2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 #include <linux/magic.h> /* STACK_END_MAGIC */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/kdebug.h> /* oops_begin/end, ... */
9 #include <linux/module.h> /* search_exception_table */
10 #include <linux/bootmem.h> /* max_low_pfn */
11 #include <linux/kprobes.h> /* __kprobes, ... */
12 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
13 #include <linux/perf_event.h> /* perf_sw_event */
14 #include <linux/hugetlb.h> /* hstate_index_to_shift */
15 #include <linux/prefetch.h> /* prefetchw */
17 #include <asm/traps.h> /* dotraplinkage, ... */
18 #include <asm/pgalloc.h> /* pgd_*(), ... */
19 #include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
22 * Page fault error code bits:
24 * bit 0 == 0: no page found 1: protection fault
25 * bit 1 == 0: read access 1: write access
26 * bit 2 == 0: kernel-mode access 1: user-mode access
27 * bit 3 == 1: use of reserved bit detected
28 * bit 4 == 1: fault was an instruction fetch
30 enum x86_pf_error_code
{
40 * Returns 0 if mmiotrace is disabled, or if the fault is not
41 * handled by mmiotrace:
43 static inline int __kprobes
44 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
46 if (unlikely(is_kmmio_active()))
47 if (kmmio_handler(regs
, addr
) == 1)
52 static inline int __kprobes
notify_page_fault(struct pt_regs
*regs
)
56 /* kprobe_running() needs smp_processor_id() */
57 if (kprobes_built_in() && !user_mode_vm(regs
)) {
59 if (kprobe_running() && kprobe_fault_handler(regs
, 14))
72 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
73 * Check that here and ignore it.
77 * Sometimes the CPU reports invalid exceptions on prefetch.
78 * Check that here and ignore it.
80 * Opcode checker based on code by Richard Brunner.
83 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
84 unsigned char opcode
, int *prefetch
)
86 unsigned char instr_hi
= opcode
& 0xf0;
87 unsigned char instr_lo
= opcode
& 0x0f;
93 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
94 * In X86_64 long mode, the CPU will signal invalid
95 * opcode if some of these prefixes are present so
96 * X86_64 will never get here anyway
98 return ((instr_lo
& 7) == 0x6);
102 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
103 * Need to figure out under what instruction mode the
104 * instruction was issued. Could check the LDT for lm,
105 * but for now it's good enough to assume that long
106 * mode only uses well known segments or kernel.
108 return (!user_mode(regs
)) || (regs
->cs
== __USER_CS
);
111 /* 0x64 thru 0x67 are valid prefixes in all modes. */
112 return (instr_lo
& 0xC) == 0x4;
114 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
115 return !instr_lo
|| (instr_lo
>>1) == 1;
117 /* Prefetch instruction is 0x0F0D or 0x0F18 */
118 if (probe_kernel_address(instr
, opcode
))
121 *prefetch
= (instr_lo
== 0xF) &&
122 (opcode
== 0x0D || opcode
== 0x18);
130 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
132 unsigned char *max_instr
;
133 unsigned char *instr
;
137 * If it was a exec (instruction fetch) fault on NX page, then
138 * do not ignore the fault:
140 if (error_code
& PF_INSTR
)
143 instr
= (void *)convert_ip_to_linear(current
, regs
);
144 max_instr
= instr
+ 15;
146 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE
)
149 while (instr
< max_instr
) {
150 unsigned char opcode
;
152 if (probe_kernel_address(instr
, opcode
))
157 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
164 force_sig_info_fault(int si_signo
, int si_code
, unsigned long address
,
165 struct task_struct
*tsk
, int fault
)
170 info
.si_signo
= si_signo
;
172 info
.si_code
= si_code
;
173 info
.si_addr
= (void __user
*)address
;
174 if (fault
& VM_FAULT_HWPOISON_LARGE
)
175 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
176 if (fault
& VM_FAULT_HWPOISON
)
178 info
.si_addr_lsb
= lsb
;
180 force_sig_info(si_signo
, &info
, tsk
);
183 DEFINE_SPINLOCK(pgd_lock
);
187 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
189 unsigned index
= pgd_index(address
);
195 pgd_k
= init_mm
.pgd
+ index
;
197 if (!pgd_present(*pgd_k
))
201 * set_pgd(pgd, *pgd_k); here would be useless on PAE
202 * and redundant with the set_pmd() on non-PAE. As would
205 pud
= pud_offset(pgd
, address
);
206 pud_k
= pud_offset(pgd_k
, address
);
207 if (!pud_present(*pud_k
))
210 pmd
= pmd_offset(pud
, address
);
211 pmd_k
= pmd_offset(pud_k
, address
);
212 if (!pmd_present(*pmd_k
))
215 if (!pmd_present(*pmd
))
216 set_pmd(pmd
, *pmd_k
);
218 BUG_ON(pmd_page(*pmd
) != pmd_page(*pmd_k
));
223 void vmalloc_sync_all(void)
225 unsigned long address
;
227 if (SHARED_KERNEL_PMD
)
230 for (address
= VMALLOC_START
& PMD_MASK
;
231 address
>= TASK_SIZE
&& address
< FIXADDR_TOP
;
232 address
+= PMD_SIZE
) {
235 spin_lock(&pgd_lock
);
236 list_for_each_entry(page
, &pgd_list
, lru
) {
237 spinlock_t
*pgt_lock
;
240 /* the pgt_lock only for Xen */
241 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
244 ret
= vmalloc_sync_one(page_address(page
), address
);
245 spin_unlock(pgt_lock
);
250 spin_unlock(&pgd_lock
);
257 * Handle a fault on the vmalloc or module mapping area
259 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
261 unsigned long pgd_paddr
;
265 /* Make sure we are in vmalloc area: */
266 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
269 WARN_ON_ONCE(in_nmi());
272 * Synchronize this task's top level page-table
273 * with the 'reference' page table.
275 * Do _not_ use "current" here. We might be inside
276 * an interrupt in the middle of a task switch..
278 pgd_paddr
= read_cr3();
279 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
283 pte_k
= pte_offset_kernel(pmd_k
, address
);
284 if (!pte_present(*pte_k
))
291 * Did it hit the DOS screen memory VA from vm86 mode?
294 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
295 struct task_struct
*tsk
)
299 if (!v8086_mode(regs
))
302 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
304 tsk
->thread
.screen_bitmap
|= 1 << bit
;
307 static bool low_pfn(unsigned long pfn
)
309 return pfn
< max_low_pfn
;
312 static void dump_pagetable(unsigned long address
)
314 pgd_t
*base
= __va(read_cr3());
315 pgd_t
*pgd
= &base
[pgd_index(address
)];
319 #ifdef CONFIG_X86_PAE
320 printk("*pdpt = %016Lx ", pgd_val(*pgd
));
321 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
324 pmd
= pmd_offset(pud_offset(pgd
, address
), address
);
325 printk(KERN_CONT
"*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
328 * We must not directly access the pte in the highpte
329 * case if the page table is located in highmem.
330 * And let's rather not kmap-atomic the pte, just in case
331 * it's allocated already:
333 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
336 pte
= pte_offset_kernel(pmd
, address
);
337 printk("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
342 #else /* CONFIG_X86_64: */
344 void vmalloc_sync_all(void)
346 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
352 * Handle a fault on the vmalloc area
354 * This assumes no large pages in there.
356 static noinline __kprobes
int vmalloc_fault(unsigned long address
)
358 pgd_t
*pgd
, *pgd_ref
;
359 pud_t
*pud
, *pud_ref
;
360 pmd_t
*pmd
, *pmd_ref
;
361 pte_t
*pte
, *pte_ref
;
363 /* Make sure we are in vmalloc area: */
364 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
367 WARN_ON_ONCE(in_nmi());
370 * Copy kernel mappings over when needed. This can also
371 * happen within a race in page table update. In the later
374 pgd
= pgd_offset(current
->active_mm
, address
);
375 pgd_ref
= pgd_offset_k(address
);
376 if (pgd_none(*pgd_ref
))
380 set_pgd(pgd
, *pgd_ref
);
382 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_ref
));
385 * Below here mismatches are bugs because these lower tables
389 pud
= pud_offset(pgd
, address
);
390 pud_ref
= pud_offset(pgd_ref
, address
);
391 if (pud_none(*pud_ref
))
394 if (pud_none(*pud
) || pud_page_vaddr(*pud
) != pud_page_vaddr(*pud_ref
))
397 pmd
= pmd_offset(pud
, address
);
398 pmd_ref
= pmd_offset(pud_ref
, address
);
399 if (pmd_none(*pmd_ref
))
402 if (pmd_none(*pmd
) || pmd_page(*pmd
) != pmd_page(*pmd_ref
))
405 pte_ref
= pte_offset_kernel(pmd_ref
, address
);
406 if (!pte_present(*pte_ref
))
409 pte
= pte_offset_kernel(pmd
, address
);
412 * Don't use pte_page here, because the mappings can point
413 * outside mem_map, and the NUMA hash lookup cannot handle
416 if (!pte_present(*pte
) || pte_pfn(*pte
) != pte_pfn(*pte_ref
))
422 static const char errata93_warning
[] =
424 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
425 "******* Working around it, but it may cause SEGVs or burn power.\n"
426 "******* Please consider a BIOS update.\n"
427 "******* Disabling USB legacy in the BIOS may also help.\n";
430 * No vm86 mode in 64-bit mode:
433 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
434 struct task_struct
*tsk
)
438 static int bad_address(void *p
)
442 return probe_kernel_address((unsigned long *)p
, dummy
);
445 static void dump_pagetable(unsigned long address
)
447 pgd_t
*base
= __va(read_cr3() & PHYSICAL_PAGE_MASK
);
448 pgd_t
*pgd
= base
+ pgd_index(address
);
453 if (bad_address(pgd
))
456 printk("PGD %lx ", pgd_val(*pgd
));
458 if (!pgd_present(*pgd
))
461 pud
= pud_offset(pgd
, address
);
462 if (bad_address(pud
))
465 printk("PUD %lx ", pud_val(*pud
));
466 if (!pud_present(*pud
) || pud_large(*pud
))
469 pmd
= pmd_offset(pud
, address
);
470 if (bad_address(pmd
))
473 printk("PMD %lx ", pmd_val(*pmd
));
474 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
477 pte
= pte_offset_kernel(pmd
, address
);
478 if (bad_address(pte
))
481 printk("PTE %lx", pte_val(*pte
));
489 #endif /* CONFIG_X86_64 */
492 * Workaround for K8 erratum #93 & buggy BIOS.
494 * BIOS SMM functions are required to use a specific workaround
495 * to avoid corruption of the 64bit RIP register on C stepping K8.
497 * A lot of BIOS that didn't get tested properly miss this.
499 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
500 * Try to work around it here.
502 * Note we only handle faults in kernel here.
503 * Does nothing on 32-bit.
505 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
508 if (address
!= regs
->ip
)
511 if ((address
>> 32) != 0)
514 address
|= 0xffffffffUL
<< 32;
515 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
516 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
517 printk_once(errata93_warning
);
526 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
527 * to illegal addresses >4GB.
529 * We catch this in the page fault handler because these addresses
530 * are not reachable. Just detect this case and return. Any code
531 * segment in LDT is compatibility mode.
533 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
536 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
542 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
544 #ifdef CONFIG_X86_F00F_BUG
548 * Pentium F0 0F C7 C8 bug workaround:
550 if (boot_cpu_data
.f00f_bug
) {
551 nr
= (address
- idt_descr
.address
) >> 3;
554 do_invalid_op(regs
, 0);
562 static const char nx_warning
[] = KERN_CRIT
563 "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
566 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
,
567 unsigned long address
)
569 if (!oops_may_print())
572 if (error_code
& PF_INSTR
) {
575 pte_t
*pte
= lookup_address(address
, &level
);
577 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
578 printk(nx_warning
, current_uid());
581 printk(KERN_ALERT
"BUG: unable to handle kernel ");
582 if (address
< PAGE_SIZE
)
583 printk(KERN_CONT
"NULL pointer dereference");
585 printk(KERN_CONT
"paging request");
587 printk(KERN_CONT
" at %p\n", (void *) address
);
588 printk(KERN_ALERT
"IP:");
589 printk_address(regs
->ip
, 1);
591 dump_pagetable(address
);
595 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
596 unsigned long address
)
598 struct task_struct
*tsk
;
602 flags
= oops_begin();
606 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
608 dump_pagetable(address
);
610 tsk
->thread
.cr2
= address
;
611 tsk
->thread
.trap_no
= 14;
612 tsk
->thread
.error_code
= error_code
;
614 if (__die("Bad pagetable", regs
, error_code
))
617 oops_end(flags
, regs
, sig
);
621 no_context(struct pt_regs
*regs
, unsigned long error_code
,
622 unsigned long address
)
624 struct task_struct
*tsk
= current
;
625 unsigned long *stackend
;
629 /* Are we prepared to handle this kernel fault? */
630 if (fixup_exception(regs
))
636 * Valid to do another page fault here, because if this fault
637 * had been triggered by is_prefetch fixup_exception would have
642 * Hall of shame of CPU/BIOS bugs.
644 if (is_prefetch(regs
, error_code
, address
))
647 if (is_errata93(regs
, address
))
651 * Oops. The kernel tried to access some bad page. We'll have to
652 * terminate things with extreme prejudice:
654 flags
= oops_begin();
656 show_fault_oops(regs
, error_code
, address
);
658 stackend
= end_of_stack(tsk
);
659 if (tsk
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
660 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
662 tsk
->thread
.cr2
= address
;
663 tsk
->thread
.trap_no
= 14;
664 tsk
->thread
.error_code
= error_code
;
667 if (__die("Oops", regs
, error_code
))
670 /* Executive summary in case the body of the oops scrolled away */
671 printk(KERN_EMERG
"CR2: %016lx\n", address
);
673 oops_end(flags
, regs
, sig
);
677 * Print out info about fatal segfaults, if the show_unhandled_signals
681 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
682 unsigned long address
, struct task_struct
*tsk
)
684 if (!unhandled_signal(tsk
, SIGSEGV
))
687 if (!printk_ratelimit())
690 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
691 task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
,
692 tsk
->comm
, task_pid_nr(tsk
), address
,
693 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
695 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
697 printk(KERN_CONT
"\n");
701 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
702 unsigned long address
, int si_code
)
704 struct task_struct
*tsk
= current
;
706 /* User mode accesses just cause a SIGSEGV */
707 if (error_code
& PF_USER
) {
709 * It's possible to have interrupts off here:
714 * Valid to do another page fault here because this one came
717 if (is_prefetch(regs
, error_code
, address
))
720 if (is_errata100(regs
, address
))
723 if (unlikely(show_unhandled_signals
))
724 show_signal_msg(regs
, error_code
, address
, tsk
);
726 /* Kernel addresses are always protection faults: */
727 tsk
->thread
.cr2
= address
;
728 tsk
->thread
.error_code
= error_code
| (address
>= TASK_SIZE
);
729 tsk
->thread
.trap_no
= 14;
731 force_sig_info_fault(SIGSEGV
, si_code
, address
, tsk
, 0);
736 if (is_f00f_bug(regs
, address
))
739 no_context(regs
, error_code
, address
);
743 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
744 unsigned long address
)
746 __bad_area_nosemaphore(regs
, error_code
, address
, SEGV_MAPERR
);
750 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
751 unsigned long address
, int si_code
)
753 struct mm_struct
*mm
= current
->mm
;
756 * Something tried to access memory that isn't in our memory map..
757 * Fix it, but check if it's kernel or user first..
759 up_read(&mm
->mmap_sem
);
761 __bad_area_nosemaphore(regs
, error_code
, address
, si_code
);
765 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
767 __bad_area(regs
, error_code
, address
, SEGV_MAPERR
);
771 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
772 unsigned long address
)
774 __bad_area(regs
, error_code
, address
, SEGV_ACCERR
);
777 /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
779 out_of_memory(struct pt_regs
*regs
, unsigned long error_code
,
780 unsigned long address
)
783 * We ran out of memory, call the OOM killer, and return the userspace
784 * (which will retry the fault, or kill us if we got oom-killed):
786 up_read(¤t
->mm
->mmap_sem
);
788 pagefault_out_of_memory();
792 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
795 struct task_struct
*tsk
= current
;
796 struct mm_struct
*mm
= tsk
->mm
;
797 int code
= BUS_ADRERR
;
799 up_read(&mm
->mmap_sem
);
801 /* Kernel mode? Handle exceptions or die: */
802 if (!(error_code
& PF_USER
)) {
803 no_context(regs
, error_code
, address
);
807 /* User-space => ok to do another page fault: */
808 if (is_prefetch(regs
, error_code
, address
))
811 tsk
->thread
.cr2
= address
;
812 tsk
->thread
.error_code
= error_code
;
813 tsk
->thread
.trap_no
= 14;
815 #ifdef CONFIG_MEMORY_FAILURE
816 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
818 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
819 tsk
->comm
, tsk
->pid
, address
);
820 code
= BUS_MCEERR_AR
;
823 force_sig_info_fault(SIGBUS
, code
, address
, tsk
, fault
);
827 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
828 unsigned long address
, unsigned int fault
)
831 * Pagefault was interrupted by SIGKILL. We have no reason to
832 * continue pagefault.
834 if (fatal_signal_pending(current
)) {
835 if (!(fault
& VM_FAULT_RETRY
))
836 up_read(¤t
->mm
->mmap_sem
);
837 if (!(error_code
& PF_USER
))
838 no_context(regs
, error_code
, address
);
841 if (!(fault
& VM_FAULT_ERROR
))
844 if (fault
& VM_FAULT_OOM
) {
845 /* Kernel mode? Handle exceptions or die: */
846 if (!(error_code
& PF_USER
)) {
847 up_read(¤t
->mm
->mmap_sem
);
848 no_context(regs
, error_code
, address
);
852 out_of_memory(regs
, error_code
, address
);
854 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
855 VM_FAULT_HWPOISON_LARGE
))
856 do_sigbus(regs
, error_code
, address
, fault
);
863 static int spurious_fault_check(unsigned long error_code
, pte_t
*pte
)
865 if ((error_code
& PF_WRITE
) && !pte_write(*pte
))
868 if ((error_code
& PF_INSTR
) && !pte_exec(*pte
))
875 * Handle a spurious fault caused by a stale TLB entry.
877 * This allows us to lazily refresh the TLB when increasing the
878 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
879 * eagerly is very expensive since that implies doing a full
880 * cross-processor TLB flush, even if no stale TLB entries exist
881 * on other processors.
883 * There are no security implications to leaving a stale TLB when
884 * increasing the permissions on a page.
886 static noinline __kprobes
int
887 spurious_fault(unsigned long error_code
, unsigned long address
)
895 /* Reserved-bit violation or user access to kernel space? */
896 if (error_code
& (PF_USER
| PF_RSVD
))
899 pgd
= init_mm
.pgd
+ pgd_index(address
);
900 if (!pgd_present(*pgd
))
903 pud
= pud_offset(pgd
, address
);
904 if (!pud_present(*pud
))
908 return spurious_fault_check(error_code
, (pte_t
*) pud
);
910 pmd
= pmd_offset(pud
, address
);
911 if (!pmd_present(*pmd
))
915 return spurious_fault_check(error_code
, (pte_t
*) pmd
);
918 * Note: don't use pte_present() here, since it returns true
919 * if the _PAGE_PROTNONE bit is set. However, this aliases the
920 * _PAGE_GLOBAL bit, which for kernel pages give false positives
921 * when CONFIG_DEBUG_PAGEALLOC is used.
923 pte
= pte_offset_kernel(pmd
, address
);
924 if (!(pte_flags(*pte
) & _PAGE_PRESENT
))
927 ret
= spurious_fault_check(error_code
, pte
);
932 * Make sure we have permissions in PMD.
933 * If not, then there's a bug in the page tables:
935 ret
= spurious_fault_check(error_code
, (pte_t
*) pmd
);
936 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
941 int show_unhandled_signals
= 1;
944 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
946 if (error_code
& PF_WRITE
) {
947 /* write, present and write, not present: */
948 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
954 if (unlikely(error_code
& PF_PROT
))
957 /* read, not present: */
958 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
964 static int fault_in_kernel_space(unsigned long address
)
966 return address
>= TASK_SIZE_MAX
;
970 * This routine handles page faults. It determines the address,
971 * and the problem, and then passes it off to one of the appropriate
974 dotraplinkage
void __kprobes
975 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
)
977 struct vm_area_struct
*vma
;
978 struct task_struct
*tsk
;
979 unsigned long address
;
980 struct mm_struct
*mm
;
982 int write
= error_code
& PF_WRITE
;
983 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
|
984 (write
? FAULT_FLAG_WRITE
: 0);
989 /* Get the faulting address: */
990 address
= read_cr2();
993 * Detect and handle instructions that would cause a page fault for
994 * both a tracked kernel page and a userspace page.
996 if (kmemcheck_active(regs
))
997 kmemcheck_hide(regs
);
998 prefetchw(&mm
->mmap_sem
);
1000 if (unlikely(kmmio_fault(regs
, address
)))
1004 * We fault-in kernel-space virtual memory on-demand. The
1005 * 'reference' page table is init_mm.pgd.
1007 * NOTE! We MUST NOT take any locks for this case. We may
1008 * be in an interrupt or a critical region, and should
1009 * only copy the information from the master page table,
1012 * This verifies that the fault happens in kernel space
1013 * (error_code & 4) == 0, and that the fault was not a
1014 * protection error (error_code & 9) == 0.
1016 if (unlikely(fault_in_kernel_space(address
))) {
1017 if (!(error_code
& (PF_RSVD
| PF_USER
| PF_PROT
))) {
1018 if (vmalloc_fault(address
) >= 0)
1021 if (kmemcheck_fault(regs
, address
, error_code
))
1025 /* Can handle a stale RO->RW TLB: */
1026 if (spurious_fault(error_code
, address
))
1029 /* kprobes don't want to hook the spurious faults: */
1030 if (notify_page_fault(regs
))
1033 * Don't take the mm semaphore here. If we fixup a prefetch
1034 * fault we could otherwise deadlock:
1036 bad_area_nosemaphore(regs
, error_code
, address
);
1041 /* kprobes don't want to hook the spurious faults: */
1042 if (unlikely(notify_page_fault(regs
)))
1045 * It's safe to allow irq's after cr2 has been saved and the
1046 * vmalloc fault has been handled.
1048 * User-mode registers count as a user access even for any
1049 * potential system fault or CPU buglet:
1051 if (user_mode_vm(regs
)) {
1053 error_code
|= PF_USER
;
1055 if (regs
->flags
& X86_EFLAGS_IF
)
1059 if (unlikely(error_code
& PF_RSVD
))
1060 pgtable_bad(regs
, error_code
, address
);
1062 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, 0, regs
, address
);
1065 * If we're in an interrupt, have no user context or are running
1066 * in an atomic region then we must not take the fault:
1068 if (unlikely(in_atomic() || !mm
)) {
1069 bad_area_nosemaphore(regs
, error_code
, address
);
1074 * When running in the kernel we expect faults to occur only to
1075 * addresses in user space. All other faults represent errors in
1076 * the kernel and should generate an OOPS. Unfortunately, in the
1077 * case of an erroneous fault occurring in a code path which already
1078 * holds mmap_sem we will deadlock attempting to validate the fault
1079 * against the address space. Luckily the kernel only validly
1080 * references user space from well defined areas of code, which are
1081 * listed in the exceptions table.
1083 * As the vast majority of faults will be valid we will only perform
1084 * the source reference check when there is a possibility of a
1085 * deadlock. Attempt to lock the address space, if we cannot we then
1086 * validate the source. If this is invalid we can skip the address
1087 * space check, thus avoiding the deadlock:
1089 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1090 if ((error_code
& PF_USER
) == 0 &&
1091 !search_exception_tables(regs
->ip
)) {
1092 bad_area_nosemaphore(regs
, error_code
, address
);
1096 down_read(&mm
->mmap_sem
);
1099 * The above down_read_trylock() might have succeeded in
1100 * which case we'll have missed the might_sleep() from
1106 vma
= find_vma(mm
, address
);
1107 if (unlikely(!vma
)) {
1108 bad_area(regs
, error_code
, address
);
1111 if (likely(vma
->vm_start
<= address
))
1113 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1114 bad_area(regs
, error_code
, address
);
1117 if (error_code
& PF_USER
) {
1119 * Accessing the stack below %sp is always a bug.
1120 * The large cushion allows instructions like enter
1121 * and pusha to work. ("enter $65535, $31" pushes
1122 * 32 pointers and then decrements %sp by 65535.)
1124 if (unlikely(address
+ 65536 + 32 * sizeof(unsigned long) < regs
->sp
)) {
1125 bad_area(regs
, error_code
, address
);
1129 if (unlikely(expand_stack(vma
, address
))) {
1130 bad_area(regs
, error_code
, address
);
1135 * Ok, we have a good vm_area for this memory access, so
1136 * we can handle it..
1139 if (unlikely(access_error(error_code
, vma
))) {
1140 bad_area_access_error(regs
, error_code
, address
);
1145 * If for any reason at all we couldn't handle the fault,
1146 * make sure we exit gracefully rather than endlessly redo
1149 fault
= handle_mm_fault(mm
, vma
, address
, flags
);
1151 if (unlikely(fault
& (VM_FAULT_RETRY
|VM_FAULT_ERROR
))) {
1152 if (mm_fault_error(regs
, error_code
, address
, fault
))
1157 * Major/minor page fault accounting is only done on the
1158 * initial attempt. If we go through a retry, it is extremely
1159 * likely that the page will be found in page cache at that point.
1161 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1162 if (fault
& VM_FAULT_MAJOR
) {
1164 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, 0,
1168 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, 0,
1171 if (fault
& VM_FAULT_RETRY
) {
1172 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1174 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1179 check_v8086_mode(regs
, address
, tsk
);
1181 up_read(&mm
->mmap_sem
);