implement flush_work()
[linux-2.6/libata-dev.git] / kernel / workqueue.c
blob918d55267a12a98c43aa1c9ee43e17644712af8d
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton <andrewm@uow.edu.au>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
37 * The per-CPU workqueue (if single thread, we always use the first
38 * possible cpu).
40 struct cpu_workqueue_struct {
42 spinlock_t lock;
44 struct list_head worklist;
45 wait_queue_head_t more_work;
47 struct workqueue_struct *wq;
48 struct task_struct *thread;
49 struct work_struct *current_work;
51 int run_depth; /* Detect run_workqueue() recursion depth */
53 int freezeable; /* Freeze the thread during suspend */
54 } ____cacheline_aligned;
57 * The externally visible workqueue abstraction is an array of
58 * per-CPU workqueues:
60 struct workqueue_struct {
61 struct cpu_workqueue_struct *cpu_wq;
62 const char *name;
63 struct list_head list; /* Empty if single thread */
66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
67 threads to each one as cpus come/go. */
68 static DEFINE_MUTEX(workqueue_mutex);
69 static LIST_HEAD(workqueues);
71 static int singlethread_cpu;
73 /* If it's single threaded, it isn't in the list of workqueues. */
74 static inline int is_single_threaded(struct workqueue_struct *wq)
76 return list_empty(&wq->list);
80 * Set the workqueue on which a work item is to be run
81 * - Must *only* be called if the pending flag is set
83 static inline void set_wq_data(struct work_struct *work, void *wq)
85 unsigned long new;
87 BUG_ON(!work_pending(work));
89 new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
90 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
91 atomic_long_set(&work->data, new);
94 static inline void *get_wq_data(struct work_struct *work)
96 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
99 static int __run_work(struct cpu_workqueue_struct *cwq, struct work_struct *work)
101 int ret = 0;
102 unsigned long flags;
104 spin_lock_irqsave(&cwq->lock, flags);
106 * We need to re-validate the work info after we've gotten
107 * the cpu_workqueue lock. We can run the work now iff:
109 * - the wq_data still matches the cpu_workqueue_struct
110 * - AND the work is still marked pending
111 * - AND the work is still on a list (which will be this
112 * workqueue_struct list)
114 * All these conditions are important, because we
115 * need to protect against the work being run right
116 * now on another CPU (all but the last one might be
117 * true if it's currently running and has not been
118 * released yet, for example).
120 if (get_wq_data(work) == cwq
121 && work_pending(work)
122 && !list_empty(&work->entry)) {
123 work_func_t f = work->func;
124 cwq->current_work = work;
125 list_del_init(&work->entry);
126 spin_unlock_irqrestore(&cwq->lock, flags);
128 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
129 work_release(work);
130 f(work);
132 spin_lock_irqsave(&cwq->lock, flags);
133 cwq->current_work = NULL;
134 ret = 1;
136 spin_unlock_irqrestore(&cwq->lock, flags);
137 return ret;
141 * run_scheduled_work - run scheduled work synchronously
142 * @work: work to run
144 * This checks if the work was pending, and runs it
145 * synchronously if so. It returns a boolean to indicate
146 * whether it had any scheduled work to run or not.
148 * NOTE! This _only_ works for normal work_structs. You
149 * CANNOT use this for delayed work, because the wq data
150 * for delayed work will not point properly to the per-
151 * CPU workqueue struct, but will change!
153 int fastcall run_scheduled_work(struct work_struct *work)
155 for (;;) {
156 struct cpu_workqueue_struct *cwq;
158 if (!work_pending(work))
159 return 0;
160 if (list_empty(&work->entry))
161 return 0;
162 /* NOTE! This depends intimately on __queue_work! */
163 cwq = get_wq_data(work);
164 if (!cwq)
165 return 0;
166 if (__run_work(cwq, work))
167 return 1;
170 EXPORT_SYMBOL(run_scheduled_work);
172 static void insert_work(struct cpu_workqueue_struct *cwq,
173 struct work_struct *work, int tail)
175 set_wq_data(work, cwq);
176 if (tail)
177 list_add_tail(&work->entry, &cwq->worklist);
178 else
179 list_add(&work->entry, &cwq->worklist);
180 wake_up(&cwq->more_work);
183 /* Preempt must be disabled. */
184 static void __queue_work(struct cpu_workqueue_struct *cwq,
185 struct work_struct *work)
187 unsigned long flags;
189 spin_lock_irqsave(&cwq->lock, flags);
190 insert_work(cwq, work, 1);
191 spin_unlock_irqrestore(&cwq->lock, flags);
195 * queue_work - queue work on a workqueue
196 * @wq: workqueue to use
197 * @work: work to queue
199 * Returns 0 if @work was already on a queue, non-zero otherwise.
201 * We queue the work to the CPU it was submitted, but there is no
202 * guarantee that it will be processed by that CPU.
204 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
206 int ret = 0, cpu = get_cpu();
208 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
209 if (unlikely(is_single_threaded(wq)))
210 cpu = singlethread_cpu;
211 BUG_ON(!list_empty(&work->entry));
212 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
213 ret = 1;
215 put_cpu();
216 return ret;
218 EXPORT_SYMBOL_GPL(queue_work);
220 void delayed_work_timer_fn(unsigned long __data)
222 struct delayed_work *dwork = (struct delayed_work *)__data;
223 struct workqueue_struct *wq = get_wq_data(&dwork->work);
224 int cpu = smp_processor_id();
226 if (unlikely(is_single_threaded(wq)))
227 cpu = singlethread_cpu;
229 __queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
233 * queue_delayed_work - queue work on a workqueue after delay
234 * @wq: workqueue to use
235 * @dwork: delayable work to queue
236 * @delay: number of jiffies to wait before queueing
238 * Returns 0 if @work was already on a queue, non-zero otherwise.
240 int fastcall queue_delayed_work(struct workqueue_struct *wq,
241 struct delayed_work *dwork, unsigned long delay)
243 int ret = 0;
244 struct timer_list *timer = &dwork->timer;
245 struct work_struct *work = &dwork->work;
247 timer_stats_timer_set_start_info(timer);
248 if (delay == 0)
249 return queue_work(wq, work);
251 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
252 BUG_ON(timer_pending(timer));
253 BUG_ON(!list_empty(&work->entry));
255 /* This stores wq for the moment, for the timer_fn */
256 set_wq_data(work, wq);
257 timer->expires = jiffies + delay;
258 timer->data = (unsigned long)dwork;
259 timer->function = delayed_work_timer_fn;
260 add_timer(timer);
261 ret = 1;
263 return ret;
265 EXPORT_SYMBOL_GPL(queue_delayed_work);
268 * queue_delayed_work_on - queue work on specific CPU after delay
269 * @cpu: CPU number to execute work on
270 * @wq: workqueue to use
271 * @dwork: work to queue
272 * @delay: number of jiffies to wait before queueing
274 * Returns 0 if @work was already on a queue, non-zero otherwise.
276 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
277 struct delayed_work *dwork, unsigned long delay)
279 int ret = 0;
280 struct timer_list *timer = &dwork->timer;
281 struct work_struct *work = &dwork->work;
283 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
284 BUG_ON(timer_pending(timer));
285 BUG_ON(!list_empty(&work->entry));
287 /* This stores wq for the moment, for the timer_fn */
288 set_wq_data(work, wq);
289 timer->expires = jiffies + delay;
290 timer->data = (unsigned long)dwork;
291 timer->function = delayed_work_timer_fn;
292 add_timer_on(timer, cpu);
293 ret = 1;
295 return ret;
297 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
299 static void run_workqueue(struct cpu_workqueue_struct *cwq)
301 unsigned long flags;
304 * Keep taking off work from the queue until
305 * done.
307 spin_lock_irqsave(&cwq->lock, flags);
308 cwq->run_depth++;
309 if (cwq->run_depth > 3) {
310 /* morton gets to eat his hat */
311 printk("%s: recursion depth exceeded: %d\n",
312 __FUNCTION__, cwq->run_depth);
313 dump_stack();
315 while (!list_empty(&cwq->worklist)) {
316 struct work_struct *work = list_entry(cwq->worklist.next,
317 struct work_struct, entry);
318 work_func_t f = work->func;
320 cwq->current_work = work;
321 list_del_init(cwq->worklist.next);
322 spin_unlock_irqrestore(&cwq->lock, flags);
324 BUG_ON(get_wq_data(work) != cwq);
325 if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
326 work_release(work);
327 f(work);
329 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
330 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
331 "%s/0x%08x/%d\n",
332 current->comm, preempt_count(),
333 current->pid);
334 printk(KERN_ERR " last function: ");
335 print_symbol("%s\n", (unsigned long)f);
336 debug_show_held_locks(current);
337 dump_stack();
340 spin_lock_irqsave(&cwq->lock, flags);
341 cwq->current_work = NULL;
343 cwq->run_depth--;
344 spin_unlock_irqrestore(&cwq->lock, flags);
347 static int worker_thread(void *__cwq)
349 struct cpu_workqueue_struct *cwq = __cwq;
350 DECLARE_WAITQUEUE(wait, current);
351 struct k_sigaction sa;
352 sigset_t blocked;
354 if (!cwq->freezeable)
355 current->flags |= PF_NOFREEZE;
357 set_user_nice(current, -5);
359 /* Block and flush all signals */
360 sigfillset(&blocked);
361 sigprocmask(SIG_BLOCK, &blocked, NULL);
362 flush_signals(current);
365 * We inherited MPOL_INTERLEAVE from the booting kernel.
366 * Set MPOL_DEFAULT to insure node local allocations.
368 numa_default_policy();
370 /* SIG_IGN makes children autoreap: see do_notify_parent(). */
371 sa.sa.sa_handler = SIG_IGN;
372 sa.sa.sa_flags = 0;
373 siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
374 do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
376 set_current_state(TASK_INTERRUPTIBLE);
377 while (!kthread_should_stop()) {
378 if (cwq->freezeable)
379 try_to_freeze();
381 add_wait_queue(&cwq->more_work, &wait);
382 if (list_empty(&cwq->worklist))
383 schedule();
384 else
385 __set_current_state(TASK_RUNNING);
386 remove_wait_queue(&cwq->more_work, &wait);
388 if (!list_empty(&cwq->worklist))
389 run_workqueue(cwq);
390 set_current_state(TASK_INTERRUPTIBLE);
392 __set_current_state(TASK_RUNNING);
393 return 0;
396 struct wq_barrier {
397 struct work_struct work;
398 struct completion done;
401 static void wq_barrier_func(struct work_struct *work)
403 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
404 complete(&barr->done);
407 static inline void init_wq_barrier(struct wq_barrier *barr)
409 INIT_WORK(&barr->work, wq_barrier_func);
410 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
412 init_completion(&barr->done);
415 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
417 if (cwq->thread == current) {
419 * Probably keventd trying to flush its own queue. So simply run
420 * it by hand rather than deadlocking.
422 mutex_unlock(&workqueue_mutex);
423 run_workqueue(cwq);
424 mutex_lock(&workqueue_mutex);
425 } else {
426 struct wq_barrier barr;
428 init_wq_barrier(&barr);
429 __queue_work(cwq, &barr.work);
431 mutex_unlock(&workqueue_mutex);
432 wait_for_completion(&barr.done);
433 mutex_lock(&workqueue_mutex);
438 * flush_workqueue - ensure that any scheduled work has run to completion.
439 * @wq: workqueue to flush
441 * Forces execution of the workqueue and blocks until its completion.
442 * This is typically used in driver shutdown handlers.
444 * We sleep until all works which were queued on entry have been handled,
445 * but we are not livelocked by new incoming ones.
447 * This function used to run the workqueues itself. Now we just wait for the
448 * helper threads to do it.
450 void fastcall flush_workqueue(struct workqueue_struct *wq)
452 mutex_lock(&workqueue_mutex);
453 if (is_single_threaded(wq)) {
454 /* Always use first cpu's area. */
455 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
456 } else {
457 int cpu;
459 for_each_online_cpu(cpu)
460 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
462 mutex_unlock(&workqueue_mutex);
464 EXPORT_SYMBOL_GPL(flush_workqueue);
466 static void wait_on_work(struct cpu_workqueue_struct *cwq,
467 struct work_struct *work)
469 struct wq_barrier barr;
470 int running = 0;
472 spin_lock_irq(&cwq->lock);
473 if (unlikely(cwq->current_work == work)) {
474 init_wq_barrier(&barr);
475 insert_work(cwq, &barr.work, 0);
476 running = 1;
478 spin_unlock_irq(&cwq->lock);
480 if (unlikely(running)) {
481 mutex_unlock(&workqueue_mutex);
482 wait_for_completion(&barr.done);
483 mutex_lock(&workqueue_mutex);
488 * flush_work - block until a work_struct's callback has terminated
489 * @wq: the workqueue on which the work is queued
490 * @work: the work which is to be flushed
492 * flush_work() will attempt to cancel the work if it is queued. If the work's
493 * callback appears to be running, flush_work() will block until it has
494 * completed.
496 * flush_work() is designed to be used when the caller is tearing down data
497 * structures which the callback function operates upon. It is expected that,
498 * prior to calling flush_work(), the caller has arranged for the work to not
499 * be requeued.
501 void flush_work(struct workqueue_struct *wq, struct work_struct *work)
503 struct cpu_workqueue_struct *cwq;
505 mutex_lock(&workqueue_mutex);
506 cwq = get_wq_data(work);
507 /* Was it ever queued ? */
508 if (!cwq)
509 goto out;
512 * This work can't be re-queued, and the lock above protects us
513 * from take_over_work(), no need to re-check that get_wq_data()
514 * is still the same when we take cwq->lock.
516 spin_lock_irq(&cwq->lock);
517 list_del_init(&work->entry);
518 work_release(work);
519 spin_unlock_irq(&cwq->lock);
521 if (is_single_threaded(wq)) {
522 /* Always use first cpu's area. */
523 wait_on_work(per_cpu_ptr(wq->cpu_wq, singlethread_cpu), work);
524 } else {
525 int cpu;
527 for_each_online_cpu(cpu)
528 wait_on_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
530 out:
531 mutex_unlock(&workqueue_mutex);
533 EXPORT_SYMBOL_GPL(flush_work);
535 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
536 int cpu, int freezeable)
538 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
539 struct task_struct *p;
541 spin_lock_init(&cwq->lock);
542 cwq->wq = wq;
543 cwq->thread = NULL;
544 cwq->freezeable = freezeable;
545 INIT_LIST_HEAD(&cwq->worklist);
546 init_waitqueue_head(&cwq->more_work);
548 if (is_single_threaded(wq))
549 p = kthread_create(worker_thread, cwq, "%s", wq->name);
550 else
551 p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
552 if (IS_ERR(p))
553 return NULL;
554 cwq->thread = p;
555 return p;
558 struct workqueue_struct *__create_workqueue(const char *name,
559 int singlethread, int freezeable)
561 int cpu, destroy = 0;
562 struct workqueue_struct *wq;
563 struct task_struct *p;
565 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
566 if (!wq)
567 return NULL;
569 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
570 if (!wq->cpu_wq) {
571 kfree(wq);
572 return NULL;
575 wq->name = name;
576 mutex_lock(&workqueue_mutex);
577 if (singlethread) {
578 INIT_LIST_HEAD(&wq->list);
579 p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
580 if (!p)
581 destroy = 1;
582 else
583 wake_up_process(p);
584 } else {
585 list_add(&wq->list, &workqueues);
586 for_each_online_cpu(cpu) {
587 p = create_workqueue_thread(wq, cpu, freezeable);
588 if (p) {
589 kthread_bind(p, cpu);
590 wake_up_process(p);
591 } else
592 destroy = 1;
595 mutex_unlock(&workqueue_mutex);
598 * Was there any error during startup? If yes then clean up:
600 if (destroy) {
601 destroy_workqueue(wq);
602 wq = NULL;
604 return wq;
606 EXPORT_SYMBOL_GPL(__create_workqueue);
608 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
610 struct cpu_workqueue_struct *cwq;
611 unsigned long flags;
612 struct task_struct *p;
614 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
615 spin_lock_irqsave(&cwq->lock, flags);
616 p = cwq->thread;
617 cwq->thread = NULL;
618 spin_unlock_irqrestore(&cwq->lock, flags);
619 if (p)
620 kthread_stop(p);
624 * destroy_workqueue - safely terminate a workqueue
625 * @wq: target workqueue
627 * Safely destroy a workqueue. All work currently pending will be done first.
629 void destroy_workqueue(struct workqueue_struct *wq)
631 int cpu;
633 flush_workqueue(wq);
635 /* We don't need the distraction of CPUs appearing and vanishing. */
636 mutex_lock(&workqueue_mutex);
637 if (is_single_threaded(wq))
638 cleanup_workqueue_thread(wq, singlethread_cpu);
639 else {
640 for_each_online_cpu(cpu)
641 cleanup_workqueue_thread(wq, cpu);
642 list_del(&wq->list);
644 mutex_unlock(&workqueue_mutex);
645 free_percpu(wq->cpu_wq);
646 kfree(wq);
648 EXPORT_SYMBOL_GPL(destroy_workqueue);
650 static struct workqueue_struct *keventd_wq;
653 * schedule_work - put work task in global workqueue
654 * @work: job to be done
656 * This puts a job in the kernel-global workqueue.
658 int fastcall schedule_work(struct work_struct *work)
660 return queue_work(keventd_wq, work);
662 EXPORT_SYMBOL(schedule_work);
665 * schedule_delayed_work - put work task in global workqueue after delay
666 * @dwork: job to be done
667 * @delay: number of jiffies to wait or 0 for immediate execution
669 * After waiting for a given time this puts a job in the kernel-global
670 * workqueue.
672 int fastcall schedule_delayed_work(struct delayed_work *dwork,
673 unsigned long delay)
675 timer_stats_timer_set_start_info(&dwork->timer);
676 return queue_delayed_work(keventd_wq, dwork, delay);
678 EXPORT_SYMBOL(schedule_delayed_work);
681 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
682 * @cpu: cpu to use
683 * @dwork: job to be done
684 * @delay: number of jiffies to wait
686 * After waiting for a given time this puts a job in the kernel-global
687 * workqueue on the specified CPU.
689 int schedule_delayed_work_on(int cpu,
690 struct delayed_work *dwork, unsigned long delay)
692 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
694 EXPORT_SYMBOL(schedule_delayed_work_on);
697 * schedule_on_each_cpu - call a function on each online CPU from keventd
698 * @func: the function to call
700 * Returns zero on success.
701 * Returns -ve errno on failure.
703 * Appears to be racy against CPU hotplug.
705 * schedule_on_each_cpu() is very slow.
707 int schedule_on_each_cpu(work_func_t func)
709 int cpu;
710 struct work_struct *works;
712 works = alloc_percpu(struct work_struct);
713 if (!works)
714 return -ENOMEM;
716 preempt_disable(); /* CPU hotplug */
717 for_each_online_cpu(cpu) {
718 struct work_struct *work = per_cpu_ptr(works, cpu);
720 INIT_WORK(work, func);
721 set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
722 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
724 preempt_enable();
725 flush_workqueue(keventd_wq);
726 free_percpu(works);
727 return 0;
730 void flush_scheduled_work(void)
732 flush_workqueue(keventd_wq);
734 EXPORT_SYMBOL(flush_scheduled_work);
736 void flush_work_keventd(struct work_struct *work)
738 flush_work(keventd_wq, work);
740 EXPORT_SYMBOL(flush_work_keventd);
743 * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
744 * @wq: the controlling workqueue structure
745 * @dwork: the delayed work struct
747 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
748 struct delayed_work *dwork)
750 while (!cancel_delayed_work(dwork))
751 flush_workqueue(wq);
753 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
756 * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
757 * @dwork: the delayed work struct
759 void cancel_rearming_delayed_work(struct delayed_work *dwork)
761 cancel_rearming_delayed_workqueue(keventd_wq, dwork);
763 EXPORT_SYMBOL(cancel_rearming_delayed_work);
766 * execute_in_process_context - reliably execute the routine with user context
767 * @fn: the function to execute
768 * @ew: guaranteed storage for the execute work structure (must
769 * be available when the work executes)
771 * Executes the function immediately if process context is available,
772 * otherwise schedules the function for delayed execution.
774 * Returns: 0 - function was executed
775 * 1 - function was scheduled for execution
777 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
779 if (!in_interrupt()) {
780 fn(&ew->work);
781 return 0;
784 INIT_WORK(&ew->work, fn);
785 schedule_work(&ew->work);
787 return 1;
789 EXPORT_SYMBOL_GPL(execute_in_process_context);
791 int keventd_up(void)
793 return keventd_wq != NULL;
796 int current_is_keventd(void)
798 struct cpu_workqueue_struct *cwq;
799 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */
800 int ret = 0;
802 BUG_ON(!keventd_wq);
804 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
805 if (current == cwq->thread)
806 ret = 1;
808 return ret;
812 /* Take the work from this (downed) CPU. */
813 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
815 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
816 struct list_head list;
817 struct work_struct *work;
819 spin_lock_irq(&cwq->lock);
820 list_replace_init(&cwq->worklist, &list);
822 while (!list_empty(&list)) {
823 printk("Taking work for %s\n", wq->name);
824 work = list_entry(list.next,struct work_struct,entry);
825 list_del(&work->entry);
826 __queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
828 spin_unlock_irq(&cwq->lock);
831 /* We're holding the cpucontrol mutex here */
832 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
833 unsigned long action,
834 void *hcpu)
836 unsigned int hotcpu = (unsigned long)hcpu;
837 struct workqueue_struct *wq;
839 switch (action) {
840 case CPU_UP_PREPARE:
841 mutex_lock(&workqueue_mutex);
842 /* Create a new workqueue thread for it. */
843 list_for_each_entry(wq, &workqueues, list) {
844 if (!create_workqueue_thread(wq, hotcpu, 0)) {
845 printk("workqueue for %i failed\n", hotcpu);
846 return NOTIFY_BAD;
849 break;
851 case CPU_ONLINE:
852 /* Kick off worker threads. */
853 list_for_each_entry(wq, &workqueues, list) {
854 struct cpu_workqueue_struct *cwq;
856 cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
857 kthread_bind(cwq->thread, hotcpu);
858 wake_up_process(cwq->thread);
860 mutex_unlock(&workqueue_mutex);
861 break;
863 case CPU_UP_CANCELED:
864 list_for_each_entry(wq, &workqueues, list) {
865 if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
866 continue;
867 /* Unbind so it can run. */
868 kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
869 any_online_cpu(cpu_online_map));
870 cleanup_workqueue_thread(wq, hotcpu);
872 mutex_unlock(&workqueue_mutex);
873 break;
875 case CPU_DOWN_PREPARE:
876 mutex_lock(&workqueue_mutex);
877 break;
879 case CPU_DOWN_FAILED:
880 mutex_unlock(&workqueue_mutex);
881 break;
883 case CPU_DEAD:
884 list_for_each_entry(wq, &workqueues, list)
885 cleanup_workqueue_thread(wq, hotcpu);
886 list_for_each_entry(wq, &workqueues, list)
887 take_over_work(wq, hotcpu);
888 mutex_unlock(&workqueue_mutex);
889 break;
892 return NOTIFY_OK;
895 void init_workqueues(void)
897 singlethread_cpu = first_cpu(cpu_possible_map);
898 hotcpu_notifier(workqueue_cpu_callback, 0);
899 keventd_wq = create_workqueue("events");
900 BUG_ON(!keventd_wq);