jump label: Fix module __init section race
[linux-2.6/libata-dev.git] / include / net / sock.h
blobc7a736228ca2dcab930f7f4a9f07d5fda2858c7c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
81 #endif
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
102 struct sock;
103 struct proto;
104 struct net;
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_node: main hash linkage for various protocol lookup tables
109 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110 * @skc_refcnt: reference count
111 * @skc_tx_queue_mapping: tx queue number for this connection
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
123 * This is the minimal network layer representation of sockets, the header
124 * for struct sock and struct inet_timewait_sock.
126 struct sock_common {
128 * first fields are not copied in sock_copy()
130 union {
131 struct hlist_node skc_node;
132 struct hlist_nulls_node skc_nulls_node;
134 atomic_t skc_refcnt;
135 int skc_tx_queue_mapping;
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
156 * struct sock - network layer representation of sockets
157 * @__sk_common: shared layout with inet_timewait_sock
158 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160 * @sk_lock: synchronizer
161 * @sk_rcvbuf: size of receive buffer in bytes
162 * @sk_wq: sock wait queue and async head
163 * @sk_dst_cache: destination cache
164 * @sk_dst_lock: destination cache lock
165 * @sk_policy: flow policy
166 * @sk_rmem_alloc: receive queue bytes committed
167 * @sk_receive_queue: incoming packets
168 * @sk_wmem_alloc: transmit queue bytes committed
169 * @sk_write_queue: Packet sending queue
170 * @sk_async_wait_queue: DMA copied packets
171 * @sk_omem_alloc: "o" is "option" or "other"
172 * @sk_wmem_queued: persistent queue size
173 * @sk_forward_alloc: space allocated forward
174 * @sk_allocation: allocation mode
175 * @sk_sndbuf: size of send buffer in bytes
176 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182 * @sk_gso_max_size: Maximum GSO segment size to build
183 * @sk_lingertime: %SO_LINGER l_linger setting
184 * @sk_backlog: always used with the per-socket spinlock held
185 * @sk_callback_lock: used with the callbacks in the end of this struct
186 * @sk_error_queue: rarely used
187 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188 * IPV6_ADDRFORM for instance)
189 * @sk_err: last error
190 * @sk_err_soft: errors that don't cause failure but are the cause of a
191 * persistent failure not just 'timed out'
192 * @sk_drops: raw/udp drops counter
193 * @sk_ack_backlog: current listen backlog
194 * @sk_max_ack_backlog: listen backlog set in listen()
195 * @sk_priority: %SO_PRIORITY setting
196 * @sk_type: socket type (%SOCK_STREAM, etc)
197 * @sk_protocol: which protocol this socket belongs in this network family
198 * @sk_peer_pid: &struct pid for this socket's peer
199 * @sk_peer_cred: %SO_PEERCRED setting
200 * @sk_rcvlowat: %SO_RCVLOWAT setting
201 * @sk_rcvtimeo: %SO_RCVTIMEO setting
202 * @sk_sndtimeo: %SO_SNDTIMEO setting
203 * @sk_rxhash: flow hash received from netif layer
204 * @sk_filter: socket filtering instructions
205 * @sk_protinfo: private area, net family specific, when not using slab
206 * @sk_timer: sock cleanup timer
207 * @sk_stamp: time stamp of last packet received
208 * @sk_socket: Identd and reporting IO signals
209 * @sk_user_data: RPC layer private data
210 * @sk_sndmsg_page: cached page for sendmsg
211 * @sk_sndmsg_off: cached offset for sendmsg
212 * @sk_send_head: front of stuff to transmit
213 * @sk_security: used by security modules
214 * @sk_mark: generic packet mark
215 * @sk_classid: this socket's cgroup classid
216 * @sk_write_pending: a write to stream socket waits to start
217 * @sk_state_change: callback to indicate change in the state of the sock
218 * @sk_data_ready: callback to indicate there is data to be processed
219 * @sk_write_space: callback to indicate there is bf sending space available
220 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
221 * @sk_backlog_rcv: callback to process the backlog
222 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
224 struct sock {
226 * Now struct inet_timewait_sock also uses sock_common, so please just
227 * don't add nothing before this first member (__sk_common) --acme
229 struct sock_common __sk_common;
230 #define sk_node __sk_common.skc_node
231 #define sk_nulls_node __sk_common.skc_nulls_node
232 #define sk_refcnt __sk_common.skc_refcnt
233 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
235 #define sk_copy_start __sk_common.skc_hash
236 #define sk_hash __sk_common.skc_hash
237 #define sk_family __sk_common.skc_family
238 #define sk_state __sk_common.skc_state
239 #define sk_reuse __sk_common.skc_reuse
240 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
241 #define sk_bind_node __sk_common.skc_bind_node
242 #define sk_prot __sk_common.skc_prot
243 #define sk_net __sk_common.skc_net
244 kmemcheck_bitfield_begin(flags);
245 unsigned int sk_shutdown : 2,
246 sk_no_check : 2,
247 sk_userlocks : 4,
248 sk_protocol : 8,
249 sk_type : 16;
250 kmemcheck_bitfield_end(flags);
251 int sk_rcvbuf;
252 socket_lock_t sk_lock;
254 * The backlog queue is special, it is always used with
255 * the per-socket spinlock held and requires low latency
256 * access. Therefore we special case it's implementation.
258 struct {
259 struct sk_buff *head;
260 struct sk_buff *tail;
261 int len;
262 } sk_backlog;
263 struct socket_wq *sk_wq;
264 struct dst_entry *sk_dst_cache;
265 #ifdef CONFIG_XFRM
266 struct xfrm_policy *sk_policy[2];
267 #endif
268 spinlock_t sk_dst_lock;
269 atomic_t sk_rmem_alloc;
270 atomic_t sk_wmem_alloc;
271 atomic_t sk_omem_alloc;
272 int sk_sndbuf;
273 struct sk_buff_head sk_receive_queue;
274 struct sk_buff_head sk_write_queue;
275 #ifdef CONFIG_NET_DMA
276 struct sk_buff_head sk_async_wait_queue;
277 #endif
278 int sk_wmem_queued;
279 int sk_forward_alloc;
280 gfp_t sk_allocation;
281 int sk_route_caps;
282 int sk_route_nocaps;
283 int sk_gso_type;
284 unsigned int sk_gso_max_size;
285 int sk_rcvlowat;
286 #ifdef CONFIG_RPS
287 __u32 sk_rxhash;
288 #endif
289 unsigned long sk_flags;
290 unsigned long sk_lingertime;
291 struct sk_buff_head sk_error_queue;
292 struct proto *sk_prot_creator;
293 rwlock_t sk_callback_lock;
294 int sk_err,
295 sk_err_soft;
296 atomic_t sk_drops;
297 unsigned short sk_ack_backlog;
298 unsigned short sk_max_ack_backlog;
299 __u32 sk_priority;
300 struct pid *sk_peer_pid;
301 const struct cred *sk_peer_cred;
302 long sk_rcvtimeo;
303 long sk_sndtimeo;
304 struct sk_filter __rcu *sk_filter;
305 void *sk_protinfo;
306 struct timer_list sk_timer;
307 ktime_t sk_stamp;
308 struct socket *sk_socket;
309 void *sk_user_data;
310 struct page *sk_sndmsg_page;
311 struct sk_buff *sk_send_head;
312 __u32 sk_sndmsg_off;
313 int sk_write_pending;
314 #ifdef CONFIG_SECURITY
315 void *sk_security;
316 #endif
317 __u32 sk_mark;
318 u32 sk_classid;
319 void (*sk_state_change)(struct sock *sk);
320 void (*sk_data_ready)(struct sock *sk, int bytes);
321 void (*sk_write_space)(struct sock *sk);
322 void (*sk_error_report)(struct sock *sk);
323 int (*sk_backlog_rcv)(struct sock *sk,
324 struct sk_buff *skb);
325 void (*sk_destruct)(struct sock *sk);
329 * Hashed lists helper routines
331 static inline struct sock *sk_entry(const struct hlist_node *node)
333 return hlist_entry(node, struct sock, sk_node);
336 static inline struct sock *__sk_head(const struct hlist_head *head)
338 return hlist_entry(head->first, struct sock, sk_node);
341 static inline struct sock *sk_head(const struct hlist_head *head)
343 return hlist_empty(head) ? NULL : __sk_head(head);
346 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
348 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
351 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
353 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
356 static inline struct sock *sk_next(const struct sock *sk)
358 return sk->sk_node.next ?
359 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
362 static inline struct sock *sk_nulls_next(const struct sock *sk)
364 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
365 hlist_nulls_entry(sk->sk_nulls_node.next,
366 struct sock, sk_nulls_node) :
367 NULL;
370 static inline int sk_unhashed(const struct sock *sk)
372 return hlist_unhashed(&sk->sk_node);
375 static inline int sk_hashed(const struct sock *sk)
377 return !sk_unhashed(sk);
380 static __inline__ void sk_node_init(struct hlist_node *node)
382 node->pprev = NULL;
385 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
387 node->pprev = NULL;
390 static __inline__ void __sk_del_node(struct sock *sk)
392 __hlist_del(&sk->sk_node);
395 /* NB: equivalent to hlist_del_init_rcu */
396 static __inline__ int __sk_del_node_init(struct sock *sk)
398 if (sk_hashed(sk)) {
399 __sk_del_node(sk);
400 sk_node_init(&sk->sk_node);
401 return 1;
403 return 0;
406 /* Grab socket reference count. This operation is valid only
407 when sk is ALREADY grabbed f.e. it is found in hash table
408 or a list and the lookup is made under lock preventing hash table
409 modifications.
412 static inline void sock_hold(struct sock *sk)
414 atomic_inc(&sk->sk_refcnt);
417 /* Ungrab socket in the context, which assumes that socket refcnt
418 cannot hit zero, f.e. it is true in context of any socketcall.
420 static inline void __sock_put(struct sock *sk)
422 atomic_dec(&sk->sk_refcnt);
425 static __inline__ int sk_del_node_init(struct sock *sk)
427 int rc = __sk_del_node_init(sk);
429 if (rc) {
430 /* paranoid for a while -acme */
431 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
432 __sock_put(sk);
434 return rc;
436 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
438 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
440 if (sk_hashed(sk)) {
441 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
442 return 1;
444 return 0;
447 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
449 int rc = __sk_nulls_del_node_init_rcu(sk);
451 if (rc) {
452 /* paranoid for a while -acme */
453 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 __sock_put(sk);
456 return rc;
459 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
461 hlist_add_head(&sk->sk_node, list);
464 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
466 sock_hold(sk);
467 __sk_add_node(sk, list);
470 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
472 sock_hold(sk);
473 hlist_add_head_rcu(&sk->sk_node, list);
476 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
478 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
481 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
483 sock_hold(sk);
484 __sk_nulls_add_node_rcu(sk, list);
487 static __inline__ void __sk_del_bind_node(struct sock *sk)
489 __hlist_del(&sk->sk_bind_node);
492 static __inline__ void sk_add_bind_node(struct sock *sk,
493 struct hlist_head *list)
495 hlist_add_head(&sk->sk_bind_node, list);
498 #define sk_for_each(__sk, node, list) \
499 hlist_for_each_entry(__sk, node, list, sk_node)
500 #define sk_for_each_rcu(__sk, node, list) \
501 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
502 #define sk_nulls_for_each(__sk, node, list) \
503 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
504 #define sk_nulls_for_each_rcu(__sk, node, list) \
505 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
506 #define sk_for_each_from(__sk, node) \
507 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
508 hlist_for_each_entry_from(__sk, node, sk_node)
509 #define sk_nulls_for_each_from(__sk, node) \
510 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
511 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
512 #define sk_for_each_continue(__sk, node) \
513 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
514 hlist_for_each_entry_continue(__sk, node, sk_node)
515 #define sk_for_each_safe(__sk, node, tmp, list) \
516 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
517 #define sk_for_each_bound(__sk, node, list) \
518 hlist_for_each_entry(__sk, node, list, sk_bind_node)
520 /* Sock flags */
521 enum sock_flags {
522 SOCK_DEAD,
523 SOCK_DONE,
524 SOCK_URGINLINE,
525 SOCK_KEEPOPEN,
526 SOCK_LINGER,
527 SOCK_DESTROY,
528 SOCK_BROADCAST,
529 SOCK_TIMESTAMP,
530 SOCK_ZAPPED,
531 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
532 SOCK_DBG, /* %SO_DEBUG setting */
533 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
534 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
535 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
536 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
537 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
538 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
539 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
540 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
541 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
542 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
543 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
544 SOCK_FASYNC, /* fasync() active */
545 SOCK_RXQ_OVFL,
548 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
550 nsk->sk_flags = osk->sk_flags;
553 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
555 __set_bit(flag, &sk->sk_flags);
558 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
560 __clear_bit(flag, &sk->sk_flags);
563 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
565 return test_bit(flag, &sk->sk_flags);
568 static inline void sk_acceptq_removed(struct sock *sk)
570 sk->sk_ack_backlog--;
573 static inline void sk_acceptq_added(struct sock *sk)
575 sk->sk_ack_backlog++;
578 static inline int sk_acceptq_is_full(struct sock *sk)
580 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
584 * Compute minimal free write space needed to queue new packets.
586 static inline int sk_stream_min_wspace(struct sock *sk)
588 return sk->sk_wmem_queued >> 1;
591 static inline int sk_stream_wspace(struct sock *sk)
593 return sk->sk_sndbuf - sk->sk_wmem_queued;
596 extern void sk_stream_write_space(struct sock *sk);
598 static inline int sk_stream_memory_free(struct sock *sk)
600 return sk->sk_wmem_queued < sk->sk_sndbuf;
603 /* OOB backlog add */
604 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
606 /* dont let skb dst not refcounted, we are going to leave rcu lock */
607 skb_dst_force(skb);
609 if (!sk->sk_backlog.tail)
610 sk->sk_backlog.head = skb;
611 else
612 sk->sk_backlog.tail->next = skb;
614 sk->sk_backlog.tail = skb;
615 skb->next = NULL;
619 * Take into account size of receive queue and backlog queue
621 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
623 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
625 return qsize + skb->truesize > sk->sk_rcvbuf;
628 /* The per-socket spinlock must be held here. */
629 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
631 if (sk_rcvqueues_full(sk, skb))
632 return -ENOBUFS;
634 __sk_add_backlog(sk, skb);
635 sk->sk_backlog.len += skb->truesize;
636 return 0;
639 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
641 return sk->sk_backlog_rcv(sk, skb);
644 static inline void sock_rps_record_flow(const struct sock *sk)
646 #ifdef CONFIG_RPS
647 struct rps_sock_flow_table *sock_flow_table;
649 rcu_read_lock();
650 sock_flow_table = rcu_dereference(rps_sock_flow_table);
651 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
652 rcu_read_unlock();
653 #endif
656 static inline void sock_rps_reset_flow(const struct sock *sk)
658 #ifdef CONFIG_RPS
659 struct rps_sock_flow_table *sock_flow_table;
661 rcu_read_lock();
662 sock_flow_table = rcu_dereference(rps_sock_flow_table);
663 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
664 rcu_read_unlock();
665 #endif
668 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
670 #ifdef CONFIG_RPS
671 if (unlikely(sk->sk_rxhash != rxhash)) {
672 sock_rps_reset_flow(sk);
673 sk->sk_rxhash = rxhash;
675 #endif
678 #define sk_wait_event(__sk, __timeo, __condition) \
679 ({ int __rc; \
680 release_sock(__sk); \
681 __rc = __condition; \
682 if (!__rc) { \
683 *(__timeo) = schedule_timeout(*(__timeo)); \
685 lock_sock(__sk); \
686 __rc = __condition; \
687 __rc; \
690 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
691 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
692 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
693 extern int sk_stream_error(struct sock *sk, int flags, int err);
694 extern void sk_stream_kill_queues(struct sock *sk);
696 extern int sk_wait_data(struct sock *sk, long *timeo);
698 struct request_sock_ops;
699 struct timewait_sock_ops;
700 struct inet_hashinfo;
701 struct raw_hashinfo;
703 /* Networking protocol blocks we attach to sockets.
704 * socket layer -> transport layer interface
705 * transport -> network interface is defined by struct inet_proto
707 struct proto {
708 void (*close)(struct sock *sk,
709 long timeout);
710 int (*connect)(struct sock *sk,
711 struct sockaddr *uaddr,
712 int addr_len);
713 int (*disconnect)(struct sock *sk, int flags);
715 struct sock * (*accept) (struct sock *sk, int flags, int *err);
717 int (*ioctl)(struct sock *sk, int cmd,
718 unsigned long arg);
719 int (*init)(struct sock *sk);
720 void (*destroy)(struct sock *sk);
721 void (*shutdown)(struct sock *sk, int how);
722 int (*setsockopt)(struct sock *sk, int level,
723 int optname, char __user *optval,
724 unsigned int optlen);
725 int (*getsockopt)(struct sock *sk, int level,
726 int optname, char __user *optval,
727 int __user *option);
728 #ifdef CONFIG_COMPAT
729 int (*compat_setsockopt)(struct sock *sk,
730 int level,
731 int optname, char __user *optval,
732 unsigned int optlen);
733 int (*compat_getsockopt)(struct sock *sk,
734 int level,
735 int optname, char __user *optval,
736 int __user *option);
737 #endif
738 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
739 struct msghdr *msg, size_t len);
740 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
741 struct msghdr *msg,
742 size_t len, int noblock, int flags,
743 int *addr_len);
744 int (*sendpage)(struct sock *sk, struct page *page,
745 int offset, size_t size, int flags);
746 int (*bind)(struct sock *sk,
747 struct sockaddr *uaddr, int addr_len);
749 int (*backlog_rcv) (struct sock *sk,
750 struct sk_buff *skb);
752 /* Keeping track of sk's, looking them up, and port selection methods. */
753 void (*hash)(struct sock *sk);
754 void (*unhash)(struct sock *sk);
755 void (*rehash)(struct sock *sk);
756 int (*get_port)(struct sock *sk, unsigned short snum);
758 /* Keeping track of sockets in use */
759 #ifdef CONFIG_PROC_FS
760 unsigned int inuse_idx;
761 #endif
763 /* Memory pressure */
764 void (*enter_memory_pressure)(struct sock *sk);
765 atomic_t *memory_allocated; /* Current allocated memory. */
766 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
768 * Pressure flag: try to collapse.
769 * Technical note: it is used by multiple contexts non atomically.
770 * All the __sk_mem_schedule() is of this nature: accounting
771 * is strict, actions are advisory and have some latency.
773 int *memory_pressure;
774 int *sysctl_mem;
775 int *sysctl_wmem;
776 int *sysctl_rmem;
777 int max_header;
778 bool no_autobind;
780 struct kmem_cache *slab;
781 unsigned int obj_size;
782 int slab_flags;
784 struct percpu_counter *orphan_count;
786 struct request_sock_ops *rsk_prot;
787 struct timewait_sock_ops *twsk_prot;
789 union {
790 struct inet_hashinfo *hashinfo;
791 struct udp_table *udp_table;
792 struct raw_hashinfo *raw_hash;
793 } h;
795 struct module *owner;
797 char name[32];
799 struct list_head node;
800 #ifdef SOCK_REFCNT_DEBUG
801 atomic_t socks;
802 #endif
805 extern int proto_register(struct proto *prot, int alloc_slab);
806 extern void proto_unregister(struct proto *prot);
808 #ifdef SOCK_REFCNT_DEBUG
809 static inline void sk_refcnt_debug_inc(struct sock *sk)
811 atomic_inc(&sk->sk_prot->socks);
814 static inline void sk_refcnt_debug_dec(struct sock *sk)
816 atomic_dec(&sk->sk_prot->socks);
817 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
818 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
821 static inline void sk_refcnt_debug_release(const struct sock *sk)
823 if (atomic_read(&sk->sk_refcnt) != 1)
824 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
825 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
827 #else /* SOCK_REFCNT_DEBUG */
828 #define sk_refcnt_debug_inc(sk) do { } while (0)
829 #define sk_refcnt_debug_dec(sk) do { } while (0)
830 #define sk_refcnt_debug_release(sk) do { } while (0)
831 #endif /* SOCK_REFCNT_DEBUG */
834 #ifdef CONFIG_PROC_FS
835 /* Called with local bh disabled */
836 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
837 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
838 #else
839 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
840 int inc)
843 #endif
846 /* With per-bucket locks this operation is not-atomic, so that
847 * this version is not worse.
849 static inline void __sk_prot_rehash(struct sock *sk)
851 sk->sk_prot->unhash(sk);
852 sk->sk_prot->hash(sk);
855 /* About 10 seconds */
856 #define SOCK_DESTROY_TIME (10*HZ)
858 /* Sockets 0-1023 can't be bound to unless you are superuser */
859 #define PROT_SOCK 1024
861 #define SHUTDOWN_MASK 3
862 #define RCV_SHUTDOWN 1
863 #define SEND_SHUTDOWN 2
865 #define SOCK_SNDBUF_LOCK 1
866 #define SOCK_RCVBUF_LOCK 2
867 #define SOCK_BINDADDR_LOCK 4
868 #define SOCK_BINDPORT_LOCK 8
870 /* sock_iocb: used to kick off async processing of socket ios */
871 struct sock_iocb {
872 struct list_head list;
874 int flags;
875 int size;
876 struct socket *sock;
877 struct sock *sk;
878 struct scm_cookie *scm;
879 struct msghdr *msg, async_msg;
880 struct kiocb *kiocb;
883 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
885 return (struct sock_iocb *)iocb->private;
888 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
890 return si->kiocb;
893 struct socket_alloc {
894 struct socket socket;
895 struct inode vfs_inode;
898 static inline struct socket *SOCKET_I(struct inode *inode)
900 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
903 static inline struct inode *SOCK_INODE(struct socket *socket)
905 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
909 * Functions for memory accounting
911 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
912 extern void __sk_mem_reclaim(struct sock *sk);
914 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
915 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
916 #define SK_MEM_SEND 0
917 #define SK_MEM_RECV 1
919 static inline int sk_mem_pages(int amt)
921 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
924 static inline int sk_has_account(struct sock *sk)
926 /* return true if protocol supports memory accounting */
927 return !!sk->sk_prot->memory_allocated;
930 static inline int sk_wmem_schedule(struct sock *sk, int size)
932 if (!sk_has_account(sk))
933 return 1;
934 return size <= sk->sk_forward_alloc ||
935 __sk_mem_schedule(sk, size, SK_MEM_SEND);
938 static inline int sk_rmem_schedule(struct sock *sk, int size)
940 if (!sk_has_account(sk))
941 return 1;
942 return size <= sk->sk_forward_alloc ||
943 __sk_mem_schedule(sk, size, SK_MEM_RECV);
946 static inline void sk_mem_reclaim(struct sock *sk)
948 if (!sk_has_account(sk))
949 return;
950 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
951 __sk_mem_reclaim(sk);
954 static inline void sk_mem_reclaim_partial(struct sock *sk)
956 if (!sk_has_account(sk))
957 return;
958 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
959 __sk_mem_reclaim(sk);
962 static inline void sk_mem_charge(struct sock *sk, int size)
964 if (!sk_has_account(sk))
965 return;
966 sk->sk_forward_alloc -= size;
969 static inline void sk_mem_uncharge(struct sock *sk, int size)
971 if (!sk_has_account(sk))
972 return;
973 sk->sk_forward_alloc += size;
976 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
978 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
979 sk->sk_wmem_queued -= skb->truesize;
980 sk_mem_uncharge(sk, skb->truesize);
981 __kfree_skb(skb);
984 /* Used by processes to "lock" a socket state, so that
985 * interrupts and bottom half handlers won't change it
986 * from under us. It essentially blocks any incoming
987 * packets, so that we won't get any new data or any
988 * packets that change the state of the socket.
990 * While locked, BH processing will add new packets to
991 * the backlog queue. This queue is processed by the
992 * owner of the socket lock right before it is released.
994 * Since ~2.3.5 it is also exclusive sleep lock serializing
995 * accesses from user process context.
997 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1000 * Macro so as to not evaluate some arguments when
1001 * lockdep is not enabled.
1003 * Mark both the sk_lock and the sk_lock.slock as a
1004 * per-address-family lock class.
1006 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1007 do { \
1008 sk->sk_lock.owned = 0; \
1009 init_waitqueue_head(&sk->sk_lock.wq); \
1010 spin_lock_init(&(sk)->sk_lock.slock); \
1011 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1012 sizeof((sk)->sk_lock)); \
1013 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1014 (skey), (sname)); \
1015 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1016 } while (0)
1018 extern void lock_sock_nested(struct sock *sk, int subclass);
1020 static inline void lock_sock(struct sock *sk)
1022 lock_sock_nested(sk, 0);
1025 extern void release_sock(struct sock *sk);
1027 /* BH context may only use the following locking interface. */
1028 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1029 #define bh_lock_sock_nested(__sk) \
1030 spin_lock_nested(&((__sk)->sk_lock.slock), \
1031 SINGLE_DEPTH_NESTING)
1032 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1034 extern bool lock_sock_fast(struct sock *sk);
1036 * unlock_sock_fast - complement of lock_sock_fast
1037 * @sk: socket
1038 * @slow: slow mode
1040 * fast unlock socket for user context.
1041 * If slow mode is on, we call regular release_sock()
1043 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1045 if (slow)
1046 release_sock(sk);
1047 else
1048 spin_unlock_bh(&sk->sk_lock.slock);
1052 extern struct sock *sk_alloc(struct net *net, int family,
1053 gfp_t priority,
1054 struct proto *prot);
1055 extern void sk_free(struct sock *sk);
1056 extern void sk_release_kernel(struct sock *sk);
1057 extern struct sock *sk_clone(const struct sock *sk,
1058 const gfp_t priority);
1060 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1061 unsigned long size, int force,
1062 gfp_t priority);
1063 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1064 unsigned long size, int force,
1065 gfp_t priority);
1066 extern void sock_wfree(struct sk_buff *skb);
1067 extern void sock_rfree(struct sk_buff *skb);
1069 extern int sock_setsockopt(struct socket *sock, int level,
1070 int op, char __user *optval,
1071 unsigned int optlen);
1073 extern int sock_getsockopt(struct socket *sock, int level,
1074 int op, char __user *optval,
1075 int __user *optlen);
1076 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1077 unsigned long size,
1078 int noblock,
1079 int *errcode);
1080 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1081 unsigned long header_len,
1082 unsigned long data_len,
1083 int noblock,
1084 int *errcode);
1085 extern void *sock_kmalloc(struct sock *sk, int size,
1086 gfp_t priority);
1087 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1088 extern void sk_send_sigurg(struct sock *sk);
1090 #ifdef CONFIG_CGROUPS
1091 extern void sock_update_classid(struct sock *sk);
1092 #else
1093 static inline void sock_update_classid(struct sock *sk)
1096 #endif
1099 * Functions to fill in entries in struct proto_ops when a protocol
1100 * does not implement a particular function.
1102 extern int sock_no_bind(struct socket *,
1103 struct sockaddr *, int);
1104 extern int sock_no_connect(struct socket *,
1105 struct sockaddr *, int, int);
1106 extern int sock_no_socketpair(struct socket *,
1107 struct socket *);
1108 extern int sock_no_accept(struct socket *,
1109 struct socket *, int);
1110 extern int sock_no_getname(struct socket *,
1111 struct sockaddr *, int *, int);
1112 extern unsigned int sock_no_poll(struct file *, struct socket *,
1113 struct poll_table_struct *);
1114 extern int sock_no_ioctl(struct socket *, unsigned int,
1115 unsigned long);
1116 extern int sock_no_listen(struct socket *, int);
1117 extern int sock_no_shutdown(struct socket *, int);
1118 extern int sock_no_getsockopt(struct socket *, int , int,
1119 char __user *, int __user *);
1120 extern int sock_no_setsockopt(struct socket *, int, int,
1121 char __user *, unsigned int);
1122 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1123 struct msghdr *, size_t);
1124 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1125 struct msghdr *, size_t, int);
1126 extern int sock_no_mmap(struct file *file,
1127 struct socket *sock,
1128 struct vm_area_struct *vma);
1129 extern ssize_t sock_no_sendpage(struct socket *sock,
1130 struct page *page,
1131 int offset, size_t size,
1132 int flags);
1135 * Functions to fill in entries in struct proto_ops when a protocol
1136 * uses the inet style.
1138 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1139 char __user *optval, int __user *optlen);
1140 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1141 struct msghdr *msg, size_t size, int flags);
1142 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1143 char __user *optval, unsigned int optlen);
1144 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1145 int optname, char __user *optval, int __user *optlen);
1146 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1147 int optname, char __user *optval, unsigned int optlen);
1149 extern void sk_common_release(struct sock *sk);
1152 * Default socket callbacks and setup code
1155 /* Initialise core socket variables */
1156 extern void sock_init_data(struct socket *sock, struct sock *sk);
1159 * sk_filter_release - release a socket filter
1160 * @fp: filter to remove
1162 * Remove a filter from a socket and release its resources.
1165 static inline void sk_filter_release(struct sk_filter *fp)
1167 if (atomic_dec_and_test(&fp->refcnt))
1168 kfree(fp);
1171 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1173 unsigned int size = sk_filter_len(fp);
1175 atomic_sub(size, &sk->sk_omem_alloc);
1176 sk_filter_release(fp);
1179 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1181 atomic_inc(&fp->refcnt);
1182 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1186 * Socket reference counting postulates.
1188 * * Each user of socket SHOULD hold a reference count.
1189 * * Each access point to socket (an hash table bucket, reference from a list,
1190 * running timer, skb in flight MUST hold a reference count.
1191 * * When reference count hits 0, it means it will never increase back.
1192 * * When reference count hits 0, it means that no references from
1193 * outside exist to this socket and current process on current CPU
1194 * is last user and may/should destroy this socket.
1195 * * sk_free is called from any context: process, BH, IRQ. When
1196 * it is called, socket has no references from outside -> sk_free
1197 * may release descendant resources allocated by the socket, but
1198 * to the time when it is called, socket is NOT referenced by any
1199 * hash tables, lists etc.
1200 * * Packets, delivered from outside (from network or from another process)
1201 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1202 * when they sit in queue. Otherwise, packets will leak to hole, when
1203 * socket is looked up by one cpu and unhasing is made by another CPU.
1204 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1205 * (leak to backlog). Packet socket does all the processing inside
1206 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1207 * use separate SMP lock, so that they are prone too.
1210 /* Ungrab socket and destroy it, if it was the last reference. */
1211 static inline void sock_put(struct sock *sk)
1213 if (atomic_dec_and_test(&sk->sk_refcnt))
1214 sk_free(sk);
1217 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1218 const int nested);
1220 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1222 sk->sk_tx_queue_mapping = tx_queue;
1225 static inline void sk_tx_queue_clear(struct sock *sk)
1227 sk->sk_tx_queue_mapping = -1;
1230 static inline int sk_tx_queue_get(const struct sock *sk)
1232 return sk ? sk->sk_tx_queue_mapping : -1;
1235 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1237 sk_tx_queue_clear(sk);
1238 sk->sk_socket = sock;
1241 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1243 return &sk->sk_wq->wait;
1245 /* Detach socket from process context.
1246 * Announce socket dead, detach it from wait queue and inode.
1247 * Note that parent inode held reference count on this struct sock,
1248 * we do not release it in this function, because protocol
1249 * probably wants some additional cleanups or even continuing
1250 * to work with this socket (TCP).
1252 static inline void sock_orphan(struct sock *sk)
1254 write_lock_bh(&sk->sk_callback_lock);
1255 sock_set_flag(sk, SOCK_DEAD);
1256 sk_set_socket(sk, NULL);
1257 sk->sk_wq = NULL;
1258 write_unlock_bh(&sk->sk_callback_lock);
1261 static inline void sock_graft(struct sock *sk, struct socket *parent)
1263 write_lock_bh(&sk->sk_callback_lock);
1264 rcu_assign_pointer(sk->sk_wq, parent->wq);
1265 parent->sk = sk;
1266 sk_set_socket(sk, parent);
1267 security_sock_graft(sk, parent);
1268 write_unlock_bh(&sk->sk_callback_lock);
1271 extern int sock_i_uid(struct sock *sk);
1272 extern unsigned long sock_i_ino(struct sock *sk);
1274 static inline struct dst_entry *
1275 __sk_dst_get(struct sock *sk)
1277 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1278 sock_owned_by_user(sk) ||
1279 lockdep_is_held(&sk->sk_lock.slock));
1282 static inline struct dst_entry *
1283 sk_dst_get(struct sock *sk)
1285 struct dst_entry *dst;
1287 rcu_read_lock();
1288 dst = rcu_dereference(sk->sk_dst_cache);
1289 if (dst)
1290 dst_hold(dst);
1291 rcu_read_unlock();
1292 return dst;
1295 extern void sk_reset_txq(struct sock *sk);
1297 static inline void dst_negative_advice(struct sock *sk)
1299 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1301 if (dst && dst->ops->negative_advice) {
1302 ndst = dst->ops->negative_advice(dst);
1304 if (ndst != dst) {
1305 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1306 sk_reset_txq(sk);
1311 static inline void
1312 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1314 struct dst_entry *old_dst;
1316 sk_tx_queue_clear(sk);
1318 * This can be called while sk is owned by the caller only,
1319 * with no state that can be checked in a rcu_dereference_check() cond
1321 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1322 rcu_assign_pointer(sk->sk_dst_cache, dst);
1323 dst_release(old_dst);
1326 static inline void
1327 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1329 spin_lock(&sk->sk_dst_lock);
1330 __sk_dst_set(sk, dst);
1331 spin_unlock(&sk->sk_dst_lock);
1334 static inline void
1335 __sk_dst_reset(struct sock *sk)
1337 __sk_dst_set(sk, NULL);
1340 static inline void
1341 sk_dst_reset(struct sock *sk)
1343 spin_lock(&sk->sk_dst_lock);
1344 __sk_dst_reset(sk);
1345 spin_unlock(&sk->sk_dst_lock);
1348 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1350 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1352 static inline int sk_can_gso(const struct sock *sk)
1354 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1357 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1359 static inline void sk_nocaps_add(struct sock *sk, int flags)
1361 sk->sk_route_nocaps |= flags;
1362 sk->sk_route_caps &= ~flags;
1365 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1366 struct sk_buff *skb, struct page *page,
1367 int off, int copy)
1369 if (skb->ip_summed == CHECKSUM_NONE) {
1370 int err = 0;
1371 __wsum csum = csum_and_copy_from_user(from,
1372 page_address(page) + off,
1373 copy, 0, &err);
1374 if (err)
1375 return err;
1376 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1377 } else if (copy_from_user(page_address(page) + off, from, copy))
1378 return -EFAULT;
1380 skb->len += copy;
1381 skb->data_len += copy;
1382 skb->truesize += copy;
1383 sk->sk_wmem_queued += copy;
1384 sk_mem_charge(sk, copy);
1385 return 0;
1389 * sk_wmem_alloc_get - returns write allocations
1390 * @sk: socket
1392 * Returns sk_wmem_alloc minus initial offset of one
1394 static inline int sk_wmem_alloc_get(const struct sock *sk)
1396 return atomic_read(&sk->sk_wmem_alloc) - 1;
1400 * sk_rmem_alloc_get - returns read allocations
1401 * @sk: socket
1403 * Returns sk_rmem_alloc
1405 static inline int sk_rmem_alloc_get(const struct sock *sk)
1407 return atomic_read(&sk->sk_rmem_alloc);
1411 * sk_has_allocations - check if allocations are outstanding
1412 * @sk: socket
1414 * Returns true if socket has write or read allocations
1416 static inline int sk_has_allocations(const struct sock *sk)
1418 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1422 * wq_has_sleeper - check if there are any waiting processes
1423 * @wq: struct socket_wq
1425 * Returns true if socket_wq has waiting processes
1427 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1428 * barrier call. They were added due to the race found within the tcp code.
1430 * Consider following tcp code paths:
1432 * CPU1 CPU2
1434 * sys_select receive packet
1435 * ... ...
1436 * __add_wait_queue update tp->rcv_nxt
1437 * ... ...
1438 * tp->rcv_nxt check sock_def_readable
1439 * ... {
1440 * schedule rcu_read_lock();
1441 * wq = rcu_dereference(sk->sk_wq);
1442 * if (wq && waitqueue_active(&wq->wait))
1443 * wake_up_interruptible(&wq->wait)
1444 * ...
1447 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1448 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1449 * could then endup calling schedule and sleep forever if there are no more
1450 * data on the socket.
1453 static inline bool wq_has_sleeper(struct socket_wq *wq)
1457 * We need to be sure we are in sync with the
1458 * add_wait_queue modifications to the wait queue.
1460 * This memory barrier is paired in the sock_poll_wait.
1462 smp_mb();
1463 return wq && waitqueue_active(&wq->wait);
1467 * sock_poll_wait - place memory barrier behind the poll_wait call.
1468 * @filp: file
1469 * @wait_address: socket wait queue
1470 * @p: poll_table
1472 * See the comments in the wq_has_sleeper function.
1474 static inline void sock_poll_wait(struct file *filp,
1475 wait_queue_head_t *wait_address, poll_table *p)
1477 if (p && wait_address) {
1478 poll_wait(filp, wait_address, p);
1480 * We need to be sure we are in sync with the
1481 * socket flags modification.
1483 * This memory barrier is paired in the wq_has_sleeper.
1485 smp_mb();
1490 * Queue a received datagram if it will fit. Stream and sequenced
1491 * protocols can't normally use this as they need to fit buffers in
1492 * and play with them.
1494 * Inlined as it's very short and called for pretty much every
1495 * packet ever received.
1498 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1500 skb_orphan(skb);
1501 skb->sk = sk;
1502 skb->destructor = sock_wfree;
1504 * We used to take a refcount on sk, but following operation
1505 * is enough to guarantee sk_free() wont free this sock until
1506 * all in-flight packets are completed
1508 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1511 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1513 skb_orphan(skb);
1514 skb->sk = sk;
1515 skb->destructor = sock_rfree;
1516 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1517 sk_mem_charge(sk, skb->truesize);
1520 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1521 unsigned long expires);
1523 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1525 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1527 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1530 * Recover an error report and clear atomically
1533 static inline int sock_error(struct sock *sk)
1535 int err;
1536 if (likely(!sk->sk_err))
1537 return 0;
1538 err = xchg(&sk->sk_err, 0);
1539 return -err;
1542 static inline unsigned long sock_wspace(struct sock *sk)
1544 int amt = 0;
1546 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1547 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1548 if (amt < 0)
1549 amt = 0;
1551 return amt;
1554 static inline void sk_wake_async(struct sock *sk, int how, int band)
1556 if (sock_flag(sk, SOCK_FASYNC))
1557 sock_wake_async(sk->sk_socket, how, band);
1560 #define SOCK_MIN_SNDBUF 2048
1562 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1563 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1565 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1567 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1569 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1570 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1571 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1575 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1577 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1579 struct page *page = NULL;
1581 page = alloc_pages(sk->sk_allocation, 0);
1582 if (!page) {
1583 sk->sk_prot->enter_memory_pressure(sk);
1584 sk_stream_moderate_sndbuf(sk);
1586 return page;
1590 * Default write policy as shown to user space via poll/select/SIGIO
1592 static inline int sock_writeable(const struct sock *sk)
1594 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1597 static inline gfp_t gfp_any(void)
1599 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1602 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1604 return noblock ? 0 : sk->sk_rcvtimeo;
1607 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1609 return noblock ? 0 : sk->sk_sndtimeo;
1612 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1614 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1617 /* Alas, with timeout socket operations are not restartable.
1618 * Compare this to poll().
1620 static inline int sock_intr_errno(long timeo)
1622 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1625 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1626 struct sk_buff *skb);
1628 static __inline__ void
1629 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1631 ktime_t kt = skb->tstamp;
1632 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1635 * generate control messages if
1636 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1637 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1638 * - software time stamp available and wanted
1639 * (SOCK_TIMESTAMPING_SOFTWARE)
1640 * - hardware time stamps available and wanted
1641 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1642 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1644 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1645 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1646 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1647 (hwtstamps->hwtstamp.tv64 &&
1648 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1649 (hwtstamps->syststamp.tv64 &&
1650 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1651 __sock_recv_timestamp(msg, sk, skb);
1652 else
1653 sk->sk_stamp = kt;
1656 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1657 struct sk_buff *skb);
1659 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1660 struct sk_buff *skb)
1662 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1663 (1UL << SOCK_RCVTSTAMP) | \
1664 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1665 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1666 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1667 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1669 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1670 __sock_recv_ts_and_drops(msg, sk, skb);
1671 else
1672 sk->sk_stamp = skb->tstamp;
1676 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1677 * @sk: socket sending this packet
1678 * @tx_flags: filled with instructions for time stamping
1680 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1681 * parameters are invalid.
1683 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1686 * sk_eat_skb - Release a skb if it is no longer needed
1687 * @sk: socket to eat this skb from
1688 * @skb: socket buffer to eat
1689 * @copied_early: flag indicating whether DMA operations copied this data early
1691 * This routine must be called with interrupts disabled or with the socket
1692 * locked so that the sk_buff queue operation is ok.
1694 #ifdef CONFIG_NET_DMA
1695 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1697 __skb_unlink(skb, &sk->sk_receive_queue);
1698 if (!copied_early)
1699 __kfree_skb(skb);
1700 else
1701 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1703 #else
1704 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1706 __skb_unlink(skb, &sk->sk_receive_queue);
1707 __kfree_skb(skb);
1709 #endif
1711 static inline
1712 struct net *sock_net(const struct sock *sk)
1714 return read_pnet(&sk->sk_net);
1717 static inline
1718 void sock_net_set(struct sock *sk, struct net *net)
1720 write_pnet(&sk->sk_net, net);
1724 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1725 * They should not hold a referrence to a namespace in order to allow
1726 * to stop it.
1727 * Sockets after sk_change_net should be released using sk_release_kernel
1729 static inline void sk_change_net(struct sock *sk, struct net *net)
1731 put_net(sock_net(sk));
1732 sock_net_set(sk, hold_net(net));
1735 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1737 if (unlikely(skb->sk)) {
1738 struct sock *sk = skb->sk;
1740 skb->destructor = NULL;
1741 skb->sk = NULL;
1742 return sk;
1744 return NULL;
1747 extern void sock_enable_timestamp(struct sock *sk, int flag);
1748 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1749 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1752 * Enable debug/info messages
1754 extern int net_msg_warn;
1755 #define NETDEBUG(fmt, args...) \
1756 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1758 #define LIMIT_NETDEBUG(fmt, args...) \
1759 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1761 extern __u32 sysctl_wmem_max;
1762 extern __u32 sysctl_rmem_max;
1764 extern void sk_init(void);
1766 extern int sysctl_optmem_max;
1768 extern __u32 sysctl_wmem_default;
1769 extern __u32 sysctl_rmem_default;
1771 #endif /* _SOCK_H */