drivers/net: eliminate irq handler impossible checks, needless casts
[linux-2.6/libata-dev.git] / drivers / net / eepro.c
blobfd6e97891e73355f34878fa9772648e198a7b146
1 /* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */
2 /*
3 Written 1994, 1995,1996 by Bao C. Ha.
5 Copyright (C) 1994, 1995,1996 by Bao C. Ha.
7 This software may be used and distributed
8 according to the terms of the GNU General Public License,
9 incorporated herein by reference.
11 The author may be reached at bao.ha@srs.gov
12 or 418 Hastings Place, Martinez, GA 30907.
14 Things remaining to do:
15 Better record keeping of errors.
16 Eliminate transmit interrupt to reduce overhead.
17 Implement "concurrent processing". I won't be doing it!
19 Bugs:
21 If you have a problem of not detecting the 82595 during a
22 reboot (warm reset), disable the FLASH memory should fix it.
23 This is a compatibility hardware problem.
25 Versions:
26 0.13b basic ethtool support (aris, 09/13/2004)
27 0.13a in memory shortage, drop packets also in board
28 (Michael Westermann <mw@microdata-pos.de>, 07/30/2002)
29 0.13 irq sharing, rewrote probe function, fixed a nasty bug in
30 hardware_send_packet and a major cleanup (aris, 11/08/2001)
31 0.12d fixing a problem with single card detected as eight eth devices
32 fixing a problem with sudden drop in card performance
33 (chris (asdn@go2.pl), 10/29/2001)
34 0.12c fixing some problems with old cards (aris, 01/08/2001)
35 0.12b misc fixes (aris, 06/26/2000)
36 0.12a port of version 0.12a of 2.2.x kernels to 2.3.x
37 (aris (aris@conectiva.com.br), 05/19/2000)
38 0.11e some tweaks about multiple cards support (PdP, jul/aug 1999)
39 0.11d added __initdata, __init stuff; call spin_lock_init
40 in eepro_probe1. Replaced "eepro" by dev->name. Augmented
41 the code protected by spin_lock in interrupt routine
42 (PdP, 12/12/1998)
43 0.11c minor cleanup (PdP, RMC, 09/12/1998)
44 0.11b Pascal Dupuis (dupuis@lei.ucl.ac.be): works as a module
45 under 2.1.xx. Debug messages are flagged as KERN_DEBUG to
46 avoid console flooding. Added locking at critical parts. Now
47 the dawn thing is SMP safe.
48 0.11a Attempt to get 2.1.xx support up (RMC)
49 0.11 Brian Candler added support for multiple cards. Tested as
50 a module, no idea if it works when compiled into kernel.
52 0.10e Rick Bressler notified me that ifconfig up;ifconfig down fails
53 because the irq is lost somewhere. Fixed that by moving
54 request_irq and free_irq to eepro_open and eepro_close respectively.
55 0.10d Ugh! Now Wakeup works. Was seriously broken in my first attempt.
56 I'll need to find a way to specify an ioport other than
57 the default one in the PnP case. PnP definitively sucks.
58 And, yes, this is not the only reason.
59 0.10c PnP Wakeup Test for 595FX. uncomment #define PnPWakeup;
60 to use.
61 0.10b Should work now with (some) Pro/10+. At least for
62 me (and my two cards) it does. _No_ guarantee for
63 function with non-Pro/10+ cards! (don't have any)
64 (RMC, 9/11/96)
66 0.10 Added support for the Etherexpress Pro/10+. The
67 IRQ map was changed significantly from the old
68 pro/10. The new interrupt map was provided by
69 Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu).
70 (BCH, 9/3/96)
72 0.09 Fixed a race condition in the transmit algorithm,
73 which causes crashes under heavy load with fast
74 pentium computers. The performance should also
75 improve a bit. The size of RX buffer, and hence
76 TX buffer, can also be changed via lilo or insmod.
77 (BCH, 7/31/96)
79 0.08 Implement 32-bit I/O for the 82595TX and 82595FX
80 based lan cards. Disable full-duplex mode if TPE
81 is not used. (BCH, 4/8/96)
83 0.07a Fix a stat report which counts every packet as a
84 heart-beat failure. (BCH, 6/3/95)
86 0.07 Modified to support all other 82595-based lan cards.
87 The IRQ vector of the EtherExpress Pro will be set
88 according to the value saved in the EEPROM. For other
89 cards, I will do autoirq_request() to grab the next
90 available interrupt vector. (BCH, 3/17/95)
92 0.06a,b Interim released. Minor changes in the comments and
93 print out format. (BCH, 3/9/95 and 3/14/95)
95 0.06 First stable release that I am comfortable with. (BCH,
96 3/2/95)
98 0.05 Complete testing of multicast. (BCH, 2/23/95)
100 0.04 Adding multicast support. (BCH, 2/14/95)
102 0.03 First widely alpha release for public testing.
103 (BCH, 2/14/95)
107 static const char version[] =
108 "eepro.c: v0.13b 09/13/2004 aris@cathedrallabs.org\n";
110 #include <linux/module.h>
113 Sources:
115 This driver wouldn't have been written without the availability
116 of the Crynwr's Lan595 driver source code. It helps me to
117 familiarize with the 82595 chipset while waiting for the Intel
118 documentation. I also learned how to detect the 82595 using
119 the packet driver's technique.
121 This driver is written by cutting and pasting the skeleton.c driver
122 provided by Donald Becker. I also borrowed the EEPROM routine from
123 Donald Becker's 82586 driver.
125 Datasheet for the Intel 82595 (including the TX and FX version). It
126 provides just enough info that the casual reader might think that it
127 documents the i82595.
129 The User Manual for the 82595. It provides a lot of the missing
130 information.
134 #include <linux/kernel.h>
135 #include <linux/types.h>
136 #include <linux/fcntl.h>
137 #include <linux/interrupt.h>
138 #include <linux/ioport.h>
139 #include <linux/in.h>
140 #include <linux/slab.h>
141 #include <linux/string.h>
142 #include <linux/errno.h>
143 #include <linux/netdevice.h>
144 #include <linux/etherdevice.h>
145 #include <linux/skbuff.h>
146 #include <linux/spinlock.h>
147 #include <linux/init.h>
148 #include <linux/delay.h>
149 #include <linux/bitops.h>
150 #include <linux/ethtool.h>
152 #include <asm/system.h>
153 #include <asm/io.h>
154 #include <asm/dma.h>
156 #define DRV_NAME "eepro"
157 #define DRV_VERSION "0.13c"
159 #define compat_dev_kfree_skb( skb, mode ) dev_kfree_skb( (skb) )
160 /* I had reports of looong delays with SLOW_DOWN defined as udelay(2) */
161 #define SLOW_DOWN inb(0x80)
162 /* udelay(2) */
163 #define compat_init_data __initdata
164 enum iftype { AUI=0, BNC=1, TPE=2 };
166 /* First, a few definitions that the brave might change. */
167 /* A zero-terminated list of I/O addresses to be probed. */
168 static unsigned int eepro_portlist[] compat_init_data =
169 { 0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0};
170 /* note: 0x300 is default, the 595FX supports ALL IO Ports
171 from 0x000 to 0x3F0, some of which are reserved in PCs */
173 /* To try the (not-really PnP Wakeup: */
175 #define PnPWakeup
178 /* use 0 for production, 1 for verification, >2 for debug */
179 #ifndef NET_DEBUG
180 #define NET_DEBUG 0
181 #endif
182 static unsigned int net_debug = NET_DEBUG;
184 /* The number of low I/O ports used by the ethercard. */
185 #define EEPRO_IO_EXTENT 16
187 /* Different 82595 chips */
188 #define LAN595 0
189 #define LAN595TX 1
190 #define LAN595FX 2
191 #define LAN595FX_10ISA 3
193 /* Information that need to be kept for each board. */
194 struct eepro_local {
195 struct net_device_stats stats;
196 unsigned rx_start;
197 unsigned tx_start; /* start of the transmit chain */
198 int tx_last; /* pointer to last packet in the transmit chain */
199 unsigned tx_end; /* end of the transmit chain (plus 1) */
200 int eepro; /* 1 for the EtherExpress Pro/10,
201 2 for the EtherExpress Pro/10+,
202 3 for the EtherExpress 10 (blue cards),
203 0 for other 82595-based lan cards. */
204 int version; /* a flag to indicate if this is a TX or FX
205 version of the 82595 chip. */
206 int stepping;
208 spinlock_t lock; /* Serializing lock */
210 unsigned rcv_ram; /* pre-calculated space for rx */
211 unsigned xmt_ram; /* pre-calculated space for tx */
212 unsigned char xmt_bar;
213 unsigned char xmt_lower_limit_reg;
214 unsigned char xmt_upper_limit_reg;
215 short xmt_lower_limit;
216 short xmt_upper_limit;
217 short rcv_lower_limit;
218 short rcv_upper_limit;
219 unsigned char eeprom_reg;
220 unsigned short word[8];
223 /* The station (ethernet) address prefix, used for IDing the board. */
224 #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
225 #define SA_ADDR1 0xaa
226 #define SA_ADDR2 0x00
228 #define GetBit(x,y) ((x & (1<<y))>>y)
230 /* EEPROM Word 0: */
231 #define ee_PnP 0 /* Plug 'n Play enable bit */
232 #define ee_Word1 1 /* Word 1? */
233 #define ee_BusWidth 2 /* 8/16 bit */
234 #define ee_FlashAddr 3 /* Flash Address */
235 #define ee_FlashMask 0x7 /* Mask */
236 #define ee_AutoIO 6 /* */
237 #define ee_reserved0 7 /* =0! */
238 #define ee_Flash 8 /* Flash there? */
239 #define ee_AutoNeg 9 /* Auto Negotiation enabled? */
240 #define ee_IO0 10 /* IO Address LSB */
241 #define ee_IO0Mask 0x /*...*/
242 #define ee_IO1 15 /* IO MSB */
244 /* EEPROM Word 1: */
245 #define ee_IntSel 0 /* Interrupt */
246 #define ee_IntMask 0x7
247 #define ee_LI 3 /* Link Integrity 0= enabled */
248 #define ee_PC 4 /* Polarity Correction 0= enabled */
249 #define ee_TPE_AUI 5 /* PortSelection 1=TPE */
250 #define ee_Jabber 6 /* Jabber prevention 0= enabled */
251 #define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
252 #define ee_SMOUT 8 /* SMout Pin Control 0= Input */
253 #define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
254 #define ee_reserved1 10 /* .. 12 =0! */
255 #define ee_AltReady 13 /* Alternate Ready, 0=normal */
256 #define ee_reserved2 14 /* =0! */
257 #define ee_Duplex 15
259 /* Word2,3,4: */
260 #define ee_IA5 0 /*bit start for individual Addr Byte 5 */
261 #define ee_IA4 8 /*bit start for individual Addr Byte 5 */
262 #define ee_IA3 0 /*bit start for individual Addr Byte 5 */
263 #define ee_IA2 8 /*bit start for individual Addr Byte 5 */
264 #define ee_IA1 0 /*bit start for individual Addr Byte 5 */
265 #define ee_IA0 8 /*bit start for individual Addr Byte 5 */
267 /* Word 5: */
268 #define ee_BNC_TPE 0 /* 0=TPE */
269 #define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
270 #define ee_BootTypeMask 0x3
271 #define ee_NumConn 3 /* Number of Connections 0= One or Two */
272 #define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
273 #define ee_PortTPE 5
274 #define ee_PortBNC 6
275 #define ee_PortAUI 7
276 #define ee_PowerMgt 10 /* 0= disabled */
277 #define ee_CP 13 /* Concurrent Processing */
278 #define ee_CPMask 0x7
280 /* Word 6: */
281 #define ee_Stepping 0 /* Stepping info */
282 #define ee_StepMask 0x0F
283 #define ee_BoardID 4 /* Manucaturer Board ID, reserved */
284 #define ee_BoardMask 0x0FFF
286 /* Word 7: */
287 #define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
288 #define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
290 /*..*/
291 #define ee_SIZE 0x40 /* total EEprom Size */
292 #define ee_Checksum 0xBABA /* initial and final value for adding checksum */
295 /* Card identification via EEprom: */
296 #define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
297 #define ee_addr_id 0x11 /* Word offset for Card ID */
298 #define ee_addr_SN 0x12 /* Serial Number */
299 #define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
302 #define ee_vendor_intel0 0x25 /* Vendor ID Intel */
303 #define ee_vendor_intel1 0xD4
304 #define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
305 #define ee_id_eepro10p1 0x31
307 #define TX_TIMEOUT 40
309 /* Index to functions, as function prototypes. */
311 static int eepro_probe1(struct net_device *dev, int autoprobe);
312 static int eepro_open(struct net_device *dev);
313 static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev);
314 static irqreturn_t eepro_interrupt(int irq, void *dev_id);
315 static void eepro_rx(struct net_device *dev);
316 static void eepro_transmit_interrupt(struct net_device *dev);
317 static int eepro_close(struct net_device *dev);
318 static struct net_device_stats *eepro_get_stats(struct net_device *dev);
319 static void set_multicast_list(struct net_device *dev);
320 static void eepro_tx_timeout (struct net_device *dev);
322 static int read_eeprom(int ioaddr, int location, struct net_device *dev);
323 static int hardware_send_packet(struct net_device *dev, void *buf, short length);
324 static int eepro_grab_irq(struct net_device *dev);
327 Details of the i82595.
329 You will need either the datasheet or the user manual to understand what
330 is going on here. The 82595 is very different from the 82586, 82593.
332 The receive algorithm in eepro_rx() is just an implementation of the
333 RCV ring structure that the Intel 82595 imposes at the hardware level.
334 The receive buffer is set at 24K, and the transmit buffer is 8K. I
335 am assuming that the total buffer memory is 32K, which is true for the
336 Intel EtherExpress Pro/10. If it is less than that on a generic card,
337 the driver will be broken.
339 The transmit algorithm in the hardware_send_packet() is similar to the
340 one in the eepro_rx(). The transmit buffer is a ring linked list.
341 I just queue the next available packet to the end of the list. In my
342 system, the 82595 is so fast that the list seems to always contain a
343 single packet. In other systems with faster computers and more congested
344 network traffics, the ring linked list should improve performance by
345 allowing up to 8K worth of packets to be queued.
347 The sizes of the receive and transmit buffers can now be changed via lilo
348 or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0"
349 where rx-buffer is in KB unit. Modules uses the parameter mem which is
350 also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer."
351 The receive buffer has to be more than 3K or less than 29K. Otherwise,
352 it is reset to the default of 24K, and, hence, 8K for the trasnmit
353 buffer (transmit-buffer = 32K - receive-buffer).
356 #define RAM_SIZE 0x8000
358 #define RCV_HEADER 8
359 #define RCV_DEFAULT_RAM 0x6000
361 #define XMT_HEADER 8
362 #define XMT_DEFAULT_RAM (RAM_SIZE - RCV_DEFAULT_RAM)
364 #define XMT_START_PRO RCV_DEFAULT_RAM
365 #define XMT_START_10 0x0000
366 #define RCV_START_PRO 0x0000
367 #define RCV_START_10 XMT_DEFAULT_RAM
369 #define RCV_DONE 0x0008
370 #define RX_OK 0x2000
371 #define RX_ERROR 0x0d81
373 #define TX_DONE_BIT 0x0080
374 #define TX_OK 0x2000
375 #define CHAIN_BIT 0x8000
376 #define XMT_STATUS 0x02
377 #define XMT_CHAIN 0x04
378 #define XMT_COUNT 0x06
380 #define BANK0_SELECT 0x00
381 #define BANK1_SELECT 0x40
382 #define BANK2_SELECT 0x80
384 /* Bank 0 registers */
385 #define COMMAND_REG 0x00 /* Register 0 */
386 #define MC_SETUP 0x03
387 #define XMT_CMD 0x04
388 #define DIAGNOSE_CMD 0x07
389 #define RCV_ENABLE_CMD 0x08
390 #define RCV_DISABLE_CMD 0x0a
391 #define STOP_RCV_CMD 0x0b
392 #define RESET_CMD 0x0e
393 #define POWER_DOWN_CMD 0x18
394 #define RESUME_XMT_CMD 0x1c
395 #define SEL_RESET_CMD 0x1e
396 #define STATUS_REG 0x01 /* Register 1 */
397 #define RX_INT 0x02
398 #define TX_INT 0x04
399 #define EXEC_STATUS 0x30
400 #define ID_REG 0x02 /* Register 2 */
401 #define R_ROBIN_BITS 0xc0 /* round robin counter */
402 #define ID_REG_MASK 0x2c
403 #define ID_REG_SIG 0x24
404 #define AUTO_ENABLE 0x10
405 #define INT_MASK_REG 0x03 /* Register 3 */
406 #define RX_STOP_MASK 0x01
407 #define RX_MASK 0x02
408 #define TX_MASK 0x04
409 #define EXEC_MASK 0x08
410 #define ALL_MASK 0x0f
411 #define IO_32_BIT 0x10
412 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */
413 #define RCV_STOP 0x06
415 #define XMT_BAR_PRO 0x0a
416 #define XMT_BAR_10 0x0b
418 #define HOST_ADDRESS_REG 0x0c
419 #define IO_PORT 0x0e
420 #define IO_PORT_32_BIT 0x0c
422 /* Bank 1 registers */
423 #define REG1 0x01
424 #define WORD_WIDTH 0x02
425 #define INT_ENABLE 0x80
426 #define INT_NO_REG 0x02
427 #define RCV_LOWER_LIMIT_REG 0x08
428 #define RCV_UPPER_LIMIT_REG 0x09
430 #define XMT_LOWER_LIMIT_REG_PRO 0x0a
431 #define XMT_UPPER_LIMIT_REG_PRO 0x0b
432 #define XMT_LOWER_LIMIT_REG_10 0x0b
433 #define XMT_UPPER_LIMIT_REG_10 0x0a
435 /* Bank 2 registers */
436 #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
437 #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
438 #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
439 #define REG2 0x02
440 #define PRMSC_Mode 0x01
441 #define Multi_IA 0x20
442 #define REG3 0x03
443 #define TPE_BIT 0x04
444 #define BNC_BIT 0x20
445 #define REG13 0x0d
446 #define FDX 0x00
447 #define A_N_ENABLE 0x02
449 #define I_ADD_REG0 0x04
450 #define I_ADD_REG1 0x05
451 #define I_ADD_REG2 0x06
452 #define I_ADD_REG3 0x07
453 #define I_ADD_REG4 0x08
454 #define I_ADD_REG5 0x09
456 #define EEPROM_REG_PRO 0x0a
457 #define EEPROM_REG_10 0x0b
459 #define EESK 0x01
460 #define EECS 0x02
461 #define EEDI 0x04
462 #define EEDO 0x08
464 /* do a full reset */
465 #define eepro_reset(ioaddr) outb(RESET_CMD, ioaddr)
467 /* do a nice reset */
468 #define eepro_sel_reset(ioaddr) { \
469 outb(SEL_RESET_CMD, ioaddr); \
470 SLOW_DOWN; \
471 SLOW_DOWN; \
474 /* disable all interrupts */
475 #define eepro_dis_int(ioaddr) outb(ALL_MASK, ioaddr + INT_MASK_REG)
477 /* clear all interrupts */
478 #define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
480 /* enable tx/rx */
481 #define eepro_en_int(ioaddr) outb(ALL_MASK & ~(RX_MASK | TX_MASK), \
482 ioaddr + INT_MASK_REG)
484 /* enable exec event interrupt */
485 #define eepro_en_intexec(ioaddr) outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG)
487 /* enable rx */
488 #define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
490 /* disable rx */
491 #define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
493 /* switch bank */
494 #define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
495 #define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
496 #define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
498 /* enable interrupt line */
499 #define eepro_en_intline(ioaddr) outb(inb(ioaddr + REG1) | INT_ENABLE,\
500 ioaddr + REG1)
502 /* disable interrupt line */
503 #define eepro_dis_intline(ioaddr) outb(inb(ioaddr + REG1) & 0x7f, \
504 ioaddr + REG1);
506 /* set diagnose flag */
507 #define eepro_diag(ioaddr) outb(DIAGNOSE_CMD, ioaddr)
509 /* ack for rx int */
510 #define eepro_ack_rx(ioaddr) outb (RX_INT, ioaddr + STATUS_REG)
512 /* ack for tx int */
513 #define eepro_ack_tx(ioaddr) outb (TX_INT, ioaddr + STATUS_REG)
515 /* a complete sel reset */
516 #define eepro_complete_selreset(ioaddr) { \
517 lp->stats.tx_errors++;\
518 eepro_sel_reset(ioaddr);\
519 lp->tx_end = \
520 lp->xmt_lower_limit;\
521 lp->tx_start = lp->tx_end;\
522 lp->tx_last = 0;\
523 dev->trans_start = jiffies;\
524 netif_wake_queue(dev);\
525 eepro_en_rx(ioaddr);\
528 /* Check for a network adaptor of this type, and return '0' if one exists.
529 If dev->base_addr == 0, probe all likely locations.
530 If dev->base_addr == 1, always return failure.
531 If dev->base_addr == 2, allocate space for the device and return success
532 (detachable devices only).
534 static int __init do_eepro_probe(struct net_device *dev)
536 int i;
537 int base_addr = dev->base_addr;
538 int irq = dev->irq;
540 SET_MODULE_OWNER(dev);
542 #ifdef PnPWakeup
543 /* XXXX for multiple cards should this only be run once? */
545 /* Wakeup: */
546 #define WakeupPort 0x279
547 #define WakeupSeq {0x6A, 0xB5, 0xDA, 0xED, 0xF6, 0xFB, 0x7D, 0xBE,\
548 0xDF, 0x6F, 0x37, 0x1B, 0x0D, 0x86, 0xC3, 0x61,\
549 0xB0, 0x58, 0x2C, 0x16, 0x8B, 0x45, 0xA2, 0xD1,\
550 0xE8, 0x74, 0x3A, 0x9D, 0xCE, 0xE7, 0x73, 0x43}
553 unsigned short int WS[32]=WakeupSeq;
555 if (request_region(WakeupPort, 2, "eepro wakeup")) {
556 if (net_debug>5)
557 printk(KERN_DEBUG "Waking UP\n");
559 outb_p(0,WakeupPort);
560 outb_p(0,WakeupPort);
561 for (i=0; i<32; i++) {
562 outb_p(WS[i],WakeupPort);
563 if (net_debug>5) printk(KERN_DEBUG ": %#x ",WS[i]);
566 release_region(WakeupPort, 2);
567 } else
568 printk(KERN_WARNING "PnP wakeup region busy!\n");
570 #endif
572 if (base_addr > 0x1ff) /* Check a single specified location. */
573 return eepro_probe1(dev, 0);
575 else if (base_addr != 0) /* Don't probe at all. */
576 return -ENXIO;
578 for (i = 0; eepro_portlist[i]; i++) {
579 dev->base_addr = eepro_portlist[i];
580 dev->irq = irq;
581 if (eepro_probe1(dev, 1) == 0)
582 return 0;
585 return -ENODEV;
588 #ifndef MODULE
589 struct net_device * __init eepro_probe(int unit)
591 struct net_device *dev = alloc_etherdev(sizeof(struct eepro_local));
592 int err;
594 if (!dev)
595 return ERR_PTR(-ENODEV);
597 SET_MODULE_OWNER(dev);
599 sprintf(dev->name, "eth%d", unit);
600 netdev_boot_setup_check(dev);
602 err = do_eepro_probe(dev);
603 if (err)
604 goto out;
605 return dev;
606 out:
607 free_netdev(dev);
608 return ERR_PTR(err);
610 #endif
612 static void __init printEEPROMInfo(struct net_device *dev)
614 struct eepro_local *lp = (struct eepro_local *)dev->priv;
615 int ioaddr = dev->base_addr;
616 unsigned short Word;
617 int i,j;
619 j = ee_Checksum;
620 for (i = 0; i < 8; i++)
621 j += lp->word[i];
622 for ( ; i < ee_SIZE; i++)
623 j += read_eeprom(ioaddr, i, dev);
625 printk(KERN_DEBUG "Checksum: %#x\n",j&0xffff);
627 Word = lp->word[0];
628 printk(KERN_DEBUG "Word0:\n");
629 printk(KERN_DEBUG " Plug 'n Pray: %d\n",GetBit(Word,ee_PnP));
630 printk(KERN_DEBUG " Buswidth: %d\n",(GetBit(Word,ee_BusWidth)+1)*8 );
631 printk(KERN_DEBUG " AutoNegotiation: %d\n",GetBit(Word,ee_AutoNeg));
632 printk(KERN_DEBUG " IO Address: %#x\n", (Word>>ee_IO0)<<4);
634 if (net_debug>4) {
635 Word = lp->word[1];
636 printk(KERN_DEBUG "Word1:\n");
637 printk(KERN_DEBUG " INT: %d\n", Word & ee_IntMask);
638 printk(KERN_DEBUG " LI: %d\n", GetBit(Word,ee_LI));
639 printk(KERN_DEBUG " PC: %d\n", GetBit(Word,ee_PC));
640 printk(KERN_DEBUG " TPE/AUI: %d\n", GetBit(Word,ee_TPE_AUI));
641 printk(KERN_DEBUG " Jabber: %d\n", GetBit(Word,ee_Jabber));
642 printk(KERN_DEBUG " AutoPort: %d\n", GetBit(!Word,ee_Jabber));
643 printk(KERN_DEBUG " Duplex: %d\n", GetBit(Word,ee_Duplex));
646 Word = lp->word[5];
647 printk(KERN_DEBUG "Word5:\n");
648 printk(KERN_DEBUG " BNC: %d\n",GetBit(Word,ee_BNC_TPE));
649 printk(KERN_DEBUG " NumConnectors: %d\n",GetBit(Word,ee_NumConn));
650 printk(KERN_DEBUG " Has ");
651 if (GetBit(Word,ee_PortTPE)) printk(KERN_DEBUG "TPE ");
652 if (GetBit(Word,ee_PortBNC)) printk(KERN_DEBUG "BNC ");
653 if (GetBit(Word,ee_PortAUI)) printk(KERN_DEBUG "AUI ");
654 printk(KERN_DEBUG "port(s) \n");
656 Word = lp->word[6];
657 printk(KERN_DEBUG "Word6:\n");
658 printk(KERN_DEBUG " Stepping: %d\n",Word & ee_StepMask);
659 printk(KERN_DEBUG " BoardID: %d\n",Word>>ee_BoardID);
661 Word = lp->word[7];
662 printk(KERN_DEBUG "Word7:\n");
663 printk(KERN_DEBUG " INT to IRQ:\n");
665 for (i=0, j=0; i<15; i++)
666 if (GetBit(Word,i)) printk(KERN_DEBUG " INT%d -> IRQ %d;",j++,i);
668 printk(KERN_DEBUG "\n");
671 /* function to recalculate the limits of buffer based on rcv_ram */
672 static void eepro_recalc (struct net_device *dev)
674 struct eepro_local * lp;
676 lp = netdev_priv(dev);
677 lp->xmt_ram = RAM_SIZE - lp->rcv_ram;
679 if (lp->eepro == LAN595FX_10ISA) {
680 lp->xmt_lower_limit = XMT_START_10;
681 lp->xmt_upper_limit = (lp->xmt_ram - 2);
682 lp->rcv_lower_limit = lp->xmt_ram;
683 lp->rcv_upper_limit = (RAM_SIZE - 2);
685 else {
686 lp->rcv_lower_limit = RCV_START_PRO;
687 lp->rcv_upper_limit = (lp->rcv_ram - 2);
688 lp->xmt_lower_limit = lp->rcv_ram;
689 lp->xmt_upper_limit = (RAM_SIZE - 2);
693 /* prints boot-time info */
694 static void __init eepro_print_info (struct net_device *dev)
696 struct eepro_local * lp = netdev_priv(dev);
697 int i;
698 const char * ifmap[] = {"AUI", "10Base2", "10BaseT"};
700 i = inb(dev->base_addr + ID_REG);
701 printk(KERN_DEBUG " id: %#x ",i);
702 printk(" io: %#x ", (unsigned)dev->base_addr);
704 switch (lp->eepro) {
705 case LAN595FX_10ISA:
706 printk("%s: Intel EtherExpress 10 ISA\n at %#x,",
707 dev->name, (unsigned)dev->base_addr);
708 break;
709 case LAN595FX:
710 printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,",
711 dev->name, (unsigned)dev->base_addr);
712 break;
713 case LAN595TX:
714 printk("%s: Intel EtherExpress Pro/10 ISA at %#x,",
715 dev->name, (unsigned)dev->base_addr);
716 break;
717 case LAN595:
718 printk("%s: Intel 82595-based lan card at %#x,",
719 dev->name, (unsigned)dev->base_addr);
722 for (i=0; i < 6; i++)
723 printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]);
725 if (net_debug > 3)
726 printk(KERN_DEBUG ", %dK RCV buffer",
727 (int)(lp->rcv_ram)/1024);
729 if (dev->irq > 2)
730 printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]);
731 else
732 printk(", %s.\n", ifmap[dev->if_port]);
734 if (net_debug > 3) {
735 i = lp->word[5];
736 if (i & 0x2000) /* bit 13 of EEPROM word 5 */
737 printk(KERN_DEBUG "%s: Concurrent Processing is "
738 "enabled but not used!\n", dev->name);
741 /* Check the station address for the manufacturer's code */
742 if (net_debug>3)
743 printEEPROMInfo(dev);
746 static const struct ethtool_ops eepro_ethtool_ops;
748 /* This is the real probe routine. Linux has a history of friendly device
749 probes on the ISA bus. A good device probe avoids doing writes, and
750 verifies that the correct device exists and functions. */
752 static int __init eepro_probe1(struct net_device *dev, int autoprobe)
754 unsigned short station_addr[3], id, counter;
755 int i;
756 struct eepro_local *lp;
757 int ioaddr = dev->base_addr;
758 int err;
760 /* Grab the region so we can find another board if autoIRQ fails. */
761 if (!request_region(ioaddr, EEPRO_IO_EXTENT, DRV_NAME)) {
762 if (!autoprobe)
763 printk(KERN_WARNING "EEPRO: io-port 0x%04x in use \n",
764 ioaddr);
765 return -EBUSY;
768 /* Now, we are going to check for the signature of the
769 ID_REG (register 2 of bank 0) */
771 id = inb(ioaddr + ID_REG);
773 if ((id & ID_REG_MASK) != ID_REG_SIG)
774 goto exit;
776 /* We seem to have the 82595 signature, let's
777 play with its counter (last 2 bits of
778 register 2 of bank 0) to be sure. */
780 counter = id & R_ROBIN_BITS;
782 if ((inb(ioaddr + ID_REG) & R_ROBIN_BITS) != (counter + 0x40))
783 goto exit;
785 lp = netdev_priv(dev);
786 memset(lp, 0, sizeof(struct eepro_local));
787 lp->xmt_bar = XMT_BAR_PRO;
788 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
789 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
790 lp->eeprom_reg = EEPROM_REG_PRO;
791 spin_lock_init(&lp->lock);
793 /* Now, get the ethernet hardware address from
794 the EEPROM */
795 station_addr[0] = read_eeprom(ioaddr, 2, dev);
797 /* FIXME - find another way to know that we've found
798 * an Etherexpress 10
800 if (station_addr[0] == 0x0000 || station_addr[0] == 0xffff) {
801 lp->eepro = LAN595FX_10ISA;
802 lp->eeprom_reg = EEPROM_REG_10;
803 lp->xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
804 lp->xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
805 lp->xmt_bar = XMT_BAR_10;
806 station_addr[0] = read_eeprom(ioaddr, 2, dev);
809 /* get all words at once. will be used here and for ethtool */
810 for (i = 0; i < 8; i++) {
811 lp->word[i] = read_eeprom(ioaddr, i, dev);
813 station_addr[1] = lp->word[3];
814 station_addr[2] = lp->word[4];
816 if (!lp->eepro) {
817 if (lp->word[7] == ee_FX_INT2IRQ)
818 lp->eepro = 2;
819 else if (station_addr[2] == SA_ADDR1)
820 lp->eepro = 1;
823 /* Fill in the 'dev' fields. */
824 for (i=0; i < 6; i++)
825 dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i];
827 /* RX buffer must be more than 3K and less than 29K */
828 if (dev->mem_end < 3072 || dev->mem_end > 29696)
829 lp->rcv_ram = RCV_DEFAULT_RAM;
831 /* calculate {xmt,rcv}_{lower,upper}_limit */
832 eepro_recalc(dev);
834 if (GetBit(lp->word[5], ee_BNC_TPE))
835 dev->if_port = BNC;
836 else
837 dev->if_port = TPE;
839 if (dev->irq < 2 && lp->eepro != 0) {
840 /* Mask off INT number */
841 int count = lp->word[1] & 7;
842 unsigned irqMask = lp->word[7];
844 while (count--)
845 irqMask &= irqMask - 1;
847 count = ffs(irqMask);
849 if (count)
850 dev->irq = count - 1;
852 if (dev->irq < 2) {
853 printk(KERN_ERR " Duh! illegal interrupt vector stored in EEPROM.\n");
854 goto exit;
855 } else if (dev->irq == 2) {
856 dev->irq = 9;
860 dev->open = eepro_open;
861 dev->stop = eepro_close;
862 dev->hard_start_xmit = eepro_send_packet;
863 dev->get_stats = eepro_get_stats;
864 dev->set_multicast_list = &set_multicast_list;
865 dev->tx_timeout = eepro_tx_timeout;
866 dev->watchdog_timeo = TX_TIMEOUT;
867 dev->ethtool_ops = &eepro_ethtool_ops;
869 /* print boot time info */
870 eepro_print_info(dev);
872 /* reset 82595 */
873 eepro_reset(ioaddr);
875 err = register_netdev(dev);
876 if (err)
877 goto err;
878 return 0;
879 exit:
880 err = -ENODEV;
881 err:
882 release_region(dev->base_addr, EEPRO_IO_EXTENT);
883 return err;
886 /* Open/initialize the board. This is called (in the current kernel)
887 sometime after booting when the 'ifconfig' program is run.
889 This routine should set everything up anew at each open, even
890 registers that "should" only need to be set once at boot, so that
891 there is non-reboot way to recover if something goes wrong.
894 static char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1};
895 static char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1};
896 static int eepro_grab_irq(struct net_device *dev)
898 int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12, 0 };
899 int *irqp = irqlist, temp_reg, ioaddr = dev->base_addr;
901 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
903 /* Enable the interrupt line. */
904 eepro_en_intline(ioaddr);
906 /* be CAREFUL, BANK 0 now */
907 eepro_sw2bank0(ioaddr);
909 /* clear all interrupts */
910 eepro_clear_int(ioaddr);
912 /* Let EXEC event to interrupt */
913 eepro_en_intexec(ioaddr);
915 do {
916 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
918 temp_reg = inb(ioaddr + INT_NO_REG);
919 outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG);
921 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
923 if (request_irq (*irqp, NULL, IRQF_SHARED, "bogus", dev) != EBUSY) {
924 unsigned long irq_mask;
925 /* Twinkle the interrupt, and check if it's seen */
926 irq_mask = probe_irq_on();
928 eepro_diag(ioaddr); /* RESET the 82595 */
929 mdelay(20);
931 if (*irqp == probe_irq_off(irq_mask)) /* It's a good IRQ line */
932 break;
934 /* clear all interrupts */
935 eepro_clear_int(ioaddr);
937 } while (*++irqp);
939 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
941 /* Disable the physical interrupt line. */
942 eepro_dis_intline(ioaddr);
944 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
946 /* Mask all the interrupts. */
947 eepro_dis_int(ioaddr);
949 /* clear all interrupts */
950 eepro_clear_int(ioaddr);
952 return dev->irq;
955 static int eepro_open(struct net_device *dev)
957 unsigned short temp_reg, old8, old9;
958 int irqMask;
959 int i, ioaddr = dev->base_addr;
960 struct eepro_local *lp = netdev_priv(dev);
962 if (net_debug > 3)
963 printk(KERN_DEBUG "%s: entering eepro_open routine.\n", dev->name);
965 irqMask = lp->word[7];
967 if (lp->eepro == LAN595FX_10ISA) {
968 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 3;\n");
970 else if (irqMask == ee_FX_INT2IRQ) /* INT to IRQ Mask */
972 lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */
973 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 2;\n");
976 else if ((dev->dev_addr[0] == SA_ADDR0 &&
977 dev->dev_addr[1] == SA_ADDR1 &&
978 dev->dev_addr[2] == SA_ADDR2))
980 lp->eepro = 1;
981 if (net_debug > 3) printk(KERN_DEBUG "p->eepro = 1;\n");
982 } /* Yes, an Intel EtherExpress Pro/10 */
984 else lp->eepro = 0; /* No, it is a generic 82585 lan card */
986 /* Get the interrupt vector for the 82595 */
987 if (dev->irq < 2 && eepro_grab_irq(dev) == 0) {
988 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
989 return -EAGAIN;
992 if (request_irq(dev->irq , &eepro_interrupt, 0, dev->name, dev)) {
993 printk(KERN_ERR "%s: unable to get IRQ %d.\n", dev->name, dev->irq);
994 return -EAGAIN;
997 #ifdef irq2dev_map
998 if (((irq2dev_map[dev->irq] != 0)
999 || (irq2dev_map[dev->irq] = dev) == 0) &&
1000 (irq2dev_map[dev->irq]!=dev)) {
1001 /* printk("%s: IRQ map wrong\n", dev->name); */
1002 free_irq(dev->irq, dev);
1003 return -EAGAIN;
1005 #endif
1007 /* Initialize the 82595. */
1009 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1010 temp_reg = inb(ioaddr + lp->eeprom_reg);
1012 lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */
1014 if (net_debug > 3)
1015 printk(KERN_DEBUG "The stepping of the 82595 is %d\n", lp->stepping);
1017 if (temp_reg & 0x10) /* Check the TurnOff Enable bit */
1018 outb(temp_reg & 0xef, ioaddr + lp->eeprom_reg);
1019 for (i=0; i < 6; i++)
1020 outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i);
1022 temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */
1023 outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */
1024 | RCV_Discard_BadFrame, ioaddr + REG1);
1026 temp_reg = inb(ioaddr + REG2); /* Match broadcast */
1027 outb(temp_reg | 0x14, ioaddr + REG2);
1029 temp_reg = inb(ioaddr + REG3);
1030 outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */
1032 /* Set the receiving mode */
1033 eepro_sw2bank1(ioaddr); /* be CAREFUL, BANK 1 now */
1035 /* Set the interrupt vector */
1036 temp_reg = inb(ioaddr + INT_NO_REG);
1037 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1038 outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG);
1039 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1042 temp_reg = inb(ioaddr + INT_NO_REG);
1043 if (lp->eepro == LAN595FX || lp->eepro == LAN595FX_10ISA)
1044 outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG);
1045 else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG);
1047 if (net_debug > 3)
1048 printk(KERN_DEBUG "eepro_open: content of INT Reg is %x\n", temp_reg);
1051 /* Initialize the RCV and XMT upper and lower limits */
1052 outb(lp->rcv_lower_limit >> 8, ioaddr + RCV_LOWER_LIMIT_REG);
1053 outb(lp->rcv_upper_limit >> 8, ioaddr + RCV_UPPER_LIMIT_REG);
1054 outb(lp->xmt_lower_limit >> 8, ioaddr + lp->xmt_lower_limit_reg);
1055 outb(lp->xmt_upper_limit >> 8, ioaddr + lp->xmt_upper_limit_reg);
1057 /* Enable the interrupt line. */
1058 eepro_en_intline(ioaddr);
1060 /* Switch back to Bank 0 */
1061 eepro_sw2bank0(ioaddr);
1063 /* Let RX and TX events to interrupt */
1064 eepro_en_int(ioaddr);
1066 /* clear all interrupts */
1067 eepro_clear_int(ioaddr);
1069 /* Initialize RCV */
1070 outw(lp->rcv_lower_limit, ioaddr + RCV_BAR);
1071 lp->rx_start = lp->rcv_lower_limit;
1072 outw(lp->rcv_upper_limit | 0xfe, ioaddr + RCV_STOP);
1074 /* Initialize XMT */
1075 outw(lp->xmt_lower_limit, ioaddr + lp->xmt_bar);
1076 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1077 lp->tx_last = 0;
1079 /* Check for the i82595TX and i82595FX */
1080 old8 = inb(ioaddr + 8);
1081 outb(~old8, ioaddr + 8);
1083 if ((temp_reg = inb(ioaddr + 8)) == old8) {
1084 if (net_debug > 3)
1085 printk(KERN_DEBUG "i82595 detected!\n");
1086 lp->version = LAN595;
1088 else {
1089 lp->version = LAN595TX;
1090 outb(old8, ioaddr + 8);
1091 old9 = inb(ioaddr + 9);
1093 if (irqMask==ee_FX_INT2IRQ) {
1094 if (net_debug > 3) {
1095 printk(KERN_DEBUG "IrqMask: %#x\n",irqMask);
1096 printk(KERN_DEBUG "i82595FX detected!\n");
1098 lp->version = LAN595FX;
1099 outb(old9, ioaddr + 9);
1100 if (dev->if_port != TPE) { /* Hopefully, this will fix the
1101 problem of using Pentiums and
1102 pro/10 w/ BNC. */
1103 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1104 temp_reg = inb(ioaddr + REG13);
1105 /* disable the full duplex mode since it is not
1106 applicable with the 10Base2 cable. */
1107 outb(temp_reg & ~(FDX | A_N_ENABLE), REG13);
1108 eepro_sw2bank0(ioaddr); /* be CAREFUL, BANK 0 now */
1111 else if (net_debug > 3) {
1112 printk(KERN_DEBUG "temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff));
1113 printk(KERN_DEBUG "i82595TX detected!\n");
1117 eepro_sel_reset(ioaddr);
1119 netif_start_queue(dev);
1121 if (net_debug > 3)
1122 printk(KERN_DEBUG "%s: exiting eepro_open routine.\n", dev->name);
1124 /* enabling rx */
1125 eepro_en_rx(ioaddr);
1127 return 0;
1130 static void eepro_tx_timeout (struct net_device *dev)
1132 struct eepro_local *lp = netdev_priv(dev);
1133 int ioaddr = dev->base_addr;
1135 /* if (net_debug > 1) */
1136 printk (KERN_ERR "%s: transmit timed out, %s?\n", dev->name,
1137 "network cable problem");
1138 /* This is not a duplicate. One message for the console,
1139 one for the the log file */
1140 printk (KERN_DEBUG "%s: transmit timed out, %s?\n", dev->name,
1141 "network cable problem");
1142 eepro_complete_selreset(ioaddr);
1146 static int eepro_send_packet(struct sk_buff *skb, struct net_device *dev)
1148 struct eepro_local *lp = netdev_priv(dev);
1149 unsigned long flags;
1150 int ioaddr = dev->base_addr;
1151 short length = skb->len;
1153 if (net_debug > 5)
1154 printk(KERN_DEBUG "%s: entering eepro_send_packet routine.\n", dev->name);
1156 if (length < ETH_ZLEN) {
1157 if (skb_padto(skb, ETH_ZLEN))
1158 return 0;
1159 length = ETH_ZLEN;
1161 netif_stop_queue (dev);
1163 eepro_dis_int(ioaddr);
1164 spin_lock_irqsave(&lp->lock, flags);
1167 unsigned char *buf = skb->data;
1169 if (hardware_send_packet(dev, buf, length))
1170 /* we won't wake queue here because we're out of space */
1171 lp->stats.tx_dropped++;
1172 else {
1173 lp->stats.tx_bytes+=skb->len;
1174 dev->trans_start = jiffies;
1175 netif_wake_queue(dev);
1180 dev_kfree_skb (skb);
1182 /* You might need to clean up and record Tx statistics here. */
1183 /* lp->stats.tx_aborted_errors++; */
1185 if (net_debug > 5)
1186 printk(KERN_DEBUG "%s: exiting eepro_send_packet routine.\n", dev->name);
1188 eepro_en_int(ioaddr);
1189 spin_unlock_irqrestore(&lp->lock, flags);
1191 return 0;
1195 /* The typical workload of the driver:
1196 Handle the network interface interrupts. */
1198 static irqreturn_t
1199 eepro_interrupt(int irq, void *dev_id)
1201 struct net_device *dev = dev_id;
1202 struct eepro_local *lp;
1203 int ioaddr, status, boguscount = 20;
1204 int handled = 0;
1206 lp = netdev_priv(dev);
1208 spin_lock(&lp->lock);
1210 if (net_debug > 5)
1211 printk(KERN_DEBUG "%s: entering eepro_interrupt routine.\n", dev->name);
1213 ioaddr = dev->base_addr;
1215 while (((status = inb(ioaddr + STATUS_REG)) & (RX_INT|TX_INT)) && (boguscount--))
1217 handled = 1;
1218 if (status & RX_INT) {
1219 if (net_debug > 4)
1220 printk(KERN_DEBUG "%s: packet received interrupt.\n", dev->name);
1222 eepro_dis_int(ioaddr);
1224 /* Get the received packets */
1225 eepro_ack_rx(ioaddr);
1226 eepro_rx(dev);
1228 eepro_en_int(ioaddr);
1230 if (status & TX_INT) {
1231 if (net_debug > 4)
1232 printk(KERN_DEBUG "%s: packet transmit interrupt.\n", dev->name);
1235 eepro_dis_int(ioaddr);
1237 /* Process the status of transmitted packets */
1238 eepro_ack_tx(ioaddr);
1239 eepro_transmit_interrupt(dev);
1241 eepro_en_int(ioaddr);
1245 if (net_debug > 5)
1246 printk(KERN_DEBUG "%s: exiting eepro_interrupt routine.\n", dev->name);
1248 spin_unlock(&lp->lock);
1249 return IRQ_RETVAL(handled);
1252 static int eepro_close(struct net_device *dev)
1254 struct eepro_local *lp = netdev_priv(dev);
1255 int ioaddr = dev->base_addr;
1256 short temp_reg;
1258 netif_stop_queue(dev);
1260 eepro_sw2bank1(ioaddr); /* Switch back to Bank 1 */
1262 /* Disable the physical interrupt line. */
1263 temp_reg = inb(ioaddr + REG1);
1264 outb(temp_reg & 0x7f, ioaddr + REG1);
1266 eepro_sw2bank0(ioaddr); /* Switch back to Bank 0 */
1268 /* Flush the Tx and disable Rx. */
1269 outb(STOP_RCV_CMD, ioaddr);
1270 lp->tx_start = lp->tx_end = lp->xmt_lower_limit;
1271 lp->tx_last = 0;
1273 /* Mask all the interrupts. */
1274 eepro_dis_int(ioaddr);
1276 /* clear all interrupts */
1277 eepro_clear_int(ioaddr);
1279 /* Reset the 82595 */
1280 eepro_reset(ioaddr);
1282 /* release the interrupt */
1283 free_irq(dev->irq, dev);
1285 #ifdef irq2dev_map
1286 irq2dev_map[dev->irq] = 0;
1287 #endif
1289 /* Update the statistics here. What statistics? */
1291 return 0;
1294 /* Get the current statistics. This may be called with the card open or
1295 closed. */
1296 static struct net_device_stats *
1297 eepro_get_stats(struct net_device *dev)
1299 struct eepro_local *lp = netdev_priv(dev);
1301 return &lp->stats;
1304 /* Set or clear the multicast filter for this adaptor.
1306 static void
1307 set_multicast_list(struct net_device *dev)
1309 struct eepro_local *lp = netdev_priv(dev);
1310 short ioaddr = dev->base_addr;
1311 unsigned short mode;
1312 struct dev_mc_list *dmi=dev->mc_list;
1314 if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || dev->mc_count > 63)
1317 * We must make the kernel realise we had to move
1318 * into promisc mode or we start all out war on
1319 * the cable. If it was a promisc request the
1320 * flag is already set. If not we assert it.
1322 dev->flags|=IFF_PROMISC;
1324 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1325 mode = inb(ioaddr + REG2);
1326 outb(mode | PRMSC_Mode, ioaddr + REG2);
1327 mode = inb(ioaddr + REG3);
1328 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1329 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1332 else if (dev->mc_count==0 )
1334 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1335 mode = inb(ioaddr + REG2);
1336 outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */
1337 mode = inb(ioaddr + REG3);
1338 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1339 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1342 else
1344 unsigned short status, *eaddrs;
1345 int i, boguscount = 0;
1347 /* Disable RX and TX interrupts. Necessary to avoid
1348 corruption of the HOST_ADDRESS_REG by interrupt
1349 service routines. */
1350 eepro_dis_int(ioaddr);
1352 eepro_sw2bank2(ioaddr); /* be CAREFUL, BANK 2 now */
1353 mode = inb(ioaddr + REG2);
1354 outb(mode | Multi_IA, ioaddr + REG2);
1355 mode = inb(ioaddr + REG3);
1356 outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */
1357 eepro_sw2bank0(ioaddr); /* Return to BANK 0 now */
1358 outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG);
1359 outw(MC_SETUP, ioaddr + IO_PORT);
1360 outw(0, ioaddr + IO_PORT);
1361 outw(0, ioaddr + IO_PORT);
1362 outw(6*(dev->mc_count + 1), ioaddr + IO_PORT);
1364 for (i = 0; i < dev->mc_count; i++)
1366 eaddrs=(unsigned short *)dmi->dmi_addr;
1367 dmi=dmi->next;
1368 outw(*eaddrs++, ioaddr + IO_PORT);
1369 outw(*eaddrs++, ioaddr + IO_PORT);
1370 outw(*eaddrs++, ioaddr + IO_PORT);
1373 eaddrs = (unsigned short *) dev->dev_addr;
1374 outw(eaddrs[0], ioaddr + IO_PORT);
1375 outw(eaddrs[1], ioaddr + IO_PORT);
1376 outw(eaddrs[2], ioaddr + IO_PORT);
1377 outw(lp->tx_end, ioaddr + lp->xmt_bar);
1378 outb(MC_SETUP, ioaddr);
1380 /* Update the transmit queue */
1381 i = lp->tx_end + XMT_HEADER + 6*(dev->mc_count + 1);
1383 if (lp->tx_start != lp->tx_end)
1385 /* update the next address and the chain bit in the
1386 last packet */
1387 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1388 outw(i, ioaddr + IO_PORT);
1389 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1390 status = inw(ioaddr + IO_PORT);
1391 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1392 lp->tx_end = i ;
1394 else {
1395 lp->tx_start = lp->tx_end = i ;
1398 /* Acknowledge that the MC setup is done */
1399 do { /* We should be doing this in the eepro_interrupt()! */
1400 SLOW_DOWN;
1401 SLOW_DOWN;
1402 if (inb(ioaddr + STATUS_REG) & 0x08)
1404 i = inb(ioaddr);
1405 outb(0x08, ioaddr + STATUS_REG);
1407 if (i & 0x20) { /* command ABORTed */
1408 printk(KERN_NOTICE "%s: multicast setup failed.\n",
1409 dev->name);
1410 break;
1411 } else if ((i & 0x0f) == 0x03) { /* MC-Done */
1412 printk(KERN_DEBUG "%s: set Rx mode to %d address%s.\n",
1413 dev->name, dev->mc_count,
1414 dev->mc_count > 1 ? "es":"");
1415 break;
1418 } while (++boguscount < 100);
1420 /* Re-enable RX and TX interrupts */
1421 eepro_en_int(ioaddr);
1423 if (lp->eepro == LAN595FX_10ISA) {
1424 eepro_complete_selreset(ioaddr);
1426 else
1427 eepro_en_rx(ioaddr);
1430 /* The horrible routine to read a word from the serial EEPROM. */
1431 /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
1433 /* The delay between EEPROM clock transitions. */
1434 #define eeprom_delay() { udelay(40); }
1435 #define EE_READ_CMD (6 << 6)
1438 read_eeprom(int ioaddr, int location, struct net_device *dev)
1440 int i;
1441 unsigned short retval = 0;
1442 struct eepro_local *lp = netdev_priv(dev);
1443 short ee_addr = ioaddr + lp->eeprom_reg;
1444 int read_cmd = location | EE_READ_CMD;
1445 short ctrl_val = EECS ;
1447 /* XXXX - black magic */
1448 eepro_sw2bank1(ioaddr);
1449 outb(0x00, ioaddr + STATUS_REG);
1450 /* XXXX - black magic */
1452 eepro_sw2bank2(ioaddr);
1453 outb(ctrl_val, ee_addr);
1455 /* Shift the read command bits out. */
1456 for (i = 8; i >= 0; i--) {
1457 short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI
1458 : ctrl_val;
1459 outb(outval, ee_addr);
1460 outb(outval | EESK, ee_addr); /* EEPROM clock tick. */
1461 eeprom_delay();
1462 outb(outval, ee_addr); /* Finish EEPROM a clock tick. */
1463 eeprom_delay();
1465 outb(ctrl_val, ee_addr);
1467 for (i = 16; i > 0; i--) {
1468 outb(ctrl_val | EESK, ee_addr); eeprom_delay();
1469 retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
1470 outb(ctrl_val, ee_addr); eeprom_delay();
1473 /* Terminate the EEPROM access. */
1474 ctrl_val &= ~EECS;
1475 outb(ctrl_val | EESK, ee_addr);
1476 eeprom_delay();
1477 outb(ctrl_val, ee_addr);
1478 eeprom_delay();
1479 eepro_sw2bank0(ioaddr);
1480 return retval;
1483 static int
1484 hardware_send_packet(struct net_device *dev, void *buf, short length)
1486 struct eepro_local *lp = netdev_priv(dev);
1487 short ioaddr = dev->base_addr;
1488 unsigned status, tx_available, last, end;
1490 if (net_debug > 5)
1491 printk(KERN_DEBUG "%s: entering hardware_send_packet routine.\n", dev->name);
1493 /* determine how much of the transmit buffer space is available */
1494 if (lp->tx_end > lp->tx_start)
1495 tx_available = lp->xmt_ram - (lp->tx_end - lp->tx_start);
1496 else if (lp->tx_end < lp->tx_start)
1497 tx_available = lp->tx_start - lp->tx_end;
1498 else tx_available = lp->xmt_ram;
1500 if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) {
1501 /* No space available ??? */
1502 return 1;
1505 last = lp->tx_end;
1506 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1508 if (end >= lp->xmt_upper_limit + 2) { /* the transmit buffer is wrapped around */
1509 if ((lp->xmt_upper_limit + 2 - last) <= XMT_HEADER) {
1510 /* Arrrr!!!, must keep the xmt header together,
1511 several days were lost to chase this one down. */
1512 last = lp->xmt_lower_limit;
1513 end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
1515 else end = lp->xmt_lower_limit + (end -
1516 lp->xmt_upper_limit + 2);
1519 outw(last, ioaddr + HOST_ADDRESS_REG);
1520 outw(XMT_CMD, ioaddr + IO_PORT);
1521 outw(0, ioaddr + IO_PORT);
1522 outw(end, ioaddr + IO_PORT);
1523 outw(length, ioaddr + IO_PORT);
1525 if (lp->version == LAN595)
1526 outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1);
1527 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1528 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1529 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1530 outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2);
1531 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1534 /* A dummy read to flush the DRAM write pipeline */
1535 status = inw(ioaddr + IO_PORT);
1537 if (lp->tx_start == lp->tx_end) {
1538 outw(last, ioaddr + lp->xmt_bar);
1539 outb(XMT_CMD, ioaddr);
1540 lp->tx_start = last; /* I don't like to change tx_start here */
1542 else {
1543 /* update the next address and the chain bit in the
1544 last packet */
1546 if (lp->tx_end != last) {
1547 outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG);
1548 outw(last, ioaddr + IO_PORT);
1551 outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG);
1552 status = inw(ioaddr + IO_PORT);
1553 outw(status | CHAIN_BIT, ioaddr + IO_PORT);
1555 /* Continue the transmit command */
1556 outb(RESUME_XMT_CMD, ioaddr);
1559 lp->tx_last = last;
1560 lp->tx_end = end;
1562 if (net_debug > 5)
1563 printk(KERN_DEBUG "%s: exiting hardware_send_packet routine.\n", dev->name);
1565 return 0;
1568 static void
1569 eepro_rx(struct net_device *dev)
1571 struct eepro_local *lp = netdev_priv(dev);
1572 short ioaddr = dev->base_addr;
1573 short boguscount = 20;
1574 short rcv_car = lp->rx_start;
1575 unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size;
1577 if (net_debug > 5)
1578 printk(KERN_DEBUG "%s: entering eepro_rx routine.\n", dev->name);
1580 /* Set the read pointer to the start of the RCV */
1581 outw(rcv_car, ioaddr + HOST_ADDRESS_REG);
1583 rcv_event = inw(ioaddr + IO_PORT);
1585 while (rcv_event == RCV_DONE) {
1587 rcv_status = inw(ioaddr + IO_PORT);
1588 rcv_next_frame = inw(ioaddr + IO_PORT);
1589 rcv_size = inw(ioaddr + IO_PORT);
1591 if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) {
1593 /* Malloc up new buffer. */
1594 struct sk_buff *skb;
1596 lp->stats.rx_bytes+=rcv_size;
1597 rcv_size &= 0x3fff;
1598 skb = dev_alloc_skb(rcv_size+5);
1599 if (skb == NULL) {
1600 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1601 lp->stats.rx_dropped++;
1602 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1603 lp->rx_start = rcv_next_frame;
1604 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1606 break;
1608 skb->dev = dev;
1609 skb_reserve(skb,2);
1611 if (lp->version == LAN595)
1612 insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1);
1613 else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */
1614 unsigned short temp = inb(ioaddr + INT_MASK_REG);
1615 outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG);
1616 insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size),
1617 (rcv_size + 3) >> 2);
1618 outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG);
1621 skb->protocol = eth_type_trans(skb,dev);
1622 netif_rx(skb);
1623 dev->last_rx = jiffies;
1624 lp->stats.rx_packets++;
1627 else { /* Not sure will ever reach here,
1628 I set the 595 to discard bad received frames */
1629 lp->stats.rx_errors++;
1631 if (rcv_status & 0x0100)
1632 lp->stats.rx_over_errors++;
1634 else if (rcv_status & 0x0400)
1635 lp->stats.rx_frame_errors++;
1637 else if (rcv_status & 0x0800)
1638 lp->stats.rx_crc_errors++;
1640 printk(KERN_DEBUG "%s: event = %#x, status = %#x, next = %#x, size = %#x\n",
1641 dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size);
1644 if (rcv_status & 0x1000)
1645 lp->stats.rx_length_errors++;
1647 rcv_car = lp->rx_start + RCV_HEADER + rcv_size;
1648 lp->rx_start = rcv_next_frame;
1650 if (--boguscount == 0)
1651 break;
1653 outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG);
1654 rcv_event = inw(ioaddr + IO_PORT);
1657 if (rcv_car == 0)
1658 rcv_car = lp->rcv_upper_limit | 0xff;
1660 outw(rcv_car - 1, ioaddr + RCV_STOP);
1662 if (net_debug > 5)
1663 printk(KERN_DEBUG "%s: exiting eepro_rx routine.\n", dev->name);
1666 static void
1667 eepro_transmit_interrupt(struct net_device *dev)
1669 struct eepro_local *lp = netdev_priv(dev);
1670 short ioaddr = dev->base_addr;
1671 short boguscount = 25;
1672 short xmt_status;
1674 while ((lp->tx_start != lp->tx_end) && boguscount--) {
1676 outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG);
1677 xmt_status = inw(ioaddr+IO_PORT);
1679 if (!(xmt_status & TX_DONE_BIT))
1680 break;
1682 xmt_status = inw(ioaddr+IO_PORT);
1683 lp->tx_start = inw(ioaddr+IO_PORT);
1685 netif_wake_queue (dev);
1687 if (xmt_status & TX_OK)
1688 lp->stats.tx_packets++;
1689 else {
1690 lp->stats.tx_errors++;
1691 if (xmt_status & 0x0400) {
1692 lp->stats.tx_carrier_errors++;
1693 printk(KERN_DEBUG "%s: carrier error\n",
1694 dev->name);
1695 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1696 dev->name, xmt_status);
1698 else {
1699 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1700 dev->name, xmt_status);
1701 printk(KERN_DEBUG "%s: XMT status = %#x\n",
1702 dev->name, xmt_status);
1705 if (xmt_status & 0x000f) {
1706 lp->stats.collisions += (xmt_status & 0x000f);
1709 if ((xmt_status & 0x0040) == 0x0) {
1710 lp->stats.tx_heartbeat_errors++;
1715 static int eepro_ethtool_get_settings(struct net_device *dev,
1716 struct ethtool_cmd *cmd)
1718 struct eepro_local *lp = (struct eepro_local *)dev->priv;
1720 cmd->supported = SUPPORTED_10baseT_Half |
1721 SUPPORTED_10baseT_Full |
1722 SUPPORTED_Autoneg;
1723 cmd->advertising = ADVERTISED_10baseT_Half |
1724 ADVERTISED_10baseT_Full |
1725 ADVERTISED_Autoneg;
1727 if (GetBit(lp->word[5], ee_PortTPE)) {
1728 cmd->supported |= SUPPORTED_TP;
1729 cmd->advertising |= ADVERTISED_TP;
1731 if (GetBit(lp->word[5], ee_PortBNC)) {
1732 cmd->supported |= SUPPORTED_BNC;
1733 cmd->advertising |= ADVERTISED_BNC;
1735 if (GetBit(lp->word[5], ee_PortAUI)) {
1736 cmd->supported |= SUPPORTED_AUI;
1737 cmd->advertising |= ADVERTISED_AUI;
1740 cmd->speed = SPEED_10;
1742 if (dev->if_port == TPE && lp->word[1] & ee_Duplex) {
1743 cmd->duplex = DUPLEX_FULL;
1745 else {
1746 cmd->duplex = DUPLEX_HALF;
1749 cmd->port = dev->if_port;
1750 cmd->phy_address = dev->base_addr;
1751 cmd->transceiver = XCVR_INTERNAL;
1753 if (lp->word[0] & ee_AutoNeg) {
1754 cmd->autoneg = 1;
1757 return 0;
1760 static void eepro_ethtool_get_drvinfo(struct net_device *dev,
1761 struct ethtool_drvinfo *drvinfo)
1763 strcpy(drvinfo->driver, DRV_NAME);
1764 strcpy(drvinfo->version, DRV_VERSION);
1765 sprintf(drvinfo->bus_info, "ISA 0x%lx", dev->base_addr);
1768 static const struct ethtool_ops eepro_ethtool_ops = {
1769 .get_settings = eepro_ethtool_get_settings,
1770 .get_drvinfo = eepro_ethtool_get_drvinfo,
1773 #ifdef MODULE
1775 #define MAX_EEPRO 8
1776 static struct net_device *dev_eepro[MAX_EEPRO];
1778 static int io[MAX_EEPRO] = {
1779 [0 ... MAX_EEPRO-1] = -1
1781 static int irq[MAX_EEPRO];
1782 static int mem[MAX_EEPRO] = { /* Size of the rx buffer in KB */
1783 [0 ... MAX_EEPRO-1] = RCV_DEFAULT_RAM/1024
1785 static int autodetect;
1787 static int n_eepro;
1788 /* For linux 2.1.xx */
1790 MODULE_AUTHOR("Pascal Dupuis and others");
1791 MODULE_DESCRIPTION("Intel i82595 ISA EtherExpressPro10/10+ driver");
1792 MODULE_LICENSE("GPL");
1794 module_param_array(io, int, NULL, 0);
1795 module_param_array(irq, int, NULL, 0);
1796 module_param_array(mem, int, NULL, 0);
1797 module_param(autodetect, int, 0);
1798 MODULE_PARM_DESC(io, "EtherExpress Pro/10 I/O base addres(es)");
1799 MODULE_PARM_DESC(irq, "EtherExpress Pro/10 IRQ number(s)");
1800 MODULE_PARM_DESC(mem, "EtherExpress Pro/10 Rx buffer size(es) in kB (3-29)");
1801 MODULE_PARM_DESC(autodetect, "EtherExpress Pro/10 force board(s) detection (0-1)");
1803 int __init init_module(void)
1805 struct net_device *dev;
1806 int i;
1807 if (io[0] == -1 && autodetect == 0) {
1808 printk(KERN_WARNING "eepro_init_module: Probe is very dangerous in ISA boards!\n");
1809 printk(KERN_WARNING "eepro_init_module: Please add \"autodetect=1\" to force probe\n");
1810 return -ENODEV;
1812 else if (autodetect) {
1813 /* if autodetect is set then we must force detection */
1814 for (i = 0; i < MAX_EEPRO; i++) {
1815 io[i] = 0;
1818 printk(KERN_INFO "eepro_init_module: Auto-detecting boards (May God protect us...)\n");
1821 for (i = 0; io[i] != -1 && i < MAX_EEPRO; i++) {
1822 dev = alloc_etherdev(sizeof(struct eepro_local));
1823 if (!dev)
1824 break;
1826 dev->mem_end = mem[i];
1827 dev->base_addr = io[i];
1828 dev->irq = irq[i];
1830 if (do_eepro_probe(dev) == 0) {
1831 dev_eepro[n_eepro++] = dev;
1832 continue;
1834 free_netdev(dev);
1835 break;
1838 if (n_eepro)
1839 printk(KERN_INFO "%s", version);
1841 return n_eepro ? 0 : -ENODEV;
1844 void
1845 cleanup_module(void)
1847 int i;
1849 for (i=0; i<n_eepro; i++) {
1850 struct net_device *dev = dev_eepro[i];
1851 unregister_netdev(dev);
1852 release_region(dev->base_addr, EEPRO_IO_EXTENT);
1853 free_netdev(dev);
1856 #endif /* MODULE */