Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/libata-dev.git] / include / linux / sched.h
blob0383601a927c48fa6ccba55de8ebf347573ef8ea
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
41 /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */
42 #define SCHED_RESET_ON_FORK 0x40000000
44 #ifdef __KERNEL__
46 struct sched_param {
47 int sched_priority;
50 #include <asm/param.h> /* for HZ */
52 #include <linux/capability.h>
53 #include <linux/threads.h>
54 #include <linux/kernel.h>
55 #include <linux/types.h>
56 #include <linux/timex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rbtree.h>
59 #include <linux/thread_info.h>
60 #include <linux/cpumask.h>
61 #include <linux/errno.h>
62 #include <linux/nodemask.h>
63 #include <linux/mm_types.h>
65 #include <asm/system.h>
66 #include <asm/page.h>
67 #include <asm/ptrace.h>
68 #include <asm/cputime.h>
70 #include <linux/smp.h>
71 #include <linux/sem.h>
72 #include <linux/signal.h>
73 #include <linux/path.h>
74 #include <linux/compiler.h>
75 #include <linux/completion.h>
76 #include <linux/pid.h>
77 #include <linux/percpu.h>
78 #include <linux/topology.h>
79 #include <linux/proportions.h>
80 #include <linux/seccomp.h>
81 #include <linux/rcupdate.h>
82 #include <linux/rculist.h>
83 #include <linux/rtmutex.h>
85 #include <linux/time.h>
86 #include <linux/param.h>
87 #include <linux/resource.h>
88 #include <linux/timer.h>
89 #include <linux/hrtimer.h>
90 #include <linux/task_io_accounting.h>
91 #include <linux/kobject.h>
92 #include <linux/latencytop.h>
93 #include <linux/cred.h>
95 #include <asm/processor.h>
97 struct exec_domain;
98 struct futex_pi_state;
99 struct robust_list_head;
100 struct bio_list;
101 struct fs_struct;
102 struct perf_event_context;
105 * List of flags we want to share for kernel threads,
106 * if only because they are not used by them anyway.
108 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
111 * These are the constant used to fake the fixed-point load-average
112 * counting. Some notes:
113 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
114 * a load-average precision of 10 bits integer + 11 bits fractional
115 * - if you want to count load-averages more often, you need more
116 * precision, or rounding will get you. With 2-second counting freq,
117 * the EXP_n values would be 1981, 2034 and 2043 if still using only
118 * 11 bit fractions.
120 extern unsigned long avenrun[]; /* Load averages */
121 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
123 #define FSHIFT 11 /* nr of bits of precision */
124 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
125 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
126 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
127 #define EXP_5 2014 /* 1/exp(5sec/5min) */
128 #define EXP_15 2037 /* 1/exp(5sec/15min) */
130 #define CALC_LOAD(load,exp,n) \
131 load *= exp; \
132 load += n*(FIXED_1-exp); \
133 load >>= FSHIFT;
135 extern unsigned long total_forks;
136 extern int nr_threads;
137 DECLARE_PER_CPU(unsigned long, process_counts);
138 extern int nr_processes(void);
139 extern unsigned long nr_running(void);
140 extern unsigned long nr_uninterruptible(void);
141 extern unsigned long nr_iowait(void);
142 extern unsigned long nr_iowait_cpu(int cpu);
143 extern unsigned long this_cpu_load(void);
146 extern void calc_global_load(void);
148 extern unsigned long get_parent_ip(unsigned long addr);
150 struct seq_file;
151 struct cfs_rq;
152 struct task_group;
153 #ifdef CONFIG_SCHED_DEBUG
154 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
155 extern void proc_sched_set_task(struct task_struct *p);
156 extern void
157 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
158 #else
159 static inline void
160 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
163 static inline void proc_sched_set_task(struct task_struct *p)
166 static inline void
167 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
170 #endif
173 * Task state bitmask. NOTE! These bits are also
174 * encoded in fs/proc/array.c: get_task_state().
176 * We have two separate sets of flags: task->state
177 * is about runnability, while task->exit_state are
178 * about the task exiting. Confusing, but this way
179 * modifying one set can't modify the other one by
180 * mistake.
182 #define TASK_RUNNING 0
183 #define TASK_INTERRUPTIBLE 1
184 #define TASK_UNINTERRUPTIBLE 2
185 #define __TASK_STOPPED 4
186 #define __TASK_TRACED 8
187 /* in tsk->exit_state */
188 #define EXIT_ZOMBIE 16
189 #define EXIT_DEAD 32
190 /* in tsk->state again */
191 #define TASK_DEAD 64
192 #define TASK_WAKEKILL 128
193 #define TASK_WAKING 256
194 #define TASK_STATE_MAX 512
196 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKW"
198 extern char ___assert_task_state[1 - 2*!!(
199 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
201 /* Convenience macros for the sake of set_task_state */
202 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
203 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
204 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
206 /* Convenience macros for the sake of wake_up */
207 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
208 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
210 /* get_task_state() */
211 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
212 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
213 __TASK_TRACED)
215 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
216 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
217 #define task_is_dead(task) ((task)->exit_state != 0)
218 #define task_is_stopped_or_traced(task) \
219 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
220 #define task_contributes_to_load(task) \
221 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
222 (task->flags & PF_FREEZING) == 0)
224 #define __set_task_state(tsk, state_value) \
225 do { (tsk)->state = (state_value); } while (0)
226 #define set_task_state(tsk, state_value) \
227 set_mb((tsk)->state, (state_value))
230 * set_current_state() includes a barrier so that the write of current->state
231 * is correctly serialised wrt the caller's subsequent test of whether to
232 * actually sleep:
234 * set_current_state(TASK_UNINTERRUPTIBLE);
235 * if (do_i_need_to_sleep())
236 * schedule();
238 * If the caller does not need such serialisation then use __set_current_state()
240 #define __set_current_state(state_value) \
241 do { current->state = (state_value); } while (0)
242 #define set_current_state(state_value) \
243 set_mb(current->state, (state_value))
245 /* Task command name length */
246 #define TASK_COMM_LEN 16
248 #include <linux/spinlock.h>
251 * This serializes "schedule()" and also protects
252 * the run-queue from deletions/modifications (but
253 * _adding_ to the beginning of the run-queue has
254 * a separate lock).
256 extern rwlock_t tasklist_lock;
257 extern spinlock_t mmlist_lock;
259 struct task_struct;
261 #ifdef CONFIG_PROVE_RCU
262 extern int lockdep_tasklist_lock_is_held(void);
263 #endif /* #ifdef CONFIG_PROVE_RCU */
265 extern void sched_init(void);
266 extern void sched_init_smp(void);
267 extern asmlinkage void schedule_tail(struct task_struct *prev);
268 extern void init_idle(struct task_struct *idle, int cpu);
269 extern void init_idle_bootup_task(struct task_struct *idle);
271 extern int runqueue_is_locked(int cpu);
273 extern cpumask_var_t nohz_cpu_mask;
274 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
275 extern void select_nohz_load_balancer(int stop_tick);
276 extern int get_nohz_timer_target(void);
277 #else
278 static inline void select_nohz_load_balancer(int stop_tick) { }
279 #endif
282 * Only dump TASK_* tasks. (0 for all tasks)
284 extern void show_state_filter(unsigned long state_filter);
286 static inline void show_state(void)
288 show_state_filter(0);
291 extern void show_regs(struct pt_regs *);
294 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
295 * task), SP is the stack pointer of the first frame that should be shown in the back
296 * trace (or NULL if the entire call-chain of the task should be shown).
298 extern void show_stack(struct task_struct *task, unsigned long *sp);
300 void io_schedule(void);
301 long io_schedule_timeout(long timeout);
303 extern void cpu_init (void);
304 extern void trap_init(void);
305 extern void update_process_times(int user);
306 extern void scheduler_tick(void);
308 extern void sched_show_task(struct task_struct *p);
310 #ifdef CONFIG_LOCKUP_DETECTOR
311 extern void touch_softlockup_watchdog(void);
312 extern void touch_softlockup_watchdog_sync(void);
313 extern void touch_all_softlockup_watchdogs(void);
314 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
315 void __user *buffer,
316 size_t *lenp, loff_t *ppos);
317 extern unsigned int softlockup_panic;
318 extern int softlockup_thresh;
319 #else
320 static inline void touch_softlockup_watchdog(void)
323 static inline void touch_softlockup_watchdog_sync(void)
326 static inline void touch_all_softlockup_watchdogs(void)
329 #endif
331 #ifdef CONFIG_DETECT_HUNG_TASK
332 extern unsigned int sysctl_hung_task_panic;
333 extern unsigned long sysctl_hung_task_check_count;
334 extern unsigned long sysctl_hung_task_timeout_secs;
335 extern unsigned long sysctl_hung_task_warnings;
336 extern int proc_dohung_task_timeout_secs(struct ctl_table *table, int write,
337 void __user *buffer,
338 size_t *lenp, loff_t *ppos);
339 #endif
341 /* Attach to any functions which should be ignored in wchan output. */
342 #define __sched __attribute__((__section__(".sched.text")))
344 /* Linker adds these: start and end of __sched functions */
345 extern char __sched_text_start[], __sched_text_end[];
347 /* Is this address in the __sched functions? */
348 extern int in_sched_functions(unsigned long addr);
350 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
351 extern signed long schedule_timeout(signed long timeout);
352 extern signed long schedule_timeout_interruptible(signed long timeout);
353 extern signed long schedule_timeout_killable(signed long timeout);
354 extern signed long schedule_timeout_uninterruptible(signed long timeout);
355 asmlinkage void schedule(void);
356 extern int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner);
358 struct nsproxy;
359 struct user_namespace;
362 * Default maximum number of active map areas, this limits the number of vmas
363 * per mm struct. Users can overwrite this number by sysctl but there is a
364 * problem.
366 * When a program's coredump is generated as ELF format, a section is created
367 * per a vma. In ELF, the number of sections is represented in unsigned short.
368 * This means the number of sections should be smaller than 65535 at coredump.
369 * Because the kernel adds some informative sections to a image of program at
370 * generating coredump, we need some margin. The number of extra sections is
371 * 1-3 now and depends on arch. We use "5" as safe margin, here.
373 #define MAPCOUNT_ELF_CORE_MARGIN (5)
374 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
376 extern int sysctl_max_map_count;
378 #include <linux/aio.h>
380 #ifdef CONFIG_MMU
381 extern void arch_pick_mmap_layout(struct mm_struct *mm);
382 extern unsigned long
383 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
384 unsigned long, unsigned long);
385 extern unsigned long
386 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
387 unsigned long len, unsigned long pgoff,
388 unsigned long flags);
389 extern void arch_unmap_area(struct mm_struct *, unsigned long);
390 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
391 #else
392 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
393 #endif
396 extern void set_dumpable(struct mm_struct *mm, int value);
397 extern int get_dumpable(struct mm_struct *mm);
399 /* mm flags */
400 /* dumpable bits */
401 #define MMF_DUMPABLE 0 /* core dump is permitted */
402 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
404 #define MMF_DUMPABLE_BITS 2
405 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
407 /* coredump filter bits */
408 #define MMF_DUMP_ANON_PRIVATE 2
409 #define MMF_DUMP_ANON_SHARED 3
410 #define MMF_DUMP_MAPPED_PRIVATE 4
411 #define MMF_DUMP_MAPPED_SHARED 5
412 #define MMF_DUMP_ELF_HEADERS 6
413 #define MMF_DUMP_HUGETLB_PRIVATE 7
414 #define MMF_DUMP_HUGETLB_SHARED 8
416 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
417 #define MMF_DUMP_FILTER_BITS 7
418 #define MMF_DUMP_FILTER_MASK \
419 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
420 #define MMF_DUMP_FILTER_DEFAULT \
421 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
422 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
424 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
425 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
426 #else
427 # define MMF_DUMP_MASK_DEFAULT_ELF 0
428 #endif
429 /* leave room for more dump flags */
430 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
432 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
434 struct sighand_struct {
435 atomic_t count;
436 struct k_sigaction action[_NSIG];
437 spinlock_t siglock;
438 wait_queue_head_t signalfd_wqh;
441 struct pacct_struct {
442 int ac_flag;
443 long ac_exitcode;
444 unsigned long ac_mem;
445 cputime_t ac_utime, ac_stime;
446 unsigned long ac_minflt, ac_majflt;
449 struct cpu_itimer {
450 cputime_t expires;
451 cputime_t incr;
452 u32 error;
453 u32 incr_error;
457 * struct task_cputime - collected CPU time counts
458 * @utime: time spent in user mode, in &cputime_t units
459 * @stime: time spent in kernel mode, in &cputime_t units
460 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
462 * This structure groups together three kinds of CPU time that are
463 * tracked for threads and thread groups. Most things considering
464 * CPU time want to group these counts together and treat all three
465 * of them in parallel.
467 struct task_cputime {
468 cputime_t utime;
469 cputime_t stime;
470 unsigned long long sum_exec_runtime;
472 /* Alternate field names when used to cache expirations. */
473 #define prof_exp stime
474 #define virt_exp utime
475 #define sched_exp sum_exec_runtime
477 #define INIT_CPUTIME \
478 (struct task_cputime) { \
479 .utime = cputime_zero, \
480 .stime = cputime_zero, \
481 .sum_exec_runtime = 0, \
485 * Disable preemption until the scheduler is running.
486 * Reset by start_kernel()->sched_init()->init_idle().
488 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
489 * before the scheduler is active -- see should_resched().
491 #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
494 * struct thread_group_cputimer - thread group interval timer counts
495 * @cputime: thread group interval timers.
496 * @running: non-zero when there are timers running and
497 * @cputime receives updates.
498 * @lock: lock for fields in this struct.
500 * This structure contains the version of task_cputime, above, that is
501 * used for thread group CPU timer calculations.
503 struct thread_group_cputimer {
504 struct task_cputime cputime;
505 int running;
506 spinlock_t lock;
510 * NOTE! "signal_struct" does not have it's own
511 * locking, because a shared signal_struct always
512 * implies a shared sighand_struct, so locking
513 * sighand_struct is always a proper superset of
514 * the locking of signal_struct.
516 struct signal_struct {
517 atomic_t sigcnt;
518 atomic_t live;
519 int nr_threads;
521 wait_queue_head_t wait_chldexit; /* for wait4() */
523 /* current thread group signal load-balancing target: */
524 struct task_struct *curr_target;
526 /* shared signal handling: */
527 struct sigpending shared_pending;
529 /* thread group exit support */
530 int group_exit_code;
531 /* overloaded:
532 * - notify group_exit_task when ->count is equal to notify_count
533 * - everyone except group_exit_task is stopped during signal delivery
534 * of fatal signals, group_exit_task processes the signal.
536 int notify_count;
537 struct task_struct *group_exit_task;
539 /* thread group stop support, overloads group_exit_code too */
540 int group_stop_count;
541 unsigned int flags; /* see SIGNAL_* flags below */
543 /* POSIX.1b Interval Timers */
544 struct list_head posix_timers;
546 /* ITIMER_REAL timer for the process */
547 struct hrtimer real_timer;
548 struct pid *leader_pid;
549 ktime_t it_real_incr;
552 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
553 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
554 * values are defined to 0 and 1 respectively
556 struct cpu_itimer it[2];
559 * Thread group totals for process CPU timers.
560 * See thread_group_cputimer(), et al, for details.
562 struct thread_group_cputimer cputimer;
564 /* Earliest-expiration cache. */
565 struct task_cputime cputime_expires;
567 struct list_head cpu_timers[3];
569 struct pid *tty_old_pgrp;
571 /* boolean value for session group leader */
572 int leader;
574 struct tty_struct *tty; /* NULL if no tty */
577 * Cumulative resource counters for dead threads in the group,
578 * and for reaped dead child processes forked by this group.
579 * Live threads maintain their own counters and add to these
580 * in __exit_signal, except for the group leader.
582 cputime_t utime, stime, cutime, cstime;
583 cputime_t gtime;
584 cputime_t cgtime;
585 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
586 cputime_t prev_utime, prev_stime;
587 #endif
588 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
589 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
590 unsigned long inblock, oublock, cinblock, coublock;
591 unsigned long maxrss, cmaxrss;
592 struct task_io_accounting ioac;
595 * Cumulative ns of schedule CPU time fo dead threads in the
596 * group, not including a zombie group leader, (This only differs
597 * from jiffies_to_ns(utime + stime) if sched_clock uses something
598 * other than jiffies.)
600 unsigned long long sum_sched_runtime;
603 * We don't bother to synchronize most readers of this at all,
604 * because there is no reader checking a limit that actually needs
605 * to get both rlim_cur and rlim_max atomically, and either one
606 * alone is a single word that can safely be read normally.
607 * getrlimit/setrlimit use task_lock(current->group_leader) to
608 * protect this instead of the siglock, because they really
609 * have no need to disable irqs.
611 struct rlimit rlim[RLIM_NLIMITS];
613 #ifdef CONFIG_BSD_PROCESS_ACCT
614 struct pacct_struct pacct; /* per-process accounting information */
615 #endif
616 #ifdef CONFIG_TASKSTATS
617 struct taskstats *stats;
618 #endif
619 #ifdef CONFIG_AUDIT
620 unsigned audit_tty;
621 struct tty_audit_buf *tty_audit_buf;
622 #endif
624 int oom_adj; /* OOM kill score adjustment (bit shift) */
625 int oom_score_adj; /* OOM kill score adjustment */
628 /* Context switch must be unlocked if interrupts are to be enabled */
629 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
630 # define __ARCH_WANT_UNLOCKED_CTXSW
631 #endif
634 * Bits in flags field of signal_struct.
636 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
637 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
638 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
639 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
641 * Pending notifications to parent.
643 #define SIGNAL_CLD_STOPPED 0x00000010
644 #define SIGNAL_CLD_CONTINUED 0x00000020
645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
652 return (sig->flags & SIGNAL_GROUP_EXIT) ||
653 (sig->group_exit_task != NULL);
657 * Some day this will be a full-fledged user tracking system..
659 struct user_struct {
660 atomic_t __count; /* reference count */
661 atomic_t processes; /* How many processes does this user have? */
662 atomic_t files; /* How many open files does this user have? */
663 atomic_t sigpending; /* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665 atomic_t inotify_watches; /* How many inotify watches does this user have? */
666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
667 #endif
668 #ifdef CONFIG_EPOLL
669 atomic_t epoll_watches; /* The number of file descriptors currently watched */
670 #endif
671 #ifdef CONFIG_POSIX_MQUEUE
672 /* protected by mq_lock */
673 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
674 #endif
675 unsigned long locked_shm; /* How many pages of mlocked shm ? */
677 #ifdef CONFIG_KEYS
678 struct key *uid_keyring; /* UID specific keyring */
679 struct key *session_keyring; /* UID's default session keyring */
680 #endif
682 /* Hash table maintenance information */
683 struct hlist_node uidhash_node;
684 uid_t uid;
685 struct user_namespace *user_ns;
687 #ifdef CONFIG_PERF_EVENTS
688 atomic_long_t locked_vm;
689 #endif
692 extern int uids_sysfs_init(void);
694 extern struct user_struct *find_user(uid_t);
696 extern struct user_struct root_user;
697 #define INIT_USER (&root_user)
700 struct backing_dev_info;
701 struct reclaim_state;
703 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
704 struct sched_info {
705 /* cumulative counters */
706 unsigned long pcount; /* # of times run on this cpu */
707 unsigned long long run_delay; /* time spent waiting on a runqueue */
709 /* timestamps */
710 unsigned long long last_arrival,/* when we last ran on a cpu */
711 last_queued; /* when we were last queued to run */
712 #ifdef CONFIG_SCHEDSTATS
713 /* BKL stats */
714 unsigned int bkl_count;
715 #endif
717 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
719 #ifdef CONFIG_TASK_DELAY_ACCT
720 struct task_delay_info {
721 spinlock_t lock;
722 unsigned int flags; /* Private per-task flags */
724 /* For each stat XXX, add following, aligned appropriately
726 * struct timespec XXX_start, XXX_end;
727 * u64 XXX_delay;
728 * u32 XXX_count;
730 * Atomicity of updates to XXX_delay, XXX_count protected by
731 * single lock above (split into XXX_lock if contention is an issue).
735 * XXX_count is incremented on every XXX operation, the delay
736 * associated with the operation is added to XXX_delay.
737 * XXX_delay contains the accumulated delay time in nanoseconds.
739 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
740 u64 blkio_delay; /* wait for sync block io completion */
741 u64 swapin_delay; /* wait for swapin block io completion */
742 u32 blkio_count; /* total count of the number of sync block */
743 /* io operations performed */
744 u32 swapin_count; /* total count of the number of swapin block */
745 /* io operations performed */
747 struct timespec freepages_start, freepages_end;
748 u64 freepages_delay; /* wait for memory reclaim */
749 u32 freepages_count; /* total count of memory reclaim */
751 #endif /* CONFIG_TASK_DELAY_ACCT */
753 static inline int sched_info_on(void)
755 #ifdef CONFIG_SCHEDSTATS
756 return 1;
757 #elif defined(CONFIG_TASK_DELAY_ACCT)
758 extern int delayacct_on;
759 return delayacct_on;
760 #else
761 return 0;
762 #endif
765 enum cpu_idle_type {
766 CPU_IDLE,
767 CPU_NOT_IDLE,
768 CPU_NEWLY_IDLE,
769 CPU_MAX_IDLE_TYPES
773 * sched-domains (multiprocessor balancing) declarations:
777 * Increase resolution of nice-level calculations:
779 #define SCHED_LOAD_SHIFT 10
780 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
782 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
784 #ifdef CONFIG_SMP
785 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
786 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
787 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
788 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
789 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
790 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
791 #define SD_PREFER_LOCAL 0x0040 /* Prefer to keep tasks local to this domain */
792 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
793 #define SD_POWERSAVINGS_BALANCE 0x0100 /* Balance for power savings */
794 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
795 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
796 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
797 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
799 enum powersavings_balance_level {
800 POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
801 POWERSAVINGS_BALANCE_BASIC, /* Fill one thread/core/package
802 * first for long running threads
804 POWERSAVINGS_BALANCE_WAKEUP, /* Also bias task wakeups to semi-idle
805 * cpu package for power savings
807 MAX_POWERSAVINGS_BALANCE_LEVELS
810 extern int sched_mc_power_savings, sched_smt_power_savings;
812 static inline int sd_balance_for_mc_power(void)
814 if (sched_smt_power_savings)
815 return SD_POWERSAVINGS_BALANCE;
817 if (!sched_mc_power_savings)
818 return SD_PREFER_SIBLING;
820 return 0;
823 static inline int sd_balance_for_package_power(void)
825 if (sched_mc_power_savings | sched_smt_power_savings)
826 return SD_POWERSAVINGS_BALANCE;
828 return SD_PREFER_SIBLING;
831 extern int __weak arch_sd_sibiling_asym_packing(void);
834 * Optimise SD flags for power savings:
835 * SD_BALANCE_NEWIDLE helps agressive task consolidation and power savings.
836 * Keep default SD flags if sched_{smt,mc}_power_saving=0
839 static inline int sd_power_saving_flags(void)
841 if (sched_mc_power_savings | sched_smt_power_savings)
842 return SD_BALANCE_NEWIDLE;
844 return 0;
847 struct sched_group {
848 struct sched_group *next; /* Must be a circular list */
851 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
852 * single CPU.
854 unsigned int cpu_power, cpu_power_orig;
857 * The CPUs this group covers.
859 * NOTE: this field is variable length. (Allocated dynamically
860 * by attaching extra space to the end of the structure,
861 * depending on how many CPUs the kernel has booted up with)
863 * It is also be embedded into static data structures at build
864 * time. (See 'struct static_sched_group' in kernel/sched.c)
866 unsigned long cpumask[0];
869 static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
871 return to_cpumask(sg->cpumask);
874 enum sched_domain_level {
875 SD_LV_NONE = 0,
876 SD_LV_SIBLING,
877 SD_LV_MC,
878 SD_LV_BOOK,
879 SD_LV_CPU,
880 SD_LV_NODE,
881 SD_LV_ALLNODES,
882 SD_LV_MAX
885 struct sched_domain_attr {
886 int relax_domain_level;
889 #define SD_ATTR_INIT (struct sched_domain_attr) { \
890 .relax_domain_level = -1, \
893 struct sched_domain {
894 /* These fields must be setup */
895 struct sched_domain *parent; /* top domain must be null terminated */
896 struct sched_domain *child; /* bottom domain must be null terminated */
897 struct sched_group *groups; /* the balancing groups of the domain */
898 unsigned long min_interval; /* Minimum balance interval ms */
899 unsigned long max_interval; /* Maximum balance interval ms */
900 unsigned int busy_factor; /* less balancing by factor if busy */
901 unsigned int imbalance_pct; /* No balance until over watermark */
902 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
903 unsigned int busy_idx;
904 unsigned int idle_idx;
905 unsigned int newidle_idx;
906 unsigned int wake_idx;
907 unsigned int forkexec_idx;
908 unsigned int smt_gain;
909 int flags; /* See SD_* */
910 enum sched_domain_level level;
912 /* Runtime fields. */
913 unsigned long last_balance; /* init to jiffies. units in jiffies */
914 unsigned int balance_interval; /* initialise to 1. units in ms. */
915 unsigned int nr_balance_failed; /* initialise to 0 */
917 u64 last_update;
919 #ifdef CONFIG_SCHEDSTATS
920 /* load_balance() stats */
921 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
923 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
924 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
925 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
926 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
927 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
928 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
930 /* Active load balancing */
931 unsigned int alb_count;
932 unsigned int alb_failed;
933 unsigned int alb_pushed;
935 /* SD_BALANCE_EXEC stats */
936 unsigned int sbe_count;
937 unsigned int sbe_balanced;
938 unsigned int sbe_pushed;
940 /* SD_BALANCE_FORK stats */
941 unsigned int sbf_count;
942 unsigned int sbf_balanced;
943 unsigned int sbf_pushed;
945 /* try_to_wake_up() stats */
946 unsigned int ttwu_wake_remote;
947 unsigned int ttwu_move_affine;
948 unsigned int ttwu_move_balance;
949 #endif
950 #ifdef CONFIG_SCHED_DEBUG
951 char *name;
952 #endif
954 unsigned int span_weight;
956 * Span of all CPUs in this domain.
958 * NOTE: this field is variable length. (Allocated dynamically
959 * by attaching extra space to the end of the structure,
960 * depending on how many CPUs the kernel has booted up with)
962 * It is also be embedded into static data structures at build
963 * time. (See 'struct static_sched_domain' in kernel/sched.c)
965 unsigned long span[0];
968 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
970 return to_cpumask(sd->span);
973 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
974 struct sched_domain_attr *dattr_new);
976 /* Allocate an array of sched domains, for partition_sched_domains(). */
977 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
978 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
980 /* Test a flag in parent sched domain */
981 static inline int test_sd_parent(struct sched_domain *sd, int flag)
983 if (sd->parent && (sd->parent->flags & flag))
984 return 1;
986 return 0;
989 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
990 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
992 #else /* CONFIG_SMP */
994 struct sched_domain_attr;
996 static inline void
997 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
998 struct sched_domain_attr *dattr_new)
1001 #endif /* !CONFIG_SMP */
1004 struct io_context; /* See blkdev.h */
1007 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1008 extern void prefetch_stack(struct task_struct *t);
1009 #else
1010 static inline void prefetch_stack(struct task_struct *t) { }
1011 #endif
1013 struct audit_context; /* See audit.c */
1014 struct mempolicy;
1015 struct pipe_inode_info;
1016 struct uts_namespace;
1018 struct rq;
1019 struct sched_domain;
1022 * wake flags
1024 #define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1025 #define WF_FORK 0x02 /* child wakeup after fork */
1027 #define ENQUEUE_WAKEUP 1
1028 #define ENQUEUE_WAKING 2
1029 #define ENQUEUE_HEAD 4
1031 #define DEQUEUE_SLEEP 1
1033 struct sched_class {
1034 const struct sched_class *next;
1036 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1037 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1038 void (*yield_task) (struct rq *rq);
1040 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1042 struct task_struct * (*pick_next_task) (struct rq *rq);
1043 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1045 #ifdef CONFIG_SMP
1046 int (*select_task_rq)(struct rq *rq, struct task_struct *p,
1047 int sd_flag, int flags);
1049 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1050 void (*post_schedule) (struct rq *this_rq);
1051 void (*task_waking) (struct rq *this_rq, struct task_struct *task);
1052 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1054 void (*set_cpus_allowed)(struct task_struct *p,
1055 const struct cpumask *newmask);
1057 void (*rq_online)(struct rq *rq);
1058 void (*rq_offline)(struct rq *rq);
1059 #endif
1061 void (*set_curr_task) (struct rq *rq);
1062 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1063 void (*task_fork) (struct task_struct *p);
1065 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
1066 int running);
1067 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
1068 int running);
1069 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1070 int oldprio, int running);
1072 unsigned int (*get_rr_interval) (struct rq *rq,
1073 struct task_struct *task);
1075 #ifdef CONFIG_FAIR_GROUP_SCHED
1076 void (*moved_group) (struct task_struct *p, int on_rq);
1077 #endif
1080 struct load_weight {
1081 unsigned long weight, inv_weight;
1084 #ifdef CONFIG_SCHEDSTATS
1085 struct sched_statistics {
1086 u64 wait_start;
1087 u64 wait_max;
1088 u64 wait_count;
1089 u64 wait_sum;
1090 u64 iowait_count;
1091 u64 iowait_sum;
1093 u64 sleep_start;
1094 u64 sleep_max;
1095 s64 sum_sleep_runtime;
1097 u64 block_start;
1098 u64 block_max;
1099 u64 exec_max;
1100 u64 slice_max;
1102 u64 nr_migrations_cold;
1103 u64 nr_failed_migrations_affine;
1104 u64 nr_failed_migrations_running;
1105 u64 nr_failed_migrations_hot;
1106 u64 nr_forced_migrations;
1108 u64 nr_wakeups;
1109 u64 nr_wakeups_sync;
1110 u64 nr_wakeups_migrate;
1111 u64 nr_wakeups_local;
1112 u64 nr_wakeups_remote;
1113 u64 nr_wakeups_affine;
1114 u64 nr_wakeups_affine_attempts;
1115 u64 nr_wakeups_passive;
1116 u64 nr_wakeups_idle;
1118 #endif
1120 struct sched_entity {
1121 struct load_weight load; /* for load-balancing */
1122 struct rb_node run_node;
1123 struct list_head group_node;
1124 unsigned int on_rq;
1126 u64 exec_start;
1127 u64 sum_exec_runtime;
1128 u64 vruntime;
1129 u64 prev_sum_exec_runtime;
1131 u64 nr_migrations;
1133 #ifdef CONFIG_SCHEDSTATS
1134 struct sched_statistics statistics;
1135 #endif
1137 #ifdef CONFIG_FAIR_GROUP_SCHED
1138 struct sched_entity *parent;
1139 /* rq on which this entity is (to be) queued: */
1140 struct cfs_rq *cfs_rq;
1141 /* rq "owned" by this entity/group: */
1142 struct cfs_rq *my_q;
1143 #endif
1146 struct sched_rt_entity {
1147 struct list_head run_list;
1148 unsigned long timeout;
1149 unsigned int time_slice;
1150 int nr_cpus_allowed;
1152 struct sched_rt_entity *back;
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154 struct sched_rt_entity *parent;
1155 /* rq on which this entity is (to be) queued: */
1156 struct rt_rq *rt_rq;
1157 /* rq "owned" by this entity/group: */
1158 struct rt_rq *my_q;
1159 #endif
1162 struct rcu_node;
1164 enum perf_event_task_context {
1165 perf_invalid_context = -1,
1166 perf_hw_context = 0,
1167 perf_sw_context,
1168 perf_nr_task_contexts,
1171 struct task_struct {
1172 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1173 void *stack;
1174 atomic_t usage;
1175 unsigned int flags; /* per process flags, defined below */
1176 unsigned int ptrace;
1178 int lock_depth; /* BKL lock depth */
1180 #ifdef CONFIG_SMP
1181 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1182 int oncpu;
1183 #endif
1184 #endif
1186 int prio, static_prio, normal_prio;
1187 unsigned int rt_priority;
1188 const struct sched_class *sched_class;
1189 struct sched_entity se;
1190 struct sched_rt_entity rt;
1192 #ifdef CONFIG_PREEMPT_NOTIFIERS
1193 /* list of struct preempt_notifier: */
1194 struct hlist_head preempt_notifiers;
1195 #endif
1198 * fpu_counter contains the number of consecutive context switches
1199 * that the FPU is used. If this is over a threshold, the lazy fpu
1200 * saving becomes unlazy to save the trap. This is an unsigned char
1201 * so that after 256 times the counter wraps and the behavior turns
1202 * lazy again; this to deal with bursty apps that only use FPU for
1203 * a short time
1205 unsigned char fpu_counter;
1206 #ifdef CONFIG_BLK_DEV_IO_TRACE
1207 unsigned int btrace_seq;
1208 #endif
1210 unsigned int policy;
1211 cpumask_t cpus_allowed;
1213 #ifdef CONFIG_PREEMPT_RCU
1214 int rcu_read_lock_nesting;
1215 char rcu_read_unlock_special;
1216 struct list_head rcu_node_entry;
1217 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1218 #ifdef CONFIG_TREE_PREEMPT_RCU
1219 struct rcu_node *rcu_blocked_node;
1220 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1222 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1223 struct sched_info sched_info;
1224 #endif
1226 struct list_head tasks;
1227 struct plist_node pushable_tasks;
1229 struct mm_struct *mm, *active_mm;
1230 #if defined(SPLIT_RSS_COUNTING)
1231 struct task_rss_stat rss_stat;
1232 #endif
1233 /* task state */
1234 int exit_state;
1235 int exit_code, exit_signal;
1236 int pdeath_signal; /* The signal sent when the parent dies */
1237 /* ??? */
1238 unsigned int personality;
1239 unsigned did_exec:1;
1240 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1241 * execve */
1242 unsigned in_iowait:1;
1245 /* Revert to default priority/policy when forking */
1246 unsigned sched_reset_on_fork:1;
1248 pid_t pid;
1249 pid_t tgid;
1251 #ifdef CONFIG_CC_STACKPROTECTOR
1252 /* Canary value for the -fstack-protector gcc feature */
1253 unsigned long stack_canary;
1254 #endif
1257 * pointers to (original) parent process, youngest child, younger sibling,
1258 * older sibling, respectively. (p->father can be replaced with
1259 * p->real_parent->pid)
1261 struct task_struct *real_parent; /* real parent process */
1262 struct task_struct *parent; /* recipient of SIGCHLD, wait4() reports */
1264 * children/sibling forms the list of my natural children
1266 struct list_head children; /* list of my children */
1267 struct list_head sibling; /* linkage in my parent's children list */
1268 struct task_struct *group_leader; /* threadgroup leader */
1271 * ptraced is the list of tasks this task is using ptrace on.
1272 * This includes both natural children and PTRACE_ATTACH targets.
1273 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1275 struct list_head ptraced;
1276 struct list_head ptrace_entry;
1278 /* PID/PID hash table linkage. */
1279 struct pid_link pids[PIDTYPE_MAX];
1280 struct list_head thread_group;
1282 struct completion *vfork_done; /* for vfork() */
1283 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1284 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1286 cputime_t utime, stime, utimescaled, stimescaled;
1287 cputime_t gtime;
1288 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1289 cputime_t prev_utime, prev_stime;
1290 #endif
1291 unsigned long nvcsw, nivcsw; /* context switch counts */
1292 struct timespec start_time; /* monotonic time */
1293 struct timespec real_start_time; /* boot based time */
1294 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1295 unsigned long min_flt, maj_flt;
1297 struct task_cputime cputime_expires;
1298 struct list_head cpu_timers[3];
1300 /* process credentials */
1301 const struct cred __rcu *real_cred; /* objective and real subjective task
1302 * credentials (COW) */
1303 const struct cred __rcu *cred; /* effective (overridable) subjective task
1304 * credentials (COW) */
1305 struct mutex cred_guard_mutex; /* guard against foreign influences on
1306 * credential calculations
1307 * (notably. ptrace) */
1308 struct cred *replacement_session_keyring; /* for KEYCTL_SESSION_TO_PARENT */
1310 char comm[TASK_COMM_LEN]; /* executable name excluding path
1311 - access with [gs]et_task_comm (which lock
1312 it with task_lock())
1313 - initialized normally by setup_new_exec */
1314 /* file system info */
1315 int link_count, total_link_count;
1316 #ifdef CONFIG_SYSVIPC
1317 /* ipc stuff */
1318 struct sysv_sem sysvsem;
1319 #endif
1320 #ifdef CONFIG_DETECT_HUNG_TASK
1321 /* hung task detection */
1322 unsigned long last_switch_count;
1323 #endif
1324 /* CPU-specific state of this task */
1325 struct thread_struct thread;
1326 /* filesystem information */
1327 struct fs_struct *fs;
1328 /* open file information */
1329 struct files_struct *files;
1330 /* namespaces */
1331 struct nsproxy *nsproxy;
1332 /* signal handlers */
1333 struct signal_struct *signal;
1334 struct sighand_struct *sighand;
1336 sigset_t blocked, real_blocked;
1337 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1338 struct sigpending pending;
1340 unsigned long sas_ss_sp;
1341 size_t sas_ss_size;
1342 int (*notifier)(void *priv);
1343 void *notifier_data;
1344 sigset_t *notifier_mask;
1345 struct audit_context *audit_context;
1346 #ifdef CONFIG_AUDITSYSCALL
1347 uid_t loginuid;
1348 unsigned int sessionid;
1349 #endif
1350 seccomp_t seccomp;
1352 /* Thread group tracking */
1353 u32 parent_exec_id;
1354 u32 self_exec_id;
1355 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1356 * mempolicy */
1357 spinlock_t alloc_lock;
1359 #ifdef CONFIG_GENERIC_HARDIRQS
1360 /* IRQ handler threads */
1361 struct irqaction *irqaction;
1362 #endif
1364 /* Protection of the PI data structures: */
1365 raw_spinlock_t pi_lock;
1367 #ifdef CONFIG_RT_MUTEXES
1368 /* PI waiters blocked on a rt_mutex held by this task */
1369 struct plist_head pi_waiters;
1370 /* Deadlock detection and priority inheritance handling */
1371 struct rt_mutex_waiter *pi_blocked_on;
1372 #endif
1374 #ifdef CONFIG_DEBUG_MUTEXES
1375 /* mutex deadlock detection */
1376 struct mutex_waiter *blocked_on;
1377 #endif
1378 #ifdef CONFIG_TRACE_IRQFLAGS
1379 unsigned int irq_events;
1380 unsigned long hardirq_enable_ip;
1381 unsigned long hardirq_disable_ip;
1382 unsigned int hardirq_enable_event;
1383 unsigned int hardirq_disable_event;
1384 int hardirqs_enabled;
1385 int hardirq_context;
1386 unsigned long softirq_disable_ip;
1387 unsigned long softirq_enable_ip;
1388 unsigned int softirq_disable_event;
1389 unsigned int softirq_enable_event;
1390 int softirqs_enabled;
1391 int softirq_context;
1392 #endif
1393 #ifdef CONFIG_LOCKDEP
1394 # define MAX_LOCK_DEPTH 48UL
1395 u64 curr_chain_key;
1396 int lockdep_depth;
1397 unsigned int lockdep_recursion;
1398 struct held_lock held_locks[MAX_LOCK_DEPTH];
1399 gfp_t lockdep_reclaim_gfp;
1400 #endif
1402 /* journalling filesystem info */
1403 void *journal_info;
1405 /* stacked block device info */
1406 struct bio_list *bio_list;
1408 /* VM state */
1409 struct reclaim_state *reclaim_state;
1411 struct backing_dev_info *backing_dev_info;
1413 struct io_context *io_context;
1415 unsigned long ptrace_message;
1416 siginfo_t *last_siginfo; /* For ptrace use. */
1417 struct task_io_accounting ioac;
1418 #if defined(CONFIG_TASK_XACCT)
1419 u64 acct_rss_mem1; /* accumulated rss usage */
1420 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1421 cputime_t acct_timexpd; /* stime + utime since last update */
1422 #endif
1423 #ifdef CONFIG_CPUSETS
1424 nodemask_t mems_allowed; /* Protected by alloc_lock */
1425 int mems_allowed_change_disable;
1426 int cpuset_mem_spread_rotor;
1427 int cpuset_slab_spread_rotor;
1428 #endif
1429 #ifdef CONFIG_CGROUPS
1430 /* Control Group info protected by css_set_lock */
1431 struct css_set __rcu *cgroups;
1432 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1433 struct list_head cg_list;
1434 #endif
1435 #ifdef CONFIG_FUTEX
1436 struct robust_list_head __user *robust_list;
1437 #ifdef CONFIG_COMPAT
1438 struct compat_robust_list_head __user *compat_robust_list;
1439 #endif
1440 struct list_head pi_state_list;
1441 struct futex_pi_state *pi_state_cache;
1442 #endif
1443 #ifdef CONFIG_PERF_EVENTS
1444 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1445 struct mutex perf_event_mutex;
1446 struct list_head perf_event_list;
1447 #endif
1448 #ifdef CONFIG_NUMA
1449 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1450 short il_next;
1451 #endif
1452 atomic_t fs_excl; /* holding fs exclusive resources */
1453 struct rcu_head rcu;
1456 * cache last used pipe for splice
1458 struct pipe_inode_info *splice_pipe;
1459 #ifdef CONFIG_TASK_DELAY_ACCT
1460 struct task_delay_info *delays;
1461 #endif
1462 #ifdef CONFIG_FAULT_INJECTION
1463 int make_it_fail;
1464 #endif
1465 struct prop_local_single dirties;
1466 #ifdef CONFIG_LATENCYTOP
1467 int latency_record_count;
1468 struct latency_record latency_record[LT_SAVECOUNT];
1469 #endif
1471 * time slack values; these are used to round up poll() and
1472 * select() etc timeout values. These are in nanoseconds.
1474 unsigned long timer_slack_ns;
1475 unsigned long default_timer_slack_ns;
1477 struct list_head *scm_work_list;
1478 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1479 /* Index of current stored address in ret_stack */
1480 int curr_ret_stack;
1481 /* Stack of return addresses for return function tracing */
1482 struct ftrace_ret_stack *ret_stack;
1483 /* time stamp for last schedule */
1484 unsigned long long ftrace_timestamp;
1486 * Number of functions that haven't been traced
1487 * because of depth overrun.
1489 atomic_t trace_overrun;
1490 /* Pause for the tracing */
1491 atomic_t tracing_graph_pause;
1492 #endif
1493 #ifdef CONFIG_TRACING
1494 /* state flags for use by tracers */
1495 unsigned long trace;
1496 /* bitmask of trace recursion */
1497 unsigned long trace_recursion;
1498 #endif /* CONFIG_TRACING */
1499 #ifdef CONFIG_CGROUP_MEM_RES_CTLR /* memcg uses this to do batch job */
1500 struct memcg_batch_info {
1501 int do_batch; /* incremented when batch uncharge started */
1502 struct mem_cgroup *memcg; /* target memcg of uncharge */
1503 unsigned long bytes; /* uncharged usage */
1504 unsigned long memsw_bytes; /* uncharged mem+swap usage */
1505 } memcg_batch;
1506 #endif
1509 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1510 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1513 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1514 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1515 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1516 * values are inverted: lower p->prio value means higher priority.
1518 * The MAX_USER_RT_PRIO value allows the actual maximum
1519 * RT priority to be separate from the value exported to
1520 * user-space. This allows kernel threads to set their
1521 * priority to a value higher than any user task. Note:
1522 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1525 #define MAX_USER_RT_PRIO 100
1526 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1528 #define MAX_PRIO (MAX_RT_PRIO + 40)
1529 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1531 static inline int rt_prio(int prio)
1533 if (unlikely(prio < MAX_RT_PRIO))
1534 return 1;
1535 return 0;
1538 static inline int rt_task(struct task_struct *p)
1540 return rt_prio(p->prio);
1543 static inline struct pid *task_pid(struct task_struct *task)
1545 return task->pids[PIDTYPE_PID].pid;
1548 static inline struct pid *task_tgid(struct task_struct *task)
1550 return task->group_leader->pids[PIDTYPE_PID].pid;
1554 * Without tasklist or rcu lock it is not safe to dereference
1555 * the result of task_pgrp/task_session even if task == current,
1556 * we can race with another thread doing sys_setsid/sys_setpgid.
1558 static inline struct pid *task_pgrp(struct task_struct *task)
1560 return task->group_leader->pids[PIDTYPE_PGID].pid;
1563 static inline struct pid *task_session(struct task_struct *task)
1565 return task->group_leader->pids[PIDTYPE_SID].pid;
1568 struct pid_namespace;
1571 * the helpers to get the task's different pids as they are seen
1572 * from various namespaces
1574 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1575 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1576 * current.
1577 * task_xid_nr_ns() : id seen from the ns specified;
1579 * set_task_vxid() : assigns a virtual id to a task;
1581 * see also pid_nr() etc in include/linux/pid.h
1583 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1584 struct pid_namespace *ns);
1586 static inline pid_t task_pid_nr(struct task_struct *tsk)
1588 return tsk->pid;
1591 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1592 struct pid_namespace *ns)
1594 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1597 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1599 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1603 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1605 return tsk->tgid;
1608 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1610 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1612 return pid_vnr(task_tgid(tsk));
1616 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1617 struct pid_namespace *ns)
1619 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1622 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1624 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1628 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1629 struct pid_namespace *ns)
1631 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1634 static inline pid_t task_session_vnr(struct task_struct *tsk)
1636 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1639 /* obsolete, do not use */
1640 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1642 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1646 * pid_alive - check that a task structure is not stale
1647 * @p: Task structure to be checked.
1649 * Test if a process is not yet dead (at most zombie state)
1650 * If pid_alive fails, then pointers within the task structure
1651 * can be stale and must not be dereferenced.
1653 static inline int pid_alive(struct task_struct *p)
1655 return p->pids[PIDTYPE_PID].pid != NULL;
1659 * is_global_init - check if a task structure is init
1660 * @tsk: Task structure to be checked.
1662 * Check if a task structure is the first user space task the kernel created.
1664 static inline int is_global_init(struct task_struct *tsk)
1666 return tsk->pid == 1;
1670 * is_container_init:
1671 * check whether in the task is init in its own pid namespace.
1673 extern int is_container_init(struct task_struct *tsk);
1675 extern struct pid *cad_pid;
1677 extern void free_task(struct task_struct *tsk);
1678 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1680 extern void __put_task_struct(struct task_struct *t);
1682 static inline void put_task_struct(struct task_struct *t)
1684 if (atomic_dec_and_test(&t->usage))
1685 __put_task_struct(t);
1688 extern void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1689 extern void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st);
1692 * Per process flags
1694 #define PF_KSOFTIRQD 0x00000001 /* I am ksoftirqd */
1695 #define PF_STARTING 0x00000002 /* being created */
1696 #define PF_EXITING 0x00000004 /* getting shut down */
1697 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1698 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1699 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1700 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1701 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1702 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1703 #define PF_DUMPCORE 0x00000200 /* dumped core */
1704 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1705 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1706 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1707 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1708 #define PF_FREEZING 0x00004000 /* freeze in progress. do not account to load */
1709 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1710 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1711 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1712 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1713 #define PF_OOM_ORIGIN 0x00080000 /* Allocating much memory to others */
1714 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1715 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1716 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1717 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1718 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1719 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1720 #define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1721 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1722 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1723 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1724 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1725 #define PF_FREEZER_NOSIG 0x80000000 /* Freezer won't send signals to it */
1728 * Only the _current_ task can read/write to tsk->flags, but other
1729 * tasks can access tsk->flags in readonly mode for example
1730 * with tsk_used_math (like during threaded core dumping).
1731 * There is however an exception to this rule during ptrace
1732 * or during fork: the ptracer task is allowed to write to the
1733 * child->flags of its traced child (same goes for fork, the parent
1734 * can write to the child->flags), because we're guaranteed the
1735 * child is not running and in turn not changing child->flags
1736 * at the same time the parent does it.
1738 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1739 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1740 #define clear_used_math() clear_stopped_child_used_math(current)
1741 #define set_used_math() set_stopped_child_used_math(current)
1742 #define conditional_stopped_child_used_math(condition, child) \
1743 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1744 #define conditional_used_math(condition) \
1745 conditional_stopped_child_used_math(condition, current)
1746 #define copy_to_stopped_child_used_math(child) \
1747 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1748 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1749 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1750 #define used_math() tsk_used_math(current)
1752 #ifdef CONFIG_PREEMPT_RCU
1754 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1755 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1757 static inline void rcu_copy_process(struct task_struct *p)
1759 p->rcu_read_lock_nesting = 0;
1760 p->rcu_read_unlock_special = 0;
1761 #ifdef CONFIG_TREE_PREEMPT_RCU
1762 p->rcu_blocked_node = NULL;
1763 #endif
1764 INIT_LIST_HEAD(&p->rcu_node_entry);
1767 #else
1769 static inline void rcu_copy_process(struct task_struct *p)
1773 #endif
1775 #ifdef CONFIG_SMP
1776 extern int set_cpus_allowed_ptr(struct task_struct *p,
1777 const struct cpumask *new_mask);
1778 #else
1779 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1780 const struct cpumask *new_mask)
1782 if (!cpumask_test_cpu(0, new_mask))
1783 return -EINVAL;
1784 return 0;
1786 #endif
1788 #ifndef CONFIG_CPUMASK_OFFSTACK
1789 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1791 return set_cpus_allowed_ptr(p, &new_mask);
1793 #endif
1796 * Do not use outside of architecture code which knows its limitations.
1798 * sched_clock() has no promise of monotonicity or bounded drift between
1799 * CPUs, use (which you should not) requires disabling IRQs.
1801 * Please use one of the three interfaces below.
1803 extern unsigned long long notrace sched_clock(void);
1805 * See the comment in kernel/sched_clock.c
1807 extern u64 cpu_clock(int cpu);
1808 extern u64 local_clock(void);
1809 extern u64 sched_clock_cpu(int cpu);
1812 extern void sched_clock_init(void);
1814 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1815 static inline void sched_clock_tick(void)
1819 static inline void sched_clock_idle_sleep_event(void)
1823 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1826 #else
1828 * Architectures can set this to 1 if they have specified
1829 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1830 * but then during bootup it turns out that sched_clock()
1831 * is reliable after all:
1833 extern int sched_clock_stable;
1835 extern void sched_clock_tick(void);
1836 extern void sched_clock_idle_sleep_event(void);
1837 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1838 #endif
1840 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1842 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1843 * The reason for this explicit opt-in is not to have perf penalty with
1844 * slow sched_clocks.
1846 extern void enable_sched_clock_irqtime(void);
1847 extern void disable_sched_clock_irqtime(void);
1848 #else
1849 static inline void enable_sched_clock_irqtime(void) {}
1850 static inline void disable_sched_clock_irqtime(void) {}
1851 #endif
1853 extern unsigned long long
1854 task_sched_runtime(struct task_struct *task);
1855 extern unsigned long long thread_group_sched_runtime(struct task_struct *task);
1857 /* sched_exec is called by processes performing an exec */
1858 #ifdef CONFIG_SMP
1859 extern void sched_exec(void);
1860 #else
1861 #define sched_exec() {}
1862 #endif
1864 extern void sched_clock_idle_sleep_event(void);
1865 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1867 #ifdef CONFIG_HOTPLUG_CPU
1868 extern void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p);
1869 extern void idle_task_exit(void);
1870 #else
1871 static inline void idle_task_exit(void) {}
1872 #endif
1874 extern void sched_idle_next(void);
1876 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1877 extern void wake_up_idle_cpu(int cpu);
1878 #else
1879 static inline void wake_up_idle_cpu(int cpu) { }
1880 #endif
1882 extern unsigned int sysctl_sched_latency;
1883 extern unsigned int sysctl_sched_min_granularity;
1884 extern unsigned int sysctl_sched_wakeup_granularity;
1885 extern unsigned int sysctl_sched_shares_ratelimit;
1886 extern unsigned int sysctl_sched_shares_thresh;
1887 extern unsigned int sysctl_sched_child_runs_first;
1889 enum sched_tunable_scaling {
1890 SCHED_TUNABLESCALING_NONE,
1891 SCHED_TUNABLESCALING_LOG,
1892 SCHED_TUNABLESCALING_LINEAR,
1893 SCHED_TUNABLESCALING_END,
1895 extern enum sched_tunable_scaling sysctl_sched_tunable_scaling;
1897 #ifdef CONFIG_SCHED_DEBUG
1898 extern unsigned int sysctl_sched_migration_cost;
1899 extern unsigned int sysctl_sched_nr_migrate;
1900 extern unsigned int sysctl_sched_time_avg;
1901 extern unsigned int sysctl_timer_migration;
1903 int sched_proc_update_handler(struct ctl_table *table, int write,
1904 void __user *buffer, size_t *length,
1905 loff_t *ppos);
1906 #endif
1907 #ifdef CONFIG_SCHED_DEBUG
1908 static inline unsigned int get_sysctl_timer_migration(void)
1910 return sysctl_timer_migration;
1912 #else
1913 static inline unsigned int get_sysctl_timer_migration(void)
1915 return 1;
1917 #endif
1918 extern unsigned int sysctl_sched_rt_period;
1919 extern int sysctl_sched_rt_runtime;
1921 int sched_rt_handler(struct ctl_table *table, int write,
1922 void __user *buffer, size_t *lenp,
1923 loff_t *ppos);
1925 extern unsigned int sysctl_sched_compat_yield;
1927 #ifdef CONFIG_RT_MUTEXES
1928 extern int rt_mutex_getprio(struct task_struct *p);
1929 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1930 extern void rt_mutex_adjust_pi(struct task_struct *p);
1931 #else
1932 static inline int rt_mutex_getprio(struct task_struct *p)
1934 return p->normal_prio;
1936 # define rt_mutex_adjust_pi(p) do { } while (0)
1937 #endif
1939 extern void set_user_nice(struct task_struct *p, long nice);
1940 extern int task_prio(const struct task_struct *p);
1941 extern int task_nice(const struct task_struct *p);
1942 extern int can_nice(const struct task_struct *p, const int nice);
1943 extern int task_curr(const struct task_struct *p);
1944 extern int idle_cpu(int cpu);
1945 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1946 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1947 struct sched_param *);
1948 extern struct task_struct *idle_task(int cpu);
1949 extern struct task_struct *curr_task(int cpu);
1950 extern void set_curr_task(int cpu, struct task_struct *p);
1952 void yield(void);
1955 * The default (Linux) execution domain.
1957 extern struct exec_domain default_exec_domain;
1959 union thread_union {
1960 struct thread_info thread_info;
1961 unsigned long stack[THREAD_SIZE/sizeof(long)];
1964 #ifndef __HAVE_ARCH_KSTACK_END
1965 static inline int kstack_end(void *addr)
1967 /* Reliable end of stack detection:
1968 * Some APM bios versions misalign the stack
1970 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1972 #endif
1974 extern union thread_union init_thread_union;
1975 extern struct task_struct init_task;
1977 extern struct mm_struct init_mm;
1979 extern struct pid_namespace init_pid_ns;
1982 * find a task by one of its numerical ids
1984 * find_task_by_pid_ns():
1985 * finds a task by its pid in the specified namespace
1986 * find_task_by_vpid():
1987 * finds a task by its virtual pid
1989 * see also find_vpid() etc in include/linux/pid.h
1992 extern struct task_struct *find_task_by_vpid(pid_t nr);
1993 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1994 struct pid_namespace *ns);
1996 extern void __set_special_pids(struct pid *pid);
1998 /* per-UID process charging. */
1999 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
2000 static inline struct user_struct *get_uid(struct user_struct *u)
2002 atomic_inc(&u->__count);
2003 return u;
2005 extern void free_uid(struct user_struct *);
2006 extern void release_uids(struct user_namespace *ns);
2008 #include <asm/current.h>
2010 extern void do_timer(unsigned long ticks);
2012 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2013 extern int wake_up_process(struct task_struct *tsk);
2014 extern void wake_up_new_task(struct task_struct *tsk,
2015 unsigned long clone_flags);
2016 #ifdef CONFIG_SMP
2017 extern void kick_process(struct task_struct *tsk);
2018 #else
2019 static inline void kick_process(struct task_struct *tsk) { }
2020 #endif
2021 extern void sched_fork(struct task_struct *p, int clone_flags);
2022 extern void sched_dead(struct task_struct *p);
2024 extern void proc_caches_init(void);
2025 extern void flush_signals(struct task_struct *);
2026 extern void __flush_signals(struct task_struct *);
2027 extern void ignore_signals(struct task_struct *);
2028 extern void flush_signal_handlers(struct task_struct *, int force_default);
2029 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2031 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2033 unsigned long flags;
2034 int ret;
2036 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2037 ret = dequeue_signal(tsk, mask, info);
2038 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2040 return ret;
2043 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2044 sigset_t *mask);
2045 extern void unblock_all_signals(void);
2046 extern void release_task(struct task_struct * p);
2047 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2048 extern int force_sigsegv(int, struct task_struct *);
2049 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2050 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2051 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2052 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
2053 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2054 extern int kill_pid(struct pid *pid, int sig, int priv);
2055 extern int kill_proc_info(int, struct siginfo *, pid_t);
2056 extern int do_notify_parent(struct task_struct *, int);
2057 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2058 extern void force_sig(int, struct task_struct *);
2059 extern int send_sig(int, struct task_struct *, int);
2060 extern int zap_other_threads(struct task_struct *p);
2061 extern struct sigqueue *sigqueue_alloc(void);
2062 extern void sigqueue_free(struct sigqueue *);
2063 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2064 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2065 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
2067 static inline int kill_cad_pid(int sig, int priv)
2069 return kill_pid(cad_pid, sig, priv);
2072 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2073 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2074 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2075 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2078 * True if we are on the alternate signal stack.
2080 static inline int on_sig_stack(unsigned long sp)
2082 #ifdef CONFIG_STACK_GROWSUP
2083 return sp >= current->sas_ss_sp &&
2084 sp - current->sas_ss_sp < current->sas_ss_size;
2085 #else
2086 return sp > current->sas_ss_sp &&
2087 sp - current->sas_ss_sp <= current->sas_ss_size;
2088 #endif
2091 static inline int sas_ss_flags(unsigned long sp)
2093 return (current->sas_ss_size == 0 ? SS_DISABLE
2094 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2098 * Routines for handling mm_structs
2100 extern struct mm_struct * mm_alloc(void);
2102 /* mmdrop drops the mm and the page tables */
2103 extern void __mmdrop(struct mm_struct *);
2104 static inline void mmdrop(struct mm_struct * mm)
2106 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2107 __mmdrop(mm);
2110 /* mmput gets rid of the mappings and all user-space */
2111 extern void mmput(struct mm_struct *);
2112 /* Grab a reference to a task's mm, if it is not already going away */
2113 extern struct mm_struct *get_task_mm(struct task_struct *task);
2114 /* Remove the current tasks stale references to the old mm_struct */
2115 extern void mm_release(struct task_struct *, struct mm_struct *);
2116 /* Allocate a new mm structure and copy contents from tsk->mm */
2117 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2119 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2120 struct task_struct *, struct pt_regs *);
2121 extern void flush_thread(void);
2122 extern void exit_thread(void);
2124 extern void exit_files(struct task_struct *);
2125 extern void __cleanup_sighand(struct sighand_struct *);
2127 extern void exit_itimers(struct signal_struct *);
2128 extern void flush_itimer_signals(void);
2130 extern NORET_TYPE void do_group_exit(int);
2132 extern void daemonize(const char *, ...);
2133 extern int allow_signal(int);
2134 extern int disallow_signal(int);
2136 extern int do_execve(const char *,
2137 const char __user * const __user *,
2138 const char __user * const __user *, struct pt_regs *);
2139 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
2140 struct task_struct *fork_idle(int);
2142 extern void set_task_comm(struct task_struct *tsk, char *from);
2143 extern char *get_task_comm(char *to, struct task_struct *tsk);
2145 #ifdef CONFIG_SMP
2146 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2147 #else
2148 static inline unsigned long wait_task_inactive(struct task_struct *p,
2149 long match_state)
2151 return 1;
2153 #endif
2155 #define next_task(p) \
2156 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2158 #define for_each_process(p) \
2159 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2161 extern bool current_is_single_threaded(void);
2164 * Careful: do_each_thread/while_each_thread is a double loop so
2165 * 'break' will not work as expected - use goto instead.
2167 #define do_each_thread(g, t) \
2168 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2170 #define while_each_thread(g, t) \
2171 while ((t = next_thread(t)) != g)
2173 static inline int get_nr_threads(struct task_struct *tsk)
2175 return tsk->signal->nr_threads;
2178 /* de_thread depends on thread_group_leader not being a pid based check */
2179 #define thread_group_leader(p) (p == p->group_leader)
2181 /* Do to the insanities of de_thread it is possible for a process
2182 * to have the pid of the thread group leader without actually being
2183 * the thread group leader. For iteration through the pids in proc
2184 * all we care about is that we have a task with the appropriate
2185 * pid, we don't actually care if we have the right task.
2187 static inline int has_group_leader_pid(struct task_struct *p)
2189 return p->pid == p->tgid;
2192 static inline
2193 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2195 return p1->tgid == p2->tgid;
2198 static inline struct task_struct *next_thread(const struct task_struct *p)
2200 return list_entry_rcu(p->thread_group.next,
2201 struct task_struct, thread_group);
2204 static inline int thread_group_empty(struct task_struct *p)
2206 return list_empty(&p->thread_group);
2209 #define delay_group_leader(p) \
2210 (thread_group_leader(p) && !thread_group_empty(p))
2212 static inline int task_detached(struct task_struct *p)
2214 return p->exit_signal == -1;
2218 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2219 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2220 * pins the final release of task.io_context. Also protects ->cpuset and
2221 * ->cgroup.subsys[].
2223 * Nests both inside and outside of read_lock(&tasklist_lock).
2224 * It must not be nested with write_lock_irq(&tasklist_lock),
2225 * neither inside nor outside.
2227 static inline void task_lock(struct task_struct *p)
2229 spin_lock(&p->alloc_lock);
2232 static inline void task_unlock(struct task_struct *p)
2234 spin_unlock(&p->alloc_lock);
2237 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2238 unsigned long *flags);
2240 static inline void unlock_task_sighand(struct task_struct *tsk,
2241 unsigned long *flags)
2243 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2246 #ifndef __HAVE_THREAD_FUNCTIONS
2248 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2249 #define task_stack_page(task) ((task)->stack)
2251 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2253 *task_thread_info(p) = *task_thread_info(org);
2254 task_thread_info(p)->task = p;
2257 static inline unsigned long *end_of_stack(struct task_struct *p)
2259 return (unsigned long *)(task_thread_info(p) + 1);
2262 #endif
2264 static inline int object_is_on_stack(void *obj)
2266 void *stack = task_stack_page(current);
2268 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2271 extern void thread_info_cache_init(void);
2273 #ifdef CONFIG_DEBUG_STACK_USAGE
2274 static inline unsigned long stack_not_used(struct task_struct *p)
2276 unsigned long *n = end_of_stack(p);
2278 do { /* Skip over canary */
2279 n++;
2280 } while (!*n);
2282 return (unsigned long)n - (unsigned long)end_of_stack(p);
2284 #endif
2286 /* set thread flags in other task's structures
2287 * - see asm/thread_info.h for TIF_xxxx flags available
2289 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2291 set_ti_thread_flag(task_thread_info(tsk), flag);
2294 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2296 clear_ti_thread_flag(task_thread_info(tsk), flag);
2299 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2301 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2304 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2306 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2309 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2311 return test_ti_thread_flag(task_thread_info(tsk), flag);
2314 static inline void set_tsk_need_resched(struct task_struct *tsk)
2316 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2319 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2321 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2324 static inline int test_tsk_need_resched(struct task_struct *tsk)
2326 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2329 static inline int restart_syscall(void)
2331 set_tsk_thread_flag(current, TIF_SIGPENDING);
2332 return -ERESTARTNOINTR;
2335 static inline int signal_pending(struct task_struct *p)
2337 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2340 static inline int __fatal_signal_pending(struct task_struct *p)
2342 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2345 static inline int fatal_signal_pending(struct task_struct *p)
2347 return signal_pending(p) && __fatal_signal_pending(p);
2350 static inline int signal_pending_state(long state, struct task_struct *p)
2352 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2353 return 0;
2354 if (!signal_pending(p))
2355 return 0;
2357 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2360 static inline int need_resched(void)
2362 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2366 * cond_resched() and cond_resched_lock(): latency reduction via
2367 * explicit rescheduling in places that are safe. The return
2368 * value indicates whether a reschedule was done in fact.
2369 * cond_resched_lock() will drop the spinlock before scheduling,
2370 * cond_resched_softirq() will enable bhs before scheduling.
2372 extern int _cond_resched(void);
2374 #define cond_resched() ({ \
2375 __might_sleep(__FILE__, __LINE__, 0); \
2376 _cond_resched(); \
2379 extern int __cond_resched_lock(spinlock_t *lock);
2381 #ifdef CONFIG_PREEMPT
2382 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2383 #else
2384 #define PREEMPT_LOCK_OFFSET 0
2385 #endif
2387 #define cond_resched_lock(lock) ({ \
2388 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2389 __cond_resched_lock(lock); \
2392 extern int __cond_resched_softirq(void);
2394 #define cond_resched_softirq() ({ \
2395 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2396 __cond_resched_softirq(); \
2400 * Does a critical section need to be broken due to another
2401 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2402 * but a general need for low latency)
2404 static inline int spin_needbreak(spinlock_t *lock)
2406 #ifdef CONFIG_PREEMPT
2407 return spin_is_contended(lock);
2408 #else
2409 return 0;
2410 #endif
2414 * Thread group CPU time accounting.
2416 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2417 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2419 static inline void thread_group_cputime_init(struct signal_struct *sig)
2421 spin_lock_init(&sig->cputimer.lock);
2425 * Reevaluate whether the task has signals pending delivery.
2426 * Wake the task if so.
2427 * This is required every time the blocked sigset_t changes.
2428 * callers must hold sighand->siglock.
2430 extern void recalc_sigpending_and_wake(struct task_struct *t);
2431 extern void recalc_sigpending(void);
2433 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2436 * Wrappers for p->thread_info->cpu access. No-op on UP.
2438 #ifdef CONFIG_SMP
2440 static inline unsigned int task_cpu(const struct task_struct *p)
2442 return task_thread_info(p)->cpu;
2445 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2447 #else
2449 static inline unsigned int task_cpu(const struct task_struct *p)
2451 return 0;
2454 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2458 #endif /* CONFIG_SMP */
2460 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2461 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2463 extern void normalize_rt_tasks(void);
2465 #ifdef CONFIG_CGROUP_SCHED
2467 extern struct task_group init_task_group;
2469 extern struct task_group *sched_create_group(struct task_group *parent);
2470 extern void sched_destroy_group(struct task_group *tg);
2471 extern void sched_move_task(struct task_struct *tsk);
2472 #ifdef CONFIG_FAIR_GROUP_SCHED
2473 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2474 extern unsigned long sched_group_shares(struct task_group *tg);
2475 #endif
2476 #ifdef CONFIG_RT_GROUP_SCHED
2477 extern int sched_group_set_rt_runtime(struct task_group *tg,
2478 long rt_runtime_us);
2479 extern long sched_group_rt_runtime(struct task_group *tg);
2480 extern int sched_group_set_rt_period(struct task_group *tg,
2481 long rt_period_us);
2482 extern long sched_group_rt_period(struct task_group *tg);
2483 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2484 #endif
2485 #endif
2487 extern int task_can_switch_user(struct user_struct *up,
2488 struct task_struct *tsk);
2490 #ifdef CONFIG_TASK_XACCT
2491 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2493 tsk->ioac.rchar += amt;
2496 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2498 tsk->ioac.wchar += amt;
2501 static inline void inc_syscr(struct task_struct *tsk)
2503 tsk->ioac.syscr++;
2506 static inline void inc_syscw(struct task_struct *tsk)
2508 tsk->ioac.syscw++;
2510 #else
2511 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2515 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2519 static inline void inc_syscr(struct task_struct *tsk)
2523 static inline void inc_syscw(struct task_struct *tsk)
2526 #endif
2528 #ifndef TASK_SIZE_OF
2529 #define TASK_SIZE_OF(tsk) TASK_SIZE
2530 #endif
2533 * Call the function if the target task is executing on a CPU right now:
2535 extern void task_oncpu_function_call(struct task_struct *p,
2536 void (*func) (void *info), void *info);
2539 #ifdef CONFIG_MM_OWNER
2540 extern void mm_update_next_owner(struct mm_struct *mm);
2541 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2542 #else
2543 static inline void mm_update_next_owner(struct mm_struct *mm)
2547 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2550 #endif /* CONFIG_MM_OWNER */
2552 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2553 unsigned int limit)
2555 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2558 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2559 unsigned int limit)
2561 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2564 static inline unsigned long rlimit(unsigned int limit)
2566 return task_rlimit(current, limit);
2569 static inline unsigned long rlimit_max(unsigned int limit)
2571 return task_rlimit_max(current, limit);
2574 #endif /* __KERNEL__ */
2576 #endif