[PATCH] remove obsolete sis900 documentation
[linux-2.6/libata-dev.git] / drivers / net / sis900.c
bloba1cb07cdb60fed8749fb7bba43c94a76fab466fd
1 /* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
2 Copyright 1999 Silicon Integrated System Corporation
3 Revision: 1.08.09 Sep. 19 2005
5 Modified from the driver which is originally written by Donald Becker.
7 This software may be used and distributed according to the terms
8 of the GNU General Public License (GPL), incorporated herein by reference.
9 Drivers based on this skeleton fall under the GPL and must retain
10 the authorship (implicit copyright) notice.
12 References:
13 SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
14 preliminary Rev. 1.0 Jan. 14, 1998
15 SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
16 preliminary Rev. 1.0 Nov. 10, 1998
17 SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
18 preliminary Rev. 1.0 Jan. 18, 1998
20 Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
21 Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
22 Rev 1.08.07 Nov. 2 2003 Daniele Venzano <webvenza@libero.it> add suspend/resume support
23 Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
24 Rev 1.08.05 Jun. 6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
25 Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
26 Rev 1.08.03 Feb. 1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
27 Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
28 Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
29 Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
30 Rev 1.07.11 Apr. 2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
31 Rev 1.07.10 Mar. 1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
32 Rev 1.07.09 Feb. 9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
33 Rev 1.07.08 Jan. 8 2001 Lei-Chun Chang added RTL8201 PHY support
34 Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
35 Rev 1.07.06 Nov. 7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
36 Rev 1.07.05 Nov. 6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
37 Rev 1.07.04 Sep. 6 2000 Lei-Chun Chang added ICS1893 PHY support
38 Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
39 Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
40 Rev 1.07 Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
41 Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
42 Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
43 Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
44 Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
45 Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
46 Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
47 Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
48 Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
51 #include <linux/module.h>
52 #include <linux/moduleparam.h>
53 #include <linux/kernel.h>
54 #include <linux/string.h>
55 #include <linux/timer.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/slab.h>
59 #include <linux/interrupt.h>
60 #include <linux/pci.h>
61 #include <linux/netdevice.h>
62 #include <linux/init.h>
63 #include <linux/mii.h>
64 #include <linux/etherdevice.h>
65 #include <linux/skbuff.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/crc32.h>
69 #include <linux/bitops.h>
70 #include <linux/dma-mapping.h>
72 #include <asm/processor.h> /* Processor type for cache alignment. */
73 #include <asm/io.h>
74 #include <asm/irq.h>
75 #include <asm/uaccess.h> /* User space memory access functions */
77 #include "sis900.h"
79 #define SIS900_MODULE_NAME "sis900"
80 #define SIS900_DRV_VERSION "v1.08.09 Sep. 19 2005"
82 static char version[] __devinitdata =
83 KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
85 static int max_interrupt_work = 40;
86 static int multicast_filter_limit = 128;
88 static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
90 #define SIS900_DEF_MSG \
91 (NETIF_MSG_DRV | \
92 NETIF_MSG_LINK | \
93 NETIF_MSG_RX_ERR | \
94 NETIF_MSG_TX_ERR)
96 /* Time in jiffies before concluding the transmitter is hung. */
97 #define TX_TIMEOUT (4*HZ)
99 enum {
100 SIS_900 = 0,
101 SIS_7016
103 static const char * card_names[] = {
104 "SiS 900 PCI Fast Ethernet",
105 "SiS 7016 PCI Fast Ethernet"
107 static struct pci_device_id sis900_pci_tbl [] = {
108 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
110 {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
112 {0,}
114 MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
116 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
118 static const struct mii_chip_info {
119 const char * name;
120 u16 phy_id0;
121 u16 phy_id1;
122 u8 phy_types;
123 #define HOME 0x0001
124 #define LAN 0x0002
125 #define MIX 0x0003
126 #define UNKNOWN 0x0
127 } mii_chip_table[] = {
128 { "SiS 900 Internal MII PHY", 0x001d, 0x8000, LAN },
129 { "SiS 7014 Physical Layer Solution", 0x0016, 0xf830, LAN },
130 { "Altimata AC101LF PHY", 0x0022, 0x5520, LAN },
131 { "AMD 79C901 10BASE-T PHY", 0x0000, 0x6B70, LAN },
132 { "AMD 79C901 HomePNA PHY", 0x0000, 0x6B90, HOME},
133 { "ICS LAN PHY", 0x0015, 0xF440, LAN },
134 { "NS 83851 PHY", 0x2000, 0x5C20, MIX },
135 { "NS 83847 PHY", 0x2000, 0x5C30, MIX },
136 { "Realtek RTL8201 PHY", 0x0000, 0x8200, LAN },
137 { "VIA 6103 PHY", 0x0101, 0x8f20, LAN },
138 {NULL,},
141 struct mii_phy {
142 struct mii_phy * next;
143 int phy_addr;
144 u16 phy_id0;
145 u16 phy_id1;
146 u16 status;
147 u8 phy_types;
150 typedef struct _BufferDesc {
151 u32 link;
152 u32 cmdsts;
153 u32 bufptr;
154 } BufferDesc;
156 struct sis900_private {
157 struct net_device_stats stats;
158 struct pci_dev * pci_dev;
160 spinlock_t lock;
162 struct mii_phy * mii;
163 struct mii_phy * first_mii; /* record the first mii structure */
164 unsigned int cur_phy;
165 struct mii_if_info mii_info;
167 struct timer_list timer; /* Link status detection timer. */
168 u8 autong_complete; /* 1: auto-negotiate complete */
170 u32 msg_enable;
172 unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
173 unsigned int cur_tx, dirty_tx;
175 /* The saved address of a sent/receive-in-place packet buffer */
176 struct sk_buff *tx_skbuff[NUM_TX_DESC];
177 struct sk_buff *rx_skbuff[NUM_RX_DESC];
178 BufferDesc *tx_ring;
179 BufferDesc *rx_ring;
181 dma_addr_t tx_ring_dma;
182 dma_addr_t rx_ring_dma;
184 unsigned int tx_full; /* The Tx queue is full. */
185 u8 host_bridge_rev;
186 u8 chipset_rev;
189 MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
190 MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
191 MODULE_LICENSE("GPL");
193 module_param(multicast_filter_limit, int, 0444);
194 module_param(max_interrupt_work, int, 0444);
195 module_param(sis900_debug, int, 0444);
196 MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
197 MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
198 MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
200 #ifdef CONFIG_NET_POLL_CONTROLLER
201 static void sis900_poll(struct net_device *dev);
202 #endif
203 static int sis900_open(struct net_device *net_dev);
204 static int sis900_mii_probe (struct net_device * net_dev);
205 static void sis900_init_rxfilter (struct net_device * net_dev);
206 static u16 read_eeprom(long ioaddr, int location);
207 static int mdio_read(struct net_device *net_dev, int phy_id, int location);
208 static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
209 static void sis900_timer(unsigned long data);
210 static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
211 static void sis900_tx_timeout(struct net_device *net_dev);
212 static void sis900_init_tx_ring(struct net_device *net_dev);
213 static void sis900_init_rx_ring(struct net_device *net_dev);
214 static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
215 static int sis900_rx(struct net_device *net_dev);
216 static void sis900_finish_xmit (struct net_device *net_dev);
217 static irqreturn_t sis900_interrupt(int irq, void *dev_instance, struct pt_regs *regs);
218 static int sis900_close(struct net_device *net_dev);
219 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
220 static struct net_device_stats *sis900_get_stats(struct net_device *net_dev);
221 static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
222 static void set_rx_mode(struct net_device *net_dev);
223 static void sis900_reset(struct net_device *net_dev);
224 static void sis630_set_eq(struct net_device *net_dev, u8 revision);
225 static int sis900_set_config(struct net_device *dev, struct ifmap *map);
226 static u16 sis900_default_phy(struct net_device * net_dev);
227 static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
228 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
229 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
230 static void sis900_set_mode (long ioaddr, int speed, int duplex);
231 static struct ethtool_ops sis900_ethtool_ops;
234 * sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
235 * @pci_dev: the sis900 pci device
236 * @net_dev: the net device to get address for
238 * Older SiS900 and friends, use EEPROM to store MAC address.
239 * MAC address is read from read_eeprom() into @net_dev->dev_addr.
242 static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
244 long ioaddr = pci_resource_start(pci_dev, 0);
245 u16 signature;
246 int i;
248 /* check to see if we have sane EEPROM */
249 signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
250 if (signature == 0xffff || signature == 0x0000) {
251 printk (KERN_WARNING "%s: Error EERPOM read %x\n",
252 pci_name(pci_dev), signature);
253 return 0;
256 /* get MAC address from EEPROM */
257 for (i = 0; i < 3; i++)
258 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
260 return 1;
264 * sis630e_get_mac_addr - Get MAC address for SiS630E model
265 * @pci_dev: the sis900 pci device
266 * @net_dev: the net device to get address for
268 * SiS630E model, use APC CMOS RAM to store MAC address.
269 * APC CMOS RAM is accessed through ISA bridge.
270 * MAC address is read into @net_dev->dev_addr.
273 static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
274 struct net_device *net_dev)
276 struct pci_dev *isa_bridge = NULL;
277 u8 reg;
278 int i;
280 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
281 if (!isa_bridge)
282 isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
283 if (!isa_bridge) {
284 printk(KERN_WARNING "%s: Can not find ISA bridge\n",
285 pci_name(pci_dev));
286 return 0;
288 pci_read_config_byte(isa_bridge, 0x48, &reg);
289 pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
291 for (i = 0; i < 6; i++) {
292 outb(0x09 + i, 0x70);
293 ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
295 pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
296 pci_dev_put(isa_bridge);
298 return 1;
303 * sis635_get_mac_addr - Get MAC address for SIS635 model
304 * @pci_dev: the sis900 pci device
305 * @net_dev: the net device to get address for
307 * SiS635 model, set MAC Reload Bit to load Mac address from APC
308 * to rfdr. rfdr is accessed through rfcr. MAC address is read into
309 * @net_dev->dev_addr.
312 static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
313 struct net_device *net_dev)
315 long ioaddr = net_dev->base_addr;
316 u32 rfcrSave;
317 u32 i;
319 rfcrSave = inl(rfcr + ioaddr);
321 outl(rfcrSave | RELOAD, ioaddr + cr);
322 outl(0, ioaddr + cr);
324 /* disable packet filtering before setting filter */
325 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
327 /* load MAC addr to filter data register */
328 for (i = 0 ; i < 3 ; i++) {
329 outl((i << RFADDR_shift), ioaddr + rfcr);
330 *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
333 /* enable packet filtering */
334 outl(rfcrSave | RFEN, rfcr + ioaddr);
336 return 1;
340 * sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
341 * @pci_dev: the sis900 pci device
342 * @net_dev: the net device to get address for
344 * SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
345 * is shared by
346 * LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
347 * and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
348 * by LAN, otherwise is not. After MAC address is read from EEPROM, send
349 * EEDONE signal to refuse EEPROM access by LAN.
350 * The EEPROM map of SiS962 or SiS963 is different to SiS900.
351 * The signature field in SiS962 or SiS963 spec is meaningless.
352 * MAC address is read into @net_dev->dev_addr.
355 static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
356 struct net_device *net_dev)
358 long ioaddr = net_dev->base_addr;
359 long ee_addr = ioaddr + mear;
360 u32 waittime = 0;
361 int i;
363 outl(EEREQ, ee_addr);
364 while(waittime < 2000) {
365 if(inl(ee_addr) & EEGNT) {
367 /* get MAC address from EEPROM */
368 for (i = 0; i < 3; i++)
369 ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
371 outl(EEDONE, ee_addr);
372 return 1;
373 } else {
374 udelay(1);
375 waittime ++;
378 outl(EEDONE, ee_addr);
379 return 0;
383 * sis900_probe - Probe for sis900 device
384 * @pci_dev: the sis900 pci device
385 * @pci_id: the pci device ID
387 * Check and probe sis900 net device for @pci_dev.
388 * Get mac address according to the chip revision,
389 * and assign SiS900-specific entries in the device structure.
390 * ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
393 static int __devinit sis900_probe(struct pci_dev *pci_dev,
394 const struct pci_device_id *pci_id)
396 struct sis900_private *sis_priv;
397 struct net_device *net_dev;
398 struct pci_dev *dev;
399 dma_addr_t ring_dma;
400 void *ring_space;
401 long ioaddr;
402 int i, ret;
403 const char *card_name = card_names[pci_id->driver_data];
404 const char *dev_name = pci_name(pci_dev);
406 /* when built into the kernel, we only print version if device is found */
407 #ifndef MODULE
408 static int printed_version;
409 if (!printed_version++)
410 printk(version);
411 #endif
413 /* setup various bits in PCI command register */
414 ret = pci_enable_device(pci_dev);
415 if(ret) return ret;
417 i = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
418 if(i){
419 printk(KERN_ERR "sis900.c: architecture does not support"
420 "32bit PCI busmaster DMA\n");
421 return i;
424 pci_set_master(pci_dev);
426 net_dev = alloc_etherdev(sizeof(struct sis900_private));
427 if (!net_dev)
428 return -ENOMEM;
429 SET_MODULE_OWNER(net_dev);
430 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
432 /* We do a request_region() to register /proc/ioports info. */
433 ioaddr = pci_resource_start(pci_dev, 0);
434 ret = pci_request_regions(pci_dev, "sis900");
435 if (ret)
436 goto err_out;
438 sis_priv = net_dev->priv;
439 net_dev->base_addr = ioaddr;
440 net_dev->irq = pci_dev->irq;
441 sis_priv->pci_dev = pci_dev;
442 spin_lock_init(&sis_priv->lock);
444 pci_set_drvdata(pci_dev, net_dev);
446 ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
447 if (!ring_space) {
448 ret = -ENOMEM;
449 goto err_out_cleardev;
451 sis_priv->tx_ring = (BufferDesc *)ring_space;
452 sis_priv->tx_ring_dma = ring_dma;
454 ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
455 if (!ring_space) {
456 ret = -ENOMEM;
457 goto err_unmap_tx;
459 sis_priv->rx_ring = (BufferDesc *)ring_space;
460 sis_priv->rx_ring_dma = ring_dma;
462 /* The SiS900-specific entries in the device structure. */
463 net_dev->open = &sis900_open;
464 net_dev->hard_start_xmit = &sis900_start_xmit;
465 net_dev->stop = &sis900_close;
466 net_dev->get_stats = &sis900_get_stats;
467 net_dev->set_config = &sis900_set_config;
468 net_dev->set_multicast_list = &set_rx_mode;
469 net_dev->do_ioctl = &mii_ioctl;
470 net_dev->tx_timeout = sis900_tx_timeout;
471 net_dev->watchdog_timeo = TX_TIMEOUT;
472 net_dev->ethtool_ops = &sis900_ethtool_ops;
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 net_dev->poll_controller = &sis900_poll;
476 #endif
478 if (sis900_debug > 0)
479 sis_priv->msg_enable = sis900_debug;
480 else
481 sis_priv->msg_enable = SIS900_DEF_MSG;
483 sis_priv->mii_info.dev = net_dev;
484 sis_priv->mii_info.mdio_read = mdio_read;
485 sis_priv->mii_info.mdio_write = mdio_write;
486 sis_priv->mii_info.phy_id_mask = 0x1f;
487 sis_priv->mii_info.reg_num_mask = 0x1f;
489 /* Get Mac address according to the chip revision */
490 pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
491 if(netif_msg_probe(sis_priv))
492 printk(KERN_DEBUG "%s: detected revision %2.2x, "
493 "trying to get MAC address...\n",
494 dev_name, sis_priv->chipset_rev);
496 ret = 0;
497 if (sis_priv->chipset_rev == SIS630E_900_REV)
498 ret = sis630e_get_mac_addr(pci_dev, net_dev);
499 else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
500 ret = sis635_get_mac_addr(pci_dev, net_dev);
501 else if (sis_priv->chipset_rev == SIS96x_900_REV)
502 ret = sis96x_get_mac_addr(pci_dev, net_dev);
503 else
504 ret = sis900_get_mac_addr(pci_dev, net_dev);
506 if (ret == 0) {
507 printk(KERN_WARNING "%s: Cannot read MAC address.\n", dev_name);
508 ret = -ENODEV;
509 goto err_unmap_rx;
512 /* 630ET : set the mii access mode as software-mode */
513 if (sis_priv->chipset_rev == SIS630ET_900_REV)
514 outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
516 /* probe for mii transceiver */
517 if (sis900_mii_probe(net_dev) == 0) {
518 printk(KERN_WARNING "%s: Error probing MII device.\n",
519 dev_name);
520 ret = -ENODEV;
521 goto err_unmap_rx;
524 /* save our host bridge revision */
525 dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
526 if (dev) {
527 pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
528 pci_dev_put(dev);
531 ret = register_netdev(net_dev);
532 if (ret)
533 goto err_unmap_rx;
535 /* print some information about our NIC */
536 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, ", net_dev->name,
537 card_name, ioaddr, net_dev->irq);
538 for (i = 0; i < 5; i++)
539 printk("%2.2x:", (u8)net_dev->dev_addr[i]);
540 printk("%2.2x.\n", net_dev->dev_addr[i]);
542 /* Detect Wake on Lan support */
543 ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
544 if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
545 printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
547 return 0;
549 err_unmap_rx:
550 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
551 sis_priv->rx_ring_dma);
552 err_unmap_tx:
553 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
554 sis_priv->tx_ring_dma);
555 err_out_cleardev:
556 pci_set_drvdata(pci_dev, NULL);
557 pci_release_regions(pci_dev);
558 err_out:
559 free_netdev(net_dev);
560 return ret;
564 * sis900_mii_probe - Probe MII PHY for sis900
565 * @net_dev: the net device to probe for
567 * Search for total of 32 possible mii phy addresses.
568 * Identify and set current phy if found one,
569 * return error if it failed to found.
572 static int __init sis900_mii_probe(struct net_device * net_dev)
574 struct sis900_private * sis_priv = net_dev->priv;
575 const char *dev_name = pci_name(sis_priv->pci_dev);
576 u16 poll_bit = MII_STAT_LINK, status = 0;
577 unsigned long timeout = jiffies + 5 * HZ;
578 int phy_addr;
580 sis_priv->mii = NULL;
582 /* search for total of 32 possible mii phy addresses */
583 for (phy_addr = 0; phy_addr < 32; phy_addr++) {
584 struct mii_phy * mii_phy = NULL;
585 u16 mii_status;
586 int i;
588 mii_phy = NULL;
589 for(i = 0; i < 2; i++)
590 mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
592 if (mii_status == 0xffff || mii_status == 0x0000) {
593 if (netif_msg_probe(sis_priv))
594 printk(KERN_DEBUG "%s: MII at address %d"
595 " not accessible\n",
596 dev_name, phy_addr);
597 continue;
600 if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
601 printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
602 mii_phy = sis_priv->first_mii;
603 while (mii_phy) {
604 struct mii_phy *phy;
605 phy = mii_phy;
606 mii_phy = mii_phy->next;
607 kfree(phy);
609 return 0;
612 mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
613 mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
614 mii_phy->phy_addr = phy_addr;
615 mii_phy->status = mii_status;
616 mii_phy->next = sis_priv->mii;
617 sis_priv->mii = mii_phy;
618 sis_priv->first_mii = mii_phy;
620 for (i = 0; mii_chip_table[i].phy_id1; i++)
621 if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
622 ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
623 mii_phy->phy_types = mii_chip_table[i].phy_types;
624 if (mii_chip_table[i].phy_types == MIX)
625 mii_phy->phy_types =
626 (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
627 printk(KERN_INFO "%s: %s transceiver found "
628 "at address %d.\n",
629 dev_name,
630 mii_chip_table[i].name,
631 phy_addr);
632 break;
635 if( !mii_chip_table[i].phy_id1 ) {
636 printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
637 dev_name, phy_addr);
638 mii_phy->phy_types = UNKNOWN;
642 if (sis_priv->mii == NULL) {
643 printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
644 return 0;
647 /* select default PHY for mac */
648 sis_priv->mii = NULL;
649 sis900_default_phy( net_dev );
651 /* Reset phy if default phy is internal sis900 */
652 if ((sis_priv->mii->phy_id0 == 0x001D) &&
653 ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
654 status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
656 /* workaround for ICS1893 PHY */
657 if ((sis_priv->mii->phy_id0 == 0x0015) &&
658 ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
659 mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
661 if(status & MII_STAT_LINK){
662 while (poll_bit) {
663 yield();
665 poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
666 if (time_after_eq(jiffies, timeout)) {
667 printk(KERN_WARNING "%s: reset phy and link down now\n",
668 dev_name);
669 return -ETIME;
674 if (sis_priv->chipset_rev == SIS630E_900_REV) {
675 /* SiS 630E has some bugs on default value of PHY registers */
676 mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
677 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
678 mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
679 mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
680 //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
683 if (sis_priv->mii->status & MII_STAT_LINK)
684 netif_carrier_on(net_dev);
685 else
686 netif_carrier_off(net_dev);
688 return 1;
692 * sis900_default_phy - Select default PHY for sis900 mac.
693 * @net_dev: the net device to probe for
695 * Select first detected PHY with link as default.
696 * If no one is link on, select PHY whose types is HOME as default.
697 * If HOME doesn't exist, select LAN.
700 static u16 sis900_default_phy(struct net_device * net_dev)
702 struct sis900_private * sis_priv = net_dev->priv;
703 struct mii_phy *phy = NULL, *phy_home = NULL,
704 *default_phy = NULL, *phy_lan = NULL;
705 u16 status;
707 for (phy=sis_priv->first_mii; phy; phy=phy->next) {
708 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
709 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
711 /* Link ON & Not select default PHY & not ghost PHY */
712 if ((status & MII_STAT_LINK) && !default_phy &&
713 (phy->phy_types != UNKNOWN))
714 default_phy = phy;
715 else {
716 status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
717 mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
718 status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
719 if (phy->phy_types == HOME)
720 phy_home = phy;
721 else if(phy->phy_types == LAN)
722 phy_lan = phy;
726 if (!default_phy && phy_home)
727 default_phy = phy_home;
728 else if (!default_phy && phy_lan)
729 default_phy = phy_lan;
730 else if (!default_phy)
731 default_phy = sis_priv->first_mii;
733 if (sis_priv->mii != default_phy) {
734 sis_priv->mii = default_phy;
735 sis_priv->cur_phy = default_phy->phy_addr;
736 printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
737 pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
740 sis_priv->mii_info.phy_id = sis_priv->cur_phy;
742 status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
743 status &= (~MII_CNTL_ISOLATE);
745 mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
746 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
747 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
749 return status;
754 * sis900_set_capability - set the media capability of network adapter.
755 * @net_dev : the net device to probe for
756 * @phy : default PHY
758 * Set the media capability of network adapter according to
759 * mii status register. It's necessary before auto-negotiate.
762 static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
764 u16 cap;
765 u16 status;
767 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
768 status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
770 cap = MII_NWAY_CSMA_CD |
771 ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
772 ((phy->status & MII_STAT_CAN_TX) ? MII_NWAY_TX:0) |
773 ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
774 ((phy->status & MII_STAT_CAN_T) ? MII_NWAY_T:0);
776 mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
780 /* Delay between EEPROM clock transitions. */
781 #define eeprom_delay() inl(ee_addr)
784 * read_eeprom - Read Serial EEPROM
785 * @ioaddr: base i/o address
786 * @location: the EEPROM location to read
788 * Read Serial EEPROM through EEPROM Access Register.
789 * Note that location is in word (16 bits) unit
792 static u16 __devinit read_eeprom(long ioaddr, int location)
794 int i;
795 u16 retval = 0;
796 long ee_addr = ioaddr + mear;
797 u32 read_cmd = location | EEread;
799 outl(0, ee_addr);
800 eeprom_delay();
801 outl(EECS, ee_addr);
802 eeprom_delay();
804 /* Shift the read command (9) bits out. */
805 for (i = 8; i >= 0; i--) {
806 u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
807 outl(dataval, ee_addr);
808 eeprom_delay();
809 outl(dataval | EECLK, ee_addr);
810 eeprom_delay();
812 outl(EECS, ee_addr);
813 eeprom_delay();
815 /* read the 16-bits data in */
816 for (i = 16; i > 0; i--) {
817 outl(EECS, ee_addr);
818 eeprom_delay();
819 outl(EECS | EECLK, ee_addr);
820 eeprom_delay();
821 retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
822 eeprom_delay();
825 /* Terminate the EEPROM access. */
826 outl(0, ee_addr);
827 eeprom_delay();
829 return (retval);
832 /* Read and write the MII management registers using software-generated
833 serial MDIO protocol. Note that the command bits and data bits are
834 send out separately */
835 #define mdio_delay() inl(mdio_addr)
837 static void mdio_idle(long mdio_addr)
839 outl(MDIO | MDDIR, mdio_addr);
840 mdio_delay();
841 outl(MDIO | MDDIR | MDC, mdio_addr);
844 /* Syncronize the MII management interface by shifting 32 one bits out. */
845 static void mdio_reset(long mdio_addr)
847 int i;
849 for (i = 31; i >= 0; i--) {
850 outl(MDDIR | MDIO, mdio_addr);
851 mdio_delay();
852 outl(MDDIR | MDIO | MDC, mdio_addr);
853 mdio_delay();
855 return;
859 * mdio_read - read MII PHY register
860 * @net_dev: the net device to read
861 * @phy_id: the phy address to read
862 * @location: the phy regiester id to read
864 * Read MII registers through MDIO and MDC
865 * using MDIO management frame structure and protocol(defined by ISO/IEC).
866 * Please see SiS7014 or ICS spec
869 static int mdio_read(struct net_device *net_dev, int phy_id, int location)
871 long mdio_addr = net_dev->base_addr + mear;
872 int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
873 u16 retval = 0;
874 int i;
876 mdio_reset(mdio_addr);
877 mdio_idle(mdio_addr);
879 for (i = 15; i >= 0; i--) {
880 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
881 outl(dataval, mdio_addr);
882 mdio_delay();
883 outl(dataval | MDC, mdio_addr);
884 mdio_delay();
887 /* Read the 16 data bits. */
888 for (i = 16; i > 0; i--) {
889 outl(0, mdio_addr);
890 mdio_delay();
891 retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
892 outl(MDC, mdio_addr);
893 mdio_delay();
895 outl(0x00, mdio_addr);
897 return retval;
901 * mdio_write - write MII PHY register
902 * @net_dev: the net device to write
903 * @phy_id: the phy address to write
904 * @location: the phy regiester id to write
905 * @value: the register value to write with
907 * Write MII registers with @value through MDIO and MDC
908 * using MDIO management frame structure and protocol(defined by ISO/IEC)
909 * please see SiS7014 or ICS spec
912 static void mdio_write(struct net_device *net_dev, int phy_id, int location,
913 int value)
915 long mdio_addr = net_dev->base_addr + mear;
916 int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
917 int i;
919 mdio_reset(mdio_addr);
920 mdio_idle(mdio_addr);
922 /* Shift the command bits out. */
923 for (i = 15; i >= 0; i--) {
924 int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
925 outb(dataval, mdio_addr);
926 mdio_delay();
927 outb(dataval | MDC, mdio_addr);
928 mdio_delay();
930 mdio_delay();
932 /* Shift the value bits out. */
933 for (i = 15; i >= 0; i--) {
934 int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
935 outl(dataval, mdio_addr);
936 mdio_delay();
937 outl(dataval | MDC, mdio_addr);
938 mdio_delay();
940 mdio_delay();
942 /* Clear out extra bits. */
943 for (i = 2; i > 0; i--) {
944 outb(0, mdio_addr);
945 mdio_delay();
946 outb(MDC, mdio_addr);
947 mdio_delay();
949 outl(0x00, mdio_addr);
951 return;
956 * sis900_reset_phy - reset sis900 mii phy.
957 * @net_dev: the net device to write
958 * @phy_addr: default phy address
960 * Some specific phy can't work properly without reset.
961 * This function will be called during initialization and
962 * link status change from ON to DOWN.
965 static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
967 int i = 0;
968 u16 status;
970 while (i++ < 2)
971 status = mdio_read(net_dev, phy_addr, MII_STATUS);
973 mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
975 return status;
978 #ifdef CONFIG_NET_POLL_CONTROLLER
980 * Polling 'interrupt' - used by things like netconsole to send skbs
981 * without having to re-enable interrupts. It's not called while
982 * the interrupt routine is executing.
984 static void sis900_poll(struct net_device *dev)
986 disable_irq(dev->irq);
987 sis900_interrupt(dev->irq, dev, NULL);
988 enable_irq(dev->irq);
990 #endif
993 * sis900_open - open sis900 device
994 * @net_dev: the net device to open
996 * Do some initialization and start net interface.
997 * enable interrupts and set sis900 timer.
1000 static int
1001 sis900_open(struct net_device *net_dev)
1003 struct sis900_private *sis_priv = net_dev->priv;
1004 long ioaddr = net_dev->base_addr;
1005 int ret;
1007 /* Soft reset the chip. */
1008 sis900_reset(net_dev);
1010 /* Equalizer workaround Rule */
1011 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1013 ret = request_irq(net_dev->irq, &sis900_interrupt, SA_SHIRQ,
1014 net_dev->name, net_dev);
1015 if (ret)
1016 return ret;
1018 sis900_init_rxfilter(net_dev);
1020 sis900_init_tx_ring(net_dev);
1021 sis900_init_rx_ring(net_dev);
1023 set_rx_mode(net_dev);
1025 netif_start_queue(net_dev);
1027 /* Workaround for EDB */
1028 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1030 /* Enable all known interrupts by setting the interrupt mask. */
1031 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1032 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1033 outl(IE, ioaddr + ier);
1035 sis900_check_mode(net_dev, sis_priv->mii);
1037 /* Set the timer to switch to check for link beat and perhaps switch
1038 to an alternate media type. */
1039 init_timer(&sis_priv->timer);
1040 sis_priv->timer.expires = jiffies + HZ;
1041 sis_priv->timer.data = (unsigned long)net_dev;
1042 sis_priv->timer.function = &sis900_timer;
1043 add_timer(&sis_priv->timer);
1045 return 0;
1049 * sis900_init_rxfilter - Initialize the Rx filter
1050 * @net_dev: the net device to initialize for
1052 * Set receive filter address to our MAC address
1053 * and enable packet filtering.
1056 static void
1057 sis900_init_rxfilter (struct net_device * net_dev)
1059 struct sis900_private *sis_priv = net_dev->priv;
1060 long ioaddr = net_dev->base_addr;
1061 u32 rfcrSave;
1062 u32 i;
1064 rfcrSave = inl(rfcr + ioaddr);
1066 /* disable packet filtering before setting filter */
1067 outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1069 /* load MAC addr to filter data register */
1070 for (i = 0 ; i < 3 ; i++) {
1071 u32 w;
1073 w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1074 outl((i << RFADDR_shift), ioaddr + rfcr);
1075 outl(w, ioaddr + rfdr);
1077 if (netif_msg_hw(sis_priv)) {
1078 printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1079 net_dev->name, i, inl(ioaddr + rfdr));
1083 /* enable packet filtering */
1084 outl(rfcrSave | RFEN, rfcr + ioaddr);
1088 * sis900_init_tx_ring - Initialize the Tx descriptor ring
1089 * @net_dev: the net device to initialize for
1091 * Initialize the Tx descriptor ring,
1094 static void
1095 sis900_init_tx_ring(struct net_device *net_dev)
1097 struct sis900_private *sis_priv = net_dev->priv;
1098 long ioaddr = net_dev->base_addr;
1099 int i;
1101 sis_priv->tx_full = 0;
1102 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1104 for (i = 0; i < NUM_TX_DESC; i++) {
1105 sis_priv->tx_skbuff[i] = NULL;
1107 sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1108 ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1109 sis_priv->tx_ring[i].cmdsts = 0;
1110 sis_priv->tx_ring[i].bufptr = 0;
1113 /* load Transmit Descriptor Register */
1114 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1115 if (netif_msg_hw(sis_priv))
1116 printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1117 net_dev->name, inl(ioaddr + txdp));
1121 * sis900_init_rx_ring - Initialize the Rx descriptor ring
1122 * @net_dev: the net device to initialize for
1124 * Initialize the Rx descriptor ring,
1125 * and pre-allocate recevie buffers (socket buffer)
1128 static void
1129 sis900_init_rx_ring(struct net_device *net_dev)
1131 struct sis900_private *sis_priv = net_dev->priv;
1132 long ioaddr = net_dev->base_addr;
1133 int i;
1135 sis_priv->cur_rx = 0;
1136 sis_priv->dirty_rx = 0;
1138 /* init RX descriptor */
1139 for (i = 0; i < NUM_RX_DESC; i++) {
1140 sis_priv->rx_skbuff[i] = NULL;
1142 sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1143 ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1144 sis_priv->rx_ring[i].cmdsts = 0;
1145 sis_priv->rx_ring[i].bufptr = 0;
1148 /* allocate sock buffers */
1149 for (i = 0; i < NUM_RX_DESC; i++) {
1150 struct sk_buff *skb;
1152 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1153 /* not enough memory for skbuff, this makes a "hole"
1154 on the buffer ring, it is not clear how the
1155 hardware will react to this kind of degenerated
1156 buffer */
1157 break;
1159 skb->dev = net_dev;
1160 sis_priv->rx_skbuff[i] = skb;
1161 sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1162 sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1163 skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1165 sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1167 /* load Receive Descriptor Register */
1168 outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1169 if (netif_msg_hw(sis_priv))
1170 printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1171 net_dev->name, inl(ioaddr + rxdp));
1175 * sis630_set_eq - set phy equalizer value for 630 LAN
1176 * @net_dev: the net device to set equalizer value
1177 * @revision: 630 LAN revision number
1179 * 630E equalizer workaround rule(Cyrus Huang 08/15)
1180 * PHY register 14h(Test)
1181 * Bit 14: 0 -- Automatically dectect (default)
1182 * 1 -- Manually set Equalizer filter
1183 * Bit 13: 0 -- (Default)
1184 * 1 -- Speed up convergence of equalizer setting
1185 * Bit 9 : 0 -- (Default)
1186 * 1 -- Disable Baseline Wander
1187 * Bit 3~7 -- Equalizer filter setting
1188 * Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1189 * Then calculate equalizer value
1190 * Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1191 * Link Off:Set Bit 13 to 1, Bit 14 to 0
1192 * Calculate Equalizer value:
1193 * When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1194 * When the equalizer is stable, this value is not a fixed value. It will be within
1195 * a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1196 * 0 <= max <= 4 --> set equalizer to max
1197 * 5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1198 * max >= 15 --> set equalizer to max+5 or set equalizer to max+6 if max == min
1201 static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1203 struct sis900_private *sis_priv = net_dev->priv;
1204 u16 reg14h, eq_value=0, max_value=0, min_value=0;
1205 int i, maxcount=10;
1207 if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1208 revision == SIS630A_900_REV || revision == SIS630ET_900_REV) )
1209 return;
1211 if (netif_carrier_ok(net_dev)) {
1212 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1213 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1214 (0x2200 | reg14h) & 0xBFFF);
1215 for (i=0; i < maxcount; i++) {
1216 eq_value = (0x00F8 & mdio_read(net_dev,
1217 sis_priv->cur_phy, MII_RESV)) >> 3;
1218 if (i == 0)
1219 max_value=min_value=eq_value;
1220 max_value = (eq_value > max_value) ?
1221 eq_value : max_value;
1222 min_value = (eq_value < min_value) ?
1223 eq_value : min_value;
1225 /* 630E rule to determine the equalizer value */
1226 if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1227 revision == SIS630ET_900_REV) {
1228 if (max_value < 5)
1229 eq_value = max_value;
1230 else if (max_value >= 5 && max_value < 15)
1231 eq_value = (max_value == min_value) ?
1232 max_value+2 : max_value+1;
1233 else if (max_value >= 15)
1234 eq_value=(max_value == min_value) ?
1235 max_value+6 : max_value+5;
1237 /* 630B0&B1 rule to determine the equalizer value */
1238 if (revision == SIS630A_900_REV &&
1239 (sis_priv->host_bridge_rev == SIS630B0 ||
1240 sis_priv->host_bridge_rev == SIS630B1)) {
1241 if (max_value == 0)
1242 eq_value = 3;
1243 else
1244 eq_value = (max_value + min_value + 1)/2;
1246 /* write equalizer value and setting */
1247 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1248 reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1249 reg14h = (reg14h | 0x6000) & 0xFDFF;
1250 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1251 } else {
1252 reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1253 if (revision == SIS630A_900_REV &&
1254 (sis_priv->host_bridge_rev == SIS630B0 ||
1255 sis_priv->host_bridge_rev == SIS630B1))
1256 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1257 (reg14h | 0x2200) & 0xBFFF);
1258 else
1259 mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1260 (reg14h | 0x2000) & 0xBFFF);
1262 return;
1266 * sis900_timer - sis900 timer routine
1267 * @data: pointer to sis900 net device
1269 * On each timer ticks we check two things,
1270 * link status (ON/OFF) and link mode (10/100/Full/Half)
1273 static void sis900_timer(unsigned long data)
1275 struct net_device *net_dev = (struct net_device *)data;
1276 struct sis900_private *sis_priv = net_dev->priv;
1277 struct mii_phy *mii_phy = sis_priv->mii;
1278 static const int next_tick = 5*HZ;
1279 u16 status;
1281 if (!sis_priv->autong_complete){
1282 int speed, duplex = 0;
1284 sis900_read_mode(net_dev, &speed, &duplex);
1285 if (duplex){
1286 sis900_set_mode(net_dev->base_addr, speed, duplex);
1287 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1288 netif_start_queue(net_dev);
1291 sis_priv->timer.expires = jiffies + HZ;
1292 add_timer(&sis_priv->timer);
1293 return;
1296 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1297 status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1299 /* Link OFF -> ON */
1300 if (!netif_carrier_ok(net_dev)) {
1301 LookForLink:
1302 /* Search for new PHY */
1303 status = sis900_default_phy(net_dev);
1304 mii_phy = sis_priv->mii;
1306 if (status & MII_STAT_LINK){
1307 sis900_check_mode(net_dev, mii_phy);
1308 netif_carrier_on(net_dev);
1310 } else {
1311 /* Link ON -> OFF */
1312 if (!(status & MII_STAT_LINK)){
1313 netif_carrier_off(net_dev);
1314 if(netif_msg_link(sis_priv))
1315 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1317 /* Change mode issue */
1318 if ((mii_phy->phy_id0 == 0x001D) &&
1319 ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1320 sis900_reset_phy(net_dev, sis_priv->cur_phy);
1322 sis630_set_eq(net_dev, sis_priv->chipset_rev);
1324 goto LookForLink;
1328 sis_priv->timer.expires = jiffies + next_tick;
1329 add_timer(&sis_priv->timer);
1333 * sis900_check_mode - check the media mode for sis900
1334 * @net_dev: the net device to be checked
1335 * @mii_phy: the mii phy
1337 * Older driver gets the media mode from mii status output
1338 * register. Now we set our media capability and auto-negotiate
1339 * to get the upper bound of speed and duplex between two ends.
1340 * If the types of mii phy is HOME, it doesn't need to auto-negotiate
1341 * and autong_complete should be set to 1.
1344 static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1346 struct sis900_private *sis_priv = net_dev->priv;
1347 long ioaddr = net_dev->base_addr;
1348 int speed, duplex;
1350 if (mii_phy->phy_types == LAN) {
1351 outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1352 sis900_set_capability(net_dev , mii_phy);
1353 sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1354 } else {
1355 outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1356 speed = HW_SPEED_HOME;
1357 duplex = FDX_CAPABLE_HALF_SELECTED;
1358 sis900_set_mode(ioaddr, speed, duplex);
1359 sis_priv->autong_complete = 1;
1364 * sis900_set_mode - Set the media mode of mac register.
1365 * @ioaddr: the address of the device
1366 * @speed : the transmit speed to be determined
1367 * @duplex: the duplex mode to be determined
1369 * Set the media mode of mac register txcfg/rxcfg according to
1370 * speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1371 * bus is used instead of PCI bus. When this bit is set 1, the
1372 * Max DMA Burst Size for TX/RX DMA should be no larger than 16
1373 * double words.
1376 static void sis900_set_mode (long ioaddr, int speed, int duplex)
1378 u32 tx_flags = 0, rx_flags = 0;
1380 if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1381 tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1382 (TX_FILL_THRESH << TxFILLT_shift);
1383 rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1384 } else {
1385 tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1386 (TX_FILL_THRESH << TxFILLT_shift);
1387 rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1390 if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1391 rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1392 tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1393 } else {
1394 rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1395 tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1398 if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1399 tx_flags |= (TxCSI | TxHBI);
1400 rx_flags |= RxATX;
1403 outl (tx_flags, ioaddr + txcfg);
1404 outl (rx_flags, ioaddr + rxcfg);
1408 * sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1409 * @net_dev: the net device to read mode for
1410 * @phy_addr: mii phy address
1412 * If the adapter is link-on, set the auto-negotiate enable/reset bit.
1413 * autong_complete should be set to 0 when starting auto-negotiation.
1414 * autong_complete should be set to 1 if we didn't start auto-negotiation.
1415 * sis900_timer will wait for link on again if autong_complete = 0.
1418 static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1420 struct sis900_private *sis_priv = net_dev->priv;
1421 int i = 0;
1422 u32 status;
1424 while (i++ < 2)
1425 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1427 if (!(status & MII_STAT_LINK)){
1428 if(netif_msg_link(sis_priv))
1429 printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1430 sis_priv->autong_complete = 1;
1431 netif_carrier_off(net_dev);
1432 return;
1435 /* (Re)start AutoNegotiate */
1436 mdio_write(net_dev, phy_addr, MII_CONTROL,
1437 MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1438 sis_priv->autong_complete = 0;
1443 * sis900_read_mode - read media mode for sis900 internal phy
1444 * @net_dev: the net device to read mode for
1445 * @speed : the transmit speed to be determined
1446 * @duplex : the duplex mode to be determined
1448 * The capability of remote end will be put in mii register autorec
1449 * after auto-negotiation. Use AND operation to get the upper bound
1450 * of speed and duplex between two ends.
1453 static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1455 struct sis900_private *sis_priv = net_dev->priv;
1456 struct mii_phy *phy = sis_priv->mii;
1457 int phy_addr = sis_priv->cur_phy;
1458 u32 status;
1459 u16 autoadv, autorec;
1460 int i = 0;
1462 while (i++ < 2)
1463 status = mdio_read(net_dev, phy_addr, MII_STATUS);
1465 if (!(status & MII_STAT_LINK))
1466 return;
1468 /* AutoNegotiate completed */
1469 autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1470 autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1471 status = autoadv & autorec;
1473 *speed = HW_SPEED_10_MBPS;
1474 *duplex = FDX_CAPABLE_HALF_SELECTED;
1476 if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1477 *speed = HW_SPEED_100_MBPS;
1478 if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1479 *duplex = FDX_CAPABLE_FULL_SELECTED;
1481 sis_priv->autong_complete = 1;
1483 /* Workaround for Realtek RTL8201 PHY issue */
1484 if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1485 if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1486 *duplex = FDX_CAPABLE_FULL_SELECTED;
1487 if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1488 *speed = HW_SPEED_100_MBPS;
1491 if(netif_msg_link(sis_priv))
1492 printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1493 net_dev->name,
1494 *speed == HW_SPEED_100_MBPS ?
1495 "100mbps" : "10mbps",
1496 *duplex == FDX_CAPABLE_FULL_SELECTED ?
1497 "full" : "half");
1501 * sis900_tx_timeout - sis900 transmit timeout routine
1502 * @net_dev: the net device to transmit
1504 * print transmit timeout status
1505 * disable interrupts and do some tasks
1508 static void sis900_tx_timeout(struct net_device *net_dev)
1510 struct sis900_private *sis_priv = net_dev->priv;
1511 long ioaddr = net_dev->base_addr;
1512 unsigned long flags;
1513 int i;
1515 if(netif_msg_tx_err(sis_priv))
1516 printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1517 net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1519 /* Disable interrupts by clearing the interrupt mask. */
1520 outl(0x0000, ioaddr + imr);
1522 /* use spinlock to prevent interrupt handler accessing buffer ring */
1523 spin_lock_irqsave(&sis_priv->lock, flags);
1525 /* discard unsent packets */
1526 sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1527 for (i = 0; i < NUM_TX_DESC; i++) {
1528 struct sk_buff *skb = sis_priv->tx_skbuff[i];
1530 if (skb) {
1531 pci_unmap_single(sis_priv->pci_dev,
1532 sis_priv->tx_ring[i].bufptr, skb->len,
1533 PCI_DMA_TODEVICE);
1534 dev_kfree_skb_irq(skb);
1535 sis_priv->tx_skbuff[i] = NULL;
1536 sis_priv->tx_ring[i].cmdsts = 0;
1537 sis_priv->tx_ring[i].bufptr = 0;
1538 sis_priv->stats.tx_dropped++;
1541 sis_priv->tx_full = 0;
1542 netif_wake_queue(net_dev);
1544 spin_unlock_irqrestore(&sis_priv->lock, flags);
1546 net_dev->trans_start = jiffies;
1548 /* load Transmit Descriptor Register */
1549 outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1551 /* Enable all known interrupts by setting the interrupt mask. */
1552 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1553 return;
1557 * sis900_start_xmit - sis900 start transmit routine
1558 * @skb: socket buffer pointer to put the data being transmitted
1559 * @net_dev: the net device to transmit with
1561 * Set the transmit buffer descriptor,
1562 * and write TxENA to enable transmit state machine.
1563 * tell upper layer if the buffer is full
1566 static int
1567 sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1569 struct sis900_private *sis_priv = net_dev->priv;
1570 long ioaddr = net_dev->base_addr;
1571 unsigned int entry;
1572 unsigned long flags;
1573 unsigned int index_cur_tx, index_dirty_tx;
1574 unsigned int count_dirty_tx;
1576 /* Don't transmit data before the complete of auto-negotiation */
1577 if(!sis_priv->autong_complete){
1578 netif_stop_queue(net_dev);
1579 return 1;
1582 spin_lock_irqsave(&sis_priv->lock, flags);
1584 /* Calculate the next Tx descriptor entry. */
1585 entry = sis_priv->cur_tx % NUM_TX_DESC;
1586 sis_priv->tx_skbuff[entry] = skb;
1588 /* set the transmit buffer descriptor and enable Transmit State Machine */
1589 sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1590 skb->data, skb->len, PCI_DMA_TODEVICE);
1591 sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1592 outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1594 sis_priv->cur_tx ++;
1595 index_cur_tx = sis_priv->cur_tx;
1596 index_dirty_tx = sis_priv->dirty_tx;
1598 for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1599 count_dirty_tx ++;
1601 if (index_cur_tx == index_dirty_tx) {
1602 /* dirty_tx is met in the cycle of cur_tx, buffer full */
1603 sis_priv->tx_full = 1;
1604 netif_stop_queue(net_dev);
1605 } else if (count_dirty_tx < NUM_TX_DESC) {
1606 /* Typical path, tell upper layer that more transmission is possible */
1607 netif_start_queue(net_dev);
1608 } else {
1609 /* buffer full, tell upper layer no more transmission */
1610 sis_priv->tx_full = 1;
1611 netif_stop_queue(net_dev);
1614 spin_unlock_irqrestore(&sis_priv->lock, flags);
1616 net_dev->trans_start = jiffies;
1618 if (netif_msg_tx_queued(sis_priv))
1619 printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1620 "to slot %d.\n",
1621 net_dev->name, skb->data, (int)skb->len, entry);
1623 return 0;
1627 * sis900_interrupt - sis900 interrupt handler
1628 * @irq: the irq number
1629 * @dev_instance: the client data object
1630 * @regs: snapshot of processor context
1632 * The interrupt handler does all of the Rx thread work,
1633 * and cleans up after the Tx thread
1636 static irqreturn_t sis900_interrupt(int irq, void *dev_instance, struct pt_regs *regs)
1638 struct net_device *net_dev = dev_instance;
1639 struct sis900_private *sis_priv = net_dev->priv;
1640 int boguscnt = max_interrupt_work;
1641 long ioaddr = net_dev->base_addr;
1642 u32 status;
1643 unsigned int handled = 0;
1645 spin_lock (&sis_priv->lock);
1647 do {
1648 status = inl(ioaddr + isr);
1650 if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1651 /* nothing intresting happened */
1652 break;
1653 handled = 1;
1655 /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1656 if (status & (RxORN | RxERR | RxOK))
1657 /* Rx interrupt */
1658 sis900_rx(net_dev);
1660 if (status & (TxURN | TxERR | TxIDLE))
1661 /* Tx interrupt */
1662 sis900_finish_xmit(net_dev);
1664 /* something strange happened !!! */
1665 if (status & HIBERR) {
1666 if(netif_msg_intr(sis_priv))
1667 printk(KERN_INFO "%s: Abnormal interrupt,"
1668 "status %#8.8x.\n", net_dev->name, status);
1669 break;
1671 if (--boguscnt < 0) {
1672 if(netif_msg_intr(sis_priv))
1673 printk(KERN_INFO "%s: Too much work at interrupt, "
1674 "interrupt status = %#8.8x.\n",
1675 net_dev->name, status);
1676 break;
1678 } while (1);
1680 if(netif_msg_intr(sis_priv))
1681 printk(KERN_DEBUG "%s: exiting interrupt, "
1682 "interrupt status = 0x%#8.8x.\n",
1683 net_dev->name, inl(ioaddr + isr));
1685 spin_unlock (&sis_priv->lock);
1686 return IRQ_RETVAL(handled);
1690 * sis900_rx - sis900 receive routine
1691 * @net_dev: the net device which receives data
1693 * Process receive interrupt events,
1694 * put buffer to higher layer and refill buffer pool
1695 * Note: This fucntion is called by interrupt handler,
1696 * don't do "too much" work here
1699 static int sis900_rx(struct net_device *net_dev)
1701 struct sis900_private *sis_priv = net_dev->priv;
1702 long ioaddr = net_dev->base_addr;
1703 unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1704 u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1705 int rx_work_limit;
1707 if (netif_msg_rx_status(sis_priv))
1708 printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1709 "status:0x%8.8x\n",
1710 sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1711 rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1713 while (rx_status & OWN) {
1714 unsigned int rx_size;
1716 if (--rx_work_limit < 0)
1717 break;
1719 rx_size = (rx_status & DSIZE) - CRC_SIZE;
1721 if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1722 /* corrupted packet received */
1723 if (netif_msg_rx_err(sis_priv))
1724 printk(KERN_DEBUG "%s: Corrupted packet "
1725 "received, buffer status = 0x%8.8x.\n",
1726 net_dev->name, rx_status);
1727 sis_priv->stats.rx_errors++;
1728 if (rx_status & OVERRUN)
1729 sis_priv->stats.rx_over_errors++;
1730 if (rx_status & (TOOLONG|RUNT))
1731 sis_priv->stats.rx_length_errors++;
1732 if (rx_status & (RXISERR | FAERR))
1733 sis_priv->stats.rx_frame_errors++;
1734 if (rx_status & CRCERR)
1735 sis_priv->stats.rx_crc_errors++;
1736 /* reset buffer descriptor state */
1737 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1738 } else {
1739 struct sk_buff * skb;
1741 /* This situation should never happen, but due to
1742 some unknow bugs, it is possible that
1743 we are working on NULL sk_buff :-( */
1744 if (sis_priv->rx_skbuff[entry] == NULL) {
1745 if (netif_msg_rx_err(sis_priv))
1746 printk(KERN_WARNING "%s: NULL pointer "
1747 "encountered in Rx ring\n"
1748 "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1749 net_dev->name, sis_priv->cur_rx,
1750 sis_priv->dirty_rx);
1751 break;
1754 pci_unmap_single(sis_priv->pci_dev,
1755 sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1756 PCI_DMA_FROMDEVICE);
1757 /* give the socket buffer to upper layers */
1758 skb = sis_priv->rx_skbuff[entry];
1759 skb_put(skb, rx_size);
1760 skb->protocol = eth_type_trans(skb, net_dev);
1761 netif_rx(skb);
1763 /* some network statistics */
1764 if ((rx_status & BCAST) == MCAST)
1765 sis_priv->stats.multicast++;
1766 net_dev->last_rx = jiffies;
1767 sis_priv->stats.rx_bytes += rx_size;
1768 sis_priv->stats.rx_packets++;
1770 /* refill the Rx buffer, what if there is not enought
1771 * memory for new socket buffer ?? */
1772 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1773 /* not enough memory for skbuff, this makes a
1774 * "hole" on the buffer ring, it is not clear
1775 * how the hardware will react to this kind
1776 * of degenerated buffer */
1777 if (netif_msg_rx_status(sis_priv))
1778 printk(KERN_INFO "%s: Memory squeeze,"
1779 "deferring packet.\n",
1780 net_dev->name);
1781 sis_priv->rx_skbuff[entry] = NULL;
1782 /* reset buffer descriptor state */
1783 sis_priv->rx_ring[entry].cmdsts = 0;
1784 sis_priv->rx_ring[entry].bufptr = 0;
1785 sis_priv->stats.rx_dropped++;
1786 sis_priv->cur_rx++;
1787 break;
1789 skb->dev = net_dev;
1790 sis_priv->rx_skbuff[entry] = skb;
1791 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1792 sis_priv->rx_ring[entry].bufptr =
1793 pci_map_single(sis_priv->pci_dev, skb->data,
1794 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1795 sis_priv->dirty_rx++;
1797 sis_priv->cur_rx++;
1798 entry = sis_priv->cur_rx % NUM_RX_DESC;
1799 rx_status = sis_priv->rx_ring[entry].cmdsts;
1800 } // while
1802 /* refill the Rx buffer, what if the rate of refilling is slower
1803 * than consuming ?? */
1804 for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1805 struct sk_buff *skb;
1807 entry = sis_priv->dirty_rx % NUM_RX_DESC;
1809 if (sis_priv->rx_skbuff[entry] == NULL) {
1810 if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1811 /* not enough memory for skbuff, this makes a
1812 * "hole" on the buffer ring, it is not clear
1813 * how the hardware will react to this kind
1814 * of degenerated buffer */
1815 if (netif_msg_rx_err(sis_priv))
1816 printk(KERN_INFO "%s: Memory squeeze,"
1817 "deferring packet.\n",
1818 net_dev->name);
1819 sis_priv->stats.rx_dropped++;
1820 break;
1822 skb->dev = net_dev;
1823 sis_priv->rx_skbuff[entry] = skb;
1824 sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1825 sis_priv->rx_ring[entry].bufptr =
1826 pci_map_single(sis_priv->pci_dev, skb->data,
1827 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1830 /* re-enable the potentially idle receive state matchine */
1831 outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1833 return 0;
1837 * sis900_finish_xmit - finish up transmission of packets
1838 * @net_dev: the net device to be transmitted on
1840 * Check for error condition and free socket buffer etc
1841 * schedule for more transmission as needed
1842 * Note: This fucntion is called by interrupt handler,
1843 * don't do "too much" work here
1846 static void sis900_finish_xmit (struct net_device *net_dev)
1848 struct sis900_private *sis_priv = net_dev->priv;
1850 for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1851 struct sk_buff *skb;
1852 unsigned int entry;
1853 u32 tx_status;
1855 entry = sis_priv->dirty_tx % NUM_TX_DESC;
1856 tx_status = sis_priv->tx_ring[entry].cmdsts;
1858 if (tx_status & OWN) {
1859 /* The packet is not transmitted yet (owned by hardware) !
1860 * Note: the interrupt is generated only when Tx Machine
1861 * is idle, so this is an almost impossible case */
1862 break;
1865 if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1866 /* packet unsuccessfully transmitted */
1867 if (netif_msg_tx_err(sis_priv))
1868 printk(KERN_DEBUG "%s: Transmit "
1869 "error, Tx status %8.8x.\n",
1870 net_dev->name, tx_status);
1871 sis_priv->stats.tx_errors++;
1872 if (tx_status & UNDERRUN)
1873 sis_priv->stats.tx_fifo_errors++;
1874 if (tx_status & ABORT)
1875 sis_priv->stats.tx_aborted_errors++;
1876 if (tx_status & NOCARRIER)
1877 sis_priv->stats.tx_carrier_errors++;
1878 if (tx_status & OWCOLL)
1879 sis_priv->stats.tx_window_errors++;
1880 } else {
1881 /* packet successfully transmitted */
1882 sis_priv->stats.collisions += (tx_status & COLCNT) >> 16;
1883 sis_priv->stats.tx_bytes += tx_status & DSIZE;
1884 sis_priv->stats.tx_packets++;
1886 /* Free the original skb. */
1887 skb = sis_priv->tx_skbuff[entry];
1888 pci_unmap_single(sis_priv->pci_dev,
1889 sis_priv->tx_ring[entry].bufptr, skb->len,
1890 PCI_DMA_TODEVICE);
1891 dev_kfree_skb_irq(skb);
1892 sis_priv->tx_skbuff[entry] = NULL;
1893 sis_priv->tx_ring[entry].bufptr = 0;
1894 sis_priv->tx_ring[entry].cmdsts = 0;
1897 if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1898 sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1899 /* The ring is no longer full, clear tx_full and schedule
1900 * more transmission by netif_wake_queue(net_dev) */
1901 sis_priv->tx_full = 0;
1902 netif_wake_queue (net_dev);
1907 * sis900_close - close sis900 device
1908 * @net_dev: the net device to be closed
1910 * Disable interrupts, stop the Tx and Rx Status Machine
1911 * free Tx and RX socket buffer
1914 static int sis900_close(struct net_device *net_dev)
1916 long ioaddr = net_dev->base_addr;
1917 struct sis900_private *sis_priv = net_dev->priv;
1918 struct sk_buff *skb;
1919 int i;
1921 netif_stop_queue(net_dev);
1923 /* Disable interrupts by clearing the interrupt mask. */
1924 outl(0x0000, ioaddr + imr);
1925 outl(0x0000, ioaddr + ier);
1927 /* Stop the chip's Tx and Rx Status Machine */
1928 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1930 del_timer(&sis_priv->timer);
1932 free_irq(net_dev->irq, net_dev);
1934 /* Free Tx and RX skbuff */
1935 for (i = 0; i < NUM_RX_DESC; i++) {
1936 skb = sis_priv->rx_skbuff[i];
1937 if (skb) {
1938 pci_unmap_single(sis_priv->pci_dev,
1939 sis_priv->rx_ring[i].bufptr,
1940 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1941 dev_kfree_skb(skb);
1942 sis_priv->rx_skbuff[i] = NULL;
1945 for (i = 0; i < NUM_TX_DESC; i++) {
1946 skb = sis_priv->tx_skbuff[i];
1947 if (skb) {
1948 pci_unmap_single(sis_priv->pci_dev,
1949 sis_priv->tx_ring[i].bufptr, skb->len,
1950 PCI_DMA_TODEVICE);
1951 dev_kfree_skb(skb);
1952 sis_priv->tx_skbuff[i] = NULL;
1956 /* Green! Put the chip in low-power mode. */
1958 return 0;
1962 * sis900_get_drvinfo - Return information about driver
1963 * @net_dev: the net device to probe
1964 * @info: container for info returned
1966 * Process ethtool command such as "ehtool -i" to show information
1969 static void sis900_get_drvinfo(struct net_device *net_dev,
1970 struct ethtool_drvinfo *info)
1972 struct sis900_private *sis_priv = net_dev->priv;
1974 strcpy (info->driver, SIS900_MODULE_NAME);
1975 strcpy (info->version, SIS900_DRV_VERSION);
1976 strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1979 static u32 sis900_get_msglevel(struct net_device *net_dev)
1981 struct sis900_private *sis_priv = net_dev->priv;
1982 return sis_priv->msg_enable;
1985 static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1987 struct sis900_private *sis_priv = net_dev->priv;
1988 sis_priv->msg_enable = value;
1991 static u32 sis900_get_link(struct net_device *net_dev)
1993 struct sis900_private *sis_priv = net_dev->priv;
1994 return mii_link_ok(&sis_priv->mii_info);
1997 static int sis900_get_settings(struct net_device *net_dev,
1998 struct ethtool_cmd *cmd)
2000 struct sis900_private *sis_priv = net_dev->priv;
2001 spin_lock_irq(&sis_priv->lock);
2002 mii_ethtool_gset(&sis_priv->mii_info, cmd);
2003 spin_unlock_irq(&sis_priv->lock);
2004 return 0;
2007 static int sis900_set_settings(struct net_device *net_dev,
2008 struct ethtool_cmd *cmd)
2010 struct sis900_private *sis_priv = net_dev->priv;
2011 int rt;
2012 spin_lock_irq(&sis_priv->lock);
2013 rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2014 spin_unlock_irq(&sis_priv->lock);
2015 return rt;
2018 static int sis900_nway_reset(struct net_device *net_dev)
2020 struct sis900_private *sis_priv = net_dev->priv;
2021 return mii_nway_restart(&sis_priv->mii_info);
2025 * sis900_set_wol - Set up Wake on Lan registers
2026 * @net_dev: the net device to probe
2027 * @wol: container for info passed to the driver
2029 * Process ethtool command "wol" to setup wake on lan features.
2030 * SiS900 supports sending WoL events if a correct packet is received,
2031 * but there is no simple way to filter them to only a subset (broadcast,
2032 * multicast, unicast or arp).
2035 static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2037 struct sis900_private *sis_priv = net_dev->priv;
2038 long pmctrl_addr = net_dev->base_addr + pmctrl;
2039 u32 cfgpmcsr = 0, pmctrl_bits = 0;
2041 if (wol->wolopts == 0) {
2042 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2043 cfgpmcsr &= ~PME_EN;
2044 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2045 outl(pmctrl_bits, pmctrl_addr);
2046 if (netif_msg_wol(sis_priv))
2047 printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2048 return 0;
2051 if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2052 | WAKE_BCAST | WAKE_ARP))
2053 return -EINVAL;
2055 if (wol->wolopts & WAKE_MAGIC)
2056 pmctrl_bits |= MAGICPKT;
2057 if (wol->wolopts & WAKE_PHY)
2058 pmctrl_bits |= LINKON;
2060 outl(pmctrl_bits, pmctrl_addr);
2062 pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2063 cfgpmcsr |= PME_EN;
2064 pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2065 if (netif_msg_wol(sis_priv))
2066 printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2068 return 0;
2071 static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2073 long pmctrl_addr = net_dev->base_addr + pmctrl;
2074 u32 pmctrl_bits;
2076 pmctrl_bits = inl(pmctrl_addr);
2077 if (pmctrl_bits & MAGICPKT)
2078 wol->wolopts |= WAKE_MAGIC;
2079 if (pmctrl_bits & LINKON)
2080 wol->wolopts |= WAKE_PHY;
2082 wol->supported = (WAKE_PHY | WAKE_MAGIC);
2085 static struct ethtool_ops sis900_ethtool_ops = {
2086 .get_drvinfo = sis900_get_drvinfo,
2087 .get_msglevel = sis900_get_msglevel,
2088 .set_msglevel = sis900_set_msglevel,
2089 .get_link = sis900_get_link,
2090 .get_settings = sis900_get_settings,
2091 .set_settings = sis900_set_settings,
2092 .nway_reset = sis900_nway_reset,
2093 .get_wol = sis900_get_wol,
2094 .set_wol = sis900_set_wol
2098 * mii_ioctl - process MII i/o control command
2099 * @net_dev: the net device to command for
2100 * @rq: parameter for command
2101 * @cmd: the i/o command
2103 * Process MII command like read/write MII register
2106 static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2108 struct sis900_private *sis_priv = net_dev->priv;
2109 struct mii_ioctl_data *data = if_mii(rq);
2111 switch(cmd) {
2112 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2113 data->phy_id = sis_priv->mii->phy_addr;
2114 /* Fall Through */
2116 case SIOCGMIIREG: /* Read MII PHY register. */
2117 data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2118 return 0;
2120 case SIOCSMIIREG: /* Write MII PHY register. */
2121 if (!capable(CAP_NET_ADMIN))
2122 return -EPERM;
2123 mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2124 return 0;
2125 default:
2126 return -EOPNOTSUPP;
2131 * sis900_get_stats - Get sis900 read/write statistics
2132 * @net_dev: the net device to get statistics for
2134 * get tx/rx statistics for sis900
2137 static struct net_device_stats *
2138 sis900_get_stats(struct net_device *net_dev)
2140 struct sis900_private *sis_priv = net_dev->priv;
2142 return &sis_priv->stats;
2146 * sis900_set_config - Set media type by net_device.set_config
2147 * @dev: the net device for media type change
2148 * @map: ifmap passed by ifconfig
2150 * Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2151 * we support only port changes. All other runtime configuration
2152 * changes will be ignored
2155 static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2157 struct sis900_private *sis_priv = dev->priv;
2158 struct mii_phy *mii_phy = sis_priv->mii;
2160 u16 status;
2162 if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2163 /* we switch on the ifmap->port field. I couldn't find anything
2164 * like a definition or standard for the values of that field.
2165 * I think the meaning of those values is device specific. But
2166 * since I would like to change the media type via the ifconfig
2167 * command I use the definition from linux/netdevice.h
2168 * (which seems to be different from the ifport(pcmcia) definition) */
2169 switch(map->port){
2170 case IF_PORT_UNKNOWN: /* use auto here */
2171 dev->if_port = map->port;
2172 /* we are going to change the media type, so the Link
2173 * will be temporary down and we need to reflect that
2174 * here. When the Link comes up again, it will be
2175 * sensed by the sis_timer procedure, which also does
2176 * all the rest for us */
2177 netif_carrier_off(dev);
2179 /* read current state */
2180 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2182 /* enable auto negotiation and reset the negotioation
2183 * (I don't really know what the auto negatiotiation
2184 * reset really means, but it sounds for me right to
2185 * do one here) */
2186 mdio_write(dev, mii_phy->phy_addr,
2187 MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2189 break;
2191 case IF_PORT_10BASET: /* 10BaseT */
2192 dev->if_port = map->port;
2194 /* we are going to change the media type, so the Link
2195 * will be temporary down and we need to reflect that
2196 * here. When the Link comes up again, it will be
2197 * sensed by the sis_timer procedure, which also does
2198 * all the rest for us */
2199 netif_carrier_off(dev);
2201 /* set Speed to 10Mbps */
2202 /* read current state */
2203 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2205 /* disable auto negotiation and force 10MBit mode*/
2206 mdio_write(dev, mii_phy->phy_addr,
2207 MII_CONTROL, status & ~(MII_CNTL_SPEED |
2208 MII_CNTL_AUTO));
2209 break;
2211 case IF_PORT_100BASET: /* 100BaseT */
2212 case IF_PORT_100BASETX: /* 100BaseTx */
2213 dev->if_port = map->port;
2215 /* we are going to change the media type, so the Link
2216 * will be temporary down and we need to reflect that
2217 * here. When the Link comes up again, it will be
2218 * sensed by the sis_timer procedure, which also does
2219 * all the rest for us */
2220 netif_carrier_off(dev);
2222 /* set Speed to 100Mbps */
2223 /* disable auto negotiation and enable 100MBit Mode */
2224 status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2225 mdio_write(dev, mii_phy->phy_addr,
2226 MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2227 MII_CNTL_SPEED);
2229 break;
2231 case IF_PORT_10BASE2: /* 10Base2 */
2232 case IF_PORT_AUI: /* AUI */
2233 case IF_PORT_100BASEFX: /* 100BaseFx */
2234 /* These Modes are not supported (are they?)*/
2235 return -EOPNOTSUPP;
2236 break;
2238 default:
2239 return -EINVAL;
2242 return 0;
2246 * sis900_mcast_bitnr - compute hashtable index
2247 * @addr: multicast address
2248 * @revision: revision id of chip
2250 * SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2251 * hash table, which makes this function a little bit different from other drivers
2252 * SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2253 * multicast hash table.
2256 static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2259 u32 crc = ether_crc(6, addr);
2261 /* leave 8 or 7 most siginifant bits */
2262 if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2263 return ((int)(crc >> 24));
2264 else
2265 return ((int)(crc >> 25));
2269 * set_rx_mode - Set SiS900 receive mode
2270 * @net_dev: the net device to be set
2272 * Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2273 * And set the appropriate multicast filter.
2274 * Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2277 static void set_rx_mode(struct net_device *net_dev)
2279 long ioaddr = net_dev->base_addr;
2280 struct sis900_private * sis_priv = net_dev->priv;
2281 u16 mc_filter[16] = {0}; /* 256/128 bits multicast hash table */
2282 int i, table_entries;
2283 u32 rx_mode;
2285 /* 635 Hash Table entires = 256(2^16) */
2286 if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2287 (sis_priv->chipset_rev == SIS900B_900_REV))
2288 table_entries = 16;
2289 else
2290 table_entries = 8;
2292 if (net_dev->flags & IFF_PROMISC) {
2293 /* Accept any kinds of packets */
2294 rx_mode = RFPromiscuous;
2295 for (i = 0; i < table_entries; i++)
2296 mc_filter[i] = 0xffff;
2297 } else if ((net_dev->mc_count > multicast_filter_limit) ||
2298 (net_dev->flags & IFF_ALLMULTI)) {
2299 /* too many multicast addresses or accept all multicast packet */
2300 rx_mode = RFAAB | RFAAM;
2301 for (i = 0; i < table_entries; i++)
2302 mc_filter[i] = 0xffff;
2303 } else {
2304 /* Accept Broadcast packet, destination address matchs our
2305 * MAC address, use Receive Filter to reject unwanted MCAST
2306 * packets */
2307 struct dev_mc_list *mclist;
2308 rx_mode = RFAAB;
2309 for (i = 0, mclist = net_dev->mc_list;
2310 mclist && i < net_dev->mc_count;
2311 i++, mclist = mclist->next) {
2312 unsigned int bit_nr =
2313 sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2314 mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2318 /* update Multicast Hash Table in Receive Filter */
2319 for (i = 0; i < table_entries; i++) {
2320 /* why plus 0x04 ??, That makes the correct value for hash table. */
2321 outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2322 outl(mc_filter[i], ioaddr + rfdr);
2325 outl(RFEN | rx_mode, ioaddr + rfcr);
2327 /* sis900 is capable of looping back packets at MAC level for
2328 * debugging purpose */
2329 if (net_dev->flags & IFF_LOOPBACK) {
2330 u32 cr_saved;
2331 /* We must disable Tx/Rx before setting loopback mode */
2332 cr_saved = inl(ioaddr + cr);
2333 outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2334 /* enable loopback */
2335 outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2336 outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2337 /* restore cr */
2338 outl(cr_saved, ioaddr + cr);
2341 return;
2345 * sis900_reset - Reset sis900 MAC
2346 * @net_dev: the net device to reset
2348 * reset sis900 MAC and wait until finished
2349 * reset through command register
2350 * change backoff algorithm for 900B0 & 635 M/B
2353 static void sis900_reset(struct net_device *net_dev)
2355 struct sis900_private * sis_priv = net_dev->priv;
2356 long ioaddr = net_dev->base_addr;
2357 int i = 0;
2358 u32 status = TxRCMP | RxRCMP;
2360 outl(0, ioaddr + ier);
2361 outl(0, ioaddr + imr);
2362 outl(0, ioaddr + rfcr);
2364 outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2366 /* Check that the chip has finished the reset. */
2367 while (status && (i++ < 1000)) {
2368 status ^= (inl(isr + ioaddr) & status);
2371 if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2372 (sis_priv->chipset_rev == SIS900B_900_REV) )
2373 outl(PESEL | RND_CNT, ioaddr + cfg);
2374 else
2375 outl(PESEL, ioaddr + cfg);
2379 * sis900_remove - Remove sis900 device
2380 * @pci_dev: the pci device to be removed
2382 * remove and release SiS900 net device
2385 static void __devexit sis900_remove(struct pci_dev *pci_dev)
2387 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2388 struct sis900_private * sis_priv = net_dev->priv;
2389 struct mii_phy *phy = NULL;
2391 while (sis_priv->first_mii) {
2392 phy = sis_priv->first_mii;
2393 sis_priv->first_mii = phy->next;
2394 kfree(phy);
2397 pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2398 sis_priv->rx_ring_dma);
2399 pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2400 sis_priv->tx_ring_dma);
2401 unregister_netdev(net_dev);
2402 free_netdev(net_dev);
2403 pci_release_regions(pci_dev);
2404 pci_set_drvdata(pci_dev, NULL);
2407 #ifdef CONFIG_PM
2409 static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2411 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2412 long ioaddr = net_dev->base_addr;
2414 if(!netif_running(net_dev))
2415 return 0;
2417 netif_stop_queue(net_dev);
2418 netif_device_detach(net_dev);
2420 /* Stop the chip's Tx and Rx Status Machine */
2421 outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2423 pci_set_power_state(pci_dev, PCI_D3hot);
2424 pci_save_state(pci_dev);
2426 return 0;
2429 static int sis900_resume(struct pci_dev *pci_dev)
2431 struct net_device *net_dev = pci_get_drvdata(pci_dev);
2432 struct sis900_private *sis_priv = net_dev->priv;
2433 long ioaddr = net_dev->base_addr;
2435 if(!netif_running(net_dev))
2436 return 0;
2437 pci_restore_state(pci_dev);
2438 pci_set_power_state(pci_dev, PCI_D0);
2440 sis900_init_rxfilter(net_dev);
2442 sis900_init_tx_ring(net_dev);
2443 sis900_init_rx_ring(net_dev);
2445 set_rx_mode(net_dev);
2447 netif_device_attach(net_dev);
2448 netif_start_queue(net_dev);
2450 /* Workaround for EDB */
2451 sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2453 /* Enable all known interrupts by setting the interrupt mask. */
2454 outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2455 outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2456 outl(IE, ioaddr + ier);
2458 sis900_check_mode(net_dev, sis_priv->mii);
2460 return 0;
2462 #endif /* CONFIG_PM */
2464 static struct pci_driver sis900_pci_driver = {
2465 .name = SIS900_MODULE_NAME,
2466 .id_table = sis900_pci_tbl,
2467 .probe = sis900_probe,
2468 .remove = __devexit_p(sis900_remove),
2469 #ifdef CONFIG_PM
2470 .suspend = sis900_suspend,
2471 .resume = sis900_resume,
2472 #endif /* CONFIG_PM */
2475 static int __init sis900_init_module(void)
2477 /* when a module, this is printed whether or not devices are found in probe */
2478 #ifdef MODULE
2479 printk(version);
2480 #endif
2482 return pci_module_init(&sis900_pci_driver);
2485 static void __exit sis900_cleanup_module(void)
2487 pci_unregister_driver(&sis900_pci_driver);
2490 module_init(sis900_init_module);
2491 module_exit(sis900_cleanup_module);