want_cookie) {
1335 #ifdef CONFIG_SYN_COOKIES
1336 syn_flood_warning(skb);
1337 #endif
1338 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1339 } else if (!isn) {
1340 struct inet_peer *peer = NULL;
1342 /* VJ's idea. We save last timestamp seen
1343 * from the destination in peer table, when entering
1344 * state TIME-WAIT, and check against it before
1345 * accepting new connection request.
1347 * If "isn" is not zero, this request hit alive
1348 * timewait bucket, so that all the necessary checks
1349 * are made in the function processing timewait state.
1351 if (tmp_opt.saw_tstamp &&
1352 tcp_death_row.sysctl_tw_recycle &&
1353 (dst = inet_csk_route_req(sk, req)) != NULL &&
1354 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1355 peer->v4daddr == saddr) {
1356 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1357 (s32)(peer->tcp_ts - req->ts_recent) >
1358 TCP_PAWS_WINDOW) {
1359 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1360 dst_release(dst);
1361 goto drop_and_free;
1364 /* Kill the following clause, if you dislike this way. */
1365 else if (!sysctl_tcp_syncookies &&
1366 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1367 (sysctl_max_syn_backlog >> 2)) &&
1368 (!peer || !peer->tcp_ts_stamp) &&
1369 (!dst || !dst_metric(dst, RTAX_RTT))) {
1370 /* Without syncookies last quarter of
1371 * backlog is filled with destinations,
1372 * proven to be alive.
1373 * It means that we continue to communicate
1374 * to destinations, already remembered
1375 * to the moment of synflood.
1377 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1378 "request from %u.%u.%u.%u/%u\n",
1379 NIPQUAD(saddr),
1380 ntohs(tcp_hdr(skb)->source));
1381 dst_release(dst);
1382 goto drop_and_free;
1385 isn = tcp_v4_init_sequence(skb);
1387 tcp_rsk(req)->snt_isn = isn;
1389 if (tcp_v4_send_synack(sk, req, dst))
1390 goto drop_and_free;
1392 if (want_cookie) {
1393 reqsk_free(req);
1394 } else {
1395 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1397 return 0;
1399 drop_and_free:
1400 reqsk_free(req);
1401 drop:
1402 return 0;
1407 * The three way handshake has completed - we got a valid synack -
1408 * now create the new socket.
1410 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1411 struct request_sock *req,
1412 struct dst_entry *dst)
1414 struct inet_request_sock *ireq;
1415 struct inet_sock *newinet;
1416 struct tcp_sock *newtp;
1417 struct sock *newsk;
1418 #ifdef CONFIG_TCP_MD5SIG
1419 struct tcp_md5sig_key *key;
1420 #endif
1422 if (sk_acceptq_is_full(sk))
1423 goto exit_overflow;
1425 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1426 goto exit;
1428 newsk = tcp_create_openreq_child(sk, req, skb);
1429 if (!newsk)
1430 goto exit;
1432 newsk->sk_gso_type = SKB_GSO_TCPV4;
1433 sk_setup_caps(newsk, dst);
1435 newtp = tcp_sk(newsk);
1436 newinet = inet_sk(newsk);
1437 ireq = inet_rsk(req);
1438 newinet->daddr = ireq->rmt_addr;
1439 newinet->rcv_saddr = ireq->loc_addr;
1440 newinet->saddr = ireq->loc_addr;
1441 newinet->opt = ireq->opt;
1442 ireq->opt = NULL;
1443 newinet->mc_index = inet_iif(skb);
1444 newinet->mc_ttl = ip_hdr(skb)->ttl;
1445 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1446 if (newinet->opt)
1447 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1448 newinet->id = newtp->write_seq ^ jiffies;
1450 tcp_mtup_init(newsk);
1451 tcp_sync_mss(newsk, dst_mtu(dst));
1452 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1453 tcp_initialize_rcv_mss(newsk);
1455 #ifdef CONFIG_TCP_MD5SIG
1456 /* Copy over the MD5 key from the original socket */
1457 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1459 * We're using one, so create a matching key
1460 * on the newsk structure. If we fail to get
1461 * memory, then we end up not copying the key
1462 * across. Shucks.
1464 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1465 if (newkey != NULL)
1466 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1467 newkey, key->keylen);
1469 #endif
1471 __inet_hash(&tcp_hashinfo, newsk, 0);
1472 __inet_inherit_port(&tcp_hashinfo, sk, newsk);
1474 return newsk;
1476 exit_overflow:
1477 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1478 exit:
1479 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1480 dst_release(dst);
1481 return NULL;
1484 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1486 struct tcphdr *th = tcp_hdr(skb);
1487 const struct iphdr *iph = ip_hdr(skb);
1488 struct sock *nsk;
1489 struct request_sock **prev;
1490 /* Find possible connection requests. */
1491 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1492 iph->saddr, iph->daddr);
1493 if (req)
1494 return tcp_check_req(sk, skb, req, prev);
1496 nsk = inet_lookup_established(&tcp_hashinfo, iph->saddr, th->source,
1497 iph->daddr, th->dest, inet_iif(skb));
1499 if (nsk) {
1500 if (nsk->sk_state != TCP_TIME_WAIT) {
1501 bh_lock_sock(nsk);
1502 return nsk;
1504 inet_twsk_put(inet_twsk(nsk));
1505 return NULL;
1508 #ifdef CONFIG_SYN_COOKIES
1509 if (!th->rst && !th->syn && th->ack)
1510 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1511 #endif
1512 return sk;
1515 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1517 const struct iphdr *iph = ip_hdr(skb);
1519 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1520 if (!tcp_v4_check(skb->len, iph->saddr,
1521 iph->daddr, skb->csum)) {
1522 skb->ip_summed = CHECKSUM_UNNECESSARY;
1523 return 0;
1527 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1528 skb->len, IPPROTO_TCP, 0);
1530 if (skb->len <= 76) {
1531 return __skb_checksum_complete(skb);
1533 return 0;
1537 /* The socket must have it's spinlock held when we get
1538 * here.
1540 * We have a potential double-lock case here, so even when
1541 * doing backlog processing we use the BH locking scheme.
1542 * This is because we cannot sleep with the original spinlock
1543 * held.
1545 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1547 struct sock *rsk;
1548 #ifdef CONFIG_TCP_MD5SIG
1550 * We really want to reject the packet as early as possible
1551 * if:
1552 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1553 * o There is an MD5 option and we're not expecting one
1555 if (tcp_v4_inbound_md5_hash(sk, skb))
1556 goto discard;
1557 #endif
1559 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1560 TCP_CHECK_TIMER(sk);
1561 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1562 rsk = sk;
1563 goto reset;
1565 TCP_CHECK_TIMER(sk);
1566 return 0;
1569 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1570 goto csum_err;
1572 if (sk->sk_state == TCP_LISTEN) {
1573 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1574 if (!nsk)
1575 goto discard;
1577 if (nsk != sk) {
1578 if (tcp_child_process(sk, nsk, skb)) {
1579 rsk = nsk;
1580 goto reset;
1582 return 0;
1586 TCP_CHECK_TIMER(sk);
1587 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1588 rsk = sk;
1589 goto reset;
1591 TCP_CHECK_TIMER(sk);
1592 return 0;
1594 reset:
1595 tcp_v4_send_reset(rsk, skb);
1596 discard:
1597 kfree_skb(skb);
1598 /* Be careful here. If this function gets more complicated and
1599 * gcc suffers from register pressure on the x86, sk (in %ebx)
1600 * might be destroyed here. This current version compiles correctly,
1601 * but you have been warned.
1603 return 0;
1605 csum_err:
1606 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1607 goto discard;
1611 * From tcp_input.c
1614 int tcp_v4_rcv(struct sk_buff *skb)
1616 const struct iphdr *iph;
1617 struct tcphdr *th;
1618 struct sock *sk;
1619 int ret;
1621 if (skb->pkt_type != PACKET_HOST)
1622 goto discard_it;
1624 /* Count it even if it's bad */
1625 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1627 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1628 goto discard_it;
1630 th = tcp_hdr(skb);
1632 if (th->doff < sizeof(struct tcphdr) / 4)
1633 goto bad_packet;
1634 if (!pskb_may_pull(skb, th->doff * 4))
1635 goto discard_it;
1637 /* An explanation is required here, I think.
1638 * Packet length and doff are validated by header prediction,
1639 * provided case of th->doff==0 is eliminated.
1640 * So, we defer the checks. */
1641 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1642 goto bad_packet;
1644 th = tcp_hdr(skb);
1645 iph = ip_hdr(skb);
1646 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1647 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1648 skb->len - th->doff * 4);
1649 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1650 TCP_SKB_CB(skb)->when = 0;
1651 TCP_SKB_CB(skb)->flags = iph->tos;
1652 TCP_SKB_CB(skb)->sacked = 0;
1654 sk = __inet_lookup(&tcp_hashinfo, iph->saddr, th->source,
1655 iph->daddr, th->dest, inet_iif(skb));
1656 if (!sk)
1657 goto no_tcp_socket;
1659 process:
1660 if (sk->sk_state == TCP_TIME_WAIT)
1661 goto do_time_wait;
1663 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1664 goto discard_and_relse;
1665 nf_reset(skb);
1667 if (sk_filter(sk, skb))
1668 goto discard_and_relse;
1670 skb->dev = NULL;
1672 bh_lock_sock_nested(sk);
1673 ret = 0;
1674 if (!sock_owned_by_user(sk)) {
1675 #ifdef CONFIG_NET_DMA
1676 struct tcp_sock *tp = tcp_sk(sk);
1677 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1678 tp->ucopy.dma_chan = get_softnet_dma();
1679 if (tp->ucopy.dma_chan)
1680 ret = tcp_v4_do_rcv(sk, skb);
1681 else
1682 #endif
1684 if (!tcp_prequeue(sk, skb))
1685 ret = tcp_v4_do_rcv(sk, skb);
1687 } else
1688 sk_add_backlog(sk, skb);
1689 bh_unlock_sock(sk);
1691 sock_put(sk);
1693 return ret;
1695 no_tcp_socket:
1696 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1697 goto discard_it;
1699 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1700 bad_packet:
1701 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1702 } else {
1703 tcp_v4_send_reset(NULL, skb);
1706 discard_it:
1707 /* Discard frame. */
1708 kfree_skb(skb);
1709 return 0;
1711 discard_and_relse:
1712 sock_put(sk);
1713 goto discard_it;
1715 do_time_wait:
1716 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1717 inet_twsk_put(inet_twsk(sk));
1718 goto discard_it;
1721 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1722 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1723 inet_twsk_put(inet_twsk(sk));
1724 goto discard_it;
1726 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1727 case TCP_TW_SYN: {
1728 struct sock *sk2 = inet_lookup_listener(&tcp_hashinfo,
1729 iph->daddr, th->dest,
1730 inet_iif(skb));
1731 if (sk2) {
1732 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1733 inet_twsk_put(inet_twsk(sk));
1734 sk = sk2;
1735 goto process;
1737 /* Fall through to ACK */
1739 case TCP_TW_ACK:
1740 tcp_v4_timewait_ack(sk, skb);
1741 break;
1742 case TCP_TW_RST:
1743 goto no_tcp_socket;
1744 case TCP_TW_SUCCESS:;
1746 goto discard_it;
1749 /* VJ's idea. Save last timestamp seen from this destination
1750 * and hold it at least for normal timewait interval to use for duplicate
1751 * segment detection in subsequent connections, before they enter synchronized
1752 * state.
1755 int tcp_v4_remember_stamp(struct sock *sk)
1757 struct inet_sock *inet = inet_sk(sk);
1758 struct tcp_sock *tp = tcp_sk(sk);
1759 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1760 struct inet_peer *peer = NULL;
1761 int release_it = 0;
1763 if (!rt || rt->rt_dst != inet->daddr) {
1764 peer = inet_getpeer(inet->daddr, 1);
1765 release_it = 1;
1766 } else {
1767 if (!rt->peer)
1768 rt_bind_peer(rt, 1);
1769 peer = rt->peer;
1772 if (peer) {
1773 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1774 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1775 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1776 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1777 peer->tcp_ts = tp->rx_opt.ts_recent;
1779 if (release_it)
1780 inet_putpeer(peer);
1781 return 1;
1784 return 0;
1787 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1789 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1791 if (peer) {
1792 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1794 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1795 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1796 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1797 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1798 peer->tcp_ts = tcptw->tw_ts_recent;
1800 inet_putpeer(peer);
1801 return 1;
1804 return 0;
1807 struct inet_connection_sock_af_ops ipv4_specific = {
1808 .queue_xmit = ip_queue_xmit,
1809 .send_check = tcp_v4_send_check,
1810 .rebuild_header = inet_sk_rebuild_header,
1811 .conn_request = tcp_v4_conn_request,
1812 .syn_recv_sock = tcp_v4_syn_recv_sock,
1813 .remember_stamp = tcp_v4_remember_stamp,
1814 .net_header_len = sizeof(struct iphdr),
1815 .setsockopt = ip_setsockopt,
1816 .getsockopt = ip_getsockopt,
1817 .addr2sockaddr = inet_csk_addr2sockaddr,
1818 .sockaddr_len = sizeof(struct sockaddr_in),
1819 #ifdef CONFIG_COMPAT
1820 .compat_setsockopt = compat_ip_setsockopt,
1821 .compat_getsockopt = compat_ip_getsockopt,
1822 #endif
1825 #ifdef CONFIG_TCP_MD5SIG
1826 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1827 .md5_lookup = tcp_v4_md5_lookup,
1828 .calc_md5_hash = tcp_v4_calc_md5_hash,
1829 .md5_add = tcp_v4_md5_add_func,
1830 .md5_parse = tcp_v4_parse_md5_keys,
1832 #endif
1834 /* NOTE: A lot of things set to zero explicitly by call to
1835 * sk_alloc() so need not be done here.
1837 static int tcp_v4_init_sock(struct sock *sk)
1839 struct inet_connection_sock *icsk = inet_csk(sk);
1840 struct tcp_sock *tp = tcp_sk(sk);
1842 skb_queue_head_init(&tp->out_of_order_queue);
1843 tcp_init_xmit_timers(sk);
1844 tcp_prequeue_init(tp);
1846 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1847 tp->mdev = TCP_TIMEOUT_INIT;
1849 /* So many TCP implementations out there (incorrectly) count the
1850 * initial SYN frame in their delayed-ACK and congestion control
1851 * algorithms that we must have the following bandaid to talk
1852 * efficiently to them. -DaveM
1854 tp->snd_cwnd = 2;
1856 /* See draft-stevens-tcpca-spec-01 for discussion of the
1857 * initialization of these values.
1859 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1860 tp->snd_cwnd_clamp = ~0;
1861 tp->mss_cache = 536;
1863 tp->reordering = sysctl_tcp_reordering;
1864 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1866 sk->sk_state = TCP_CLOSE;
1868 sk->sk_write_space = sk_stream_write_space;
1869 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1871 icsk->icsk_af_ops = &ipv4_specific;
1872 icsk->icsk_sync_mss = tcp_sync_mss;
1873 #ifdef CONFIG_TCP_MD5SIG
1874 tp->af_specific = &tcp_sock_ipv4_specific;
1875 #endif
1877 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1878 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1880 atomic_inc(&tcp_sockets_allocated);
1882 return 0;
1885 int tcp_v4_destroy_sock(struct sock *sk)
1887 struct tcp_sock *tp = tcp_sk(sk);
1889 tcp_clear_xmit_timers(sk);
1891 tcp_cleanup_congestion_control(sk);
1893 /* Cleanup up the write buffer. */
1894 tcp_write_queue_purge(sk);
1896 /* Cleans up our, hopefully empty, out_of_order_queue. */
1897 __skb_queue_purge(&tp->out_of_order_queue);
1899 #ifdef CONFIG_TCP_MD5SIG
1900 /* Clean up the MD5 key list, if any */
1901 if (tp->md5sig_info) {
1902 tcp_v4_clear_md5_list(sk);
1903 kfree(tp->md5sig_info);
1904 tp->md5sig_info = NULL;
1906 #endif
1908 #ifdef CONFIG_NET_DMA
1909 /* Cleans up our sk_async_wait_queue */
1910 __skb_queue_purge(&sk->sk_async_wait_queue);
1911 #endif
1913 /* Clean prequeue, it must be empty really */
1914 __skb_queue_purge(&tp->ucopy.prequeue);
1916 /* Clean up a referenced TCP bind bucket. */
1917 if (inet_csk(sk)->icsk_bind_hash)
1918 inet_put_port(&tcp_hashinfo, sk);
1921 * If sendmsg cached page exists, toss it.
1923 if (sk->sk_sndmsg_page) {
1924 __free_page(sk->sk_sndmsg_page);
1925 sk->sk_sndmsg_page = NULL;
1928 atomic_dec(&tcp_sockets_allocated);
1930 return 0;
1933 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1935 #ifdef CONFIG_PROC_FS
1936 /* Proc filesystem TCP sock list dumping. */
1938 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1940 return hlist_empty(head) ? NULL :
1941 list_entry(head->first, struct inet_timewait_sock, tw_node);
1944 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1946 return tw->tw_node.next ?
1947 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1950 static void *listening_get_next(struct seq_file *seq, void *cur)
1952 struct inet_connection_sock *icsk;
1953 struct hlist_node *node;
1954 struct sock *sk = cur;
1955 struct tcp_iter_state* st = seq->private;
1957 if (!sk) {
1958 st->bucket = 0;
1959 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1960 goto get_sk;
1963 ++st->num;
1965 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1966 struct request_sock *req = cur;
1968 icsk = inet_csk(st->syn_wait_sk);
1969 req = req->dl_next;
1970 while (1) {
1971 while (req) {
1972 if (req->rsk_ops->family == st->family) {
1973 cur = req;
1974 goto out;
1976 req = req->dl_next;
1978 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1979 break;
1980 get_req:
1981 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1983 sk = sk_next(st->syn_wait_sk);
1984 st->state = TCP_SEQ_STATE_LISTENING;
1985 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1986 } else {
1987 icsk = inet_csk(sk);
1988 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1989 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1990 goto start_req;
1991 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1992 sk = sk_next(sk);
1994 get_sk:
1995 sk_for_each_from(sk, node) {
1996 if (sk->sk_family == st->family) {
1997 cur = sk;
1998 goto out;
2000 icsk = inet_csk(sk);
2001 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2002 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2003 start_req:
2004 st->uid = sock_i_uid(sk);
2005 st->syn_wait_sk = sk;
2006 st->state = TCP_SEQ_STATE_OPENREQ;
2007 st->sbucket = 0;
2008 goto get_req;
2010 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2012 if (++st->bucket < INET_LHTABLE_SIZE) {
2013 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
2014 goto get_sk;
2016 cur = NULL;
2017 out:
2018 return cur;
2021 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2023 void *rc = listening_get_next(seq, NULL);
2025 while (rc && *pos) {
2026 rc = listening_get_next(seq, rc);
2027 --*pos;
2029 return rc;
2032 static void *established_get_first(struct seq_file *seq)
2034 struct tcp_iter_state* st = seq->private;
2035 void *rc = NULL;
2037 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
2038 struct sock *sk;
2039 struct hlist_node *node;
2040 struct inet_timewait_sock *tw;
2042 /* We can reschedule _before_ having picked the target: */
2043 cond_resched_softirq();
2045 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
2046 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2047 if (sk->sk_family != st->family) {
2048 continue;
2050 rc = sk;
2051 goto out;
2053 st->state = TCP_SEQ_STATE_TIME_WAIT;
2054 inet_twsk_for_each(tw, node,
2055 &tcp_hashinfo.ehash[st->bucket].twchain) {
2056 if (tw->tw_family != st->family) {
2057 continue;
2059 rc = tw;
2060 goto out;
2062 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
2063 st->state = TCP_SEQ_STATE_ESTABLISHED;
2065 out:
2066 return rc;
2069 static void *established_get_next(struct seq_file *seq, void *cur)
2071 struct sock *sk = cur;
2072 struct inet_timewait_sock *tw;
2073 struct hlist_node *node;
2074 struct tcp_iter_state* st = seq->private;
2076 ++st->num;
2078 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2079 tw = cur;
2080 tw = tw_next(tw);
2081 get_tw:
2082 while (tw && tw->tw_family != st->family) {
2083 tw = tw_next(tw);
2085 if (tw) {
2086 cur = tw;
2087 goto out;
2089 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
2090 st->state = TCP_SEQ_STATE_ESTABLISHED;
2092 /* We can reschedule between buckets: */
2093 cond_resched_softirq();
2095 if (++st->bucket < tcp_hashinfo.ehash_size) {
2096 read_lock(&tcp_hashinfo.ehash[st->bucket].lock);
2097 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
2098 } else {
2099 cur = NULL;
2100 goto out;
2102 } else
2103 sk = sk_next(sk);
2105 sk_for_each_from(sk, node) {
2106 if (sk->sk_family == st->family)
2107 goto found;
2110 st->state = TCP_SEQ_STATE_TIME_WAIT;
2111 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2112 goto get_tw;
2113 found:
2114 cur = sk;
2115 out:
2116 return cur;
2119 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2121 void *rc = established_get_first(seq);
2123 while (rc && pos) {
2124 rc = established_get_next(seq, rc);
2125 --pos;
2127 return rc;
2130 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2132 void *rc;
2133 struct tcp_iter_state* st = seq->private;
2135 inet_listen_lock(&tcp_hashinfo);
2136 st->state = TCP_SEQ_STATE_LISTENING;
2137 rc = listening_get_idx(seq, &pos);
2139 if (!rc) {
2140 inet_listen_unlock(&tcp_hashinfo);
2141 local_bh_disable();
2142 st->state = TCP_SEQ_STATE_ESTABLISHED;
2143 rc = established_get_idx(seq, pos);
2146 return rc;
2149 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2151 struct tcp_iter_state* st = seq->private;
2152 st->state = TCP_SEQ_STATE_LISTENING;
2153 st->num = 0;
2154 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2157 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2159 void *rc = NULL;
2160 struct tcp_iter_state* st;
2162 if (v == SEQ_START_TOKEN) {
2163 rc = tcp_get_idx(seq, 0);
2164 goto out;
2166 st = seq->private;
2168 switch (st->state) {
2169 case TCP_SEQ_STATE_OPENREQ:
2170 case TCP_SEQ_STATE_LISTENING:
2171 rc = listening_get_next(seq, v);
2172 if (!rc) {
2173 inet_listen_unlock(&tcp_hashinfo);
2174 local_bh_disable();
2175 st->state = TCP_SEQ_STATE_ESTABLISHED;
2176 rc = established_get_first(seq);
2178 break;
2179 case TCP_SEQ_STATE_ESTABLISHED:
2180 case TCP_SEQ_STATE_TIME_WAIT:
2181 rc = established_get_next(seq, v);
2182 break;
2184 out:
2185 ++*pos;
2186 return rc;
2189 static void tcp_seq_stop(struct seq_file *seq, void *v)
2191 struct tcp_iter_state* st = seq->private;
2193 switch (st->state) {
2194 case TCP_SEQ_STATE_OPENREQ:
2195 if (v) {
2196 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2197 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2199 case TCP_SEQ_STATE_LISTENING:
2200 if (v != SEQ_START_TOKEN)
2201 inet_listen_unlock(&tcp_hashinfo);
2202 break;
2203 case TCP_SEQ_STATE_TIME_WAIT:
2204 case TCP_SEQ_STATE_ESTABLISHED:
2205 if (v)
2206 read_unlock(&tcp_hashinfo.ehash[st->bucket].lock);
2207 local_bh_enable();
2208 break;
2212 static int tcp_seq_open(struct inode *inode, struct file *file)
2214 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2215 struct seq_file *seq;
2216 struct tcp_iter_state *s;
2217 int rc;
2219 if (unlikely(afinfo == NULL))
2220 return -EINVAL;
2222 s = kzalloc(sizeof(*s), GFP_KERNEL);
2223 if (!s)
2224 return -ENOMEM;
2225 s->family = afinfo->family;
2226 s->seq_ops.start = tcp_seq_start;
2227 s->seq_ops.next = tcp_seq_next;
2228 s->seq_ops.show = afinfo->seq_show;
2229 s->seq_ops.stop = tcp_seq_stop;
2231 rc = seq_open(file, &s->seq_ops);
2232 if (rc)
2233 goto out_kfree;
2234 seq = file->private_data;
2235 seq->private = s;
2236 out:
2237 return rc;
2238 out_kfree:
2239 kfree(s);
2240 goto out;
2243 int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
2245 int rc = 0;
2246 struct proc_dir_entry *p;
2248 if (!afinfo)
2249 return -EINVAL;
2250 afinfo->seq_fops->owner = afinfo->owner;
2251 afinfo->seq_fops->open = tcp_seq_open;
2252 afinfo->seq_fops->read = seq_read;
2253 afinfo->seq_fops->llseek = seq_lseek;
2254 afinfo->seq_fops->release = seq_release_private;
2256 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
2257 if (p)
2258 p->data = afinfo;
2259 else
2260 rc = -ENOMEM;
2261 return rc;
2264 void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
2266 if (!afinfo)
2267 return;
2268 proc_net_remove(afinfo->name);
2269 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
2272 static void get_openreq4(struct sock *sk, struct request_sock *req,
2273 char *tmpbuf, int i, int uid)
2275 const struct inet_request_sock *ireq = inet_rsk(req);
2276 int ttd = req->expires - jiffies;
2278 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2279 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2281 ireq->loc_addr,
2282 ntohs(inet_sk(sk)->sport),
2283 ireq->rmt_addr,
2284 ntohs(ireq->rmt_port),
2285 TCP_SYN_RECV,
2286 0, 0, /* could print option size, but that is af dependent. */
2287 1, /* timers active (only the expire timer) */
2288 jiffies_to_clock_t(ttd),
2289 req->retrans,
2290 uid,
2291 0, /* non standard timer */
2292 0, /* open_requests have no inode */
2293 atomic_read(&sk->sk_refcnt),
2294 req);
2297 static void get_tcp4_sock(struct sock *sk, char *tmpbuf, int i)
2299 int timer_active;
2300 unsigned long timer_expires;
2301 struct tcp_sock *tp = tcp_sk(sk);
2302 const struct inet_connection_sock *icsk = inet_csk(sk);
2303 struct inet_sock *inet = inet_sk(sk);
2304 __be32 dest = inet->daddr;
2305 __be32 src = inet->rcv_saddr;
2306 __u16 destp = ntohs(inet->dport);
2307 __u16 srcp = ntohs(inet->sport);
2309 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2310 timer_active = 1;
2311 timer_expires = icsk->icsk_timeout;
2312 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2313 timer_active = 4;
2314 timer_expires = icsk->icsk_timeout;
2315 } else if (timer_pending(&sk->sk_timer)) {
2316 timer_active = 2;
2317 timer_expires = sk->sk_timer.expires;
2318 } else {
2319 timer_active = 0;
2320 timer_expires = jiffies;
2323 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2324 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2325 i, src, srcp, dest, destp, sk->sk_state,
2326 tp->write_seq - tp->snd_una,
2327 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2328 (tp->rcv_nxt - tp->copied_seq),
2329 timer_active,
2330 jiffies_to_clock_t(timer_expires - jiffies),
2331 icsk->icsk_retransmits,
2332 sock_i_uid(sk),
2333 icsk->icsk_probes_out,
2334 sock_i_ino(sk),
2335 atomic_read(&sk->sk_refcnt), sk,
2336 icsk->icsk_rto,
2337 icsk->icsk_ack.ato,
2338 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2339 tp->snd_cwnd,
2340 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
2343 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2344 char *tmpbuf, int i)
2346 __be32 dest, src;
2347 __u16 destp, srcp;
2348 int ttd = tw->tw_ttd - jiffies;
2350 if (ttd < 0)
2351 ttd = 0;
2353 dest = tw->tw_daddr;
2354 src = tw->tw_rcv_saddr;
2355 destp = ntohs(tw->tw_dport);
2356 srcp = ntohs(tw->tw_sport);
2358 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2359 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2360 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2361 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2362 atomic_read(&tw->tw_refcnt), tw);
2365 #define TMPSZ 150
2367 static int tcp4_seq_show(struct seq_file *seq, void *v)
2369 struct tcp_iter_state* st;
2370 char tmpbuf[TMPSZ + 1];
2372 if (v == SEQ_START_TOKEN) {
2373 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2374 " sl local_address rem_address st tx_queue "
2375 "rx_queue tr tm->when retrnsmt uid timeout "
2376 "inode");
2377 goto out;
2379 st = seq->private;
2381 switch (st->state) {
2382 case TCP_SEQ_STATE_LISTENING:
2383 case TCP_SEQ_STATE_ESTABLISHED:
2384 get_tcp4_sock(v, tmpbuf, st->num);
2385 break;
2386 case TCP_SEQ_STATE_OPENREQ:
2387 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
2388 break;
2389 case TCP_SEQ_STATE_TIME_WAIT:
2390 get_timewait4_sock(v, tmpbuf, st->num);
2391 break;
2393 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
2394 out:
2395 return 0;
2398 static struct file_operations tcp4_seq_fops;
2399 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2400 .owner = THIS_MODULE,
2401 .name = "tcp",
2402 .family = AF_INET,
2403 .seq_show = tcp4_seq_show,
2404 .seq_fops = &tcp4_seq_fops,
2407 int __init tcp4_proc_init(void)
2409 return tcp_proc_register(&tcp4_seq_afinfo);
2412 void tcp4_proc_exit(void)
2414 tcp_proc_unregister(&tcp4_seq_afinfo);
2416 #endif /* CONFIG_PROC_FS */
2418 struct proto tcp_prot = {
2419 .name = "TCP",
2420 .owner = THIS_MODULE,
2421 .close = tcp_close,
2422 .connect = tcp_v4_connect,
2423 .disconnect = tcp_disconnect,
2424 .accept = inet_csk_accept,
2425 .ioctl = tcp_ioctl,
2426 .init = tcp_v4_init_sock,
2427 .destroy = tcp_v4_destroy_sock,
2428 .shutdown = tcp_shutdown,
2429 .setsockopt = tcp_setsockopt,
2430 .getsockopt = tcp_getsockopt,
2431 .sendmsg = tcp_sendmsg,
2432 .recvmsg = tcp_recvmsg,
2433 .backlog_rcv = tcp_v4_do_rcv,
2434 .hash = tcp_v4_hash,
2435 .unhash = tcp_unhash,
2436 .get_port = tcp_v4_get_port,
2437 .enter_memory_pressure = tcp_enter_memory_pressure,
2438 .sockets_allocated = &tcp_sockets_allocated,
2439 .orphan_count = &tcp_orphan_count,
2440 .memory_allocated = &tcp_memory_allocated,
2441 .memory_pressure = &tcp_memory_pressure,
2442 .sysctl_mem = sysctl_tcp_mem,
2443 .sysctl_wmem = sysctl_tcp_wmem,
2444 .sysctl_rmem = sysctl_tcp_rmem,
2445 .max_header = MAX_TCP_HEADER,
2446 .obj_size = sizeof(struct tcp_sock),
2447 .twsk_prot = &tcp_timewait_sock_ops,
2448 .rsk_prot = &tcp_request_sock_ops,
2449 #ifdef CONFIG_COMPAT
2450 .compat_setsockopt = compat_tcp_setsockopt,
2451 .compat_getsockopt = compat_tcp_getsockopt,
2452 #endif
2455 void __init tcp_v4_init(struct net_proto_family *ops)
2457 if (inet_csk_ctl_sock_create(&tcp_socket, PF_INET, SOCK_RAW,
2458 IPPROTO_TCP) < 0)
2459 panic("Failed to create the TCP control socket.\n");
2462 EXPORT_SYMBOL(ipv4_specific);
2463 EXPORT_SYMBOL(tcp_hashinfo);
2464 EXPORT_SYMBOL(tcp_prot);
2465 EXPORT_SYMBOL(tcp_unhash);
2466 EXPORT_SYMBOL(tcp_v4_conn_request);
2467 EXPORT_SYMBOL(tcp_v4_connect);
2468 EXPORT_SYMBOL(tcp_v4_do_rcv);
2469 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2470 EXPORT_SYMBOL(tcp_v4_send_check);
2471 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2473 #ifdef CONFIG_PROC_FS
2474 EXPORT_SYMBOL(tcp_proc_register);
2475 EXPORT_SYMBOL(tcp_proc_unregister);
2476 #endif
2477 EXPORT_SYMBOL(sysctl_local_port_range);
2478 EXPORT_SYMBOL(sysctl_tcp_low_latency);