cxgb4: fix initial addition of MAC address
[linux-2.6/libata-dev.git] / drivers / net / cxgb4 / cxgb4_main.c
blob1f5997167ff31298beeac9f01c13f6d80567250c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if_vlan.h>
45 #include <linux/init.h>
46 #include <linux/log2.h>
47 #include <linux/mdio.h>
48 #include <linux/module.h>
49 #include <linux/moduleparam.h>
50 #include <linux/mutex.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/aer.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <asm/uaccess.h>
64 #include "cxgb4.h"
65 #include "t4_regs.h"
66 #include "t4_msg.h"
67 #include "t4fw_api.h"
68 #include "l2t.h"
70 #define DRV_VERSION "1.0.0-ko"
71 #define DRV_DESC "Chelsio T4 Network Driver"
74 * Max interrupt hold-off timer value in us. Queues fall back to this value
75 * under extreme memory pressure so it's largish to give the system time to
76 * recover.
78 #define MAX_SGE_TIMERVAL 200U
80 enum {
81 MEMWIN0_APERTURE = 65536,
82 MEMWIN0_BASE = 0x30000,
83 MEMWIN1_APERTURE = 32768,
84 MEMWIN1_BASE = 0x28000,
85 MEMWIN2_APERTURE = 2048,
86 MEMWIN2_BASE = 0x1b800,
89 enum {
90 MAX_TXQ_ENTRIES = 16384,
91 MAX_CTRL_TXQ_ENTRIES = 1024,
92 MAX_RSPQ_ENTRIES = 16384,
93 MAX_RX_BUFFERS = 16384,
94 MIN_TXQ_ENTRIES = 32,
95 MIN_CTRL_TXQ_ENTRIES = 32,
96 MIN_RSPQ_ENTRIES = 128,
97 MIN_FL_ENTRIES = 16
100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
101 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
102 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
104 #define CH_DEVICE(devid) { PCI_VDEVICE(CHELSIO, devid), 0 }
106 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
107 CH_DEVICE(0xa000), /* PE10K */
108 { 0, }
111 #define FW_FNAME "cxgb4/t4fw.bin"
113 MODULE_DESCRIPTION(DRV_DESC);
114 MODULE_AUTHOR("Chelsio Communications");
115 MODULE_LICENSE("Dual BSD/GPL");
116 MODULE_VERSION(DRV_VERSION);
117 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
118 MODULE_FIRMWARE(FW_FNAME);
120 static int dflt_msg_enable = DFLT_MSG_ENABLE;
122 module_param(dflt_msg_enable, int, 0644);
123 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
126 * The driver uses the best interrupt scheme available on a platform in the
127 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
128 * of these schemes the driver may consider as follows:
130 * msi = 2: choose from among all three options
131 * msi = 1: only consider MSI and INTx interrupts
132 * msi = 0: force INTx interrupts
134 static int msi = 2;
136 module_param(msi, int, 0644);
137 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
140 * Queue interrupt hold-off timer values. Queues default to the first of these
141 * upon creation.
143 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
145 module_param_array(intr_holdoff, uint, NULL, 0644);
146 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
147 "0..4 in microseconds");
149 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
151 module_param_array(intr_cnt, uint, NULL, 0644);
152 MODULE_PARM_DESC(intr_cnt,
153 "thresholds 1..3 for queue interrupt packet counters");
155 static int vf_acls;
157 #ifdef CONFIG_PCI_IOV
158 module_param(vf_acls, bool, 0644);
159 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
161 static unsigned int num_vf[4];
163 module_param_array(num_vf, uint, NULL, 0644);
164 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
165 #endif
167 static struct dentry *cxgb4_debugfs_root;
169 static LIST_HEAD(adapter_list);
170 static DEFINE_MUTEX(uld_mutex);
171 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
172 static const char *uld_str[] = { "RDMA", "iSCSI" };
174 static void link_report(struct net_device *dev)
176 if (!netif_carrier_ok(dev))
177 netdev_info(dev, "link down\n");
178 else {
179 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
181 const char *s = "10Mbps";
182 const struct port_info *p = netdev_priv(dev);
184 switch (p->link_cfg.speed) {
185 case SPEED_10000:
186 s = "10Gbps";
187 break;
188 case SPEED_1000:
189 s = "1000Mbps";
190 break;
191 case SPEED_100:
192 s = "100Mbps";
193 break;
196 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
197 fc[p->link_cfg.fc]);
201 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
203 struct net_device *dev = adapter->port[port_id];
205 /* Skip changes from disabled ports. */
206 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
207 if (link_stat)
208 netif_carrier_on(dev);
209 else
210 netif_carrier_off(dev);
212 link_report(dev);
216 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
218 static const char *mod_str[] = {
219 NULL, "LR", "SR", "ER", "passive DA", "active DA"
222 const struct net_device *dev = adap->port[port_id];
223 const struct port_info *pi = netdev_priv(dev);
225 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
226 netdev_info(dev, "port module unplugged\n");
227 else
228 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
232 * Configure the exact and hash address filters to handle a port's multicast
233 * and secondary unicast MAC addresses.
235 static int set_addr_filters(const struct net_device *dev, bool sleep)
237 u64 mhash = 0;
238 u64 uhash = 0;
239 bool free = true;
240 u16 filt_idx[7];
241 const u8 *addr[7];
242 int ret, naddr = 0;
243 const struct netdev_hw_addr *ha;
244 int uc_cnt = netdev_uc_count(dev);
245 int mc_cnt = netdev_mc_count(dev);
246 const struct port_info *pi = netdev_priv(dev);
248 /* first do the secondary unicast addresses */
249 netdev_for_each_uc_addr(ha, dev) {
250 addr[naddr++] = ha->addr;
251 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
252 ret = t4_alloc_mac_filt(pi->adapter, 0, pi->viid, free,
253 naddr, addr, filt_idx, &uhash, sleep);
254 if (ret < 0)
255 return ret;
257 free = false;
258 naddr = 0;
262 /* next set up the multicast addresses */
263 netdev_for_each_mc_addr(ha, dev) {
264 addr[naddr++] = ha->addr;
265 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
266 ret = t4_alloc_mac_filt(pi->adapter, 0, pi->viid, free,
267 naddr, addr, filt_idx, &mhash, sleep);
268 if (ret < 0)
269 return ret;
271 free = false;
272 naddr = 0;
276 return t4_set_addr_hash(pi->adapter, 0, pi->viid, uhash != 0,
277 uhash | mhash, sleep);
281 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
282 * If @mtu is -1 it is left unchanged.
284 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
286 int ret;
287 struct port_info *pi = netdev_priv(dev);
289 ret = set_addr_filters(dev, sleep_ok);
290 if (ret == 0)
291 ret = t4_set_rxmode(pi->adapter, 0, pi->viid, mtu,
292 (dev->flags & IFF_PROMISC) ? 1 : 0,
293 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
294 sleep_ok);
295 return ret;
299 * link_start - enable a port
300 * @dev: the port to enable
302 * Performs the MAC and PHY actions needed to enable a port.
304 static int link_start(struct net_device *dev)
306 int ret;
307 struct port_info *pi = netdev_priv(dev);
310 * We do not set address filters and promiscuity here, the stack does
311 * that step explicitly.
313 ret = t4_set_rxmode(pi->adapter, 0, pi->viid, dev->mtu, -1, -1, -1,
314 pi->vlan_grp != NULL, true);
315 if (ret == 0) {
316 ret = t4_change_mac(pi->adapter, 0, pi->viid,
317 pi->xact_addr_filt, dev->dev_addr, true,
318 true);
319 if (ret >= 0) {
320 pi->xact_addr_filt = ret;
321 ret = 0;
324 if (ret == 0)
325 ret = t4_link_start(pi->adapter, 0, pi->tx_chan, &pi->link_cfg);
326 if (ret == 0)
327 ret = t4_enable_vi(pi->adapter, 0, pi->viid, true, true);
328 return ret;
332 * Response queue handler for the FW event queue.
334 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
335 const struct pkt_gl *gl)
337 u8 opcode = ((const struct rss_header *)rsp)->opcode;
339 rsp++; /* skip RSS header */
340 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
341 const struct cpl_sge_egr_update *p = (void *)rsp;
342 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
343 struct sge_txq *txq = q->adap->sge.egr_map[qid];
345 txq->restarts++;
346 if ((u8 *)txq < (u8 *)q->adap->sge.ethrxq) {
347 struct sge_eth_txq *eq;
349 eq = container_of(txq, struct sge_eth_txq, q);
350 netif_tx_wake_queue(eq->txq);
351 } else {
352 struct sge_ofld_txq *oq;
354 oq = container_of(txq, struct sge_ofld_txq, q);
355 tasklet_schedule(&oq->qresume_tsk);
357 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
358 const struct cpl_fw6_msg *p = (void *)rsp;
360 if (p->type == 0)
361 t4_handle_fw_rpl(q->adap, p->data);
362 } else if (opcode == CPL_L2T_WRITE_RPL) {
363 const struct cpl_l2t_write_rpl *p = (void *)rsp;
365 do_l2t_write_rpl(q->adap, p);
366 } else
367 dev_err(q->adap->pdev_dev,
368 "unexpected CPL %#x on FW event queue\n", opcode);
369 return 0;
373 * uldrx_handler - response queue handler for ULD queues
374 * @q: the response queue that received the packet
375 * @rsp: the response queue descriptor holding the offload message
376 * @gl: the gather list of packet fragments
378 * Deliver an ingress offload packet to a ULD. All processing is done by
379 * the ULD, we just maintain statistics.
381 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
382 const struct pkt_gl *gl)
384 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
386 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
387 rxq->stats.nomem++;
388 return -1;
390 if (gl == NULL)
391 rxq->stats.imm++;
392 else if (gl == CXGB4_MSG_AN)
393 rxq->stats.an++;
394 else
395 rxq->stats.pkts++;
396 return 0;
399 static void disable_msi(struct adapter *adapter)
401 if (adapter->flags & USING_MSIX) {
402 pci_disable_msix(adapter->pdev);
403 adapter->flags &= ~USING_MSIX;
404 } else if (adapter->flags & USING_MSI) {
405 pci_disable_msi(adapter->pdev);
406 adapter->flags &= ~USING_MSI;
411 * Interrupt handler for non-data events used with MSI-X.
413 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
415 struct adapter *adap = cookie;
417 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
418 if (v & PFSW) {
419 adap->swintr = 1;
420 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
422 t4_slow_intr_handler(adap);
423 return IRQ_HANDLED;
427 * Name the MSI-X interrupts.
429 static void name_msix_vecs(struct adapter *adap)
431 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc) - 1;
433 /* non-data interrupts */
434 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
435 adap->msix_info[0].desc[n] = 0;
437 /* FW events */
438 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", adap->name);
439 adap->msix_info[1].desc[n] = 0;
441 /* Ethernet queues */
442 for_each_port(adap, j) {
443 struct net_device *d = adap->port[j];
444 const struct port_info *pi = netdev_priv(d);
446 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
447 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
448 d->name, i);
449 adap->msix_info[msi_idx].desc[n] = 0;
453 /* offload queues */
454 for_each_ofldrxq(&adap->sge, i) {
455 snprintf(adap->msix_info[msi_idx].desc, n, "%s-ofld%d",
456 adap->name, i);
457 adap->msix_info[msi_idx++].desc[n] = 0;
459 for_each_rdmarxq(&adap->sge, i) {
460 snprintf(adap->msix_info[msi_idx].desc, n, "%s-rdma%d",
461 adap->name, i);
462 adap->msix_info[msi_idx++].desc[n] = 0;
466 static int request_msix_queue_irqs(struct adapter *adap)
468 struct sge *s = &adap->sge;
469 int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
471 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
472 adap->msix_info[1].desc, &s->fw_evtq);
473 if (err)
474 return err;
476 for_each_ethrxq(s, ethqidx) {
477 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
478 adap->msix_info[msi].desc,
479 &s->ethrxq[ethqidx].rspq);
480 if (err)
481 goto unwind;
482 msi++;
484 for_each_ofldrxq(s, ofldqidx) {
485 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
486 adap->msix_info[msi].desc,
487 &s->ofldrxq[ofldqidx].rspq);
488 if (err)
489 goto unwind;
490 msi++;
492 for_each_rdmarxq(s, rdmaqidx) {
493 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
494 adap->msix_info[msi].desc,
495 &s->rdmarxq[rdmaqidx].rspq);
496 if (err)
497 goto unwind;
498 msi++;
500 return 0;
502 unwind:
503 while (--rdmaqidx >= 0)
504 free_irq(adap->msix_info[--msi].vec,
505 &s->rdmarxq[rdmaqidx].rspq);
506 while (--ofldqidx >= 0)
507 free_irq(adap->msix_info[--msi].vec,
508 &s->ofldrxq[ofldqidx].rspq);
509 while (--ethqidx >= 0)
510 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
511 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
512 return err;
515 static void free_msix_queue_irqs(struct adapter *adap)
517 int i, msi = 2;
518 struct sge *s = &adap->sge;
520 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
521 for_each_ethrxq(s, i)
522 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
523 for_each_ofldrxq(s, i)
524 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
525 for_each_rdmarxq(s, i)
526 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
530 * setup_rss - configure RSS
531 * @adap: the adapter
533 * Sets up RSS to distribute packets to multiple receive queues. We
534 * configure the RSS CPU lookup table to distribute to the number of HW
535 * receive queues, and the response queue lookup table to narrow that
536 * down to the response queues actually configured for each port.
537 * We always configure the RSS mapping for all ports since the mapping
538 * table has plenty of entries.
540 static int setup_rss(struct adapter *adap)
542 int i, j, err;
543 u16 rss[MAX_ETH_QSETS];
545 for_each_port(adap, i) {
546 const struct port_info *pi = adap2pinfo(adap, i);
547 const struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
549 for (j = 0; j < pi->nqsets; j++)
550 rss[j] = q[j].rspq.abs_id;
552 err = t4_config_rss_range(adap, 0, pi->viid, 0, pi->rss_size,
553 rss, pi->nqsets);
554 if (err)
555 return err;
557 return 0;
561 * Wait until all NAPI handlers are descheduled.
563 static void quiesce_rx(struct adapter *adap)
565 int i;
567 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
568 struct sge_rspq *q = adap->sge.ingr_map[i];
570 if (q && q->handler)
571 napi_disable(&q->napi);
576 * Enable NAPI scheduling and interrupt generation for all Rx queues.
578 static void enable_rx(struct adapter *adap)
580 int i;
582 for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
583 struct sge_rspq *q = adap->sge.ingr_map[i];
585 if (!q)
586 continue;
587 if (q->handler)
588 napi_enable(&q->napi);
589 /* 0-increment GTS to start the timer and enable interrupts */
590 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
591 SEINTARM(q->intr_params) |
592 INGRESSQID(q->cntxt_id));
597 * setup_sge_queues - configure SGE Tx/Rx/response queues
598 * @adap: the adapter
600 * Determines how many sets of SGE queues to use and initializes them.
601 * We support multiple queue sets per port if we have MSI-X, otherwise
602 * just one queue set per port.
604 static int setup_sge_queues(struct adapter *adap)
606 int err, msi_idx, i, j;
607 struct sge *s = &adap->sge;
609 bitmap_zero(s->starving_fl, MAX_EGRQ);
610 bitmap_zero(s->txq_maperr, MAX_EGRQ);
612 if (adap->flags & USING_MSIX)
613 msi_idx = 1; /* vector 0 is for non-queue interrupts */
614 else {
615 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
616 NULL, NULL);
617 if (err)
618 return err;
619 msi_idx = -((int)s->intrq.abs_id + 1);
622 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
623 msi_idx, NULL, fwevtq_handler);
624 if (err) {
625 freeout: t4_free_sge_resources(adap);
626 return err;
629 for_each_port(adap, i) {
630 struct net_device *dev = adap->port[i];
631 struct port_info *pi = netdev_priv(dev);
632 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
633 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
635 for (j = 0; j < pi->nqsets; j++, q++) {
636 if (msi_idx > 0)
637 msi_idx++;
638 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
639 msi_idx, &q->fl,
640 t4_ethrx_handler);
641 if (err)
642 goto freeout;
643 q->rspq.idx = j;
644 memset(&q->stats, 0, sizeof(q->stats));
646 for (j = 0; j < pi->nqsets; j++, t++) {
647 err = t4_sge_alloc_eth_txq(adap, t, dev,
648 netdev_get_tx_queue(dev, j),
649 s->fw_evtq.cntxt_id);
650 if (err)
651 goto freeout;
655 j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
656 for_each_ofldrxq(s, i) {
657 struct sge_ofld_rxq *q = &s->ofldrxq[i];
658 struct net_device *dev = adap->port[i / j];
660 if (msi_idx > 0)
661 msi_idx++;
662 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
663 &q->fl, uldrx_handler);
664 if (err)
665 goto freeout;
666 memset(&q->stats, 0, sizeof(q->stats));
667 s->ofld_rxq[i] = q->rspq.abs_id;
668 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
669 s->fw_evtq.cntxt_id);
670 if (err)
671 goto freeout;
674 for_each_rdmarxq(s, i) {
675 struct sge_ofld_rxq *q = &s->rdmarxq[i];
677 if (msi_idx > 0)
678 msi_idx++;
679 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
680 msi_idx, &q->fl, uldrx_handler);
681 if (err)
682 goto freeout;
683 memset(&q->stats, 0, sizeof(q->stats));
684 s->rdma_rxq[i] = q->rspq.abs_id;
687 for_each_port(adap, i) {
689 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
690 * have RDMA queues, and that's the right value.
692 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
693 s->fw_evtq.cntxt_id,
694 s->rdmarxq[i].rspq.cntxt_id);
695 if (err)
696 goto freeout;
699 t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
700 RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
701 QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
702 return 0;
706 * Returns 0 if new FW was successfully loaded, a positive errno if a load was
707 * started but failed, and a negative errno if flash load couldn't start.
709 static int upgrade_fw(struct adapter *adap)
711 int ret;
712 u32 vers;
713 const struct fw_hdr *hdr;
714 const struct firmware *fw;
715 struct device *dev = adap->pdev_dev;
717 ret = request_firmware(&fw, FW_FNAME, dev);
718 if (ret < 0) {
719 dev_err(dev, "unable to load firmware image " FW_FNAME
720 ", error %d\n", ret);
721 return ret;
724 hdr = (const struct fw_hdr *)fw->data;
725 vers = ntohl(hdr->fw_ver);
726 if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
727 ret = -EINVAL; /* wrong major version, won't do */
728 goto out;
732 * If the flash FW is unusable or we found something newer, load it.
734 if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
735 vers > adap->params.fw_vers) {
736 ret = -t4_load_fw(adap, fw->data, fw->size);
737 if (!ret)
738 dev_info(dev, "firmware upgraded to version %pI4 from "
739 FW_FNAME "\n", &hdr->fw_ver);
741 out: release_firmware(fw);
742 return ret;
746 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
747 * The allocated memory is cleared.
749 void *t4_alloc_mem(size_t size)
751 void *p = kmalloc(size, GFP_KERNEL);
753 if (!p)
754 p = vmalloc(size);
755 if (p)
756 memset(p, 0, size);
757 return p;
761 * Free memory allocated through alloc_mem().
763 void t4_free_mem(void *addr)
765 if (is_vmalloc_addr(addr))
766 vfree(addr);
767 else
768 kfree(addr);
771 static inline int is_offload(const struct adapter *adap)
773 return adap->params.offload;
777 * Implementation of ethtool operations.
780 static u32 get_msglevel(struct net_device *dev)
782 return netdev2adap(dev)->msg_enable;
785 static void set_msglevel(struct net_device *dev, u32 val)
787 netdev2adap(dev)->msg_enable = val;
790 static char stats_strings[][ETH_GSTRING_LEN] = {
791 "TxOctetsOK ",
792 "TxFramesOK ",
793 "TxBroadcastFrames ",
794 "TxMulticastFrames ",
795 "TxUnicastFrames ",
796 "TxErrorFrames ",
798 "TxFrames64 ",
799 "TxFrames65To127 ",
800 "TxFrames128To255 ",
801 "TxFrames256To511 ",
802 "TxFrames512To1023 ",
803 "TxFrames1024To1518 ",
804 "TxFrames1519ToMax ",
806 "TxFramesDropped ",
807 "TxPauseFrames ",
808 "TxPPP0Frames ",
809 "TxPPP1Frames ",
810 "TxPPP2Frames ",
811 "TxPPP3Frames ",
812 "TxPPP4Frames ",
813 "TxPPP5Frames ",
814 "TxPPP6Frames ",
815 "TxPPP7Frames ",
817 "RxOctetsOK ",
818 "RxFramesOK ",
819 "RxBroadcastFrames ",
820 "RxMulticastFrames ",
821 "RxUnicastFrames ",
823 "RxFramesTooLong ",
824 "RxJabberErrors ",
825 "RxFCSErrors ",
826 "RxLengthErrors ",
827 "RxSymbolErrors ",
828 "RxRuntFrames ",
830 "RxFrames64 ",
831 "RxFrames65To127 ",
832 "RxFrames128To255 ",
833 "RxFrames256To511 ",
834 "RxFrames512To1023 ",
835 "RxFrames1024To1518 ",
836 "RxFrames1519ToMax ",
838 "RxPauseFrames ",
839 "RxPPP0Frames ",
840 "RxPPP1Frames ",
841 "RxPPP2Frames ",
842 "RxPPP3Frames ",
843 "RxPPP4Frames ",
844 "RxPPP5Frames ",
845 "RxPPP6Frames ",
846 "RxPPP7Frames ",
848 "RxBG0FramesDropped ",
849 "RxBG1FramesDropped ",
850 "RxBG2FramesDropped ",
851 "RxBG3FramesDropped ",
852 "RxBG0FramesTrunc ",
853 "RxBG1FramesTrunc ",
854 "RxBG2FramesTrunc ",
855 "RxBG3FramesTrunc ",
857 "TSO ",
858 "TxCsumOffload ",
859 "RxCsumGood ",
860 "VLANextractions ",
861 "VLANinsertions ",
862 "GROpackets ",
863 "GROmerged ",
866 static int get_sset_count(struct net_device *dev, int sset)
868 switch (sset) {
869 case ETH_SS_STATS:
870 return ARRAY_SIZE(stats_strings);
871 default:
872 return -EOPNOTSUPP;
876 #define T4_REGMAP_SIZE (160 * 1024)
878 static int get_regs_len(struct net_device *dev)
880 return T4_REGMAP_SIZE;
883 static int get_eeprom_len(struct net_device *dev)
885 return EEPROMSIZE;
888 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
890 struct adapter *adapter = netdev2adap(dev);
892 strcpy(info->driver, KBUILD_MODNAME);
893 strcpy(info->version, DRV_VERSION);
894 strcpy(info->bus_info, pci_name(adapter->pdev));
896 if (!adapter->params.fw_vers)
897 strcpy(info->fw_version, "N/A");
898 else
899 snprintf(info->fw_version, sizeof(info->fw_version),
900 "%u.%u.%u.%u, TP %u.%u.%u.%u",
901 FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
902 FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
903 FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
904 FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
905 FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
906 FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
907 FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
908 FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
911 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
913 if (stringset == ETH_SS_STATS)
914 memcpy(data, stats_strings, sizeof(stats_strings));
918 * port stats maintained per queue of the port. They should be in the same
919 * order as in stats_strings above.
921 struct queue_port_stats {
922 u64 tso;
923 u64 tx_csum;
924 u64 rx_csum;
925 u64 vlan_ex;
926 u64 vlan_ins;
927 u64 gro_pkts;
928 u64 gro_merged;
931 static void collect_sge_port_stats(const struct adapter *adap,
932 const struct port_info *p, struct queue_port_stats *s)
934 int i;
935 const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
936 const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
938 memset(s, 0, sizeof(*s));
939 for (i = 0; i < p->nqsets; i++, rx++, tx++) {
940 s->tso += tx->tso;
941 s->tx_csum += tx->tx_cso;
942 s->rx_csum += rx->stats.rx_cso;
943 s->vlan_ex += rx->stats.vlan_ex;
944 s->vlan_ins += tx->vlan_ins;
945 s->gro_pkts += rx->stats.lro_pkts;
946 s->gro_merged += rx->stats.lro_merged;
950 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
951 u64 *data)
953 struct port_info *pi = netdev_priv(dev);
954 struct adapter *adapter = pi->adapter;
956 t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
958 data += sizeof(struct port_stats) / sizeof(u64);
959 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
963 * Return a version number to identify the type of adapter. The scheme is:
964 * - bits 0..9: chip version
965 * - bits 10..15: chip revision
967 static inline unsigned int mk_adap_vers(const struct adapter *ap)
969 return 4 | (ap->params.rev << 10);
972 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
973 unsigned int end)
975 u32 *p = buf + start;
977 for ( ; start <= end; start += sizeof(u32))
978 *p++ = t4_read_reg(ap, start);
981 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
982 void *buf)
984 static const unsigned int reg_ranges[] = {
985 0x1008, 0x1108,
986 0x1180, 0x11b4,
987 0x11fc, 0x123c,
988 0x1300, 0x173c,
989 0x1800, 0x18fc,
990 0x3000, 0x30d8,
991 0x30e0, 0x5924,
992 0x5960, 0x59d4,
993 0x5a00, 0x5af8,
994 0x6000, 0x6098,
995 0x6100, 0x6150,
996 0x6200, 0x6208,
997 0x6240, 0x6248,
998 0x6280, 0x6338,
999 0x6370, 0x638c,
1000 0x6400, 0x643c,
1001 0x6500, 0x6524,
1002 0x6a00, 0x6a38,
1003 0x6a60, 0x6a78,
1004 0x6b00, 0x6b84,
1005 0x6bf0, 0x6c84,
1006 0x6cf0, 0x6d84,
1007 0x6df0, 0x6e84,
1008 0x6ef0, 0x6f84,
1009 0x6ff0, 0x7084,
1010 0x70f0, 0x7184,
1011 0x71f0, 0x7284,
1012 0x72f0, 0x7384,
1013 0x73f0, 0x7450,
1014 0x7500, 0x7530,
1015 0x7600, 0x761c,
1016 0x7680, 0x76cc,
1017 0x7700, 0x7798,
1018 0x77c0, 0x77fc,
1019 0x7900, 0x79fc,
1020 0x7b00, 0x7c38,
1021 0x7d00, 0x7efc,
1022 0x8dc0, 0x8e1c,
1023 0x8e30, 0x8e78,
1024 0x8ea0, 0x8f6c,
1025 0x8fc0, 0x9074,
1026 0x90fc, 0x90fc,
1027 0x9400, 0x9458,
1028 0x9600, 0x96bc,
1029 0x9800, 0x9808,
1030 0x9820, 0x983c,
1031 0x9850, 0x9864,
1032 0x9c00, 0x9c6c,
1033 0x9c80, 0x9cec,
1034 0x9d00, 0x9d6c,
1035 0x9d80, 0x9dec,
1036 0x9e00, 0x9e6c,
1037 0x9e80, 0x9eec,
1038 0x9f00, 0x9f6c,
1039 0x9f80, 0x9fec,
1040 0xd004, 0xd03c,
1041 0xdfc0, 0xdfe0,
1042 0xe000, 0xea7c,
1043 0xf000, 0x11190,
1044 0x19040, 0x19124,
1045 0x19150, 0x191b0,
1046 0x191d0, 0x191e8,
1047 0x19238, 0x1924c,
1048 0x193f8, 0x19474,
1049 0x19490, 0x194f8,
1050 0x19800, 0x19f30,
1051 0x1a000, 0x1a06c,
1052 0x1a0b0, 0x1a120,
1053 0x1a128, 0x1a138,
1054 0x1a190, 0x1a1c4,
1055 0x1a1fc, 0x1a1fc,
1056 0x1e040, 0x1e04c,
1057 0x1e240, 0x1e28c,
1058 0x1e2c0, 0x1e2c0,
1059 0x1e2e0, 0x1e2e0,
1060 0x1e300, 0x1e384,
1061 0x1e3c0, 0x1e3c8,
1062 0x1e440, 0x1e44c,
1063 0x1e640, 0x1e68c,
1064 0x1e6c0, 0x1e6c0,
1065 0x1e6e0, 0x1e6e0,
1066 0x1e700, 0x1e784,
1067 0x1e7c0, 0x1e7c8,
1068 0x1e840, 0x1e84c,
1069 0x1ea40, 0x1ea8c,
1070 0x1eac0, 0x1eac0,
1071 0x1eae0, 0x1eae0,
1072 0x1eb00, 0x1eb84,
1073 0x1ebc0, 0x1ebc8,
1074 0x1ec40, 0x1ec4c,
1075 0x1ee40, 0x1ee8c,
1076 0x1eec0, 0x1eec0,
1077 0x1eee0, 0x1eee0,
1078 0x1ef00, 0x1ef84,
1079 0x1efc0, 0x1efc8,
1080 0x1f040, 0x1f04c,
1081 0x1f240, 0x1f28c,
1082 0x1f2c0, 0x1f2c0,
1083 0x1f2e0, 0x1f2e0,
1084 0x1f300, 0x1f384,
1085 0x1f3c0, 0x1f3c8,
1086 0x1f440, 0x1f44c,
1087 0x1f640, 0x1f68c,
1088 0x1f6c0, 0x1f6c0,
1089 0x1f6e0, 0x1f6e0,
1090 0x1f700, 0x1f784,
1091 0x1f7c0, 0x1f7c8,
1092 0x1f840, 0x1f84c,
1093 0x1fa40, 0x1fa8c,
1094 0x1fac0, 0x1fac0,
1095 0x1fae0, 0x1fae0,
1096 0x1fb00, 0x1fb84,
1097 0x1fbc0, 0x1fbc8,
1098 0x1fc40, 0x1fc4c,
1099 0x1fe40, 0x1fe8c,
1100 0x1fec0, 0x1fec0,
1101 0x1fee0, 0x1fee0,
1102 0x1ff00, 0x1ff84,
1103 0x1ffc0, 0x1ffc8,
1104 0x20000, 0x2002c,
1105 0x20100, 0x2013c,
1106 0x20190, 0x201c8,
1107 0x20200, 0x20318,
1108 0x20400, 0x20528,
1109 0x20540, 0x20614,
1110 0x21000, 0x21040,
1111 0x2104c, 0x21060,
1112 0x210c0, 0x210ec,
1113 0x21200, 0x21268,
1114 0x21270, 0x21284,
1115 0x212fc, 0x21388,
1116 0x21400, 0x21404,
1117 0x21500, 0x21518,
1118 0x2152c, 0x2153c,
1119 0x21550, 0x21554,
1120 0x21600, 0x21600,
1121 0x21608, 0x21628,
1122 0x21630, 0x2163c,
1123 0x21700, 0x2171c,
1124 0x21780, 0x2178c,
1125 0x21800, 0x21c38,
1126 0x21c80, 0x21d7c,
1127 0x21e00, 0x21e04,
1128 0x22000, 0x2202c,
1129 0x22100, 0x2213c,
1130 0x22190, 0x221c8,
1131 0x22200, 0x22318,
1132 0x22400, 0x22528,
1133 0x22540, 0x22614,
1134 0x23000, 0x23040,
1135 0x2304c, 0x23060,
1136 0x230c0, 0x230ec,
1137 0x23200, 0x23268,
1138 0x23270, 0x23284,
1139 0x232fc, 0x23388,
1140 0x23400, 0x23404,
1141 0x23500, 0x23518,
1142 0x2352c, 0x2353c,
1143 0x23550, 0x23554,
1144 0x23600, 0x23600,
1145 0x23608, 0x23628,
1146 0x23630, 0x2363c,
1147 0x23700, 0x2371c,
1148 0x23780, 0x2378c,
1149 0x23800, 0x23c38,
1150 0x23c80, 0x23d7c,
1151 0x23e00, 0x23e04,
1152 0x24000, 0x2402c,
1153 0x24100, 0x2413c,
1154 0x24190, 0x241c8,
1155 0x24200, 0x24318,
1156 0x24400, 0x24528,
1157 0x24540, 0x24614,
1158 0x25000, 0x25040,
1159 0x2504c, 0x25060,
1160 0x250c0, 0x250ec,
1161 0x25200, 0x25268,
1162 0x25270, 0x25284,
1163 0x252fc, 0x25388,
1164 0x25400, 0x25404,
1165 0x25500, 0x25518,
1166 0x2552c, 0x2553c,
1167 0x25550, 0x25554,
1168 0x25600, 0x25600,
1169 0x25608, 0x25628,
1170 0x25630, 0x2563c,
1171 0x25700, 0x2571c,
1172 0x25780, 0x2578c,
1173 0x25800, 0x25c38,
1174 0x25c80, 0x25d7c,
1175 0x25e00, 0x25e04,
1176 0x26000, 0x2602c,
1177 0x26100, 0x2613c,
1178 0x26190, 0x261c8,
1179 0x26200, 0x26318,
1180 0x26400, 0x26528,
1181 0x26540, 0x26614,
1182 0x27000, 0x27040,
1183 0x2704c, 0x27060,
1184 0x270c0, 0x270ec,
1185 0x27200, 0x27268,
1186 0x27270, 0x27284,
1187 0x272fc, 0x27388,
1188 0x27400, 0x27404,
1189 0x27500, 0x27518,
1190 0x2752c, 0x2753c,
1191 0x27550, 0x27554,
1192 0x27600, 0x27600,
1193 0x27608, 0x27628,
1194 0x27630, 0x2763c,
1195 0x27700, 0x2771c,
1196 0x27780, 0x2778c,
1197 0x27800, 0x27c38,
1198 0x27c80, 0x27d7c,
1199 0x27e00, 0x27e04
1202 int i;
1203 struct adapter *ap = netdev2adap(dev);
1205 regs->version = mk_adap_vers(ap);
1207 memset(buf, 0, T4_REGMAP_SIZE);
1208 for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1209 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1212 static int restart_autoneg(struct net_device *dev)
1214 struct port_info *p = netdev_priv(dev);
1216 if (!netif_running(dev))
1217 return -EAGAIN;
1218 if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1219 return -EINVAL;
1220 t4_restart_aneg(p->adapter, 0, p->tx_chan);
1221 return 0;
1224 static int identify_port(struct net_device *dev, u32 data)
1226 if (data == 0)
1227 data = 2; /* default to 2 seconds */
1229 return t4_identify_port(netdev2adap(dev), 0, netdev2pinfo(dev)->viid,
1230 data * 5);
1233 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1235 unsigned int v = 0;
1237 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XAUI) {
1238 v |= SUPPORTED_TP;
1239 if (caps & FW_PORT_CAP_SPEED_100M)
1240 v |= SUPPORTED_100baseT_Full;
1241 if (caps & FW_PORT_CAP_SPEED_1G)
1242 v |= SUPPORTED_1000baseT_Full;
1243 if (caps & FW_PORT_CAP_SPEED_10G)
1244 v |= SUPPORTED_10000baseT_Full;
1245 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1246 v |= SUPPORTED_Backplane;
1247 if (caps & FW_PORT_CAP_SPEED_1G)
1248 v |= SUPPORTED_1000baseKX_Full;
1249 if (caps & FW_PORT_CAP_SPEED_10G)
1250 v |= SUPPORTED_10000baseKX4_Full;
1251 } else if (type == FW_PORT_TYPE_KR)
1252 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1253 else if (type == FW_PORT_TYPE_FIBER)
1254 v |= SUPPORTED_FIBRE;
1256 if (caps & FW_PORT_CAP_ANEG)
1257 v |= SUPPORTED_Autoneg;
1258 return v;
1261 static unsigned int to_fw_linkcaps(unsigned int caps)
1263 unsigned int v = 0;
1265 if (caps & ADVERTISED_100baseT_Full)
1266 v |= FW_PORT_CAP_SPEED_100M;
1267 if (caps & ADVERTISED_1000baseT_Full)
1268 v |= FW_PORT_CAP_SPEED_1G;
1269 if (caps & ADVERTISED_10000baseT_Full)
1270 v |= FW_PORT_CAP_SPEED_10G;
1271 return v;
1274 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1276 const struct port_info *p = netdev_priv(dev);
1278 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1279 p->port_type == FW_PORT_TYPE_BT_XAUI)
1280 cmd->port = PORT_TP;
1281 else if (p->port_type == FW_PORT_TYPE_FIBER)
1282 cmd->port = PORT_FIBRE;
1283 else if (p->port_type == FW_PORT_TYPE_TWINAX)
1284 cmd->port = PORT_DA;
1285 else
1286 cmd->port = PORT_OTHER;
1288 if (p->mdio_addr >= 0) {
1289 cmd->phy_address = p->mdio_addr;
1290 cmd->transceiver = XCVR_EXTERNAL;
1291 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1292 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1293 } else {
1294 cmd->phy_address = 0; /* not really, but no better option */
1295 cmd->transceiver = XCVR_INTERNAL;
1296 cmd->mdio_support = 0;
1299 cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1300 cmd->advertising = from_fw_linkcaps(p->port_type,
1301 p->link_cfg.advertising);
1302 cmd->speed = netif_carrier_ok(dev) ? p->link_cfg.speed : 0;
1303 cmd->duplex = DUPLEX_FULL;
1304 cmd->autoneg = p->link_cfg.autoneg;
1305 cmd->maxtxpkt = 0;
1306 cmd->maxrxpkt = 0;
1307 return 0;
1310 static unsigned int speed_to_caps(int speed)
1312 if (speed == SPEED_100)
1313 return FW_PORT_CAP_SPEED_100M;
1314 if (speed == SPEED_1000)
1315 return FW_PORT_CAP_SPEED_1G;
1316 if (speed == SPEED_10000)
1317 return FW_PORT_CAP_SPEED_10G;
1318 return 0;
1321 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1323 unsigned int cap;
1324 struct port_info *p = netdev_priv(dev);
1325 struct link_config *lc = &p->link_cfg;
1327 if (cmd->duplex != DUPLEX_FULL) /* only full-duplex supported */
1328 return -EINVAL;
1330 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1332 * PHY offers a single speed. See if that's what's
1333 * being requested.
1335 if (cmd->autoneg == AUTONEG_DISABLE &&
1336 (lc->supported & speed_to_caps(cmd->speed)))
1337 return 0;
1338 return -EINVAL;
1341 if (cmd->autoneg == AUTONEG_DISABLE) {
1342 cap = speed_to_caps(cmd->speed);
1344 if (!(lc->supported & cap) || cmd->speed == SPEED_1000 ||
1345 cmd->speed == SPEED_10000)
1346 return -EINVAL;
1347 lc->requested_speed = cap;
1348 lc->advertising = 0;
1349 } else {
1350 cap = to_fw_linkcaps(cmd->advertising);
1351 if (!(lc->supported & cap))
1352 return -EINVAL;
1353 lc->requested_speed = 0;
1354 lc->advertising = cap | FW_PORT_CAP_ANEG;
1356 lc->autoneg = cmd->autoneg;
1358 if (netif_running(dev))
1359 return t4_link_start(p->adapter, 0, p->tx_chan, lc);
1360 return 0;
1363 static void get_pauseparam(struct net_device *dev,
1364 struct ethtool_pauseparam *epause)
1366 struct port_info *p = netdev_priv(dev);
1368 epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1369 epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1370 epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1373 static int set_pauseparam(struct net_device *dev,
1374 struct ethtool_pauseparam *epause)
1376 struct port_info *p = netdev_priv(dev);
1377 struct link_config *lc = &p->link_cfg;
1379 if (epause->autoneg == AUTONEG_DISABLE)
1380 lc->requested_fc = 0;
1381 else if (lc->supported & FW_PORT_CAP_ANEG)
1382 lc->requested_fc = PAUSE_AUTONEG;
1383 else
1384 return -EINVAL;
1386 if (epause->rx_pause)
1387 lc->requested_fc |= PAUSE_RX;
1388 if (epause->tx_pause)
1389 lc->requested_fc |= PAUSE_TX;
1390 if (netif_running(dev))
1391 return t4_link_start(p->adapter, 0, p->tx_chan, lc);
1392 return 0;
1395 static u32 get_rx_csum(struct net_device *dev)
1397 struct port_info *p = netdev_priv(dev);
1399 return p->rx_offload & RX_CSO;
1402 static int set_rx_csum(struct net_device *dev, u32 data)
1404 struct port_info *p = netdev_priv(dev);
1406 if (data)
1407 p->rx_offload |= RX_CSO;
1408 else
1409 p->rx_offload &= ~RX_CSO;
1410 return 0;
1413 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1415 const struct port_info *pi = netdev_priv(dev);
1416 const struct sge *s = &pi->adapter->sge;
1418 e->rx_max_pending = MAX_RX_BUFFERS;
1419 e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1420 e->rx_jumbo_max_pending = 0;
1421 e->tx_max_pending = MAX_TXQ_ENTRIES;
1423 e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1424 e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1425 e->rx_jumbo_pending = 0;
1426 e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1429 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1431 int i;
1432 const struct port_info *pi = netdev_priv(dev);
1433 struct adapter *adapter = pi->adapter;
1434 struct sge *s = &adapter->sge;
1436 if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1437 e->tx_pending > MAX_TXQ_ENTRIES ||
1438 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1439 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1440 e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1441 return -EINVAL;
1443 if (adapter->flags & FULL_INIT_DONE)
1444 return -EBUSY;
1446 for (i = 0; i < pi->nqsets; ++i) {
1447 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1448 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1449 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1451 return 0;
1454 static int closest_timer(const struct sge *s, int time)
1456 int i, delta, match = 0, min_delta = INT_MAX;
1458 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1459 delta = time - s->timer_val[i];
1460 if (delta < 0)
1461 delta = -delta;
1462 if (delta < min_delta) {
1463 min_delta = delta;
1464 match = i;
1467 return match;
1470 static int closest_thres(const struct sge *s, int thres)
1472 int i, delta, match = 0, min_delta = INT_MAX;
1474 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1475 delta = thres - s->counter_val[i];
1476 if (delta < 0)
1477 delta = -delta;
1478 if (delta < min_delta) {
1479 min_delta = delta;
1480 match = i;
1483 return match;
1487 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1489 static unsigned int qtimer_val(const struct adapter *adap,
1490 const struct sge_rspq *q)
1492 unsigned int idx = q->intr_params >> 1;
1494 return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1498 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1499 * @adap: the adapter
1500 * @q: the Rx queue
1501 * @us: the hold-off time in us, or 0 to disable timer
1502 * @cnt: the hold-off packet count, or 0 to disable counter
1504 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1505 * one of the two needs to be enabled for the queue to generate interrupts.
1507 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1508 unsigned int us, unsigned int cnt)
1510 if ((us | cnt) == 0)
1511 cnt = 1;
1513 if (cnt) {
1514 int err;
1515 u32 v, new_idx;
1517 new_idx = closest_thres(&adap->sge, cnt);
1518 if (q->desc && q->pktcnt_idx != new_idx) {
1519 /* the queue has already been created, update it */
1520 v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1521 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1522 FW_PARAMS_PARAM_YZ(q->cntxt_id);
1523 err = t4_set_params(adap, 0, 0, 0, 1, &v, &new_idx);
1524 if (err)
1525 return err;
1527 q->pktcnt_idx = new_idx;
1530 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1531 q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1532 return 0;
1535 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1537 const struct port_info *pi = netdev_priv(dev);
1538 struct adapter *adap = pi->adapter;
1540 return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1541 c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1544 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1546 const struct port_info *pi = netdev_priv(dev);
1547 const struct adapter *adap = pi->adapter;
1548 const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1550 c->rx_coalesce_usecs = qtimer_val(adap, rq);
1551 c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1552 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1553 return 0;
1557 * Translate a physical EEPROM address to virtual. The first 1K is accessed
1558 * through virtual addresses starting at 31K, the rest is accessed through
1559 * virtual addresses starting at 0. This mapping is correct only for PF0.
1561 static int eeprom_ptov(unsigned int phys_addr)
1563 if (phys_addr < 1024)
1564 return phys_addr + (31 << 10);
1565 if (phys_addr < EEPROMSIZE)
1566 return phys_addr - 1024;
1567 return -EINVAL;
1571 * The next two routines implement eeprom read/write from physical addresses.
1572 * The physical->virtual translation is correct only for PF0.
1574 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1576 int vaddr = eeprom_ptov(phys_addr);
1578 if (vaddr >= 0)
1579 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1580 return vaddr < 0 ? vaddr : 0;
1583 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1585 int vaddr = eeprom_ptov(phys_addr);
1587 if (vaddr >= 0)
1588 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1589 return vaddr < 0 ? vaddr : 0;
1592 #define EEPROM_MAGIC 0x38E2F10C
1594 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1595 u8 *data)
1597 int i, err = 0;
1598 struct adapter *adapter = netdev2adap(dev);
1600 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1601 if (!buf)
1602 return -ENOMEM;
1604 e->magic = EEPROM_MAGIC;
1605 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1606 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1608 if (!err)
1609 memcpy(data, buf + e->offset, e->len);
1610 kfree(buf);
1611 return err;
1614 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1615 u8 *data)
1617 u8 *buf;
1618 int err = 0;
1619 u32 aligned_offset, aligned_len, *p;
1620 struct adapter *adapter = netdev2adap(dev);
1622 if (eeprom->magic != EEPROM_MAGIC)
1623 return -EINVAL;
1625 aligned_offset = eeprom->offset & ~3;
1626 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1628 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1630 * RMW possibly needed for first or last words.
1632 buf = kmalloc(aligned_len, GFP_KERNEL);
1633 if (!buf)
1634 return -ENOMEM;
1635 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1636 if (!err && aligned_len > 4)
1637 err = eeprom_rd_phys(adapter,
1638 aligned_offset + aligned_len - 4,
1639 (u32 *)&buf[aligned_len - 4]);
1640 if (err)
1641 goto out;
1642 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1643 } else
1644 buf = data;
1646 err = t4_seeprom_wp(adapter, false);
1647 if (err)
1648 goto out;
1650 for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1651 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1652 aligned_offset += 4;
1655 if (!err)
1656 err = t4_seeprom_wp(adapter, true);
1657 out:
1658 if (buf != data)
1659 kfree(buf);
1660 return err;
1663 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1665 int ret;
1666 const struct firmware *fw;
1667 struct adapter *adap = netdev2adap(netdev);
1669 ef->data[sizeof(ef->data) - 1] = '\0';
1670 ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1671 if (ret < 0)
1672 return ret;
1674 ret = t4_load_fw(adap, fw->data, fw->size);
1675 release_firmware(fw);
1676 if (!ret)
1677 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1678 return ret;
1681 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1682 #define BCAST_CRC 0xa0ccc1a6
1684 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1686 wol->supported = WAKE_BCAST | WAKE_MAGIC;
1687 wol->wolopts = netdev2adap(dev)->wol;
1688 memset(&wol->sopass, 0, sizeof(wol->sopass));
1691 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1693 int err = 0;
1694 struct port_info *pi = netdev_priv(dev);
1696 if (wol->wolopts & ~WOL_SUPPORTED)
1697 return -EINVAL;
1698 t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1699 (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1700 if (wol->wolopts & WAKE_BCAST) {
1701 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1702 ~0ULL, 0, false);
1703 if (!err)
1704 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1705 ~6ULL, ~0ULL, BCAST_CRC, true);
1706 } else
1707 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1708 return err;
1711 static int set_tso(struct net_device *dev, u32 value)
1713 if (value)
1714 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1715 else
1716 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1717 return 0;
1720 static int set_flags(struct net_device *dev, u32 flags)
1722 if (flags & ~ETH_FLAG_RXHASH)
1723 return -EOPNOTSUPP;
1725 if (flags & ETH_FLAG_RXHASH)
1726 dev->features |= NETIF_F_RXHASH;
1727 else
1728 dev->features &= ~NETIF_F_RXHASH;
1729 return 0;
1732 static struct ethtool_ops cxgb_ethtool_ops = {
1733 .get_settings = get_settings,
1734 .set_settings = set_settings,
1735 .get_drvinfo = get_drvinfo,
1736 .get_msglevel = get_msglevel,
1737 .set_msglevel = set_msglevel,
1738 .get_ringparam = get_sge_param,
1739 .set_ringparam = set_sge_param,
1740 .get_coalesce = get_coalesce,
1741 .set_coalesce = set_coalesce,
1742 .get_eeprom_len = get_eeprom_len,
1743 .get_eeprom = get_eeprom,
1744 .set_eeprom = set_eeprom,
1745 .get_pauseparam = get_pauseparam,
1746 .set_pauseparam = set_pauseparam,
1747 .get_rx_csum = get_rx_csum,
1748 .set_rx_csum = set_rx_csum,
1749 .set_tx_csum = ethtool_op_set_tx_ipv6_csum,
1750 .set_sg = ethtool_op_set_sg,
1751 .get_link = ethtool_op_get_link,
1752 .get_strings = get_strings,
1753 .phys_id = identify_port,
1754 .nway_reset = restart_autoneg,
1755 .get_sset_count = get_sset_count,
1756 .get_ethtool_stats = get_stats,
1757 .get_regs_len = get_regs_len,
1758 .get_regs = get_regs,
1759 .get_wol = get_wol,
1760 .set_wol = set_wol,
1761 .set_tso = set_tso,
1762 .set_flags = set_flags,
1763 .flash_device = set_flash,
1767 * debugfs support
1770 static int mem_open(struct inode *inode, struct file *file)
1772 file->private_data = inode->i_private;
1773 return 0;
1776 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
1777 loff_t *ppos)
1779 loff_t pos = *ppos;
1780 loff_t avail = file->f_path.dentry->d_inode->i_size;
1781 unsigned int mem = (uintptr_t)file->private_data & 3;
1782 struct adapter *adap = file->private_data - mem;
1784 if (pos < 0)
1785 return -EINVAL;
1786 if (pos >= avail)
1787 return 0;
1788 if (count > avail - pos)
1789 count = avail - pos;
1791 while (count) {
1792 size_t len;
1793 int ret, ofst;
1794 __be32 data[16];
1796 if (mem == MEM_MC)
1797 ret = t4_mc_read(adap, pos, data, NULL);
1798 else
1799 ret = t4_edc_read(adap, mem, pos, data, NULL);
1800 if (ret)
1801 return ret;
1803 ofst = pos % sizeof(data);
1804 len = min(count, sizeof(data) - ofst);
1805 if (copy_to_user(buf, (u8 *)data + ofst, len))
1806 return -EFAULT;
1808 buf += len;
1809 pos += len;
1810 count -= len;
1812 count = pos - *ppos;
1813 *ppos = pos;
1814 return count;
1817 static const struct file_operations mem_debugfs_fops = {
1818 .owner = THIS_MODULE,
1819 .open = mem_open,
1820 .read = mem_read,
1823 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
1824 unsigned int idx, unsigned int size_mb)
1826 struct dentry *de;
1828 de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
1829 (void *)adap + idx, &mem_debugfs_fops);
1830 if (de && de->d_inode)
1831 de->d_inode->i_size = size_mb << 20;
1834 static int __devinit setup_debugfs(struct adapter *adap)
1836 int i;
1838 if (IS_ERR_OR_NULL(adap->debugfs_root))
1839 return -1;
1841 i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
1842 if (i & EDRAM0_ENABLE)
1843 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
1844 if (i & EDRAM1_ENABLE)
1845 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
1846 if (i & EXT_MEM_ENABLE)
1847 add_debugfs_mem(adap, "mc", MEM_MC,
1848 EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
1849 if (adap->l2t)
1850 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
1851 &t4_l2t_fops);
1852 return 0;
1856 * upper-layer driver support
1860 * Allocate an active-open TID and set it to the supplied value.
1862 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1864 int atid = -1;
1866 spin_lock_bh(&t->atid_lock);
1867 if (t->afree) {
1868 union aopen_entry *p = t->afree;
1870 atid = p - t->atid_tab;
1871 t->afree = p->next;
1872 p->data = data;
1873 t->atids_in_use++;
1875 spin_unlock_bh(&t->atid_lock);
1876 return atid;
1878 EXPORT_SYMBOL(cxgb4_alloc_atid);
1881 * Release an active-open TID.
1883 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1885 union aopen_entry *p = &t->atid_tab[atid];
1887 spin_lock_bh(&t->atid_lock);
1888 p->next = t->afree;
1889 t->afree = p;
1890 t->atids_in_use--;
1891 spin_unlock_bh(&t->atid_lock);
1893 EXPORT_SYMBOL(cxgb4_free_atid);
1896 * Allocate a server TID and set it to the supplied value.
1898 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1900 int stid;
1902 spin_lock_bh(&t->stid_lock);
1903 if (family == PF_INET) {
1904 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1905 if (stid < t->nstids)
1906 __set_bit(stid, t->stid_bmap);
1907 else
1908 stid = -1;
1909 } else {
1910 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1911 if (stid < 0)
1912 stid = -1;
1914 if (stid >= 0) {
1915 t->stid_tab[stid].data = data;
1916 stid += t->stid_base;
1917 t->stids_in_use++;
1919 spin_unlock_bh(&t->stid_lock);
1920 return stid;
1922 EXPORT_SYMBOL(cxgb4_alloc_stid);
1925 * Release a server TID.
1927 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1929 stid -= t->stid_base;
1930 spin_lock_bh(&t->stid_lock);
1931 if (family == PF_INET)
1932 __clear_bit(stid, t->stid_bmap);
1933 else
1934 bitmap_release_region(t->stid_bmap, stid, 2);
1935 t->stid_tab[stid].data = NULL;
1936 t->stids_in_use--;
1937 spin_unlock_bh(&t->stid_lock);
1939 EXPORT_SYMBOL(cxgb4_free_stid);
1942 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1944 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1945 unsigned int tid)
1947 struct cpl_tid_release *req;
1949 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1950 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1951 INIT_TP_WR(req, tid);
1952 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1956 * Queue a TID release request and if necessary schedule a work queue to
1957 * process it.
1959 void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1960 unsigned int tid)
1962 void **p = &t->tid_tab[tid];
1963 struct adapter *adap = container_of(t, struct adapter, tids);
1965 spin_lock_bh(&adap->tid_release_lock);
1966 *p = adap->tid_release_head;
1967 /* Low 2 bits encode the Tx channel number */
1968 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1969 if (!adap->tid_release_task_busy) {
1970 adap->tid_release_task_busy = true;
1971 schedule_work(&adap->tid_release_task);
1973 spin_unlock_bh(&adap->tid_release_lock);
1975 EXPORT_SYMBOL(cxgb4_queue_tid_release);
1978 * Process the list of pending TID release requests.
1980 static void process_tid_release_list(struct work_struct *work)
1982 struct sk_buff *skb;
1983 struct adapter *adap;
1985 adap = container_of(work, struct adapter, tid_release_task);
1987 spin_lock_bh(&adap->tid_release_lock);
1988 while (adap->tid_release_head) {
1989 void **p = adap->tid_release_head;
1990 unsigned int chan = (uintptr_t)p & 3;
1991 p = (void *)p - chan;
1993 adap->tid_release_head = *p;
1994 *p = NULL;
1995 spin_unlock_bh(&adap->tid_release_lock);
1997 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1998 GFP_KERNEL)))
1999 schedule_timeout_uninterruptible(1);
2001 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
2002 t4_ofld_send(adap, skb);
2003 spin_lock_bh(&adap->tid_release_lock);
2005 adap->tid_release_task_busy = false;
2006 spin_unlock_bh(&adap->tid_release_lock);
2010 * Release a TID and inform HW. If we are unable to allocate the release
2011 * message we defer to a work queue.
2013 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
2015 void *old;
2016 struct sk_buff *skb;
2017 struct adapter *adap = container_of(t, struct adapter, tids);
2019 old = t->tid_tab[tid];
2020 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2021 if (likely(skb)) {
2022 t->tid_tab[tid] = NULL;
2023 mk_tid_release(skb, chan, tid);
2024 t4_ofld_send(adap, skb);
2025 } else
2026 cxgb4_queue_tid_release(t, chan, tid);
2027 if (old)
2028 atomic_dec(&t->tids_in_use);
2030 EXPORT_SYMBOL(cxgb4_remove_tid);
2033 * Allocate and initialize the TID tables. Returns 0 on success.
2035 static int tid_init(struct tid_info *t)
2037 size_t size;
2038 unsigned int natids = t->natids;
2040 size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2041 t->nstids * sizeof(*t->stid_tab) +
2042 BITS_TO_LONGS(t->nstids) * sizeof(long);
2043 t->tid_tab = t4_alloc_mem(size);
2044 if (!t->tid_tab)
2045 return -ENOMEM;
2047 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2048 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2049 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2050 spin_lock_init(&t->stid_lock);
2051 spin_lock_init(&t->atid_lock);
2053 t->stids_in_use = 0;
2054 t->afree = NULL;
2055 t->atids_in_use = 0;
2056 atomic_set(&t->tids_in_use, 0);
2058 /* Setup the free list for atid_tab and clear the stid bitmap. */
2059 if (natids) {
2060 while (--natids)
2061 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2062 t->afree = t->atid_tab;
2064 bitmap_zero(t->stid_bmap, t->nstids);
2065 return 0;
2069 * cxgb4_create_server - create an IP server
2070 * @dev: the device
2071 * @stid: the server TID
2072 * @sip: local IP address to bind server to
2073 * @sport: the server's TCP port
2074 * @queue: queue to direct messages from this server to
2076 * Create an IP server for the given port and address.
2077 * Returns <0 on error and one of the %NET_XMIT_* values on success.
2079 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2080 __be32 sip, __be16 sport, unsigned int queue)
2082 unsigned int chan;
2083 struct sk_buff *skb;
2084 struct adapter *adap;
2085 struct cpl_pass_open_req *req;
2087 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2088 if (!skb)
2089 return -ENOMEM;
2091 adap = netdev2adap(dev);
2092 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2093 INIT_TP_WR(req, 0);
2094 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2095 req->local_port = sport;
2096 req->peer_port = htons(0);
2097 req->local_ip = sip;
2098 req->peer_ip = htonl(0);
2099 chan = netdev2pinfo(adap->sge.ingr_map[queue]->netdev)->tx_chan;
2100 req->opt0 = cpu_to_be64(TX_CHAN(chan));
2101 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2102 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2103 return t4_mgmt_tx(adap, skb);
2105 EXPORT_SYMBOL(cxgb4_create_server);
2108 * cxgb4_create_server6 - create an IPv6 server
2109 * @dev: the device
2110 * @stid: the server TID
2111 * @sip: local IPv6 address to bind server to
2112 * @sport: the server's TCP port
2113 * @queue: queue to direct messages from this server to
2115 * Create an IPv6 server for the given port and address.
2116 * Returns <0 on error and one of the %NET_XMIT_* values on success.
2118 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
2119 const struct in6_addr *sip, __be16 sport,
2120 unsigned int queue)
2122 unsigned int chan;
2123 struct sk_buff *skb;
2124 struct adapter *adap;
2125 struct cpl_pass_open_req6 *req;
2127 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2128 if (!skb)
2129 return -ENOMEM;
2131 adap = netdev2adap(dev);
2132 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
2133 INIT_TP_WR(req, 0);
2134 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
2135 req->local_port = sport;
2136 req->peer_port = htons(0);
2137 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
2138 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
2139 req->peer_ip_hi = cpu_to_be64(0);
2140 req->peer_ip_lo = cpu_to_be64(0);
2141 chan = netdev2pinfo(adap->sge.ingr_map[queue]->netdev)->tx_chan;
2142 req->opt0 = cpu_to_be64(TX_CHAN(chan));
2143 req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2144 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2145 return t4_mgmt_tx(adap, skb);
2147 EXPORT_SYMBOL(cxgb4_create_server6);
2150 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2151 * @mtus: the HW MTU table
2152 * @mtu: the target MTU
2153 * @idx: index of selected entry in the MTU table
2155 * Returns the index and the value in the HW MTU table that is closest to
2156 * but does not exceed @mtu, unless @mtu is smaller than any value in the
2157 * table, in which case that smallest available value is selected.
2159 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2160 unsigned int *idx)
2162 unsigned int i = 0;
2164 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2165 ++i;
2166 if (idx)
2167 *idx = i;
2168 return mtus[i];
2170 EXPORT_SYMBOL(cxgb4_best_mtu);
2173 * cxgb4_port_chan - get the HW channel of a port
2174 * @dev: the net device for the port
2176 * Return the HW Tx channel of the given port.
2178 unsigned int cxgb4_port_chan(const struct net_device *dev)
2180 return netdev2pinfo(dev)->tx_chan;
2182 EXPORT_SYMBOL(cxgb4_port_chan);
2185 * cxgb4_port_viid - get the VI id of a port
2186 * @dev: the net device for the port
2188 * Return the VI id of the given port.
2190 unsigned int cxgb4_port_viid(const struct net_device *dev)
2192 return netdev2pinfo(dev)->viid;
2194 EXPORT_SYMBOL(cxgb4_port_viid);
2197 * cxgb4_port_idx - get the index of a port
2198 * @dev: the net device for the port
2200 * Return the index of the given port.
2202 unsigned int cxgb4_port_idx(const struct net_device *dev)
2204 return netdev2pinfo(dev)->port_id;
2206 EXPORT_SYMBOL(cxgb4_port_idx);
2209 * cxgb4_netdev_by_hwid - return the net device of a HW port
2210 * @pdev: identifies the adapter
2211 * @id: the HW port id
2213 * Return the net device associated with the interface with the given HW
2214 * id.
2216 struct net_device *cxgb4_netdev_by_hwid(struct pci_dev *pdev, unsigned int id)
2218 const struct adapter *adap = pci_get_drvdata(pdev);
2220 if (!adap || id >= NCHAN)
2221 return NULL;
2222 id = adap->chan_map[id];
2223 return id < MAX_NPORTS ? adap->port[id] : NULL;
2225 EXPORT_SYMBOL(cxgb4_netdev_by_hwid);
2227 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2228 struct tp_tcp_stats *v6)
2230 struct adapter *adap = pci_get_drvdata(pdev);
2232 spin_lock(&adap->stats_lock);
2233 t4_tp_get_tcp_stats(adap, v4, v6);
2234 spin_unlock(&adap->stats_lock);
2236 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2238 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2239 const unsigned int *pgsz_order)
2241 struct adapter *adap = netdev2adap(dev);
2243 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2244 t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2245 HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2246 HPZ3(pgsz_order[3]));
2248 EXPORT_SYMBOL(cxgb4_iscsi_init);
2250 static struct pci_driver cxgb4_driver;
2252 static void check_neigh_update(struct neighbour *neigh)
2254 const struct device *parent;
2255 const struct net_device *netdev = neigh->dev;
2257 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2258 netdev = vlan_dev_real_dev(netdev);
2259 parent = netdev->dev.parent;
2260 if (parent && parent->driver == &cxgb4_driver.driver)
2261 t4_l2t_update(dev_get_drvdata(parent), neigh);
2264 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2265 void *data)
2267 switch (event) {
2268 case NETEVENT_NEIGH_UPDATE:
2269 check_neigh_update(data);
2270 break;
2271 case NETEVENT_PMTU_UPDATE:
2272 case NETEVENT_REDIRECT:
2273 default:
2274 break;
2276 return 0;
2279 static bool netevent_registered;
2280 static struct notifier_block cxgb4_netevent_nb = {
2281 .notifier_call = netevent_cb
2284 static void uld_attach(struct adapter *adap, unsigned int uld)
2286 void *handle;
2287 struct cxgb4_lld_info lli;
2289 lli.pdev = adap->pdev;
2290 lli.l2t = adap->l2t;
2291 lli.tids = &adap->tids;
2292 lli.ports = adap->port;
2293 lli.vr = &adap->vres;
2294 lli.mtus = adap->params.mtus;
2295 if (uld == CXGB4_ULD_RDMA) {
2296 lli.rxq_ids = adap->sge.rdma_rxq;
2297 lli.nrxq = adap->sge.rdmaqs;
2298 } else if (uld == CXGB4_ULD_ISCSI) {
2299 lli.rxq_ids = adap->sge.ofld_rxq;
2300 lli.nrxq = adap->sge.ofldqsets;
2302 lli.ntxq = adap->sge.ofldqsets;
2303 lli.nchan = adap->params.nports;
2304 lli.nports = adap->params.nports;
2305 lli.wr_cred = adap->params.ofldq_wr_cred;
2306 lli.adapter_type = adap->params.rev;
2307 lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2308 lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2309 t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF));
2310 lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2311 t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF));
2312 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2313 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2314 lli.fw_vers = adap->params.fw_vers;
2316 handle = ulds[uld].add(&lli);
2317 if (IS_ERR(handle)) {
2318 dev_warn(adap->pdev_dev,
2319 "could not attach to the %s driver, error %ld\n",
2320 uld_str[uld], PTR_ERR(handle));
2321 return;
2324 adap->uld_handle[uld] = handle;
2326 if (!netevent_registered) {
2327 register_netevent_notifier(&cxgb4_netevent_nb);
2328 netevent_registered = true;
2332 static void attach_ulds(struct adapter *adap)
2334 unsigned int i;
2336 mutex_lock(&uld_mutex);
2337 list_add_tail(&adap->list_node, &adapter_list);
2338 for (i = 0; i < CXGB4_ULD_MAX; i++)
2339 if (ulds[i].add)
2340 uld_attach(adap, i);
2341 mutex_unlock(&uld_mutex);
2344 static void detach_ulds(struct adapter *adap)
2346 unsigned int i;
2348 mutex_lock(&uld_mutex);
2349 list_del(&adap->list_node);
2350 for (i = 0; i < CXGB4_ULD_MAX; i++)
2351 if (adap->uld_handle[i]) {
2352 ulds[i].state_change(adap->uld_handle[i],
2353 CXGB4_STATE_DETACH);
2354 adap->uld_handle[i] = NULL;
2356 if (netevent_registered && list_empty(&adapter_list)) {
2357 unregister_netevent_notifier(&cxgb4_netevent_nb);
2358 netevent_registered = false;
2360 mutex_unlock(&uld_mutex);
2363 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2365 unsigned int i;
2367 mutex_lock(&uld_mutex);
2368 for (i = 0; i < CXGB4_ULD_MAX; i++)
2369 if (adap->uld_handle[i])
2370 ulds[i].state_change(adap->uld_handle[i], new_state);
2371 mutex_unlock(&uld_mutex);
2375 * cxgb4_register_uld - register an upper-layer driver
2376 * @type: the ULD type
2377 * @p: the ULD methods
2379 * Registers an upper-layer driver with this driver and notifies the ULD
2380 * about any presently available devices that support its type. Returns
2381 * %-EBUSY if a ULD of the same type is already registered.
2383 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2385 int ret = 0;
2386 struct adapter *adap;
2388 if (type >= CXGB4_ULD_MAX)
2389 return -EINVAL;
2390 mutex_lock(&uld_mutex);
2391 if (ulds[type].add) {
2392 ret = -EBUSY;
2393 goto out;
2395 ulds[type] = *p;
2396 list_for_each_entry(adap, &adapter_list, list_node)
2397 uld_attach(adap, type);
2398 out: mutex_unlock(&uld_mutex);
2399 return ret;
2401 EXPORT_SYMBOL(cxgb4_register_uld);
2404 * cxgb4_unregister_uld - unregister an upper-layer driver
2405 * @type: the ULD type
2407 * Unregisters an existing upper-layer driver.
2409 int cxgb4_unregister_uld(enum cxgb4_uld type)
2411 struct adapter *adap;
2413 if (type >= CXGB4_ULD_MAX)
2414 return -EINVAL;
2415 mutex_lock(&uld_mutex);
2416 list_for_each_entry(adap, &adapter_list, list_node)
2417 adap->uld_handle[type] = NULL;
2418 ulds[type].add = NULL;
2419 mutex_unlock(&uld_mutex);
2420 return 0;
2422 EXPORT_SYMBOL(cxgb4_unregister_uld);
2425 * cxgb_up - enable the adapter
2426 * @adap: adapter being enabled
2428 * Called when the first port is enabled, this function performs the
2429 * actions necessary to make an adapter operational, such as completing
2430 * the initialization of HW modules, and enabling interrupts.
2432 * Must be called with the rtnl lock held.
2434 static int cxgb_up(struct adapter *adap)
2436 int err = 0;
2438 if (!(adap->flags & FULL_INIT_DONE)) {
2439 err = setup_sge_queues(adap);
2440 if (err)
2441 goto out;
2442 err = setup_rss(adap);
2443 if (err) {
2444 t4_free_sge_resources(adap);
2445 goto out;
2447 if (adap->flags & USING_MSIX)
2448 name_msix_vecs(adap);
2449 adap->flags |= FULL_INIT_DONE;
2452 if (adap->flags & USING_MSIX) {
2453 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2454 adap->msix_info[0].desc, adap);
2455 if (err)
2456 goto irq_err;
2458 err = request_msix_queue_irqs(adap);
2459 if (err) {
2460 free_irq(adap->msix_info[0].vec, adap);
2461 goto irq_err;
2463 } else {
2464 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2465 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2466 adap->name, adap);
2467 if (err)
2468 goto irq_err;
2470 enable_rx(adap);
2471 t4_sge_start(adap);
2472 t4_intr_enable(adap);
2473 notify_ulds(adap, CXGB4_STATE_UP);
2474 out:
2475 return err;
2476 irq_err:
2477 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2478 goto out;
2481 static void cxgb_down(struct adapter *adapter)
2483 t4_intr_disable(adapter);
2484 cancel_work_sync(&adapter->tid_release_task);
2485 adapter->tid_release_task_busy = false;
2487 if (adapter->flags & USING_MSIX) {
2488 free_msix_queue_irqs(adapter);
2489 free_irq(adapter->msix_info[0].vec, adapter);
2490 } else
2491 free_irq(adapter->pdev->irq, adapter);
2492 quiesce_rx(adapter);
2496 * net_device operations
2498 static int cxgb_open(struct net_device *dev)
2500 int err;
2501 struct port_info *pi = netdev_priv(dev);
2502 struct adapter *adapter = pi->adapter;
2504 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
2505 return err;
2507 dev->real_num_tx_queues = pi->nqsets;
2508 set_bit(pi->tx_chan, &adapter->open_device_map);
2509 link_start(dev);
2510 netif_tx_start_all_queues(dev);
2511 return 0;
2514 static int cxgb_close(struct net_device *dev)
2516 int ret;
2517 struct port_info *pi = netdev_priv(dev);
2518 struct adapter *adapter = pi->adapter;
2520 netif_tx_stop_all_queues(dev);
2521 netif_carrier_off(dev);
2522 ret = t4_enable_vi(adapter, 0, pi->viid, false, false);
2524 clear_bit(pi->tx_chan, &adapter->open_device_map);
2526 if (!adapter->open_device_map)
2527 cxgb_down(adapter);
2528 return 0;
2531 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
2533 struct port_stats stats;
2534 struct port_info *p = netdev_priv(dev);
2535 struct adapter *adapter = p->adapter;
2536 struct net_device_stats *ns = &dev->stats;
2538 spin_lock(&adapter->stats_lock);
2539 t4_get_port_stats(adapter, p->tx_chan, &stats);
2540 spin_unlock(&adapter->stats_lock);
2542 ns->tx_bytes = stats.tx_octets;
2543 ns->tx_packets = stats.tx_frames;
2544 ns->rx_bytes = stats.rx_octets;
2545 ns->rx_packets = stats.rx_frames;
2546 ns->multicast = stats.rx_mcast_frames;
2548 /* detailed rx_errors */
2549 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2550 stats.rx_runt;
2551 ns->rx_over_errors = 0;
2552 ns->rx_crc_errors = stats.rx_fcs_err;
2553 ns->rx_frame_errors = stats.rx_symbol_err;
2554 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2555 stats.rx_ovflow2 + stats.rx_ovflow3 +
2556 stats.rx_trunc0 + stats.rx_trunc1 +
2557 stats.rx_trunc2 + stats.rx_trunc3;
2558 ns->rx_missed_errors = 0;
2560 /* detailed tx_errors */
2561 ns->tx_aborted_errors = 0;
2562 ns->tx_carrier_errors = 0;
2563 ns->tx_fifo_errors = 0;
2564 ns->tx_heartbeat_errors = 0;
2565 ns->tx_window_errors = 0;
2567 ns->tx_errors = stats.tx_error_frames;
2568 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2569 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2570 return ns;
2573 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2575 int ret = 0, prtad, devad;
2576 struct port_info *pi = netdev_priv(dev);
2577 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2579 switch (cmd) {
2580 case SIOCGMIIPHY:
2581 if (pi->mdio_addr < 0)
2582 return -EOPNOTSUPP;
2583 data->phy_id = pi->mdio_addr;
2584 break;
2585 case SIOCGMIIREG:
2586 case SIOCSMIIREG:
2587 if (mdio_phy_id_is_c45(data->phy_id)) {
2588 prtad = mdio_phy_id_prtad(data->phy_id);
2589 devad = mdio_phy_id_devad(data->phy_id);
2590 } else if (data->phy_id < 32) {
2591 prtad = data->phy_id;
2592 devad = 0;
2593 data->reg_num &= 0x1f;
2594 } else
2595 return -EINVAL;
2597 if (cmd == SIOCGMIIREG)
2598 ret = t4_mdio_rd(pi->adapter, 0, prtad, devad,
2599 data->reg_num, &data->val_out);
2600 else
2601 ret = t4_mdio_wr(pi->adapter, 0, prtad, devad,
2602 data->reg_num, data->val_in);
2603 break;
2604 default:
2605 return -EOPNOTSUPP;
2607 return ret;
2610 static void cxgb_set_rxmode(struct net_device *dev)
2612 /* unfortunately we can't return errors to the stack */
2613 set_rxmode(dev, -1, false);
2616 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2618 int ret;
2619 struct port_info *pi = netdev_priv(dev);
2621 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2622 return -EINVAL;
2623 ret = t4_set_rxmode(pi->adapter, 0, pi->viid, new_mtu, -1, -1, -1, -1,
2624 true);
2625 if (!ret)
2626 dev->mtu = new_mtu;
2627 return ret;
2630 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2632 int ret;
2633 struct sockaddr *addr = p;
2634 struct port_info *pi = netdev_priv(dev);
2636 if (!is_valid_ether_addr(addr->sa_data))
2637 return -EINVAL;
2639 ret = t4_change_mac(pi->adapter, 0, pi->viid, pi->xact_addr_filt,
2640 addr->sa_data, true, true);
2641 if (ret < 0)
2642 return ret;
2644 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2645 pi->xact_addr_filt = ret;
2646 return 0;
2649 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2651 struct port_info *pi = netdev_priv(dev);
2653 pi->vlan_grp = grp;
2654 t4_set_rxmode(pi->adapter, 0, pi->viid, -1, -1, -1, -1, grp != NULL,
2655 true);
2658 #ifdef CONFIG_NET_POLL_CONTROLLER
2659 static void cxgb_netpoll(struct net_device *dev)
2661 struct port_info *pi = netdev_priv(dev);
2662 struct adapter *adap = pi->adapter;
2664 if (adap->flags & USING_MSIX) {
2665 int i;
2666 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2668 for (i = pi->nqsets; i; i--, rx++)
2669 t4_sge_intr_msix(0, &rx->rspq);
2670 } else
2671 t4_intr_handler(adap)(0, adap);
2673 #endif
2675 static const struct net_device_ops cxgb4_netdev_ops = {
2676 .ndo_open = cxgb_open,
2677 .ndo_stop = cxgb_close,
2678 .ndo_start_xmit = t4_eth_xmit,
2679 .ndo_get_stats = cxgb_get_stats,
2680 .ndo_set_rx_mode = cxgb_set_rxmode,
2681 .ndo_set_mac_address = cxgb_set_mac_addr,
2682 .ndo_validate_addr = eth_validate_addr,
2683 .ndo_do_ioctl = cxgb_ioctl,
2684 .ndo_change_mtu = cxgb_change_mtu,
2685 .ndo_vlan_rx_register = vlan_rx_register,
2686 #ifdef CONFIG_NET_POLL_CONTROLLER
2687 .ndo_poll_controller = cxgb_netpoll,
2688 #endif
2691 void t4_fatal_err(struct adapter *adap)
2693 t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2694 t4_intr_disable(adap);
2695 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2698 static void setup_memwin(struct adapter *adap)
2700 u32 bar0;
2702 bar0 = pci_resource_start(adap->pdev, 0); /* truncation intentional */
2703 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2704 (bar0 + MEMWIN0_BASE) | BIR(0) |
2705 WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2706 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2707 (bar0 + MEMWIN1_BASE) | BIR(0) |
2708 WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2709 t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2710 (bar0 + MEMWIN2_BASE) | BIR(0) |
2711 WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2715 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
2717 #define MAX_ATIDS 8192U
2720 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2722 static int adap_init0(struct adapter *adap)
2724 int ret;
2725 u32 v, port_vec;
2726 enum dev_state state;
2727 u32 params[7], val[7];
2728 struct fw_caps_config_cmd c;
2730 ret = t4_check_fw_version(adap);
2731 if (ret == -EINVAL || ret > 0) {
2732 if (upgrade_fw(adap) >= 0) /* recache FW version */
2733 ret = t4_check_fw_version(adap);
2735 if (ret < 0)
2736 return ret;
2738 /* contact FW, request master */
2739 ret = t4_fw_hello(adap, 0, 0, MASTER_MUST, &state);
2740 if (ret < 0) {
2741 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
2742 ret);
2743 return ret;
2746 /* reset device */
2747 ret = t4_fw_reset(adap, 0, PIORSTMODE | PIORST);
2748 if (ret < 0)
2749 goto bye;
2751 /* get device capabilities */
2752 memset(&c, 0, sizeof(c));
2753 c.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2754 FW_CMD_REQUEST | FW_CMD_READ);
2755 c.retval_len16 = htonl(FW_LEN16(c));
2756 ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c);
2757 if (ret < 0)
2758 goto bye;
2760 /* select capabilities we'll be using */
2761 if (c.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2762 if (!vf_acls)
2763 c.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2764 else
2765 c.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2766 } else if (vf_acls) {
2767 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2768 goto bye;
2770 c.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2771 FW_CMD_REQUEST | FW_CMD_WRITE);
2772 ret = t4_wr_mbox(adap, 0, &c, sizeof(c), NULL);
2773 if (ret < 0)
2774 goto bye;
2776 ret = t4_config_glbl_rss(adap, 0,
2777 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2778 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2779 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2780 if (ret < 0)
2781 goto bye;
2783 ret = t4_cfg_pfvf(adap, 0, 0, 0, 64, 64, 64, 0, 0, 4, 0xf, 0xf, 16,
2784 FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2785 if (ret < 0)
2786 goto bye;
2788 for (v = 0; v < SGE_NTIMERS - 1; v++)
2789 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
2790 adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
2791 adap->sge.counter_val[0] = 1;
2792 for (v = 1; v < SGE_NCOUNTERS; v++)
2793 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
2794 THRESHOLD_3_MASK);
2795 t4_sge_init(adap);
2797 /* get basic stuff going */
2798 ret = t4_early_init(adap, 0);
2799 if (ret < 0)
2800 goto bye;
2802 #define FW_PARAM_DEV(param) \
2803 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
2804 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
2806 #define FW_PARAM_PFVF(param) \
2807 (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
2808 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
2810 params[0] = FW_PARAM_DEV(PORTVEC);
2811 params[1] = FW_PARAM_PFVF(L2T_START);
2812 params[2] = FW_PARAM_PFVF(L2T_END);
2813 params[3] = FW_PARAM_PFVF(FILTER_START);
2814 params[4] = FW_PARAM_PFVF(FILTER_END);
2815 ret = t4_query_params(adap, 0, 0, 0, 5, params, val);
2816 if (ret < 0)
2817 goto bye;
2818 port_vec = val[0];
2819 adap->tids.ftid_base = val[3];
2820 adap->tids.nftids = val[4] - val[3] + 1;
2822 if (c.ofldcaps) {
2823 /* query offload-related parameters */
2824 params[0] = FW_PARAM_DEV(NTID);
2825 params[1] = FW_PARAM_PFVF(SERVER_START);
2826 params[2] = FW_PARAM_PFVF(SERVER_END);
2827 params[3] = FW_PARAM_PFVF(TDDP_START);
2828 params[4] = FW_PARAM_PFVF(TDDP_END);
2829 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
2830 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
2831 if (ret < 0)
2832 goto bye;
2833 adap->tids.ntids = val[0];
2834 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
2835 adap->tids.stid_base = val[1];
2836 adap->tids.nstids = val[2] - val[1] + 1;
2837 adap->vres.ddp.start = val[3];
2838 adap->vres.ddp.size = val[4] - val[3] + 1;
2839 adap->params.ofldq_wr_cred = val[5];
2840 adap->params.offload = 1;
2842 if (c.rdmacaps) {
2843 params[0] = FW_PARAM_PFVF(STAG_START);
2844 params[1] = FW_PARAM_PFVF(STAG_END);
2845 params[2] = FW_PARAM_PFVF(RQ_START);
2846 params[3] = FW_PARAM_PFVF(RQ_END);
2847 params[4] = FW_PARAM_PFVF(PBL_START);
2848 params[5] = FW_PARAM_PFVF(PBL_END);
2849 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
2850 if (ret < 0)
2851 goto bye;
2852 adap->vres.stag.start = val[0];
2853 adap->vres.stag.size = val[1] - val[0] + 1;
2854 adap->vres.rq.start = val[2];
2855 adap->vres.rq.size = val[3] - val[2] + 1;
2856 adap->vres.pbl.start = val[4];
2857 adap->vres.pbl.size = val[5] - val[4] + 1;
2859 if (c.iscsicaps) {
2860 params[0] = FW_PARAM_PFVF(ISCSI_START);
2861 params[1] = FW_PARAM_PFVF(ISCSI_END);
2862 ret = t4_query_params(adap, 0, 0, 0, 2, params, val);
2863 if (ret < 0)
2864 goto bye;
2865 adap->vres.iscsi.start = val[0];
2866 adap->vres.iscsi.size = val[1] - val[0] + 1;
2868 #undef FW_PARAM_PFVF
2869 #undef FW_PARAM_DEV
2871 adap->params.nports = hweight32(port_vec);
2872 adap->params.portvec = port_vec;
2873 adap->flags |= FW_OK;
2875 /* These are finalized by FW initialization, load their values now */
2876 v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
2877 adap->params.tp.tre = TIMERRESOLUTION_GET(v);
2878 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
2879 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
2880 adap->params.b_wnd);
2882 /* tweak some settings */
2883 t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2884 t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2885 t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2886 v = t4_read_reg(adap, TP_PIO_DATA);
2887 t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2888 setup_memwin(adap);
2889 return 0;
2892 * If a command timed out or failed with EIO FW does not operate within
2893 * its spec or something catastrophic happened to HW/FW, stop issuing
2894 * commands.
2896 bye: if (ret != -ETIMEDOUT && ret != -EIO)
2897 t4_fw_bye(adap, 0);
2898 return ret;
2901 static inline bool is_10g_port(const struct link_config *lc)
2903 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
2906 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
2907 unsigned int size, unsigned int iqe_size)
2909 q->intr_params = QINTR_TIMER_IDX(timer_idx) |
2910 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
2911 q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
2912 q->iqe_len = iqe_size;
2913 q->size = size;
2917 * Perform default configuration of DMA queues depending on the number and type
2918 * of ports we found and the number of available CPUs. Most settings can be
2919 * modified by the admin prior to actual use.
2921 static void __devinit cfg_queues(struct adapter *adap)
2923 struct sge *s = &adap->sge;
2924 int i, q10g = 0, n10g = 0, qidx = 0;
2926 for_each_port(adap, i)
2927 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
2930 * We default to 1 queue per non-10G port and up to # of cores queues
2931 * per 10G port.
2933 if (n10g)
2934 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
2935 if (q10g > num_online_cpus())
2936 q10g = num_online_cpus();
2938 for_each_port(adap, i) {
2939 struct port_info *pi = adap2pinfo(adap, i);
2941 pi->first_qset = qidx;
2942 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2943 qidx += pi->nqsets;
2946 s->ethqsets = qidx;
2947 s->max_ethqsets = qidx; /* MSI-X may lower it later */
2949 if (is_offload(adap)) {
2951 * For offload we use 1 queue/channel if all ports are up to 1G,
2952 * otherwise we divide all available queues amongst the channels
2953 * capped by the number of available cores.
2955 if (n10g) {
2956 i = min_t(int, ARRAY_SIZE(s->ofldrxq),
2957 num_online_cpus());
2958 s->ofldqsets = roundup(i, adap->params.nports);
2959 } else
2960 s->ofldqsets = adap->params.nports;
2961 /* For RDMA one Rx queue per channel suffices */
2962 s->rdmaqs = adap->params.nports;
2965 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
2966 struct sge_eth_rxq *r = &s->ethrxq[i];
2968 init_rspq(&r->rspq, 0, 0, 1024, 64);
2969 r->fl.size = 72;
2972 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
2973 s->ethtxq[i].q.size = 1024;
2975 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
2976 s->ctrlq[i].q.size = 512;
2978 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
2979 s->ofldtxq[i].q.size = 1024;
2981 for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
2982 struct sge_ofld_rxq *r = &s->ofldrxq[i];
2984 init_rspq(&r->rspq, 0, 0, 1024, 64);
2985 r->rspq.uld = CXGB4_ULD_ISCSI;
2986 r->fl.size = 72;
2989 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
2990 struct sge_ofld_rxq *r = &s->rdmarxq[i];
2992 init_rspq(&r->rspq, 0, 0, 511, 64);
2993 r->rspq.uld = CXGB4_ULD_RDMA;
2994 r->fl.size = 72;
2997 init_rspq(&s->fw_evtq, 6, 0, 512, 64);
2998 init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
3002 * Reduce the number of Ethernet queues across all ports to at most n.
3003 * n provides at least one queue per port.
3005 static void __devinit reduce_ethqs(struct adapter *adap, int n)
3007 int i;
3008 struct port_info *pi;
3010 while (n < adap->sge.ethqsets)
3011 for_each_port(adap, i) {
3012 pi = adap2pinfo(adap, i);
3013 if (pi->nqsets > 1) {
3014 pi->nqsets--;
3015 adap->sge.ethqsets--;
3016 if (adap->sge.ethqsets <= n)
3017 break;
3021 n = 0;
3022 for_each_port(adap, i) {
3023 pi = adap2pinfo(adap, i);
3024 pi->first_qset = n;
3025 n += pi->nqsets;
3029 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3030 #define EXTRA_VECS 2
3032 static int __devinit enable_msix(struct adapter *adap)
3034 int ofld_need = 0;
3035 int i, err, want, need;
3036 struct sge *s = &adap->sge;
3037 unsigned int nchan = adap->params.nports;
3038 struct msix_entry entries[MAX_INGQ + 1];
3040 for (i = 0; i < ARRAY_SIZE(entries); ++i)
3041 entries[i].entry = i;
3043 want = s->max_ethqsets + EXTRA_VECS;
3044 if (is_offload(adap)) {
3045 want += s->rdmaqs + s->ofldqsets;
3046 /* need nchan for each possible ULD */
3047 ofld_need = 2 * nchan;
3049 need = adap->params.nports + EXTRA_VECS + ofld_need;
3051 while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3052 want = err;
3054 if (!err) {
3056 * Distribute available vectors to the various queue groups.
3057 * Every group gets its minimum requirement and NIC gets top
3058 * priority for leftovers.
3060 i = want - EXTRA_VECS - ofld_need;
3061 if (i < s->max_ethqsets) {
3062 s->max_ethqsets = i;
3063 if (i < s->ethqsets)
3064 reduce_ethqs(adap, i);
3066 if (is_offload(adap)) {
3067 i = want - EXTRA_VECS - s->max_ethqsets;
3068 i -= ofld_need - nchan;
3069 s->ofldqsets = (i / nchan) * nchan; /* round down */
3071 for (i = 0; i < want; ++i)
3072 adap->msix_info[i].vec = entries[i].vector;
3073 } else if (err > 0)
3074 dev_info(adap->pdev_dev,
3075 "only %d MSI-X vectors left, not using MSI-X\n", err);
3076 return err;
3079 #undef EXTRA_VECS
3081 static void __devinit print_port_info(struct adapter *adap)
3083 static const char *base[] = {
3084 "R", "KX4", "T", "KX", "T", "KR", "CX4"
3087 int i;
3088 char buf[80];
3089 const char *spd = "";
3091 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
3092 spd = " 2.5 GT/s";
3093 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
3094 spd = " 5 GT/s";
3096 for_each_port(adap, i) {
3097 struct net_device *dev = adap->port[i];
3098 const struct port_info *pi = netdev_priv(dev);
3099 char *bufp = buf;
3101 if (!test_bit(i, &adap->registered_device_map))
3102 continue;
3104 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3105 bufp += sprintf(bufp, "100/");
3106 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3107 bufp += sprintf(bufp, "1000/");
3108 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3109 bufp += sprintf(bufp, "10G/");
3110 if (bufp != buf)
3111 --bufp;
3112 sprintf(bufp, "BASE-%s", base[pi->port_type]);
3114 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s%s\n",
3115 adap->params.vpd.id, adap->params.rev,
3116 buf, is_offload(adap) ? "R" : "",
3117 adap->params.pci.width, spd,
3118 (adap->flags & USING_MSIX) ? " MSI-X" :
3119 (adap->flags & USING_MSI) ? " MSI" : "");
3120 if (adap->name == dev->name)
3121 netdev_info(dev, "S/N: %s, E/C: %s\n",
3122 adap->params.vpd.sn, adap->params.vpd.ec);
3126 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_TSO6 |\
3127 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3129 static int __devinit init_one(struct pci_dev *pdev,
3130 const struct pci_device_id *ent)
3132 int func, i, err;
3133 struct port_info *pi;
3134 unsigned int highdma = 0;
3135 struct adapter *adapter = NULL;
3137 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3139 err = pci_request_regions(pdev, KBUILD_MODNAME);
3140 if (err) {
3141 /* Just info, some other driver may have claimed the device. */
3142 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3143 return err;
3146 /* We control everything through PF 0 */
3147 func = PCI_FUNC(pdev->devfn);
3148 if (func > 0)
3149 goto sriov;
3151 err = pci_enable_device(pdev);
3152 if (err) {
3153 dev_err(&pdev->dev, "cannot enable PCI device\n");
3154 goto out_release_regions;
3157 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3158 highdma = NETIF_F_HIGHDMA;
3159 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3160 if (err) {
3161 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3162 "coherent allocations\n");
3163 goto out_disable_device;
3165 } else {
3166 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3167 if (err) {
3168 dev_err(&pdev->dev, "no usable DMA configuration\n");
3169 goto out_disable_device;
3173 pci_enable_pcie_error_reporting(pdev);
3174 pci_set_master(pdev);
3175 pci_save_state(pdev);
3177 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3178 if (!adapter) {
3179 err = -ENOMEM;
3180 goto out_disable_device;
3183 adapter->regs = pci_ioremap_bar(pdev, 0);
3184 if (!adapter->regs) {
3185 dev_err(&pdev->dev, "cannot map device registers\n");
3186 err = -ENOMEM;
3187 goto out_free_adapter;
3190 adapter->pdev = pdev;
3191 adapter->pdev_dev = &pdev->dev;
3192 adapter->name = pci_name(pdev);
3193 adapter->msg_enable = dflt_msg_enable;
3194 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3196 spin_lock_init(&adapter->stats_lock);
3197 spin_lock_init(&adapter->tid_release_lock);
3199 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3201 err = t4_prep_adapter(adapter);
3202 if (err)
3203 goto out_unmap_bar;
3204 err = adap_init0(adapter);
3205 if (err)
3206 goto out_unmap_bar;
3208 for_each_port(adapter, i) {
3209 struct net_device *netdev;
3211 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3212 MAX_ETH_QSETS);
3213 if (!netdev) {
3214 err = -ENOMEM;
3215 goto out_free_dev;
3218 SET_NETDEV_DEV(netdev, &pdev->dev);
3220 adapter->port[i] = netdev;
3221 pi = netdev_priv(netdev);
3222 pi->adapter = adapter;
3223 pi->xact_addr_filt = -1;
3224 pi->rx_offload = RX_CSO;
3225 pi->port_id = i;
3226 netif_carrier_off(netdev);
3227 netif_tx_stop_all_queues(netdev);
3228 netdev->irq = pdev->irq;
3230 netdev->features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6;
3231 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3232 netdev->features |= NETIF_F_GRO | NETIF_F_RXHASH | highdma;
3233 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3234 netdev->vlan_features = netdev->features & VLAN_FEAT;
3236 netdev->netdev_ops = &cxgb4_netdev_ops;
3237 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3240 pci_set_drvdata(pdev, adapter);
3242 if (adapter->flags & FW_OK) {
3243 err = t4_port_init(adapter, 0, 0, 0);
3244 if (err)
3245 goto out_free_dev;
3249 * Configure queues and allocate tables now, they can be needed as
3250 * soon as the first register_netdev completes.
3252 cfg_queues(adapter);
3254 adapter->l2t = t4_init_l2t();
3255 if (!adapter->l2t) {
3256 /* We tolerate a lack of L2T, giving up some functionality */
3257 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3258 adapter->params.offload = 0;
3261 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3262 dev_warn(&pdev->dev, "could not allocate TID table, "
3263 "continuing\n");
3264 adapter->params.offload = 0;
3268 * The card is now ready to go. If any errors occur during device
3269 * registration we do not fail the whole card but rather proceed only
3270 * with the ports we manage to register successfully. However we must
3271 * register at least one net device.
3273 for_each_port(adapter, i) {
3274 err = register_netdev(adapter->port[i]);
3275 if (err)
3276 dev_warn(&pdev->dev,
3277 "cannot register net device %s, skipping\n",
3278 adapter->port[i]->name);
3279 else {
3281 * Change the name we use for messages to the name of
3282 * the first successfully registered interface.
3284 if (!adapter->registered_device_map)
3285 adapter->name = adapter->port[i]->name;
3287 __set_bit(i, &adapter->registered_device_map);
3288 adapter->chan_map[adap2pinfo(adapter, i)->tx_chan] = i;
3291 if (!adapter->registered_device_map) {
3292 dev_err(&pdev->dev, "could not register any net devices\n");
3293 goto out_free_dev;
3296 if (cxgb4_debugfs_root) {
3297 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3298 cxgb4_debugfs_root);
3299 setup_debugfs(adapter);
3302 /* See what interrupts we'll be using */
3303 if (msi > 1 && enable_msix(adapter) == 0)
3304 adapter->flags |= USING_MSIX;
3305 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3306 adapter->flags |= USING_MSI;
3308 if (is_offload(adapter))
3309 attach_ulds(adapter);
3311 print_port_info(adapter);
3313 sriov:
3314 #ifdef CONFIG_PCI_IOV
3315 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3316 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3317 dev_info(&pdev->dev,
3318 "instantiated %u virtual functions\n",
3319 num_vf[func]);
3320 #endif
3321 return 0;
3323 out_free_dev:
3324 t4_free_mem(adapter->tids.tid_tab);
3325 t4_free_mem(adapter->l2t);
3326 for_each_port(adapter, i)
3327 if (adapter->port[i])
3328 free_netdev(adapter->port[i]);
3329 if (adapter->flags & FW_OK)
3330 t4_fw_bye(adapter, 0);
3331 out_unmap_bar:
3332 iounmap(adapter->regs);
3333 out_free_adapter:
3334 kfree(adapter);
3335 out_disable_device:
3336 pci_disable_pcie_error_reporting(pdev);
3337 pci_disable_device(pdev);
3338 out_release_regions:
3339 pci_release_regions(pdev);
3340 pci_set_drvdata(pdev, NULL);
3341 return err;
3344 static void __devexit remove_one(struct pci_dev *pdev)
3346 struct adapter *adapter = pci_get_drvdata(pdev);
3348 pci_disable_sriov(pdev);
3350 if (adapter) {
3351 int i;
3353 if (is_offload(adapter))
3354 detach_ulds(adapter);
3356 for_each_port(adapter, i)
3357 if (test_bit(i, &adapter->registered_device_map))
3358 unregister_netdev(adapter->port[i]);
3360 if (adapter->debugfs_root)
3361 debugfs_remove_recursive(adapter->debugfs_root);
3363 t4_sge_stop(adapter);
3364 t4_free_sge_resources(adapter);
3365 t4_free_mem(adapter->l2t);
3366 t4_free_mem(adapter->tids.tid_tab);
3367 disable_msi(adapter);
3369 for_each_port(adapter, i)
3370 if (adapter->port[i])
3371 free_netdev(adapter->port[i]);
3373 if (adapter->flags & FW_OK)
3374 t4_fw_bye(adapter, 0);
3375 iounmap(adapter->regs);
3376 kfree(adapter);
3377 pci_disable_pcie_error_reporting(pdev);
3378 pci_disable_device(pdev);
3379 pci_release_regions(pdev);
3380 pci_set_drvdata(pdev, NULL);
3381 } else if (PCI_FUNC(pdev->devfn) > 0)
3382 pci_release_regions(pdev);
3385 static struct pci_driver cxgb4_driver = {
3386 .name = KBUILD_MODNAME,
3387 .id_table = cxgb4_pci_tbl,
3388 .probe = init_one,
3389 .remove = __devexit_p(remove_one),
3392 static int __init cxgb4_init_module(void)
3394 int ret;
3396 /* Debugfs support is optional, just warn if this fails */
3397 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3398 if (!cxgb4_debugfs_root)
3399 pr_warning("could not create debugfs entry, continuing\n");
3401 ret = pci_register_driver(&cxgb4_driver);
3402 if (ret < 0)
3403 debugfs_remove(cxgb4_debugfs_root);
3404 return ret;
3407 static void __exit cxgb4_cleanup_module(void)
3409 pci_unregister_driver(&cxgb4_driver);
3410 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
3413 module_init(cxgb4_init_module);
3414 module_exit(cxgb4_cleanup_module);