2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
139 mutex_lock(&root
->log_mutex
);
140 if (root
->log_root
) {
141 if (!root
->log_start_pid
) {
142 root
->log_start_pid
= current
->pid
;
143 root
->log_multiple_pids
= false;
144 } else if (root
->log_start_pid
!= current
->pid
) {
145 root
->log_multiple_pids
= true;
149 atomic_inc(&root
->log_writers
);
150 mutex_unlock(&root
->log_mutex
);
153 root
->log_multiple_pids
= false;
154 root
->log_start_pid
= current
->pid
;
155 mutex_lock(&root
->fs_info
->tree_log_mutex
);
156 if (!root
->fs_info
->log_root_tree
) {
157 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
160 if (!root
->log_root
) {
161 ret
= btrfs_add_log_tree(trans
, root
);
164 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
166 atomic_inc(&root
->log_writers
);
167 mutex_unlock(&root
->log_mutex
);
172 * returns 0 if there was a log transaction running and we were able
173 * to join, or returns -ENOENT if there were not transactions
176 static int join_running_log_trans(struct btrfs_root
*root
)
184 mutex_lock(&root
->log_mutex
);
185 if (root
->log_root
) {
187 atomic_inc(&root
->log_writers
);
189 mutex_unlock(&root
->log_mutex
);
194 * This either makes the current running log transaction wait
195 * until you call btrfs_end_log_trans() or it makes any future
196 * log transactions wait until you call btrfs_end_log_trans()
198 int btrfs_pin_log_trans(struct btrfs_root
*root
)
202 mutex_lock(&root
->log_mutex
);
203 atomic_inc(&root
->log_writers
);
204 mutex_unlock(&root
->log_mutex
);
209 * indicate we're done making changes to the log tree
210 * and wake up anyone waiting to do a sync
212 int btrfs_end_log_trans(struct btrfs_root
*root
)
214 if (atomic_dec_and_test(&root
->log_writers
)) {
216 if (waitqueue_active(&root
->log_writer_wait
))
217 wake_up(&root
->log_writer_wait
);
224 * the walk control struct is used to pass state down the chain when
225 * processing the log tree. The stage field tells us which part
226 * of the log tree processing we are currently doing. The others
227 * are state fields used for that specific part
229 struct walk_control
{
230 /* should we free the extent on disk when done? This is used
231 * at transaction commit time while freeing a log tree
235 /* should we write out the extent buffer? This is used
236 * while flushing the log tree to disk during a sync
240 /* should we wait for the extent buffer io to finish? Also used
241 * while flushing the log tree to disk for a sync
245 /* pin only walk, we record which extents on disk belong to the
250 /* what stage of the replay code we're currently in */
253 /* the root we are currently replaying */
254 struct btrfs_root
*replay_dest
;
256 /* the trans handle for the current replay */
257 struct btrfs_trans_handle
*trans
;
259 /* the function that gets used to process blocks we find in the
260 * tree. Note the extent_buffer might not be up to date when it is
261 * passed in, and it must be checked or read if you need the data
264 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
265 struct walk_control
*wc
, u64 gen
);
269 * process_func used to pin down extents, write them or wait on them
271 static int process_one_buffer(struct btrfs_root
*log
,
272 struct extent_buffer
*eb
,
273 struct walk_control
*wc
, u64 gen
)
276 btrfs_pin_extent(log
->fs_info
->extent_root
,
277 eb
->start
, eb
->len
, 0);
279 if (btrfs_buffer_uptodate(eb
, gen
)) {
281 btrfs_write_tree_block(eb
);
283 btrfs_wait_tree_block_writeback(eb
);
289 * Item overwrite used by replay and tree logging. eb, slot and key all refer
290 * to the src data we are copying out.
292 * root is the tree we are copying into, and path is a scratch
293 * path for use in this function (it should be released on entry and
294 * will be released on exit).
296 * If the key is already in the destination tree the existing item is
297 * overwritten. If the existing item isn't big enough, it is extended.
298 * If it is too large, it is truncated.
300 * If the key isn't in the destination yet, a new item is inserted.
302 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
303 struct btrfs_root
*root
,
304 struct btrfs_path
*path
,
305 struct extent_buffer
*eb
, int slot
,
306 struct btrfs_key
*key
)
310 u64 saved_i_size
= 0;
311 int save_old_i_size
= 0;
312 unsigned long src_ptr
;
313 unsigned long dst_ptr
;
314 int overwrite_root
= 0;
316 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
319 item_size
= btrfs_item_size_nr(eb
, slot
);
320 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
322 /* look for the key in the destination tree */
323 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
327 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
329 if (dst_size
!= item_size
)
332 if (item_size
== 0) {
333 btrfs_release_path(root
, path
);
336 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
337 src_copy
= kmalloc(item_size
, GFP_NOFS
);
339 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
341 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
342 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
344 ret
= memcmp(dst_copy
, src_copy
, item_size
);
349 * they have the same contents, just return, this saves
350 * us from cowing blocks in the destination tree and doing
351 * extra writes that may not have been done by a previous
355 btrfs_release_path(root
, path
);
361 btrfs_release_path(root
, path
);
362 /* try to insert the key into the destination tree */
363 ret
= btrfs_insert_empty_item(trans
, root
, path
,
366 /* make sure any existing item is the correct size */
367 if (ret
== -EEXIST
) {
369 found_size
= btrfs_item_size_nr(path
->nodes
[0],
371 if (found_size
> item_size
) {
372 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
373 } else if (found_size
< item_size
) {
374 ret
= btrfs_extend_item(trans
, root
, path
,
375 item_size
- found_size
);
381 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
384 /* don't overwrite an existing inode if the generation number
385 * was logged as zero. This is done when the tree logging code
386 * is just logging an inode to make sure it exists after recovery.
388 * Also, don't overwrite i_size on directories during replay.
389 * log replay inserts and removes directory items based on the
390 * state of the tree found in the subvolume, and i_size is modified
393 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
394 struct btrfs_inode_item
*src_item
;
395 struct btrfs_inode_item
*dst_item
;
397 src_item
= (struct btrfs_inode_item
*)src_ptr
;
398 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
400 if (btrfs_inode_generation(eb
, src_item
) == 0)
403 if (overwrite_root
&&
404 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
405 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
407 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
412 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
415 if (save_old_i_size
) {
416 struct btrfs_inode_item
*dst_item
;
417 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
418 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
421 /* make sure the generation is filled in */
422 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
423 struct btrfs_inode_item
*dst_item
;
424 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
425 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
426 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
431 btrfs_mark_buffer_dirty(path
->nodes
[0]);
432 btrfs_release_path(root
, path
);
437 * simple helper to read an inode off the disk from a given root
438 * This can only be called for subvolume roots and not for the log
440 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
443 struct btrfs_key key
;
446 key
.objectid
= objectid
;
447 key
.type
= BTRFS_INODE_ITEM_KEY
;
449 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
452 } else if (is_bad_inode(inode
)) {
459 /* replays a single extent in 'eb' at 'slot' with 'key' into the
460 * subvolume 'root'. path is released on entry and should be released
463 * extents in the log tree have not been allocated out of the extent
464 * tree yet. So, this completes the allocation, taking a reference
465 * as required if the extent already exists or creating a new extent
466 * if it isn't in the extent allocation tree yet.
468 * The extent is inserted into the file, dropping any existing extents
469 * from the file that overlap the new one.
471 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
472 struct btrfs_root
*root
,
473 struct btrfs_path
*path
,
474 struct extent_buffer
*eb
, int slot
,
475 struct btrfs_key
*key
)
478 u64 mask
= root
->sectorsize
- 1;
481 u64 start
= key
->offset
;
483 struct btrfs_file_extent_item
*item
;
484 struct inode
*inode
= NULL
;
488 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
489 found_type
= btrfs_file_extent_type(eb
, item
);
491 if (found_type
== BTRFS_FILE_EXTENT_REG
||
492 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
493 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
494 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
495 size
= btrfs_file_extent_inline_len(eb
, item
);
496 extent_end
= (start
+ size
+ mask
) & ~mask
;
502 inode
= read_one_inode(root
, key
->objectid
);
509 * first check to see if we already have this extent in the
510 * file. This must be done before the btrfs_drop_extents run
511 * so we don't try to drop this extent.
513 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
517 (found_type
== BTRFS_FILE_EXTENT_REG
||
518 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
519 struct btrfs_file_extent_item cmp1
;
520 struct btrfs_file_extent_item cmp2
;
521 struct btrfs_file_extent_item
*existing
;
522 struct extent_buffer
*leaf
;
524 leaf
= path
->nodes
[0];
525 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
526 struct btrfs_file_extent_item
);
528 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
530 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
534 * we already have a pointer to this exact extent,
535 * we don't have to do anything
537 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
538 btrfs_release_path(root
, path
);
542 btrfs_release_path(root
, path
);
544 saved_nbytes
= inode_get_bytes(inode
);
545 /* drop any overlapping extents */
546 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
550 if (found_type
== BTRFS_FILE_EXTENT_REG
||
551 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
553 unsigned long dest_offset
;
554 struct btrfs_key ins
;
556 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
559 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
561 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
562 (unsigned long)item
, sizeof(*item
));
564 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
565 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
566 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
567 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
569 if (ins
.objectid
> 0) {
572 LIST_HEAD(ordered_sums
);
574 * is this extent already allocated in the extent
575 * allocation tree? If so, just add a reference
577 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
580 ret
= btrfs_inc_extent_ref(trans
, root
,
581 ins
.objectid
, ins
.offset
,
582 0, root
->root_key
.objectid
,
583 key
->objectid
, offset
);
586 * insert the extent pointer in the extent
589 ret
= btrfs_alloc_logged_file_extent(trans
,
590 root
, root
->root_key
.objectid
,
591 key
->objectid
, offset
, &ins
);
594 btrfs_release_path(root
, path
);
596 if (btrfs_file_extent_compression(eb
, item
)) {
597 csum_start
= ins
.objectid
;
598 csum_end
= csum_start
+ ins
.offset
;
600 csum_start
= ins
.objectid
+
601 btrfs_file_extent_offset(eb
, item
);
602 csum_end
= csum_start
+
603 btrfs_file_extent_num_bytes(eb
, item
);
606 ret
= btrfs_lookup_csums_range(root
->log_root
,
607 csum_start
, csum_end
- 1,
610 while (!list_empty(&ordered_sums
)) {
611 struct btrfs_ordered_sum
*sums
;
612 sums
= list_entry(ordered_sums
.next
,
613 struct btrfs_ordered_sum
,
615 ret
= btrfs_csum_file_blocks(trans
,
616 root
->fs_info
->csum_root
,
619 list_del(&sums
->list
);
623 btrfs_release_path(root
, path
);
625 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
626 /* inline extents are easy, we just overwrite them */
627 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
631 inode_set_bytes(inode
, saved_nbytes
);
632 btrfs_update_inode(trans
, root
, inode
);
640 * when cleaning up conflicts between the directory names in the
641 * subvolume, directory names in the log and directory names in the
642 * inode back references, we may have to unlink inodes from directories.
644 * This is a helper function to do the unlink of a specific directory
647 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
648 struct btrfs_root
*root
,
649 struct btrfs_path
*path
,
651 struct btrfs_dir_item
*di
)
656 struct extent_buffer
*leaf
;
657 struct btrfs_key location
;
660 leaf
= path
->nodes
[0];
662 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
663 name_len
= btrfs_dir_name_len(leaf
, di
);
664 name
= kmalloc(name_len
, GFP_NOFS
);
665 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
666 btrfs_release_path(root
, path
);
668 inode
= read_one_inode(root
, location
.objectid
);
671 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
674 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
683 * helper function to see if a given name and sequence number found
684 * in an inode back reference are already in a directory and correctly
685 * point to this inode
687 static noinline
int inode_in_dir(struct btrfs_root
*root
,
688 struct btrfs_path
*path
,
689 u64 dirid
, u64 objectid
, u64 index
,
690 const char *name
, int name_len
)
692 struct btrfs_dir_item
*di
;
693 struct btrfs_key location
;
696 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
697 index
, name
, name_len
, 0);
698 if (di
&& !IS_ERR(di
)) {
699 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
700 if (location
.objectid
!= objectid
)
704 btrfs_release_path(root
, path
);
706 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
707 if (di
&& !IS_ERR(di
)) {
708 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
709 if (location
.objectid
!= objectid
)
715 btrfs_release_path(root
, path
);
720 * helper function to check a log tree for a named back reference in
721 * an inode. This is used to decide if a back reference that is
722 * found in the subvolume conflicts with what we find in the log.
724 * inode backreferences may have multiple refs in a single item,
725 * during replay we process one reference at a time, and we don't
726 * want to delete valid links to a file from the subvolume if that
727 * link is also in the log.
729 static noinline
int backref_in_log(struct btrfs_root
*log
,
730 struct btrfs_key
*key
,
731 char *name
, int namelen
)
733 struct btrfs_path
*path
;
734 struct btrfs_inode_ref
*ref
;
736 unsigned long ptr_end
;
737 unsigned long name_ptr
;
743 path
= btrfs_alloc_path();
744 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
748 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
749 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
750 ptr_end
= ptr
+ item_size
;
751 while (ptr
< ptr_end
) {
752 ref
= (struct btrfs_inode_ref
*)ptr
;
753 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
754 if (found_name_len
== namelen
) {
755 name_ptr
= (unsigned long)(ref
+ 1);
756 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
763 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
766 btrfs_free_path(path
);
772 * replay one inode back reference item found in the log tree.
773 * eb, slot and key refer to the buffer and key found in the log tree.
774 * root is the destination we are replaying into, and path is for temp
775 * use by this function. (it should be released on return).
777 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
778 struct btrfs_root
*root
,
779 struct btrfs_root
*log
,
780 struct btrfs_path
*path
,
781 struct extent_buffer
*eb
, int slot
,
782 struct btrfs_key
*key
)
786 struct btrfs_key location
;
787 struct btrfs_inode_ref
*ref
;
788 struct btrfs_dir_item
*di
;
792 unsigned long ref_ptr
;
793 unsigned long ref_end
;
795 location
.objectid
= key
->objectid
;
796 location
.type
= BTRFS_INODE_ITEM_KEY
;
800 * it is possible that we didn't log all the parent directories
801 * for a given inode. If we don't find the dir, just don't
802 * copy the back ref in. The link count fixup code will take
805 dir
= read_one_inode(root
, key
->offset
);
809 inode
= read_one_inode(root
, key
->objectid
);
812 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
813 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
816 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
818 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
819 name
= kmalloc(namelen
, GFP_NOFS
);
822 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
824 /* if we already have a perfect match, we're done */
825 if (inode_in_dir(root
, path
, dir
->i_ino
, inode
->i_ino
,
826 btrfs_inode_ref_index(eb
, ref
),
832 * look for a conflicting back reference in the metadata.
833 * if we find one we have to unlink that name of the file
834 * before we add our new link. Later on, we overwrite any
835 * existing back reference, and we don't want to create
836 * dangling pointers in the directory.
839 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
843 struct btrfs_inode_ref
*victim_ref
;
845 unsigned long ptr_end
;
846 struct extent_buffer
*leaf
= path
->nodes
[0];
848 /* are we trying to overwrite a back ref for the root directory
849 * if so, just jump out, we're done
851 if (key
->objectid
== key
->offset
)
854 /* check all the names in this back reference to see
855 * if they are in the log. if so, we allow them to stay
856 * otherwise they must be unlinked as a conflict
858 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
859 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
860 while (ptr
< ptr_end
) {
861 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
862 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
864 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
865 BUG_ON(!victim_name
);
867 read_extent_buffer(leaf
, victim_name
,
868 (unsigned long)(victim_ref
+ 1),
871 if (!backref_in_log(log
, key
, victim_name
,
873 btrfs_inc_nlink(inode
);
874 btrfs_release_path(root
, path
);
876 ret
= btrfs_unlink_inode(trans
, root
, dir
,
880 btrfs_release_path(root
, path
);
884 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
888 btrfs_release_path(root
, path
);
890 /* look for a conflicting sequence number */
891 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
892 btrfs_inode_ref_index(eb
, ref
),
894 if (di
&& !IS_ERR(di
)) {
895 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
898 btrfs_release_path(root
, path
);
901 /* look for a conflicting name */
902 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
904 if (di
&& !IS_ERR(di
)) {
905 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
908 btrfs_release_path(root
, path
);
910 /* insert our name */
911 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
912 btrfs_inode_ref_index(eb
, ref
));
915 btrfs_update_inode(trans
, root
, inode
);
918 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
920 if (ref_ptr
< ref_end
)
923 /* finally write the back reference in the inode */
924 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
928 btrfs_release_path(root
, path
);
934 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
935 struct btrfs_root
*root
, u64 offset
)
938 ret
= btrfs_find_orphan_item(root
, offset
);
940 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
946 * There are a few corners where the link count of the file can't
947 * be properly maintained during replay. So, instead of adding
948 * lots of complexity to the log code, we just scan the backrefs
949 * for any file that has been through replay.
951 * The scan will update the link count on the inode to reflect the
952 * number of back refs found. If it goes down to zero, the iput
953 * will free the inode.
955 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
956 struct btrfs_root
*root
,
959 struct btrfs_path
*path
;
961 struct btrfs_key key
;
964 unsigned long ptr_end
;
967 key
.objectid
= inode
->i_ino
;
968 key
.type
= BTRFS_INODE_REF_KEY
;
969 key
.offset
= (u64
)-1;
971 path
= btrfs_alloc_path();
974 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
978 if (path
->slots
[0] == 0)
982 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
984 if (key
.objectid
!= inode
->i_ino
||
985 key
.type
!= BTRFS_INODE_REF_KEY
)
987 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
988 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
990 while (ptr
< ptr_end
) {
991 struct btrfs_inode_ref
*ref
;
993 ref
= (struct btrfs_inode_ref
*)ptr
;
994 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
996 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1000 if (key
.offset
== 0)
1003 btrfs_release_path(root
, path
);
1005 btrfs_release_path(root
, path
);
1006 if (nlink
!= inode
->i_nlink
) {
1007 inode
->i_nlink
= nlink
;
1008 btrfs_update_inode(trans
, root
, inode
);
1010 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1012 if (inode
->i_nlink
== 0) {
1013 if (S_ISDIR(inode
->i_mode
)) {
1014 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1018 ret
= insert_orphan_item(trans
, root
, inode
->i_ino
);
1021 btrfs_free_path(path
);
1026 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1027 struct btrfs_root
*root
,
1028 struct btrfs_path
*path
)
1031 struct btrfs_key key
;
1032 struct inode
*inode
;
1034 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1035 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1036 key
.offset
= (u64
)-1;
1038 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1043 if (path
->slots
[0] == 0)
1048 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1049 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1050 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1053 ret
= btrfs_del_item(trans
, root
, path
);
1056 btrfs_release_path(root
, path
);
1057 inode
= read_one_inode(root
, key
.offset
);
1060 ret
= fixup_inode_link_count(trans
, root
, inode
);
1066 * fixup on a directory may create new entries,
1067 * make sure we always look for the highset possible
1070 key
.offset
= (u64
)-1;
1072 btrfs_release_path(root
, path
);
1078 * record a given inode in the fixup dir so we can check its link
1079 * count when replay is done. The link count is incremented here
1080 * so the inode won't go away until we check it
1082 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1083 struct btrfs_root
*root
,
1084 struct btrfs_path
*path
,
1087 struct btrfs_key key
;
1089 struct inode
*inode
;
1091 inode
= read_one_inode(root
, objectid
);
1094 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1095 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1096 key
.offset
= objectid
;
1098 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1100 btrfs_release_path(root
, path
);
1102 btrfs_inc_nlink(inode
);
1103 btrfs_update_inode(trans
, root
, inode
);
1104 } else if (ret
== -EEXIST
) {
1115 * when replaying the log for a directory, we only insert names
1116 * for inodes that actually exist. This means an fsync on a directory
1117 * does not implicitly fsync all the new files in it
1119 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1120 struct btrfs_root
*root
,
1121 struct btrfs_path
*path
,
1122 u64 dirid
, u64 index
,
1123 char *name
, int name_len
, u8 type
,
1124 struct btrfs_key
*location
)
1126 struct inode
*inode
;
1130 inode
= read_one_inode(root
, location
->objectid
);
1134 dir
= read_one_inode(root
, dirid
);
1139 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1141 /* FIXME, put inode into FIXUP list */
1149 * take a single entry in a log directory item and replay it into
1152 * if a conflicting item exists in the subdirectory already,
1153 * the inode it points to is unlinked and put into the link count
1156 * If a name from the log points to a file or directory that does
1157 * not exist in the FS, it is skipped. fsyncs on directories
1158 * do not force down inodes inside that directory, just changes to the
1159 * names or unlinks in a directory.
1161 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1162 struct btrfs_root
*root
,
1163 struct btrfs_path
*path
,
1164 struct extent_buffer
*eb
,
1165 struct btrfs_dir_item
*di
,
1166 struct btrfs_key
*key
)
1170 struct btrfs_dir_item
*dst_di
;
1171 struct btrfs_key found_key
;
1172 struct btrfs_key log_key
;
1178 dir
= read_one_inode(root
, key
->objectid
);
1181 name_len
= btrfs_dir_name_len(eb
, di
);
1182 name
= kmalloc(name_len
, GFP_NOFS
);
1183 log_type
= btrfs_dir_type(eb
, di
);
1184 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1187 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1188 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1193 btrfs_release_path(root
, path
);
1195 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1196 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1198 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1199 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1206 if (!dst_di
|| IS_ERR(dst_di
)) {
1207 /* we need a sequence number to insert, so we only
1208 * do inserts for the BTRFS_DIR_INDEX_KEY types
1210 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1215 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1216 /* the existing item matches the logged item */
1217 if (found_key
.objectid
== log_key
.objectid
&&
1218 found_key
.type
== log_key
.type
&&
1219 found_key
.offset
== log_key
.offset
&&
1220 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1225 * don't drop the conflicting directory entry if the inode
1226 * for the new entry doesn't exist
1231 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1234 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1237 btrfs_release_path(root
, path
);
1243 btrfs_release_path(root
, path
);
1244 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1245 name
, name_len
, log_type
, &log_key
);
1247 BUG_ON(ret
&& ret
!= -ENOENT
);
1252 * find all the names in a directory item and reconcile them into
1253 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1254 * one name in a directory item, but the same code gets used for
1255 * both directory index types
1257 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1258 struct btrfs_root
*root
,
1259 struct btrfs_path
*path
,
1260 struct extent_buffer
*eb
, int slot
,
1261 struct btrfs_key
*key
)
1264 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1265 struct btrfs_dir_item
*di
;
1268 unsigned long ptr_end
;
1270 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1271 ptr_end
= ptr
+ item_size
;
1272 while (ptr
< ptr_end
) {
1273 di
= (struct btrfs_dir_item
*)ptr
;
1274 name_len
= btrfs_dir_name_len(eb
, di
);
1275 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1277 ptr
= (unsigned long)(di
+ 1);
1284 * directory replay has two parts. There are the standard directory
1285 * items in the log copied from the subvolume, and range items
1286 * created in the log while the subvolume was logged.
1288 * The range items tell us which parts of the key space the log
1289 * is authoritative for. During replay, if a key in the subvolume
1290 * directory is in a logged range item, but not actually in the log
1291 * that means it was deleted from the directory before the fsync
1292 * and should be removed.
1294 static noinline
int find_dir_range(struct btrfs_root
*root
,
1295 struct btrfs_path
*path
,
1296 u64 dirid
, int key_type
,
1297 u64
*start_ret
, u64
*end_ret
)
1299 struct btrfs_key key
;
1301 struct btrfs_dir_log_item
*item
;
1305 if (*start_ret
== (u64
)-1)
1308 key
.objectid
= dirid
;
1309 key
.type
= key_type
;
1310 key
.offset
= *start_ret
;
1312 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1316 if (path
->slots
[0] == 0)
1321 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1323 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1327 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1328 struct btrfs_dir_log_item
);
1329 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1331 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1333 *start_ret
= key
.offset
;
1334 *end_ret
= found_end
;
1339 /* check the next slot in the tree to see if it is a valid item */
1340 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1341 if (path
->slots
[0] >= nritems
) {
1342 ret
= btrfs_next_leaf(root
, path
);
1349 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1351 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1355 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1356 struct btrfs_dir_log_item
);
1357 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1358 *start_ret
= key
.offset
;
1359 *end_ret
= found_end
;
1362 btrfs_release_path(root
, path
);
1367 * this looks for a given directory item in the log. If the directory
1368 * item is not in the log, the item is removed and the inode it points
1371 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1372 struct btrfs_root
*root
,
1373 struct btrfs_root
*log
,
1374 struct btrfs_path
*path
,
1375 struct btrfs_path
*log_path
,
1377 struct btrfs_key
*dir_key
)
1380 struct extent_buffer
*eb
;
1383 struct btrfs_dir_item
*di
;
1384 struct btrfs_dir_item
*log_di
;
1387 unsigned long ptr_end
;
1389 struct inode
*inode
;
1390 struct btrfs_key location
;
1393 eb
= path
->nodes
[0];
1394 slot
= path
->slots
[0];
1395 item_size
= btrfs_item_size_nr(eb
, slot
);
1396 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1397 ptr_end
= ptr
+ item_size
;
1398 while (ptr
< ptr_end
) {
1399 di
= (struct btrfs_dir_item
*)ptr
;
1400 name_len
= btrfs_dir_name_len(eb
, di
);
1401 name
= kmalloc(name_len
, GFP_NOFS
);
1406 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1409 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1410 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1413 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1414 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1420 if (!log_di
|| IS_ERR(log_di
)) {
1421 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1422 btrfs_release_path(root
, path
);
1423 btrfs_release_path(log
, log_path
);
1424 inode
= read_one_inode(root
, location
.objectid
);
1427 ret
= link_to_fixup_dir(trans
, root
,
1428 path
, location
.objectid
);
1430 btrfs_inc_nlink(inode
);
1431 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1437 /* there might still be more names under this key
1438 * check and repeat if required
1440 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1447 btrfs_release_path(log
, log_path
);
1450 ptr
= (unsigned long)(di
+ 1);
1455 btrfs_release_path(root
, path
);
1456 btrfs_release_path(log
, log_path
);
1461 * deletion replay happens before we copy any new directory items
1462 * out of the log or out of backreferences from inodes. It
1463 * scans the log to find ranges of keys that log is authoritative for,
1464 * and then scans the directory to find items in those ranges that are
1465 * not present in the log.
1467 * Anything we don't find in the log is unlinked and removed from the
1470 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1471 struct btrfs_root
*root
,
1472 struct btrfs_root
*log
,
1473 struct btrfs_path
*path
,
1474 u64 dirid
, int del_all
)
1478 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1480 struct btrfs_key dir_key
;
1481 struct btrfs_key found_key
;
1482 struct btrfs_path
*log_path
;
1485 dir_key
.objectid
= dirid
;
1486 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1487 log_path
= btrfs_alloc_path();
1491 dir
= read_one_inode(root
, dirid
);
1492 /* it isn't an error if the inode isn't there, that can happen
1493 * because we replay the deletes before we copy in the inode item
1497 btrfs_free_path(log_path
);
1505 range_end
= (u64
)-1;
1507 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1508 &range_start
, &range_end
);
1513 dir_key
.offset
= range_start
;
1516 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1521 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1522 if (path
->slots
[0] >= nritems
) {
1523 ret
= btrfs_next_leaf(root
, path
);
1527 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1529 if (found_key
.objectid
!= dirid
||
1530 found_key
.type
!= dir_key
.type
)
1533 if (found_key
.offset
> range_end
)
1536 ret
= check_item_in_log(trans
, root
, log
, path
,
1540 if (found_key
.offset
== (u64
)-1)
1542 dir_key
.offset
= found_key
.offset
+ 1;
1544 btrfs_release_path(root
, path
);
1545 if (range_end
== (u64
)-1)
1547 range_start
= range_end
+ 1;
1552 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1553 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1554 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1555 btrfs_release_path(root
, path
);
1559 btrfs_release_path(root
, path
);
1560 btrfs_free_path(log_path
);
1566 * the process_func used to replay items from the log tree. This
1567 * gets called in two different stages. The first stage just looks
1568 * for inodes and makes sure they are all copied into the subvolume.
1570 * The second stage copies all the other item types from the log into
1571 * the subvolume. The two stage approach is slower, but gets rid of
1572 * lots of complexity around inodes referencing other inodes that exist
1573 * only in the log (references come from either directory items or inode
1576 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1577 struct walk_control
*wc
, u64 gen
)
1580 struct btrfs_path
*path
;
1581 struct btrfs_root
*root
= wc
->replay_dest
;
1582 struct btrfs_key key
;
1588 btrfs_read_buffer(eb
, gen
);
1590 level
= btrfs_header_level(eb
);
1595 path
= btrfs_alloc_path();
1598 nritems
= btrfs_header_nritems(eb
);
1599 for (i
= 0; i
< nritems
; i
++) {
1600 btrfs_item_key_to_cpu(eb
, &key
, i
);
1601 item_size
= btrfs_item_size_nr(eb
, i
);
1603 /* inode keys are done during the first stage */
1604 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1605 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1606 struct btrfs_inode_item
*inode_item
;
1609 inode_item
= btrfs_item_ptr(eb
, i
,
1610 struct btrfs_inode_item
);
1611 mode
= btrfs_inode_mode(eb
, inode_item
);
1612 if (S_ISDIR(mode
)) {
1613 ret
= replay_dir_deletes(wc
->trans
,
1614 root
, log
, path
, key
.objectid
, 0);
1617 ret
= overwrite_item(wc
->trans
, root
, path
,
1621 /* for regular files, make sure corresponding
1622 * orhpan item exist. extents past the new EOF
1623 * will be truncated later by orphan cleanup.
1625 if (S_ISREG(mode
)) {
1626 ret
= insert_orphan_item(wc
->trans
, root
,
1631 ret
= link_to_fixup_dir(wc
->trans
, root
,
1632 path
, key
.objectid
);
1635 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1638 /* these keys are simply copied */
1639 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1640 ret
= overwrite_item(wc
->trans
, root
, path
,
1643 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1644 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1646 BUG_ON(ret
&& ret
!= -ENOENT
);
1647 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1648 ret
= replay_one_extent(wc
->trans
, root
, path
,
1651 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1652 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1653 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1658 btrfs_free_path(path
);
1662 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1663 struct btrfs_root
*root
,
1664 struct btrfs_path
*path
, int *level
,
1665 struct walk_control
*wc
)
1671 struct extent_buffer
*next
;
1672 struct extent_buffer
*cur
;
1673 struct extent_buffer
*parent
;
1677 WARN_ON(*level
< 0);
1678 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1680 while (*level
> 0) {
1681 WARN_ON(*level
< 0);
1682 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1683 cur
= path
->nodes
[*level
];
1685 if (btrfs_header_level(cur
) != *level
)
1688 if (path
->slots
[*level
] >=
1689 btrfs_header_nritems(cur
))
1692 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1693 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1694 blocksize
= btrfs_level_size(root
, *level
- 1);
1696 parent
= path
->nodes
[*level
];
1697 root_owner
= btrfs_header_owner(parent
);
1698 root_gen
= btrfs_header_generation(parent
);
1700 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1702 wc
->process_func(root
, next
, wc
, ptr_gen
);
1705 path
->slots
[*level
]++;
1707 btrfs_read_buffer(next
, ptr_gen
);
1709 btrfs_tree_lock(next
);
1710 clean_tree_block(trans
, root
, next
);
1711 btrfs_set_lock_blocking(next
);
1712 btrfs_wait_tree_block_writeback(next
);
1713 btrfs_tree_unlock(next
);
1715 WARN_ON(root_owner
!=
1716 BTRFS_TREE_LOG_OBJECTID
);
1717 ret
= btrfs_free_reserved_extent(root
,
1721 free_extent_buffer(next
);
1724 btrfs_read_buffer(next
, ptr_gen
);
1726 WARN_ON(*level
<= 0);
1727 if (path
->nodes
[*level
-1])
1728 free_extent_buffer(path
->nodes
[*level
-1]);
1729 path
->nodes
[*level
-1] = next
;
1730 *level
= btrfs_header_level(next
);
1731 path
->slots
[*level
] = 0;
1734 WARN_ON(*level
< 0);
1735 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1737 if (path
->nodes
[*level
] == root
->node
)
1738 parent
= path
->nodes
[*level
];
1740 parent
= path
->nodes
[*level
+ 1];
1742 bytenr
= path
->nodes
[*level
]->start
;
1744 blocksize
= btrfs_level_size(root
, *level
);
1745 root_owner
= btrfs_header_owner(parent
);
1746 root_gen
= btrfs_header_generation(parent
);
1748 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1749 btrfs_header_generation(path
->nodes
[*level
]));
1752 next
= path
->nodes
[*level
];
1753 btrfs_tree_lock(next
);
1754 clean_tree_block(trans
, root
, next
);
1755 btrfs_set_lock_blocking(next
);
1756 btrfs_wait_tree_block_writeback(next
);
1757 btrfs_tree_unlock(next
);
1759 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1760 ret
= btrfs_free_reserved_extent(root
, bytenr
, blocksize
);
1763 free_extent_buffer(path
->nodes
[*level
]);
1764 path
->nodes
[*level
] = NULL
;
1771 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1772 struct btrfs_root
*root
,
1773 struct btrfs_path
*path
, int *level
,
1774 struct walk_control
*wc
)
1782 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1783 slot
= path
->slots
[i
];
1784 if (slot
< btrfs_header_nritems(path
->nodes
[i
]) - 1) {
1785 struct extent_buffer
*node
;
1786 node
= path
->nodes
[i
];
1789 WARN_ON(*level
== 0);
1792 struct extent_buffer
*parent
;
1793 if (path
->nodes
[*level
] == root
->node
)
1794 parent
= path
->nodes
[*level
];
1796 parent
= path
->nodes
[*level
+ 1];
1798 root_owner
= btrfs_header_owner(parent
);
1799 root_gen
= btrfs_header_generation(parent
);
1800 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1801 btrfs_header_generation(path
->nodes
[*level
]));
1803 struct extent_buffer
*next
;
1805 next
= path
->nodes
[*level
];
1807 btrfs_tree_lock(next
);
1808 clean_tree_block(trans
, root
, next
);
1809 btrfs_set_lock_blocking(next
);
1810 btrfs_wait_tree_block_writeback(next
);
1811 btrfs_tree_unlock(next
);
1813 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1814 ret
= btrfs_free_reserved_extent(root
,
1815 path
->nodes
[*level
]->start
,
1816 path
->nodes
[*level
]->len
);
1819 free_extent_buffer(path
->nodes
[*level
]);
1820 path
->nodes
[*level
] = NULL
;
1828 * drop the reference count on the tree rooted at 'snap'. This traverses
1829 * the tree freeing any blocks that have a ref count of zero after being
1832 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1833 struct btrfs_root
*log
, struct walk_control
*wc
)
1838 struct btrfs_path
*path
;
1842 path
= btrfs_alloc_path();
1845 level
= btrfs_header_level(log
->node
);
1847 path
->nodes
[level
] = log
->node
;
1848 extent_buffer_get(log
->node
);
1849 path
->slots
[level
] = 0;
1852 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1858 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1865 /* was the root node processed? if not, catch it here */
1866 if (path
->nodes
[orig_level
]) {
1867 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1868 btrfs_header_generation(path
->nodes
[orig_level
]));
1870 struct extent_buffer
*next
;
1872 next
= path
->nodes
[orig_level
];
1874 btrfs_tree_lock(next
);
1875 clean_tree_block(trans
, log
, next
);
1876 btrfs_set_lock_blocking(next
);
1877 btrfs_wait_tree_block_writeback(next
);
1878 btrfs_tree_unlock(next
);
1880 WARN_ON(log
->root_key
.objectid
!=
1881 BTRFS_TREE_LOG_OBJECTID
);
1882 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1888 for (i
= 0; i
<= orig_level
; i
++) {
1889 if (path
->nodes
[i
]) {
1890 free_extent_buffer(path
->nodes
[i
]);
1891 path
->nodes
[i
] = NULL
;
1894 btrfs_free_path(path
);
1899 * helper function to update the item for a given subvolumes log root
1900 * in the tree of log roots
1902 static int update_log_root(struct btrfs_trans_handle
*trans
,
1903 struct btrfs_root
*log
)
1907 if (log
->log_transid
== 1) {
1908 /* insert root item on the first sync */
1909 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1910 &log
->root_key
, &log
->root_item
);
1912 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1913 &log
->root_key
, &log
->root_item
);
1918 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1919 struct btrfs_root
*root
, unsigned long transid
)
1922 int index
= transid
% 2;
1925 * we only allow two pending log transactions at a time,
1926 * so we know that if ours is more than 2 older than the
1927 * current transaction, we're done
1930 prepare_to_wait(&root
->log_commit_wait
[index
],
1931 &wait
, TASK_UNINTERRUPTIBLE
);
1932 mutex_unlock(&root
->log_mutex
);
1934 if (root
->fs_info
->last_trans_log_full_commit
!=
1935 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1936 atomic_read(&root
->log_commit
[index
]))
1939 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1940 mutex_lock(&root
->log_mutex
);
1941 } while (root
->log_transid
< transid
+ 2 &&
1942 atomic_read(&root
->log_commit
[index
]));
1946 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1947 struct btrfs_root
*root
)
1950 while (atomic_read(&root
->log_writers
)) {
1951 prepare_to_wait(&root
->log_writer_wait
,
1952 &wait
, TASK_UNINTERRUPTIBLE
);
1953 mutex_unlock(&root
->log_mutex
);
1954 if (root
->fs_info
->last_trans_log_full_commit
!=
1955 trans
->transid
&& atomic_read(&root
->log_writers
))
1957 mutex_lock(&root
->log_mutex
);
1958 finish_wait(&root
->log_writer_wait
, &wait
);
1964 * btrfs_sync_log does sends a given tree log down to the disk and
1965 * updates the super blocks to record it. When this call is done,
1966 * you know that any inodes previously logged are safely on disk only
1969 * Any other return value means you need to call btrfs_commit_transaction.
1970 * Some of the edge cases for fsyncing directories that have had unlinks
1971 * or renames done in the past mean that sometimes the only safe
1972 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1973 * that has happened.
1975 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1976 struct btrfs_root
*root
)
1982 struct btrfs_root
*log
= root
->log_root
;
1983 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1984 unsigned long log_transid
= 0;
1986 mutex_lock(&root
->log_mutex
);
1987 index1
= root
->log_transid
% 2;
1988 if (atomic_read(&root
->log_commit
[index1
])) {
1989 wait_log_commit(trans
, root
, root
->log_transid
);
1990 mutex_unlock(&root
->log_mutex
);
1993 atomic_set(&root
->log_commit
[index1
], 1);
1995 /* wait for previous tree log sync to complete */
1996 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1997 wait_log_commit(trans
, root
, root
->log_transid
- 1);
2000 unsigned long batch
= root
->log_batch
;
2001 if (root
->log_multiple_pids
) {
2002 mutex_unlock(&root
->log_mutex
);
2003 schedule_timeout_uninterruptible(1);
2004 mutex_lock(&root
->log_mutex
);
2006 wait_for_writer(trans
, root
);
2007 if (batch
== root
->log_batch
)
2011 /* bail out if we need to do a full commit */
2012 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2014 mutex_unlock(&root
->log_mutex
);
2018 log_transid
= root
->log_transid
;
2019 if (log_transid
% 2 == 0)
2020 mark
= EXTENT_DIRTY
;
2024 /* we start IO on all the marked extents here, but we don't actually
2025 * wait for them until later.
2027 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2030 btrfs_set_root_node(&log
->root_item
, log
->node
);
2032 root
->log_batch
= 0;
2033 root
->log_transid
++;
2034 log
->log_transid
= root
->log_transid
;
2035 root
->log_start_pid
= 0;
2038 * IO has been started, blocks of the log tree have WRITTEN flag set
2039 * in their headers. new modifications of the log will be written to
2040 * new positions. so it's safe to allow log writers to go in.
2042 mutex_unlock(&root
->log_mutex
);
2044 mutex_lock(&log_root_tree
->log_mutex
);
2045 log_root_tree
->log_batch
++;
2046 atomic_inc(&log_root_tree
->log_writers
);
2047 mutex_unlock(&log_root_tree
->log_mutex
);
2049 ret
= update_log_root(trans
, log
);
2052 mutex_lock(&log_root_tree
->log_mutex
);
2053 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2055 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2056 wake_up(&log_root_tree
->log_writer_wait
);
2059 index2
= log_root_tree
->log_transid
% 2;
2060 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2061 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2062 wait_log_commit(trans
, log_root_tree
,
2063 log_root_tree
->log_transid
);
2064 mutex_unlock(&log_root_tree
->log_mutex
);
2067 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2069 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2070 wait_log_commit(trans
, log_root_tree
,
2071 log_root_tree
->log_transid
- 1);
2074 wait_for_writer(trans
, log_root_tree
);
2077 * now that we've moved on to the tree of log tree roots,
2078 * check the full commit flag again
2080 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2081 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2082 mutex_unlock(&log_root_tree
->log_mutex
);
2084 goto out_wake_log_root
;
2087 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2088 &log_root_tree
->dirty_log_pages
,
2089 EXTENT_DIRTY
| EXTENT_NEW
);
2091 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2093 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2094 log_root_tree
->node
->start
);
2095 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2096 btrfs_header_level(log_root_tree
->node
));
2098 log_root_tree
->log_batch
= 0;
2099 log_root_tree
->log_transid
++;
2102 mutex_unlock(&log_root_tree
->log_mutex
);
2105 * nobody else is going to jump in and write the the ctree
2106 * super here because the log_commit atomic below is protecting
2107 * us. We must be called with a transaction handle pinning
2108 * the running transaction open, so a full commit can't hop
2109 * in and cause problems either.
2111 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2114 mutex_lock(&root
->log_mutex
);
2115 if (root
->last_log_commit
< log_transid
)
2116 root
->last_log_commit
= log_transid
;
2117 mutex_unlock(&root
->log_mutex
);
2120 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2122 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2123 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2125 atomic_set(&root
->log_commit
[index1
], 0);
2127 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2128 wake_up(&root
->log_commit_wait
[index1
]);
2133 * free all the extents used by the tree log. This should be called
2134 * at commit time of the full transaction
2136 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2139 struct btrfs_root
*log
;
2143 struct walk_control wc
= {
2145 .process_func
= process_one_buffer
2148 if (!root
->log_root
|| root
->fs_info
->log_root_recovering
)
2151 log
= root
->log_root
;
2152 ret
= walk_log_tree(trans
, log
, &wc
);
2156 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2157 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2161 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2162 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2165 if (log
->log_transid
> 0) {
2166 ret
= btrfs_del_root(trans
, root
->fs_info
->log_root_tree
,
2170 root
->log_root
= NULL
;
2171 free_extent_buffer(log
->node
);
2177 * If both a file and directory are logged, and unlinks or renames are
2178 * mixed in, we have a few interesting corners:
2180 * create file X in dir Y
2181 * link file X to X.link in dir Y
2183 * unlink file X but leave X.link
2186 * After a crash we would expect only X.link to exist. But file X
2187 * didn't get fsync'd again so the log has back refs for X and X.link.
2189 * We solve this by removing directory entries and inode backrefs from the
2190 * log when a file that was logged in the current transaction is
2191 * unlinked. Any later fsync will include the updated log entries, and
2192 * we'll be able to reconstruct the proper directory items from backrefs.
2194 * This optimizations allows us to avoid relogging the entire inode
2195 * or the entire directory.
2197 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2198 struct btrfs_root
*root
,
2199 const char *name
, int name_len
,
2200 struct inode
*dir
, u64 index
)
2202 struct btrfs_root
*log
;
2203 struct btrfs_dir_item
*di
;
2204 struct btrfs_path
*path
;
2208 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2211 ret
= join_running_log_trans(root
);
2215 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2217 log
= root
->log_root
;
2218 path
= btrfs_alloc_path();
2219 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir
->i_ino
,
2220 name
, name_len
, -1);
2221 if (di
&& !IS_ERR(di
)) {
2222 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2223 bytes_del
+= name_len
;
2226 btrfs_release_path(log
, path
);
2227 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir
->i_ino
,
2228 index
, name
, name_len
, -1);
2229 if (di
&& !IS_ERR(di
)) {
2230 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2231 bytes_del
+= name_len
;
2235 /* update the directory size in the log to reflect the names
2239 struct btrfs_key key
;
2241 key
.objectid
= dir
->i_ino
;
2243 key
.type
= BTRFS_INODE_ITEM_KEY
;
2244 btrfs_release_path(log
, path
);
2246 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2248 struct btrfs_inode_item
*item
;
2251 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2252 struct btrfs_inode_item
);
2253 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2254 if (i_size
> bytes_del
)
2255 i_size
-= bytes_del
;
2258 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2259 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2262 btrfs_release_path(log
, path
);
2265 btrfs_free_path(path
);
2266 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2267 btrfs_end_log_trans(root
);
2272 /* see comments for btrfs_del_dir_entries_in_log */
2273 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2274 struct btrfs_root
*root
,
2275 const char *name
, int name_len
,
2276 struct inode
*inode
, u64 dirid
)
2278 struct btrfs_root
*log
;
2282 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2285 ret
= join_running_log_trans(root
);
2288 log
= root
->log_root
;
2289 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2291 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, inode
->i_ino
,
2293 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2294 btrfs_end_log_trans(root
);
2300 * creates a range item in the log for 'dirid'. first_offset and
2301 * last_offset tell us which parts of the key space the log should
2302 * be considered authoritative for.
2304 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2305 struct btrfs_root
*log
,
2306 struct btrfs_path
*path
,
2307 int key_type
, u64 dirid
,
2308 u64 first_offset
, u64 last_offset
)
2311 struct btrfs_key key
;
2312 struct btrfs_dir_log_item
*item
;
2314 key
.objectid
= dirid
;
2315 key
.offset
= first_offset
;
2316 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2317 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2319 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2320 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2323 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2324 struct btrfs_dir_log_item
);
2325 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2326 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2327 btrfs_release_path(log
, path
);
2332 * log all the items included in the current transaction for a given
2333 * directory. This also creates the range items in the log tree required
2334 * to replay anything deleted before the fsync
2336 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2337 struct btrfs_root
*root
, struct inode
*inode
,
2338 struct btrfs_path
*path
,
2339 struct btrfs_path
*dst_path
, int key_type
,
2340 u64 min_offset
, u64
*last_offset_ret
)
2342 struct btrfs_key min_key
;
2343 struct btrfs_key max_key
;
2344 struct btrfs_root
*log
= root
->log_root
;
2345 struct extent_buffer
*src
;
2349 u64 first_offset
= min_offset
;
2350 u64 last_offset
= (u64
)-1;
2352 log
= root
->log_root
;
2353 max_key
.objectid
= inode
->i_ino
;
2354 max_key
.offset
= (u64
)-1;
2355 max_key
.type
= key_type
;
2357 min_key
.objectid
= inode
->i_ino
;
2358 min_key
.type
= key_type
;
2359 min_key
.offset
= min_offset
;
2361 path
->keep_locks
= 1;
2363 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2364 path
, 0, trans
->transid
);
2367 * we didn't find anything from this transaction, see if there
2368 * is anything at all
2370 if (ret
!= 0 || min_key
.objectid
!= inode
->i_ino
||
2371 min_key
.type
!= key_type
) {
2372 min_key
.objectid
= inode
->i_ino
;
2373 min_key
.type
= key_type
;
2374 min_key
.offset
= (u64
)-1;
2375 btrfs_release_path(root
, path
);
2376 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2378 btrfs_release_path(root
, path
);
2381 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2383 /* if ret == 0 there are items for this type,
2384 * create a range to tell us the last key of this type.
2385 * otherwise, there are no items in this directory after
2386 * *min_offset, and we create a range to indicate that.
2389 struct btrfs_key tmp
;
2390 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2392 if (key_type
== tmp
.type
)
2393 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2398 /* go backward to find any previous key */
2399 ret
= btrfs_previous_item(root
, path
, inode
->i_ino
, key_type
);
2401 struct btrfs_key tmp
;
2402 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2403 if (key_type
== tmp
.type
) {
2404 first_offset
= tmp
.offset
;
2405 ret
= overwrite_item(trans
, log
, dst_path
,
2406 path
->nodes
[0], path
->slots
[0],
2410 btrfs_release_path(root
, path
);
2412 /* find the first key from this transaction again */
2413 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2420 * we have a block from this transaction, log every item in it
2421 * from our directory
2424 struct btrfs_key tmp
;
2425 src
= path
->nodes
[0];
2426 nritems
= btrfs_header_nritems(src
);
2427 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2428 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2430 if (min_key
.objectid
!= inode
->i_ino
||
2431 min_key
.type
!= key_type
)
2433 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2437 path
->slots
[0] = nritems
;
2440 * look ahead to the next item and see if it is also
2441 * from this directory and from this transaction
2443 ret
= btrfs_next_leaf(root
, path
);
2445 last_offset
= (u64
)-1;
2448 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2449 if (tmp
.objectid
!= inode
->i_ino
|| tmp
.type
!= key_type
) {
2450 last_offset
= (u64
)-1;
2453 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2454 ret
= overwrite_item(trans
, log
, dst_path
,
2455 path
->nodes
[0], path
->slots
[0],
2459 last_offset
= tmp
.offset
;
2464 *last_offset_ret
= last_offset
;
2465 btrfs_release_path(root
, path
);
2466 btrfs_release_path(log
, dst_path
);
2468 /* insert the log range keys to indicate where the log is valid */
2469 ret
= insert_dir_log_key(trans
, log
, path
, key_type
, inode
->i_ino
,
2470 first_offset
, last_offset
);
2476 * logging directories is very similar to logging inodes, We find all the items
2477 * from the current transaction and write them to the log.
2479 * The recovery code scans the directory in the subvolume, and if it finds a
2480 * key in the range logged that is not present in the log tree, then it means
2481 * that dir entry was unlinked during the transaction.
2483 * In order for that scan to work, we must include one key smaller than
2484 * the smallest logged by this transaction and one key larger than the largest
2485 * key logged by this transaction.
2487 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2488 struct btrfs_root
*root
, struct inode
*inode
,
2489 struct btrfs_path
*path
,
2490 struct btrfs_path
*dst_path
)
2495 int key_type
= BTRFS_DIR_ITEM_KEY
;
2501 ret
= log_dir_items(trans
, root
, inode
, path
,
2502 dst_path
, key_type
, min_key
,
2505 if (max_key
== (u64
)-1)
2507 min_key
= max_key
+ 1;
2510 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2511 key_type
= BTRFS_DIR_INDEX_KEY
;
2518 * a helper function to drop items from the log before we relog an
2519 * inode. max_key_type indicates the highest item type to remove.
2520 * This cannot be run for file data extents because it does not
2521 * free the extents they point to.
2523 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2524 struct btrfs_root
*log
,
2525 struct btrfs_path
*path
,
2526 u64 objectid
, int max_key_type
)
2529 struct btrfs_key key
;
2530 struct btrfs_key found_key
;
2532 key
.objectid
= objectid
;
2533 key
.type
= max_key_type
;
2534 key
.offset
= (u64
)-1;
2537 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2542 if (path
->slots
[0] == 0)
2546 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2549 if (found_key
.objectid
!= objectid
)
2552 ret
= btrfs_del_item(trans
, log
, path
);
2554 btrfs_release_path(log
, path
);
2556 btrfs_release_path(log
, path
);
2560 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2561 struct btrfs_root
*log
,
2562 struct btrfs_path
*dst_path
,
2563 struct extent_buffer
*src
,
2564 int start_slot
, int nr
, int inode_only
)
2566 unsigned long src_offset
;
2567 unsigned long dst_offset
;
2568 struct btrfs_file_extent_item
*extent
;
2569 struct btrfs_inode_item
*inode_item
;
2571 struct btrfs_key
*ins_keys
;
2575 struct list_head ordered_sums
;
2577 INIT_LIST_HEAD(&ordered_sums
);
2579 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2580 nr
* sizeof(u32
), GFP_NOFS
);
2581 ins_sizes
= (u32
*)ins_data
;
2582 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2584 for (i
= 0; i
< nr
; i
++) {
2585 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2586 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2588 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2589 ins_keys
, ins_sizes
, nr
);
2592 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2593 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2594 dst_path
->slots
[0]);
2596 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2598 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2599 src_offset
, ins_sizes
[i
]);
2601 if (inode_only
== LOG_INODE_EXISTS
&&
2602 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2603 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2605 struct btrfs_inode_item
);
2606 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2608 /* set the generation to zero so the recover code
2609 * can tell the difference between an logging
2610 * just to say 'this inode exists' and a logging
2611 * to say 'update this inode with these values'
2613 btrfs_set_inode_generation(dst_path
->nodes
[0],
2616 /* take a reference on file data extents so that truncates
2617 * or deletes of this inode don't have to relog the inode
2620 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2622 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2623 struct btrfs_file_extent_item
);
2625 found_type
= btrfs_file_extent_type(src
, extent
);
2626 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2627 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2629 ds
= btrfs_file_extent_disk_bytenr(src
,
2631 /* ds == 0 is a hole */
2635 dl
= btrfs_file_extent_disk_num_bytes(src
,
2637 cs
= btrfs_file_extent_offset(src
, extent
);
2638 cl
= btrfs_file_extent_num_bytes(src
,
2640 if (btrfs_file_extent_compression(src
,
2646 ret
= btrfs_lookup_csums_range(
2647 log
->fs_info
->csum_root
,
2648 ds
+ cs
, ds
+ cs
+ cl
- 1,
2655 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2656 btrfs_release_path(log
, dst_path
);
2660 * we have to do this after the loop above to avoid changing the
2661 * log tree while trying to change the log tree.
2663 while (!list_empty(&ordered_sums
)) {
2664 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2665 struct btrfs_ordered_sum
,
2667 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2669 list_del(&sums
->list
);
2675 /* log a single inode in the tree log.
2676 * At least one parent directory for this inode must exist in the tree
2677 * or be logged already.
2679 * Any items from this inode changed by the current transaction are copied
2680 * to the log tree. An extra reference is taken on any extents in this
2681 * file, allowing us to avoid a whole pile of corner cases around logging
2682 * blocks that have been removed from the tree.
2684 * See LOG_INODE_ALL and related defines for a description of what inode_only
2687 * This handles both files and directories.
2689 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2690 struct btrfs_root
*root
, struct inode
*inode
,
2693 struct btrfs_path
*path
;
2694 struct btrfs_path
*dst_path
;
2695 struct btrfs_key min_key
;
2696 struct btrfs_key max_key
;
2697 struct btrfs_root
*log
= root
->log_root
;
2698 struct extent_buffer
*src
= NULL
;
2702 int ins_start_slot
= 0;
2705 log
= root
->log_root
;
2707 path
= btrfs_alloc_path();
2708 dst_path
= btrfs_alloc_path();
2710 min_key
.objectid
= inode
->i_ino
;
2711 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2714 max_key
.objectid
= inode
->i_ino
;
2716 /* today the code can only do partial logging of directories */
2717 if (!S_ISDIR(inode
->i_mode
))
2718 inode_only
= LOG_INODE_ALL
;
2720 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2721 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2723 max_key
.type
= (u8
)-1;
2724 max_key
.offset
= (u64
)-1;
2726 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2729 * a brute force approach to making sure we get the most uptodate
2730 * copies of everything.
2732 if (S_ISDIR(inode
->i_mode
)) {
2733 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2735 if (inode_only
== LOG_INODE_EXISTS
)
2736 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2737 ret
= drop_objectid_items(trans
, log
, path
,
2738 inode
->i_ino
, max_key_type
);
2740 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2743 path
->keep_locks
= 1;
2747 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2748 path
, 0, trans
->transid
);
2752 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2753 if (min_key
.objectid
!= inode
->i_ino
)
2755 if (min_key
.type
> max_key
.type
)
2758 src
= path
->nodes
[0];
2759 size
= btrfs_item_size_nr(src
, path
->slots
[0]);
2760 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2763 } else if (!ins_nr
) {
2764 ins_start_slot
= path
->slots
[0];
2769 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2770 ins_nr
, inode_only
);
2773 ins_start_slot
= path
->slots
[0];
2776 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2778 if (path
->slots
[0] < nritems
) {
2779 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2784 ret
= copy_items(trans
, log
, dst_path
, src
,
2786 ins_nr
, inode_only
);
2790 btrfs_release_path(root
, path
);
2792 if (min_key
.offset
< (u64
)-1)
2794 else if (min_key
.type
< (u8
)-1)
2796 else if (min_key
.objectid
< (u64
)-1)
2802 ret
= copy_items(trans
, log
, dst_path
, src
,
2804 ins_nr
, inode_only
);
2809 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2810 btrfs_release_path(root
, path
);
2811 btrfs_release_path(log
, dst_path
);
2812 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2815 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2816 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2818 btrfs_free_path(path
);
2819 btrfs_free_path(dst_path
);
2824 * follow the dentry parent pointers up the chain and see if any
2825 * of the directories in it require a full commit before they can
2826 * be logged. Returns zero if nothing special needs to be done or 1 if
2827 * a full commit is required.
2829 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2830 struct inode
*inode
,
2831 struct dentry
*parent
,
2832 struct super_block
*sb
,
2836 struct btrfs_root
*root
;
2839 * for regular files, if its inode is already on disk, we don't
2840 * have to worry about the parents at all. This is because
2841 * we can use the last_unlink_trans field to record renames
2842 * and other fun in this file.
2844 if (S_ISREG(inode
->i_mode
) &&
2845 BTRFS_I(inode
)->generation
<= last_committed
&&
2846 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2849 if (!S_ISDIR(inode
->i_mode
)) {
2850 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2852 inode
= parent
->d_inode
;
2856 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2859 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2860 root
= BTRFS_I(inode
)->root
;
2863 * make sure any commits to the log are forced
2864 * to be full commits
2866 root
->fs_info
->last_trans_log_full_commit
=
2872 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2875 if (IS_ROOT(parent
))
2878 parent
= parent
->d_parent
;
2879 inode
= parent
->d_inode
;
2886 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2887 struct inode
*inode
)
2889 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2892 mutex_lock(&root
->log_mutex
);
2893 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2894 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2896 mutex_unlock(&root
->log_mutex
);
2902 * helper function around btrfs_log_inode to make sure newly created
2903 * parent directories also end up in the log. A minimal inode and backref
2904 * only logging is done of any parent directories that are older than
2905 * the last committed transaction
2907 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
2908 struct btrfs_root
*root
, struct inode
*inode
,
2909 struct dentry
*parent
, int exists_only
)
2911 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
2912 struct super_block
*sb
;
2914 u64 last_committed
= root
->fs_info
->last_trans_committed
;
2918 if (btrfs_test_opt(root
, NOTREELOG
)) {
2923 if (root
->fs_info
->last_trans_log_full_commit
>
2924 root
->fs_info
->last_trans_committed
) {
2929 if (root
!= BTRFS_I(inode
)->root
||
2930 btrfs_root_refs(&root
->root_item
) == 0) {
2935 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
2936 sb
, last_committed
);
2940 if (inode_in_log(trans
, inode
)) {
2941 ret
= BTRFS_NO_LOG_SYNC
;
2945 start_log_trans(trans
, root
);
2947 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2951 * for regular files, if its inode is already on disk, we don't
2952 * have to worry about the parents at all. This is because
2953 * we can use the last_unlink_trans field to record renames
2954 * and other fun in this file.
2956 if (S_ISREG(inode
->i_mode
) &&
2957 BTRFS_I(inode
)->generation
<= last_committed
&&
2958 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2961 inode_only
= LOG_INODE_EXISTS
;
2963 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2966 inode
= parent
->d_inode
;
2967 if (root
!= BTRFS_I(inode
)->root
)
2970 if (BTRFS_I(inode
)->generation
>
2971 root
->fs_info
->last_trans_committed
) {
2972 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
2975 if (IS_ROOT(parent
))
2978 parent
= parent
->d_parent
;
2982 btrfs_end_log_trans(root
);
2988 * it is not safe to log dentry if the chunk root has added new
2989 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2990 * If this returns 1, you must commit the transaction to safely get your
2993 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
2994 struct btrfs_root
*root
, struct dentry
*dentry
)
2996 return btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
,
2997 dentry
->d_parent
, 0);
3001 * should be called during mount to recover any replay any log trees
3004 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3007 struct btrfs_path
*path
;
3008 struct btrfs_trans_handle
*trans
;
3009 struct btrfs_key key
;
3010 struct btrfs_key found_key
;
3011 struct btrfs_key tmp_key
;
3012 struct btrfs_root
*log
;
3013 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3014 struct walk_control wc
= {
3015 .process_func
= process_one_buffer
,
3019 fs_info
->log_root_recovering
= 1;
3020 path
= btrfs_alloc_path();
3023 trans
= btrfs_start_transaction(fs_info
->tree_root
, 1);
3028 walk_log_tree(trans
, log_root_tree
, &wc
);
3031 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3032 key
.offset
= (u64
)-1;
3033 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3036 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3040 if (path
->slots
[0] == 0)
3044 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3046 btrfs_release_path(log_root_tree
, path
);
3047 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3050 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3055 tmp_key
.objectid
= found_key
.offset
;
3056 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3057 tmp_key
.offset
= (u64
)-1;
3059 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3060 BUG_ON(!wc
.replay_dest
);
3062 wc
.replay_dest
->log_root
= log
;
3063 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3064 ret
= walk_log_tree(trans
, log
, &wc
);
3067 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3068 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3073 key
.offset
= found_key
.offset
- 1;
3074 wc
.replay_dest
->log_root
= NULL
;
3075 free_extent_buffer(log
->node
);
3076 free_extent_buffer(log
->commit_root
);
3079 if (found_key
.offset
== 0)
3082 btrfs_release_path(log_root_tree
, path
);
3084 /* step one is to pin it all, step two is to replay just inodes */
3087 wc
.process_func
= replay_one_buffer
;
3088 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3091 /* step three is to replay everything */
3092 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3097 btrfs_free_path(path
);
3099 free_extent_buffer(log_root_tree
->node
);
3100 log_root_tree
->log_root
= NULL
;
3101 fs_info
->log_root_recovering
= 0;
3103 /* step 4: commit the transaction, which also unpins the blocks */
3104 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3106 kfree(log_root_tree
);
3111 * there are some corner cases where we want to force a full
3112 * commit instead of allowing a directory to be logged.
3114 * They revolve around files there were unlinked from the directory, and
3115 * this function updates the parent directory so that a full commit is
3116 * properly done if it is fsync'd later after the unlinks are done.
3118 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3119 struct inode
*dir
, struct inode
*inode
,
3123 * when we're logging a file, if it hasn't been renamed
3124 * or unlinked, and its inode is fully committed on disk,
3125 * we don't have to worry about walking up the directory chain
3126 * to log its parents.
3128 * So, we use the last_unlink_trans field to put this transid
3129 * into the file. When the file is logged we check it and
3130 * don't log the parents if the file is fully on disk.
3132 if (S_ISREG(inode
->i_mode
))
3133 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3136 * if this directory was already logged any new
3137 * names for this file/dir will get recorded
3140 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3144 * if the inode we're about to unlink was logged,
3145 * the log will be properly updated for any new names
3147 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3151 * when renaming files across directories, if the directory
3152 * there we're unlinking from gets fsync'd later on, there's
3153 * no way to find the destination directory later and fsync it
3154 * properly. So, we have to be conservative and force commits
3155 * so the new name gets discovered.
3160 /* we can safely do the unlink without any special recording */
3164 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3168 * Call this after adding a new name for a file and it will properly
3169 * update the log to reflect the new name.
3171 * It will return zero if all goes well, and it will return 1 if a
3172 * full transaction commit is required.
3174 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3175 struct inode
*inode
, struct inode
*old_dir
,
3176 struct dentry
*parent
)
3178 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3181 * this will force the logging code to walk the dentry chain
3184 if (S_ISREG(inode
->i_mode
))
3185 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3188 * if this inode hasn't been logged and directory we're renaming it
3189 * from hasn't been logged, we don't need to log it
3191 if (BTRFS_I(inode
)->logged_trans
<=
3192 root
->fs_info
->last_trans_committed
&&
3193 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3194 root
->fs_info
->last_trans_committed
))
3197 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);