igb: make dev_spec a union and remove dynamic allocation
[linux-2.6/libata-dev.git] / drivers / net / igb / e1000_82575.c
blobed9e8c0333a33794409a5d22d3840e022bf45127
1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* e1000_82575
29 * e1000_82576
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/if_ether.h>
36 #include "e1000_mac.h"
37 #include "e1000_82575.h"
39 static s32 igb_get_invariants_82575(struct e1000_hw *);
40 static s32 igb_acquire_phy_82575(struct e1000_hw *);
41 static void igb_release_phy_82575(struct e1000_hw *);
42 static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43 static void igb_release_nvm_82575(struct e1000_hw *);
44 static s32 igb_check_for_link_82575(struct e1000_hw *);
45 static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46 static s32 igb_init_hw_82575(struct e1000_hw *);
47 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49 static s32 igb_reset_hw_82575(struct e1000_hw *);
50 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
51 static s32 igb_setup_copper_link_82575(struct e1000_hw *);
52 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *);
53 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
54 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
55 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
56 static s32 igb_configure_pcs_link_82575(struct e1000_hw *);
57 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
58 u16 *);
59 static s32 igb_get_phy_id_82575(struct e1000_hw *);
60 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
61 static bool igb_sgmii_active_82575(struct e1000_hw *);
62 static s32 igb_reset_init_script_82575(struct e1000_hw *);
63 static s32 igb_read_mac_addr_82575(struct e1000_hw *);
65 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
67 struct e1000_phy_info *phy = &hw->phy;
68 struct e1000_nvm_info *nvm = &hw->nvm;
69 struct e1000_mac_info *mac = &hw->mac;
70 struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
71 u32 eecd;
72 s32 ret_val;
73 u16 size;
74 u32 ctrl_ext = 0;
76 switch (hw->device_id) {
77 case E1000_DEV_ID_82575EB_COPPER:
78 case E1000_DEV_ID_82575EB_FIBER_SERDES:
79 case E1000_DEV_ID_82575GB_QUAD_COPPER:
80 mac->type = e1000_82575;
81 break;
82 case E1000_DEV_ID_82576:
83 case E1000_DEV_ID_82576_FIBER:
84 case E1000_DEV_ID_82576_SERDES:
85 mac->type = e1000_82576;
86 break;
87 default:
88 return -E1000_ERR_MAC_INIT;
89 break;
92 /* Set media type */
94 * The 82575 uses bits 22:23 for link mode. The mode can be changed
95 * based on the EEPROM. We cannot rely upon device ID. There
96 * is no distinguishable difference between fiber and internal
97 * SerDes mode on the 82575. There can be an external PHY attached
98 * on the SGMII interface. For this, we'll set sgmii_active to true.
100 phy->media_type = e1000_media_type_copper;
101 dev_spec->sgmii_active = false;
103 ctrl_ext = rd32(E1000_CTRL_EXT);
104 if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) ==
105 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) {
106 hw->phy.media_type = e1000_media_type_internal_serdes;
107 ctrl_ext |= E1000_CTRL_I2C_ENA;
108 } else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) {
109 dev_spec->sgmii_active = true;
110 ctrl_ext |= E1000_CTRL_I2C_ENA;
111 } else {
112 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
114 wr32(E1000_CTRL_EXT, ctrl_ext);
116 /* Set mta register count */
117 mac->mta_reg_count = 128;
118 /* Set rar entry count */
119 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
120 if (mac->type == e1000_82576)
121 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
122 /* Set if part includes ASF firmware */
123 mac->asf_firmware_present = true;
124 /* Set if manageability features are enabled. */
125 mac->arc_subsystem_valid =
126 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
127 ? true : false;
129 /* physical interface link setup */
130 mac->ops.setup_physical_interface =
131 (hw->phy.media_type == e1000_media_type_copper)
132 ? igb_setup_copper_link_82575
133 : igb_setup_fiber_serdes_link_82575;
135 /* NVM initialization */
136 eecd = rd32(E1000_EECD);
138 nvm->opcode_bits = 8;
139 nvm->delay_usec = 1;
140 switch (nvm->override) {
141 case e1000_nvm_override_spi_large:
142 nvm->page_size = 32;
143 nvm->address_bits = 16;
144 break;
145 case e1000_nvm_override_spi_small:
146 nvm->page_size = 8;
147 nvm->address_bits = 8;
148 break;
149 default:
150 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
151 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
152 break;
155 nvm->type = e1000_nvm_eeprom_spi;
157 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
158 E1000_EECD_SIZE_EX_SHIFT);
161 * Added to a constant, "size" becomes the left-shift value
162 * for setting word_size.
164 size += NVM_WORD_SIZE_BASE_SHIFT;
166 /* EEPROM access above 16k is unsupported */
167 if (size > 14)
168 size = 14;
169 nvm->word_size = 1 << size;
171 /* setup PHY parameters */
172 if (phy->media_type != e1000_media_type_copper) {
173 phy->type = e1000_phy_none;
174 return 0;
177 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
178 phy->reset_delay_us = 100;
180 /* PHY function pointers */
181 if (igb_sgmii_active_82575(hw)) {
182 phy->ops.reset_phy = igb_phy_hw_reset_sgmii_82575;
183 phy->ops.read_phy_reg = igb_read_phy_reg_sgmii_82575;
184 phy->ops.write_phy_reg = igb_write_phy_reg_sgmii_82575;
185 } else {
186 phy->ops.reset_phy = igb_phy_hw_reset;
187 phy->ops.read_phy_reg = igb_read_phy_reg_igp;
188 phy->ops.write_phy_reg = igb_write_phy_reg_igp;
191 /* Set phy->phy_addr and phy->id. */
192 ret_val = igb_get_phy_id_82575(hw);
193 if (ret_val)
194 return ret_val;
196 /* Verify phy id and set remaining function pointers */
197 switch (phy->id) {
198 case M88E1111_I_PHY_ID:
199 phy->type = e1000_phy_m88;
200 phy->ops.get_phy_info = igb_get_phy_info_m88;
201 phy->ops.get_cable_length = igb_get_cable_length_m88;
202 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
203 break;
204 case IGP03E1000_E_PHY_ID:
205 phy->type = e1000_phy_igp_3;
206 phy->ops.get_phy_info = igb_get_phy_info_igp;
207 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
208 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
209 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
210 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
211 break;
212 default:
213 return -E1000_ERR_PHY;
216 return 0;
220 * igb_acquire_phy_82575 - Acquire rights to access PHY
221 * @hw: pointer to the HW structure
223 * Acquire access rights to the correct PHY. This is a
224 * function pointer entry point called by the api module.
226 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
228 u16 mask;
230 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
232 return igb_acquire_swfw_sync_82575(hw, mask);
236 * igb_release_phy_82575 - Release rights to access PHY
237 * @hw: pointer to the HW structure
239 * A wrapper to release access rights to the correct PHY. This is a
240 * function pointer entry point called by the api module.
242 static void igb_release_phy_82575(struct e1000_hw *hw)
244 u16 mask;
246 mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
247 igb_release_swfw_sync_82575(hw, mask);
251 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
252 * @hw: pointer to the HW structure
253 * @offset: register offset to be read
254 * @data: pointer to the read data
256 * Reads the PHY register at offset using the serial gigabit media independent
257 * interface and stores the retrieved information in data.
259 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
260 u16 *data)
262 struct e1000_phy_info *phy = &hw->phy;
263 u32 i, i2ccmd = 0;
265 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
266 hw_dbg("PHY Address %u is out of range\n", offset);
267 return -E1000_ERR_PARAM;
271 * Set up Op-code, Phy Address, and register address in the I2CCMD
272 * register. The MAC will take care of interfacing with the
273 * PHY to retrieve the desired data.
275 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
276 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
277 (E1000_I2CCMD_OPCODE_READ));
279 wr32(E1000_I2CCMD, i2ccmd);
281 /* Poll the ready bit to see if the I2C read completed */
282 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
283 udelay(50);
284 i2ccmd = rd32(E1000_I2CCMD);
285 if (i2ccmd & E1000_I2CCMD_READY)
286 break;
288 if (!(i2ccmd & E1000_I2CCMD_READY)) {
289 hw_dbg("I2CCMD Read did not complete\n");
290 return -E1000_ERR_PHY;
292 if (i2ccmd & E1000_I2CCMD_ERROR) {
293 hw_dbg("I2CCMD Error bit set\n");
294 return -E1000_ERR_PHY;
297 /* Need to byte-swap the 16-bit value. */
298 *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
300 return 0;
304 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
305 * @hw: pointer to the HW structure
306 * @offset: register offset to write to
307 * @data: data to write at register offset
309 * Writes the data to PHY register at the offset using the serial gigabit
310 * media independent interface.
312 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
313 u16 data)
315 struct e1000_phy_info *phy = &hw->phy;
316 u32 i, i2ccmd = 0;
317 u16 phy_data_swapped;
319 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
320 hw_dbg("PHY Address %d is out of range\n", offset);
321 return -E1000_ERR_PARAM;
324 /* Swap the data bytes for the I2C interface */
325 phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
328 * Set up Op-code, Phy Address, and register address in the I2CCMD
329 * register. The MAC will take care of interfacing with the
330 * PHY to retrieve the desired data.
332 i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
333 (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
334 E1000_I2CCMD_OPCODE_WRITE |
335 phy_data_swapped);
337 wr32(E1000_I2CCMD, i2ccmd);
339 /* Poll the ready bit to see if the I2C read completed */
340 for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
341 udelay(50);
342 i2ccmd = rd32(E1000_I2CCMD);
343 if (i2ccmd & E1000_I2CCMD_READY)
344 break;
346 if (!(i2ccmd & E1000_I2CCMD_READY)) {
347 hw_dbg("I2CCMD Write did not complete\n");
348 return -E1000_ERR_PHY;
350 if (i2ccmd & E1000_I2CCMD_ERROR) {
351 hw_dbg("I2CCMD Error bit set\n");
352 return -E1000_ERR_PHY;
355 return 0;
359 * igb_get_phy_id_82575 - Retrieve PHY addr and id
360 * @hw: pointer to the HW structure
362 * Retrieves the PHY address and ID for both PHY's which do and do not use
363 * sgmi interface.
365 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
367 struct e1000_phy_info *phy = &hw->phy;
368 s32 ret_val = 0;
369 u16 phy_id;
372 * For SGMII PHYs, we try the list of possible addresses until
373 * we find one that works. For non-SGMII PHYs
374 * (e.g. integrated copper PHYs), an address of 1 should
375 * work. The result of this function should mean phy->phy_addr
376 * and phy->id are set correctly.
378 if (!(igb_sgmii_active_82575(hw))) {
379 phy->addr = 1;
380 ret_val = igb_get_phy_id(hw);
381 goto out;
385 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
386 * Therefore, we need to test 1-7
388 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
389 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
390 if (ret_val == 0) {
391 hw_dbg("Vendor ID 0x%08X read at address %u\n",
392 phy_id, phy->addr);
394 * At the time of this writing, The M88 part is
395 * the only supported SGMII PHY product.
397 if (phy_id == M88_VENDOR)
398 break;
399 } else {
400 hw_dbg("PHY address %u was unreadable\n", phy->addr);
404 /* A valid PHY type couldn't be found. */
405 if (phy->addr == 8) {
406 phy->addr = 0;
407 ret_val = -E1000_ERR_PHY;
408 goto out;
411 ret_val = igb_get_phy_id(hw);
413 out:
414 return ret_val;
418 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
419 * @hw: pointer to the HW structure
421 * Resets the PHY using the serial gigabit media independent interface.
423 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
425 s32 ret_val;
428 * This isn't a true "hard" reset, but is the only reset
429 * available to us at this time.
432 hw_dbg("Soft resetting SGMII attached PHY...\n");
435 * SFP documentation requires the following to configure the SPF module
436 * to work on SGMII. No further documentation is given.
438 ret_val = hw->phy.ops.write_phy_reg(hw, 0x1B, 0x8084);
439 if (ret_val)
440 goto out;
442 ret_val = igb_phy_sw_reset(hw);
444 out:
445 return ret_val;
449 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
450 * @hw: pointer to the HW structure
451 * @active: true to enable LPLU, false to disable
453 * Sets the LPLU D0 state according to the active flag. When
454 * activating LPLU this function also disables smart speed
455 * and vice versa. LPLU will not be activated unless the
456 * device autonegotiation advertisement meets standards of
457 * either 10 or 10/100 or 10/100/1000 at all duplexes.
458 * This is a function pointer entry point only called by
459 * PHY setup routines.
461 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
463 struct e1000_phy_info *phy = &hw->phy;
464 s32 ret_val;
465 u16 data;
467 ret_val = phy->ops.read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
468 if (ret_val)
469 goto out;
471 if (active) {
472 data |= IGP02E1000_PM_D0_LPLU;
473 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
474 data);
475 if (ret_val)
476 goto out;
478 /* When LPLU is enabled, we should disable SmartSpeed */
479 ret_val = phy->ops.read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
480 &data);
481 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
482 ret_val = phy->ops.write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
483 data);
484 if (ret_val)
485 goto out;
486 } else {
487 data &= ~IGP02E1000_PM_D0_LPLU;
488 ret_val = phy->ops.write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
489 data);
491 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
492 * during Dx states where the power conservation is most
493 * important. During driver activity we should enable
494 * SmartSpeed, so performance is maintained.
496 if (phy->smart_speed == e1000_smart_speed_on) {
497 ret_val = phy->ops.read_phy_reg(hw,
498 IGP01E1000_PHY_PORT_CONFIG, &data);
499 if (ret_val)
500 goto out;
502 data |= IGP01E1000_PSCFR_SMART_SPEED;
503 ret_val = phy->ops.write_phy_reg(hw,
504 IGP01E1000_PHY_PORT_CONFIG, data);
505 if (ret_val)
506 goto out;
507 } else if (phy->smart_speed == e1000_smart_speed_off) {
508 ret_val = phy->ops.read_phy_reg(hw,
509 IGP01E1000_PHY_PORT_CONFIG, &data);
510 if (ret_val)
511 goto out;
513 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
514 ret_val = phy->ops.write_phy_reg(hw,
515 IGP01E1000_PHY_PORT_CONFIG, data);
516 if (ret_val)
517 goto out;
521 out:
522 return ret_val;
526 * igb_acquire_nvm_82575 - Request for access to EEPROM
527 * @hw: pointer to the HW structure
529 * Acquire the necessary semaphores for exclusive access to the EEPROM.
530 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
531 * Return successful if access grant bit set, else clear the request for
532 * EEPROM access and return -E1000_ERR_NVM (-1).
534 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
536 s32 ret_val;
538 ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
539 if (ret_val)
540 goto out;
542 ret_val = igb_acquire_nvm(hw);
544 if (ret_val)
545 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
547 out:
548 return ret_val;
552 * igb_release_nvm_82575 - Release exclusive access to EEPROM
553 * @hw: pointer to the HW structure
555 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
556 * then release the semaphores acquired.
558 static void igb_release_nvm_82575(struct e1000_hw *hw)
560 igb_release_nvm(hw);
561 igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
565 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
566 * @hw: pointer to the HW structure
567 * @mask: specifies which semaphore to acquire
569 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
570 * will also specify which port we're acquiring the lock for.
572 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
574 u32 swfw_sync;
575 u32 swmask = mask;
576 u32 fwmask = mask << 16;
577 s32 ret_val = 0;
578 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
580 while (i < timeout) {
581 if (igb_get_hw_semaphore(hw)) {
582 ret_val = -E1000_ERR_SWFW_SYNC;
583 goto out;
586 swfw_sync = rd32(E1000_SW_FW_SYNC);
587 if (!(swfw_sync & (fwmask | swmask)))
588 break;
591 * Firmware currently using resource (fwmask)
592 * or other software thread using resource (swmask)
594 igb_put_hw_semaphore(hw);
595 mdelay(5);
596 i++;
599 if (i == timeout) {
600 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
601 ret_val = -E1000_ERR_SWFW_SYNC;
602 goto out;
605 swfw_sync |= swmask;
606 wr32(E1000_SW_FW_SYNC, swfw_sync);
608 igb_put_hw_semaphore(hw);
610 out:
611 return ret_val;
615 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
616 * @hw: pointer to the HW structure
617 * @mask: specifies which semaphore to acquire
619 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
620 * will also specify which port we're releasing the lock for.
622 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
624 u32 swfw_sync;
626 while (igb_get_hw_semaphore(hw) != 0);
627 /* Empty */
629 swfw_sync = rd32(E1000_SW_FW_SYNC);
630 swfw_sync &= ~mask;
631 wr32(E1000_SW_FW_SYNC, swfw_sync);
633 igb_put_hw_semaphore(hw);
637 * igb_get_cfg_done_82575 - Read config done bit
638 * @hw: pointer to the HW structure
640 * Read the management control register for the config done bit for
641 * completion status. NOTE: silicon which is EEPROM-less will fail trying
642 * to read the config done bit, so an error is *ONLY* logged and returns
643 * 0. If we were to return with error, EEPROM-less silicon
644 * would not be able to be reset or change link.
646 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
648 s32 timeout = PHY_CFG_TIMEOUT;
649 s32 ret_val = 0;
650 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
652 if (hw->bus.func == 1)
653 mask = E1000_NVM_CFG_DONE_PORT_1;
655 while (timeout) {
656 if (rd32(E1000_EEMNGCTL) & mask)
657 break;
658 msleep(1);
659 timeout--;
661 if (!timeout)
662 hw_dbg("MNG configuration cycle has not completed.\n");
664 /* If EEPROM is not marked present, init the PHY manually */
665 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
666 (hw->phy.type == e1000_phy_igp_3))
667 igb_phy_init_script_igp3(hw);
669 return ret_val;
673 * igb_check_for_link_82575 - Check for link
674 * @hw: pointer to the HW structure
676 * If sgmii is enabled, then use the pcs register to determine link, otherwise
677 * use the generic interface for determining link.
679 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
681 s32 ret_val;
682 u16 speed, duplex;
684 /* SGMII link check is done through the PCS register. */
685 if ((hw->phy.media_type != e1000_media_type_copper) ||
686 (igb_sgmii_active_82575(hw))) {
687 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
688 &duplex);
690 * Use this flag to determine if link needs to be checked or
691 * not. If we have link clear the flag so that we do not
692 * continue to check for link.
694 hw->mac.get_link_status = !hw->mac.serdes_has_link;
695 } else {
696 ret_val = igb_check_for_copper_link(hw);
699 return ret_val;
702 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
703 * @hw: pointer to the HW structure
704 * @speed: stores the current speed
705 * @duplex: stores the current duplex
707 * Using the physical coding sub-layer (PCS), retrieve the current speed and
708 * duplex, then store the values in the pointers provided.
710 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
711 u16 *duplex)
713 struct e1000_mac_info *mac = &hw->mac;
714 u32 pcs;
716 /* Set up defaults for the return values of this function */
717 mac->serdes_has_link = false;
718 *speed = 0;
719 *duplex = 0;
722 * Read the PCS Status register for link state. For non-copper mode,
723 * the status register is not accurate. The PCS status register is
724 * used instead.
726 pcs = rd32(E1000_PCS_LSTAT);
729 * The link up bit determines when link is up on autoneg. The sync ok
730 * gets set once both sides sync up and agree upon link. Stable link
731 * can be determined by checking for both link up and link sync ok
733 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
734 mac->serdes_has_link = true;
736 /* Detect and store PCS speed */
737 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
738 *speed = SPEED_1000;
739 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
740 *speed = SPEED_100;
741 } else {
742 *speed = SPEED_10;
745 /* Detect and store PCS duplex */
746 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
747 *duplex = FULL_DUPLEX;
748 } else {
749 *duplex = HALF_DUPLEX;
753 return 0;
757 * igb_init_rx_addrs_82575 - Initialize receive address's
758 * @hw: pointer to the HW structure
759 * @rar_count: receive address registers
761 * Setups the receive address registers by setting the base receive address
762 * register to the devices MAC address and clearing all the other receive
763 * address registers to 0.
765 static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count)
767 u32 i;
768 u8 addr[6] = {0,0,0,0,0,0};
770 * This function is essentially the same as that of
771 * e1000_init_rx_addrs_generic. However it also takes care
772 * of the special case where the register offset of the
773 * second set of RARs begins elsewhere. This is implicitly taken care by
774 * function e1000_rar_set_generic.
777 hw_dbg("e1000_init_rx_addrs_82575");
779 /* Setup the receive address */
780 hw_dbg("Programming MAC Address into RAR[0]\n");
781 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
783 /* Zero out the other (rar_entry_count - 1) receive addresses */
784 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
785 for (i = 1; i < rar_count; i++)
786 hw->mac.ops.rar_set(hw, addr, i);
790 * igb_update_mc_addr_list_82575 - Update Multicast addresses
791 * @hw: pointer to the HW structure
792 * @mc_addr_list: array of multicast addresses to program
793 * @mc_addr_count: number of multicast addresses to program
794 * @rar_used_count: the first RAR register free to program
795 * @rar_count: total number of supported Receive Address Registers
797 * Updates the Receive Address Registers and Multicast Table Array.
798 * The caller must have a packed mc_addr_list of multicast addresses.
799 * The parameter rar_count will usually be hw->mac.rar_entry_count
800 * unless there are workarounds that change this.
802 void igb_update_mc_addr_list_82575(struct e1000_hw *hw,
803 u8 *mc_addr_list, u32 mc_addr_count,
804 u32 rar_used_count, u32 rar_count)
806 u32 hash_value;
807 u32 i;
808 u8 addr[6] = {0,0,0,0,0,0};
810 * This function is essentially the same as that of
811 * igb_update_mc_addr_list_generic. However it also takes care
812 * of the special case where the register offset of the
813 * second set of RARs begins elsewhere. This is implicitly taken care by
814 * function e1000_rar_set_generic.
818 * Load the first set of multicast addresses into the exact
819 * filters (RAR). If there are not enough to fill the RAR
820 * array, clear the filters.
822 for (i = rar_used_count; i < rar_count; i++) {
823 if (mc_addr_count) {
824 igb_rar_set(hw, mc_addr_list, i);
825 mc_addr_count--;
826 mc_addr_list += ETH_ALEN;
827 } else {
828 igb_rar_set(hw, addr, i);
832 /* Clear the old settings from the MTA */
833 hw_dbg("Clearing MTA\n");
834 for (i = 0; i < hw->mac.mta_reg_count; i++) {
835 array_wr32(E1000_MTA, i, 0);
836 wrfl();
839 /* Load any remaining multicast addresses into the hash table. */
840 for (; mc_addr_count > 0; mc_addr_count--) {
841 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
842 hw_dbg("Hash value = 0x%03X\n", hash_value);
843 igb_mta_set(hw, hash_value);
844 mc_addr_list += ETH_ALEN;
849 * igb_shutdown_fiber_serdes_link_82575 - Remove link during power down
850 * @hw: pointer to the HW structure
852 * In the case of fiber serdes, shut down optics and PCS on driver unload
853 * when management pass thru is not enabled.
855 void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw)
857 u32 reg;
859 if (hw->mac.type != e1000_82576 ||
860 (hw->phy.media_type != e1000_media_type_fiber &&
861 hw->phy.media_type != e1000_media_type_internal_serdes))
862 return;
864 /* if the management interface is not enabled, then power down */
865 if (!igb_enable_mng_pass_thru(hw)) {
866 /* Disable PCS to turn off link */
867 reg = rd32(E1000_PCS_CFG0);
868 reg &= ~E1000_PCS_CFG_PCS_EN;
869 wr32(E1000_PCS_CFG0, reg);
871 /* shutdown the laser */
872 reg = rd32(E1000_CTRL_EXT);
873 reg |= E1000_CTRL_EXT_SDP7_DATA;
874 wr32(E1000_CTRL_EXT, reg);
876 /* flush the write to verify completion */
877 wrfl();
878 msleep(1);
881 return;
885 * igb_reset_hw_82575 - Reset hardware
886 * @hw: pointer to the HW structure
888 * This resets the hardware into a known state. This is a
889 * function pointer entry point called by the api module.
891 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
893 u32 ctrl, icr;
894 s32 ret_val;
897 * Prevent the PCI-E bus from sticking if there is no TLP connection
898 * on the last TLP read/write transaction when MAC is reset.
900 ret_val = igb_disable_pcie_master(hw);
901 if (ret_val)
902 hw_dbg("PCI-E Master disable polling has failed.\n");
904 hw_dbg("Masking off all interrupts\n");
905 wr32(E1000_IMC, 0xffffffff);
907 wr32(E1000_RCTL, 0);
908 wr32(E1000_TCTL, E1000_TCTL_PSP);
909 wrfl();
911 msleep(10);
913 ctrl = rd32(E1000_CTRL);
915 hw_dbg("Issuing a global reset to MAC\n");
916 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
918 ret_val = igb_get_auto_rd_done(hw);
919 if (ret_val) {
921 * When auto config read does not complete, do not
922 * return with an error. This can happen in situations
923 * where there is no eeprom and prevents getting link.
925 hw_dbg("Auto Read Done did not complete\n");
928 /* If EEPROM is not present, run manual init scripts */
929 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
930 igb_reset_init_script_82575(hw);
932 /* Clear any pending interrupt events. */
933 wr32(E1000_IMC, 0xffffffff);
934 icr = rd32(E1000_ICR);
936 igb_check_alt_mac_addr(hw);
938 return ret_val;
942 * igb_init_hw_82575 - Initialize hardware
943 * @hw: pointer to the HW structure
945 * This inits the hardware readying it for operation.
947 static s32 igb_init_hw_82575(struct e1000_hw *hw)
949 struct e1000_mac_info *mac = &hw->mac;
950 s32 ret_val;
951 u16 i, rar_count = mac->rar_entry_count;
953 /* Initialize identification LED */
954 ret_val = igb_id_led_init(hw);
955 if (ret_val) {
956 hw_dbg("Error initializing identification LED\n");
957 /* This is not fatal and we should not stop init due to this */
960 /* Disabling VLAN filtering */
961 hw_dbg("Initializing the IEEE VLAN\n");
962 igb_clear_vfta(hw);
964 /* Setup the receive address */
965 igb_init_rx_addrs_82575(hw, rar_count);
966 /* Zero out the Multicast HASH table */
967 hw_dbg("Zeroing the MTA\n");
968 for (i = 0; i < mac->mta_reg_count; i++)
969 array_wr32(E1000_MTA, i, 0);
971 /* Setup link and flow control */
972 ret_val = igb_setup_link(hw);
975 * Clear all of the statistics registers (clear on read). It is
976 * important that we do this after we have tried to establish link
977 * because the symbol error count will increment wildly if there
978 * is no link.
980 igb_clear_hw_cntrs_82575(hw);
982 return ret_val;
986 * igb_setup_copper_link_82575 - Configure copper link settings
987 * @hw: pointer to the HW structure
989 * Configures the link for auto-neg or forced speed and duplex. Then we check
990 * for link, once link is established calls to configure collision distance
991 * and flow control are called.
993 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
995 u32 ctrl, led_ctrl;
996 s32 ret_val;
997 bool link;
999 ctrl = rd32(E1000_CTRL);
1000 ctrl |= E1000_CTRL_SLU;
1001 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1002 wr32(E1000_CTRL, ctrl);
1004 switch (hw->phy.type) {
1005 case e1000_phy_m88:
1006 ret_val = igb_copper_link_setup_m88(hw);
1007 break;
1008 case e1000_phy_igp_3:
1009 ret_val = igb_copper_link_setup_igp(hw);
1010 /* Setup activity LED */
1011 led_ctrl = rd32(E1000_LEDCTL);
1012 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1013 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1014 wr32(E1000_LEDCTL, led_ctrl);
1015 break;
1016 default:
1017 ret_val = -E1000_ERR_PHY;
1018 break;
1021 if (ret_val)
1022 goto out;
1024 if (hw->mac.autoneg) {
1026 * Setup autoneg and flow control advertisement
1027 * and perform autonegotiation.
1029 ret_val = igb_copper_link_autoneg(hw);
1030 if (ret_val)
1031 goto out;
1032 } else {
1034 * PHY will be set to 10H, 10F, 100H or 100F
1035 * depending on user settings.
1037 hw_dbg("Forcing Speed and Duplex\n");
1038 ret_val = igb_phy_force_speed_duplex(hw);
1039 if (ret_val) {
1040 hw_dbg("Error Forcing Speed and Duplex\n");
1041 goto out;
1045 ret_val = igb_configure_pcs_link_82575(hw);
1046 if (ret_val)
1047 goto out;
1050 * Check link status. Wait up to 100 microseconds for link to become
1051 * valid.
1053 ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1054 if (ret_val)
1055 goto out;
1057 if (link) {
1058 hw_dbg("Valid link established!!!\n");
1059 /* Config the MAC and PHY after link is up */
1060 igb_config_collision_dist(hw);
1061 ret_val = igb_config_fc_after_link_up(hw);
1062 } else {
1063 hw_dbg("Unable to establish link!!!\n");
1066 out:
1067 return ret_val;
1071 * igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes
1072 * @hw: pointer to the HW structure
1074 * Configures speed and duplex for fiber and serdes links.
1076 static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw)
1078 u32 reg;
1081 * On the 82575, SerDes loopback mode persists until it is
1082 * explicitly turned off or a power cycle is performed. A read to
1083 * the register does not indicate its status. Therefore, we ensure
1084 * loopback mode is disabled during initialization.
1086 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1088 /* Force link up, set 1gb, set both sw defined pins */
1089 reg = rd32(E1000_CTRL);
1090 reg |= E1000_CTRL_SLU |
1091 E1000_CTRL_SPD_1000 |
1092 E1000_CTRL_FRCSPD |
1093 E1000_CTRL_SWDPIN0 |
1094 E1000_CTRL_SWDPIN1;
1095 wr32(E1000_CTRL, reg);
1097 /* Power on phy for 82576 fiber adapters */
1098 if (hw->mac.type == e1000_82576) {
1099 reg = rd32(E1000_CTRL_EXT);
1100 reg &= ~E1000_CTRL_EXT_SDP7_DATA;
1101 wr32(E1000_CTRL_EXT, reg);
1104 /* Set switch control to serdes energy detect */
1105 reg = rd32(E1000_CONNSW);
1106 reg |= E1000_CONNSW_ENRGSRC;
1107 wr32(E1000_CONNSW, reg);
1110 * New SerDes mode allows for forcing speed or autonegotiating speed
1111 * at 1gb. Autoneg should be default set by most drivers. This is the
1112 * mode that will be compatible with older link partners and switches.
1113 * However, both are supported by the hardware and some drivers/tools.
1115 reg = rd32(E1000_PCS_LCTL);
1117 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1118 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1120 if (hw->mac.autoneg) {
1121 /* Set PCS register for autoneg */
1122 reg |= E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1123 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1124 E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1125 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1126 hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg);
1127 } else {
1128 /* Set PCS register for forced speed */
1129 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1130 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1131 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1132 E1000_PCS_LCTL_FSD | /* Force Speed */
1133 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1134 hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg);
1137 if (hw->mac.type == e1000_82576) {
1138 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1139 igb_force_mac_fc(hw);
1142 wr32(E1000_PCS_LCTL, reg);
1144 return 0;
1148 * igb_configure_pcs_link_82575 - Configure PCS link
1149 * @hw: pointer to the HW structure
1151 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1152 * only used on copper connections where the serialized gigabit media
1153 * independent interface (sgmii) is being used. Configures the link
1154 * for auto-negotiation or forces speed/duplex.
1156 static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw)
1158 struct e1000_mac_info *mac = &hw->mac;
1159 u32 reg = 0;
1161 if (hw->phy.media_type != e1000_media_type_copper ||
1162 !(igb_sgmii_active_82575(hw)))
1163 goto out;
1165 /* For SGMII, we need to issue a PCS autoneg restart */
1166 reg = rd32(E1000_PCS_LCTL);
1168 /* AN time out should be disabled for SGMII mode */
1169 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1171 if (mac->autoneg) {
1172 /* Make sure forced speed and force link are not set */
1173 reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1176 * The PHY should be setup prior to calling this function.
1177 * All we need to do is restart autoneg and enable autoneg.
1179 reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE;
1180 } else {
1181 /* Set PCS register for forced speed */
1183 /* Turn off bits for full duplex, speed, and autoneg */
1184 reg &= ~(E1000_PCS_LCTL_FSV_1000 |
1185 E1000_PCS_LCTL_FSV_100 |
1186 E1000_PCS_LCTL_FDV_FULL |
1187 E1000_PCS_LCTL_AN_ENABLE);
1189 /* Check for duplex first */
1190 if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX)
1191 reg |= E1000_PCS_LCTL_FDV_FULL;
1193 /* Now set speed */
1194 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED)
1195 reg |= E1000_PCS_LCTL_FSV_100;
1197 /* Force speed and force link */
1198 reg |= E1000_PCS_LCTL_FSD |
1199 E1000_PCS_LCTL_FORCE_LINK |
1200 E1000_PCS_LCTL_FLV_LINK_UP;
1202 hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n",
1203 reg);
1205 wr32(E1000_PCS_LCTL, reg);
1207 out:
1208 return 0;
1212 * igb_sgmii_active_82575 - Return sgmii state
1213 * @hw: pointer to the HW structure
1215 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1216 * which can be enabled for use in the embedded applications. Simply
1217 * return the current state of the sgmii interface.
1219 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1221 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1223 if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576)
1224 return false;
1226 return dev_spec->sgmii_active;
1230 * igb_reset_init_script_82575 - Inits HW defaults after reset
1231 * @hw: pointer to the HW structure
1233 * Inits recommended HW defaults after a reset when there is no EEPROM
1234 * detected. This is only for the 82575.
1236 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1238 if (hw->mac.type == e1000_82575) {
1239 hw_dbg("Running reset init script for 82575\n");
1240 /* SerDes configuration via SERDESCTRL */
1241 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1242 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1243 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1244 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1246 /* CCM configuration via CCMCTL register */
1247 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1248 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1250 /* PCIe lanes configuration */
1251 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1252 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1253 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1254 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1256 /* PCIe PLL Configuration */
1257 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1258 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1259 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1262 return 0;
1266 * igb_read_mac_addr_82575 - Read device MAC address
1267 * @hw: pointer to the HW structure
1269 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1271 s32 ret_val = 0;
1273 if (igb_check_alt_mac_addr(hw))
1274 ret_val = igb_read_mac_addr(hw);
1276 return ret_val;
1280 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1281 * @hw: pointer to the HW structure
1283 * Clears the hardware counters by reading the counter registers.
1285 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1287 u32 temp;
1289 igb_clear_hw_cntrs_base(hw);
1291 temp = rd32(E1000_PRC64);
1292 temp = rd32(E1000_PRC127);
1293 temp = rd32(E1000_PRC255);
1294 temp = rd32(E1000_PRC511);
1295 temp = rd32(E1000_PRC1023);
1296 temp = rd32(E1000_PRC1522);
1297 temp = rd32(E1000_PTC64);
1298 temp = rd32(E1000_PTC127);
1299 temp = rd32(E1000_PTC255);
1300 temp = rd32(E1000_PTC511);
1301 temp = rd32(E1000_PTC1023);
1302 temp = rd32(E1000_PTC1522);
1304 temp = rd32(E1000_ALGNERRC);
1305 temp = rd32(E1000_RXERRC);
1306 temp = rd32(E1000_TNCRS);
1307 temp = rd32(E1000_CEXTERR);
1308 temp = rd32(E1000_TSCTC);
1309 temp = rd32(E1000_TSCTFC);
1311 temp = rd32(E1000_MGTPRC);
1312 temp = rd32(E1000_MGTPDC);
1313 temp = rd32(E1000_MGTPTC);
1315 temp = rd32(E1000_IAC);
1316 temp = rd32(E1000_ICRXOC);
1318 temp = rd32(E1000_ICRXPTC);
1319 temp = rd32(E1000_ICRXATC);
1320 temp = rd32(E1000_ICTXPTC);
1321 temp = rd32(E1000_ICTXATC);
1322 temp = rd32(E1000_ICTXQEC);
1323 temp = rd32(E1000_ICTXQMTC);
1324 temp = rd32(E1000_ICRXDMTC);
1326 temp = rd32(E1000_CBTMPC);
1327 temp = rd32(E1000_HTDPMC);
1328 temp = rd32(E1000_CBRMPC);
1329 temp = rd32(E1000_RPTHC);
1330 temp = rd32(E1000_HGPTC);
1331 temp = rd32(E1000_HTCBDPC);
1332 temp = rd32(E1000_HGORCL);
1333 temp = rd32(E1000_HGORCH);
1334 temp = rd32(E1000_HGOTCL);
1335 temp = rd32(E1000_HGOTCH);
1336 temp = rd32(E1000_LENERRS);
1338 /* This register should not be read in copper configurations */
1339 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1340 temp = rd32(E1000_SCVPC);
1344 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1345 * @hw: pointer to the HW structure
1347 * After rx enable if managability is enabled then there is likely some
1348 * bad data at the start of the fifo and possibly in the DMA fifo. This
1349 * function clears the fifos and flushes any packets that came in as rx was
1350 * being enabled.
1352 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1354 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1355 int i, ms_wait;
1357 if (hw->mac.type != e1000_82575 ||
1358 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1359 return;
1361 /* Disable all RX queues */
1362 for (i = 0; i < 4; i++) {
1363 rxdctl[i] = rd32(E1000_RXDCTL(i));
1364 wr32(E1000_RXDCTL(i),
1365 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1367 /* Poll all queues to verify they have shut down */
1368 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1369 msleep(1);
1370 rx_enabled = 0;
1371 for (i = 0; i < 4; i++)
1372 rx_enabled |= rd32(E1000_RXDCTL(i));
1373 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1374 break;
1377 if (ms_wait == 10)
1378 hw_dbg("Queue disable timed out after 10ms\n");
1380 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1381 * incoming packets are rejected. Set enable and wait 2ms so that
1382 * any packet that was coming in as RCTL.EN was set is flushed
1384 rfctl = rd32(E1000_RFCTL);
1385 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1387 rlpml = rd32(E1000_RLPML);
1388 wr32(E1000_RLPML, 0);
1390 rctl = rd32(E1000_RCTL);
1391 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1392 temp_rctl |= E1000_RCTL_LPE;
1394 wr32(E1000_RCTL, temp_rctl);
1395 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1396 wrfl();
1397 msleep(2);
1399 /* Enable RX queues that were previously enabled and restore our
1400 * previous state
1402 for (i = 0; i < 4; i++)
1403 wr32(E1000_RXDCTL(i), rxdctl[i]);
1404 wr32(E1000_RCTL, rctl);
1405 wrfl();
1407 wr32(E1000_RLPML, rlpml);
1408 wr32(E1000_RFCTL, rfctl);
1410 /* Flush receive errors generated by workaround */
1411 rd32(E1000_ROC);
1412 rd32(E1000_RNBC);
1413 rd32(E1000_MPC);
1416 static struct e1000_mac_operations e1000_mac_ops_82575 = {
1417 .reset_hw = igb_reset_hw_82575,
1418 .init_hw = igb_init_hw_82575,
1419 .check_for_link = igb_check_for_link_82575,
1420 .rar_set = igb_rar_set,
1421 .read_mac_addr = igb_read_mac_addr_82575,
1422 .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
1425 static struct e1000_phy_operations e1000_phy_ops_82575 = {
1426 .acquire_phy = igb_acquire_phy_82575,
1427 .get_cfg_done = igb_get_cfg_done_82575,
1428 .release_phy = igb_release_phy_82575,
1431 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
1432 .acquire_nvm = igb_acquire_nvm_82575,
1433 .read_nvm = igb_read_nvm_eerd,
1434 .release_nvm = igb_release_nvm_82575,
1435 .write_nvm = igb_write_nvm_spi,
1438 const struct e1000_info e1000_82575_info = {
1439 .get_invariants = igb_get_invariants_82575,
1440 .mac_ops = &e1000_mac_ops_82575,
1441 .phy_ops = &e1000_phy_ops_82575,
1442 .nvm_ops = &e1000_nvm_ops_82575,