blkcg: move blkio_group_conf->iops and ->bps to blk-throttle
[linux-2.6/libata-dev.git] / block / blk-throttle.c
blob004964bb6fdd27b3aee3d3c0f6af39b9df6af976
1 /*
2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include "blk-cgroup.h"
13 #include "blk.h"
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum = 8;
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum = 32;
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice = HZ/10; /* 100 ms */
24 static struct blkio_policy_type blkio_policy_throtl;
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct *kthrotld_workqueue;
28 static void throtl_schedule_delayed_work(struct throtl_data *td,
29 unsigned long delay);
31 struct throtl_rb_root {
32 struct rb_root rb;
33 struct rb_node *left;
34 unsigned int count;
35 unsigned long min_disptime;
38 #define THROTL_RB_ROOT (struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
39 .count = 0, .min_disptime = 0}
41 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
43 /* Per-cpu group stats */
44 struct tg_stats_cpu {
45 /* total bytes transferred */
46 struct blkg_rwstat service_bytes;
47 /* total IOs serviced, post merge */
48 struct blkg_rwstat serviced;
51 struct throtl_grp {
52 /* active throtl group service_tree member */
53 struct rb_node rb_node;
56 * Dispatch time in jiffies. This is the estimated time when group
57 * will unthrottle and is ready to dispatch more bio. It is used as
58 * key to sort active groups in service tree.
60 unsigned long disptime;
62 unsigned int flags;
64 /* Two lists for READ and WRITE */
65 struct bio_list bio_lists[2];
67 /* Number of queued bios on READ and WRITE lists */
68 unsigned int nr_queued[2];
70 /* bytes per second rate limits */
71 uint64_t bps[2];
73 /* IOPS limits */
74 unsigned int iops[2];
76 /* Number of bytes disptached in current slice */
77 uint64_t bytes_disp[2];
78 /* Number of bio's dispatched in current slice */
79 unsigned int io_disp[2];
81 /* When did we start a new slice */
82 unsigned long slice_start[2];
83 unsigned long slice_end[2];
85 /* Some throttle limits got updated for the group */
86 int limits_changed;
88 /* Per cpu stats pointer */
89 struct tg_stats_cpu __percpu *stats_cpu;
91 /* List of tgs waiting for per cpu stats memory to be allocated */
92 struct list_head stats_alloc_node;
95 struct throtl_data
97 /* service tree for active throtl groups */
98 struct throtl_rb_root tg_service_tree;
100 struct throtl_grp *root_tg;
101 struct request_queue *queue;
103 /* Total Number of queued bios on READ and WRITE lists */
104 unsigned int nr_queued[2];
107 * number of total undestroyed groups
109 unsigned int nr_undestroyed_grps;
111 /* Work for dispatching throttled bios */
112 struct delayed_work throtl_work;
114 int limits_changed;
117 /* list and work item to allocate percpu group stats */
118 static DEFINE_SPINLOCK(tg_stats_alloc_lock);
119 static LIST_HEAD(tg_stats_alloc_list);
121 static void tg_stats_alloc_fn(struct work_struct *);
122 static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
124 static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
126 return blkg_to_pdata(blkg, &blkio_policy_throtl);
129 static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
131 return pdata_to_blkg(tg);
134 enum tg_state_flags {
135 THROTL_TG_FLAG_on_rr = 0, /* on round-robin busy list */
138 #define THROTL_TG_FNS(name) \
139 static inline void throtl_mark_tg_##name(struct throtl_grp *tg) \
141 (tg)->flags |= (1 << THROTL_TG_FLAG_##name); \
143 static inline void throtl_clear_tg_##name(struct throtl_grp *tg) \
145 (tg)->flags &= ~(1 << THROTL_TG_FLAG_##name); \
147 static inline int throtl_tg_##name(const struct throtl_grp *tg) \
149 return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0; \
152 THROTL_TG_FNS(on_rr);
154 #define throtl_log_tg(td, tg, fmt, args...) \
155 blk_add_trace_msg((td)->queue, "throtl %s " fmt, \
156 blkg_path(tg_to_blkg(tg)), ##args); \
158 #define throtl_log(td, fmt, args...) \
159 blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)
161 static inline unsigned int total_nr_queued(struct throtl_data *td)
163 return td->nr_queued[0] + td->nr_queued[1];
167 * Worker for allocating per cpu stat for tgs. This is scheduled on the
168 * system_nrt_wq once there are some groups on the alloc_list waiting for
169 * allocation.
171 static void tg_stats_alloc_fn(struct work_struct *work)
173 static struct tg_stats_cpu *stats_cpu; /* this fn is non-reentrant */
174 struct delayed_work *dwork = to_delayed_work(work);
175 bool empty = false;
177 alloc_stats:
178 if (!stats_cpu) {
179 stats_cpu = alloc_percpu(struct tg_stats_cpu);
180 if (!stats_cpu) {
181 /* allocation failed, try again after some time */
182 queue_delayed_work(system_nrt_wq, dwork,
183 msecs_to_jiffies(10));
184 return;
188 spin_lock_irq(&tg_stats_alloc_lock);
190 if (!list_empty(&tg_stats_alloc_list)) {
191 struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
192 struct throtl_grp,
193 stats_alloc_node);
194 swap(tg->stats_cpu, stats_cpu);
195 list_del_init(&tg->stats_alloc_node);
198 empty = list_empty(&tg_stats_alloc_list);
199 spin_unlock_irq(&tg_stats_alloc_lock);
200 if (!empty)
201 goto alloc_stats;
204 static void throtl_init_blkio_group(struct blkio_group *blkg)
206 struct throtl_grp *tg = blkg_to_tg(blkg);
208 RB_CLEAR_NODE(&tg->rb_node);
209 bio_list_init(&tg->bio_lists[0]);
210 bio_list_init(&tg->bio_lists[1]);
211 tg->limits_changed = false;
213 tg->bps[READ] = -1;
214 tg->bps[WRITE] = -1;
215 tg->iops[READ] = -1;
216 tg->iops[WRITE] = -1;
219 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
220 * but percpu allocator can't be called from IO path. Queue tg on
221 * tg_stats_alloc_list and allocate from work item.
223 spin_lock(&tg_stats_alloc_lock);
224 list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
225 queue_delayed_work(system_nrt_wq, &tg_stats_alloc_work, 0);
226 spin_unlock(&tg_stats_alloc_lock);
229 static void throtl_exit_blkio_group(struct blkio_group *blkg)
231 struct throtl_grp *tg = blkg_to_tg(blkg);
233 spin_lock(&tg_stats_alloc_lock);
234 list_del_init(&tg->stats_alloc_node);
235 spin_unlock(&tg_stats_alloc_lock);
237 free_percpu(tg->stats_cpu);
240 static void throtl_reset_group_stats(struct blkio_group *blkg)
242 struct throtl_grp *tg = blkg_to_tg(blkg);
243 int cpu;
245 if (tg->stats_cpu == NULL)
246 return;
248 for_each_possible_cpu(cpu) {
249 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
251 blkg_rwstat_reset(&sc->service_bytes);
252 blkg_rwstat_reset(&sc->serviced);
256 static struct
257 throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
260 * This is the common case when there are no blkio cgroups.
261 * Avoid lookup in this case
263 if (blkcg == &blkio_root_cgroup)
264 return td->root_tg;
266 return blkg_to_tg(blkg_lookup(blkcg, td->queue));
269 static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
270 struct blkio_cgroup *blkcg)
272 struct request_queue *q = td->queue;
273 struct throtl_grp *tg = NULL;
276 * This is the common case when there are no blkio cgroups.
277 * Avoid lookup in this case
279 if (blkcg == &blkio_root_cgroup) {
280 tg = td->root_tg;
281 } else {
282 struct blkio_group *blkg;
284 blkg = blkg_lookup_create(blkcg, q, false);
286 /* if %NULL and @q is alive, fall back to root_tg */
287 if (!IS_ERR(blkg))
288 tg = blkg_to_tg(blkg);
289 else if (!blk_queue_dead(q))
290 tg = td->root_tg;
293 return tg;
296 static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
298 /* Service tree is empty */
299 if (!root->count)
300 return NULL;
302 if (!root->left)
303 root->left = rb_first(&root->rb);
305 if (root->left)
306 return rb_entry_tg(root->left);
308 return NULL;
311 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
313 rb_erase(n, root);
314 RB_CLEAR_NODE(n);
317 static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
319 if (root->left == n)
320 root->left = NULL;
321 rb_erase_init(n, &root->rb);
322 --root->count;
325 static void update_min_dispatch_time(struct throtl_rb_root *st)
327 struct throtl_grp *tg;
329 tg = throtl_rb_first(st);
330 if (!tg)
331 return;
333 st->min_disptime = tg->disptime;
336 static void
337 tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
339 struct rb_node **node = &st->rb.rb_node;
340 struct rb_node *parent = NULL;
341 struct throtl_grp *__tg;
342 unsigned long key = tg->disptime;
343 int left = 1;
345 while (*node != NULL) {
346 parent = *node;
347 __tg = rb_entry_tg(parent);
349 if (time_before(key, __tg->disptime))
350 node = &parent->rb_left;
351 else {
352 node = &parent->rb_right;
353 left = 0;
357 if (left)
358 st->left = &tg->rb_node;
360 rb_link_node(&tg->rb_node, parent, node);
361 rb_insert_color(&tg->rb_node, &st->rb);
364 static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
366 struct throtl_rb_root *st = &td->tg_service_tree;
368 tg_service_tree_add(st, tg);
369 throtl_mark_tg_on_rr(tg);
370 st->count++;
373 static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
375 if (!throtl_tg_on_rr(tg))
376 __throtl_enqueue_tg(td, tg);
379 static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
381 throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
382 throtl_clear_tg_on_rr(tg);
385 static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
387 if (throtl_tg_on_rr(tg))
388 __throtl_dequeue_tg(td, tg);
391 static void throtl_schedule_next_dispatch(struct throtl_data *td)
393 struct throtl_rb_root *st = &td->tg_service_tree;
396 * If there are more bios pending, schedule more work.
398 if (!total_nr_queued(td))
399 return;
401 BUG_ON(!st->count);
403 update_min_dispatch_time(st);
405 if (time_before_eq(st->min_disptime, jiffies))
406 throtl_schedule_delayed_work(td, 0);
407 else
408 throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
411 static inline void
412 throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
414 tg->bytes_disp[rw] = 0;
415 tg->io_disp[rw] = 0;
416 tg->slice_start[rw] = jiffies;
417 tg->slice_end[rw] = jiffies + throtl_slice;
418 throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
419 rw == READ ? 'R' : 'W', tg->slice_start[rw],
420 tg->slice_end[rw], jiffies);
423 static inline void throtl_set_slice_end(struct throtl_data *td,
424 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
426 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
429 static inline void throtl_extend_slice(struct throtl_data *td,
430 struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
432 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
433 throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
434 rw == READ ? 'R' : 'W', tg->slice_start[rw],
435 tg->slice_end[rw], jiffies);
438 /* Determine if previously allocated or extended slice is complete or not */
439 static bool
440 throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
442 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
443 return 0;
445 return 1;
448 /* Trim the used slices and adjust slice start accordingly */
449 static inline void
450 throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
452 unsigned long nr_slices, time_elapsed, io_trim;
453 u64 bytes_trim, tmp;
455 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
458 * If bps are unlimited (-1), then time slice don't get
459 * renewed. Don't try to trim the slice if slice is used. A new
460 * slice will start when appropriate.
462 if (throtl_slice_used(td, tg, rw))
463 return;
466 * A bio has been dispatched. Also adjust slice_end. It might happen
467 * that initially cgroup limit was very low resulting in high
468 * slice_end, but later limit was bumped up and bio was dispached
469 * sooner, then we need to reduce slice_end. A high bogus slice_end
470 * is bad because it does not allow new slice to start.
473 throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);
475 time_elapsed = jiffies - tg->slice_start[rw];
477 nr_slices = time_elapsed / throtl_slice;
479 if (!nr_slices)
480 return;
481 tmp = tg->bps[rw] * throtl_slice * nr_slices;
482 do_div(tmp, HZ);
483 bytes_trim = tmp;
485 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
487 if (!bytes_trim && !io_trim)
488 return;
490 if (tg->bytes_disp[rw] >= bytes_trim)
491 tg->bytes_disp[rw] -= bytes_trim;
492 else
493 tg->bytes_disp[rw] = 0;
495 if (tg->io_disp[rw] >= io_trim)
496 tg->io_disp[rw] -= io_trim;
497 else
498 tg->io_disp[rw] = 0;
500 tg->slice_start[rw] += nr_slices * throtl_slice;
502 throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
503 " start=%lu end=%lu jiffies=%lu",
504 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
505 tg->slice_start[rw], tg->slice_end[rw], jiffies);
508 static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
509 struct bio *bio, unsigned long *wait)
511 bool rw = bio_data_dir(bio);
512 unsigned int io_allowed;
513 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
514 u64 tmp;
516 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
518 /* Slice has just started. Consider one slice interval */
519 if (!jiffy_elapsed)
520 jiffy_elapsed_rnd = throtl_slice;
522 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
525 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
526 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
527 * will allow dispatch after 1 second and after that slice should
528 * have been trimmed.
531 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
532 do_div(tmp, HZ);
534 if (tmp > UINT_MAX)
535 io_allowed = UINT_MAX;
536 else
537 io_allowed = tmp;
539 if (tg->io_disp[rw] + 1 <= io_allowed) {
540 if (wait)
541 *wait = 0;
542 return 1;
545 /* Calc approx time to dispatch */
546 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
548 if (jiffy_wait > jiffy_elapsed)
549 jiffy_wait = jiffy_wait - jiffy_elapsed;
550 else
551 jiffy_wait = 1;
553 if (wait)
554 *wait = jiffy_wait;
555 return 0;
558 static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
559 struct bio *bio, unsigned long *wait)
561 bool rw = bio_data_dir(bio);
562 u64 bytes_allowed, extra_bytes, tmp;
563 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
565 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
567 /* Slice has just started. Consider one slice interval */
568 if (!jiffy_elapsed)
569 jiffy_elapsed_rnd = throtl_slice;
571 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
573 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
574 do_div(tmp, HZ);
575 bytes_allowed = tmp;
577 if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
578 if (wait)
579 *wait = 0;
580 return 1;
583 /* Calc approx time to dispatch */
584 extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
585 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
587 if (!jiffy_wait)
588 jiffy_wait = 1;
591 * This wait time is without taking into consideration the rounding
592 * up we did. Add that time also.
594 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
595 if (wait)
596 *wait = jiffy_wait;
597 return 0;
600 static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
601 if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
602 return 1;
603 return 0;
607 * Returns whether one can dispatch a bio or not. Also returns approx number
608 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
610 static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
611 struct bio *bio, unsigned long *wait)
613 bool rw = bio_data_dir(bio);
614 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
617 * Currently whole state machine of group depends on first bio
618 * queued in the group bio list. So one should not be calling
619 * this function with a different bio if there are other bios
620 * queued.
622 BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
624 /* If tg->bps = -1, then BW is unlimited */
625 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
626 if (wait)
627 *wait = 0;
628 return 1;
632 * If previous slice expired, start a new one otherwise renew/extend
633 * existing slice to make sure it is at least throtl_slice interval
634 * long since now.
636 if (throtl_slice_used(td, tg, rw))
637 throtl_start_new_slice(td, tg, rw);
638 else {
639 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
640 throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
643 if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
644 && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
645 if (wait)
646 *wait = 0;
647 return 1;
650 max_wait = max(bps_wait, iops_wait);
652 if (wait)
653 *wait = max_wait;
655 if (time_before(tg->slice_end[rw], jiffies + max_wait))
656 throtl_extend_slice(td, tg, rw, jiffies + max_wait);
658 return 0;
661 static void throtl_update_dispatch_stats(struct blkio_group *blkg, u64 bytes,
662 int rw)
664 struct throtl_grp *tg = blkg_to_tg(blkg);
665 struct tg_stats_cpu *stats_cpu;
666 unsigned long flags;
668 /* If per cpu stats are not allocated yet, don't do any accounting. */
669 if (tg->stats_cpu == NULL)
670 return;
673 * Disabling interrupts to provide mutual exclusion between two
674 * writes on same cpu. It probably is not needed for 64bit. Not
675 * optimizing that case yet.
677 local_irq_save(flags);
679 stats_cpu = this_cpu_ptr(tg->stats_cpu);
681 blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
682 blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
684 local_irq_restore(flags);
687 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
689 bool rw = bio_data_dir(bio);
691 /* Charge the bio to the group */
692 tg->bytes_disp[rw] += bio->bi_size;
693 tg->io_disp[rw]++;
695 throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
698 static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
699 struct bio *bio)
701 bool rw = bio_data_dir(bio);
703 bio_list_add(&tg->bio_lists[rw], bio);
704 /* Take a bio reference on tg */
705 blkg_get(tg_to_blkg(tg));
706 tg->nr_queued[rw]++;
707 td->nr_queued[rw]++;
708 throtl_enqueue_tg(td, tg);
711 static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
713 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
714 struct bio *bio;
716 if ((bio = bio_list_peek(&tg->bio_lists[READ])))
717 tg_may_dispatch(td, tg, bio, &read_wait);
719 if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
720 tg_may_dispatch(td, tg, bio, &write_wait);
722 min_wait = min(read_wait, write_wait);
723 disptime = jiffies + min_wait;
725 /* Update dispatch time */
726 throtl_dequeue_tg(td, tg);
727 tg->disptime = disptime;
728 throtl_enqueue_tg(td, tg);
731 static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
732 bool rw, struct bio_list *bl)
734 struct bio *bio;
736 bio = bio_list_pop(&tg->bio_lists[rw]);
737 tg->nr_queued[rw]--;
738 /* Drop bio reference on blkg */
739 blkg_put(tg_to_blkg(tg));
741 BUG_ON(td->nr_queued[rw] <= 0);
742 td->nr_queued[rw]--;
744 throtl_charge_bio(tg, bio);
745 bio_list_add(bl, bio);
746 bio->bi_rw |= REQ_THROTTLED;
748 throtl_trim_slice(td, tg, rw);
751 static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
752 struct bio_list *bl)
754 unsigned int nr_reads = 0, nr_writes = 0;
755 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
756 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
757 struct bio *bio;
759 /* Try to dispatch 75% READS and 25% WRITES */
761 while ((bio = bio_list_peek(&tg->bio_lists[READ]))
762 && tg_may_dispatch(td, tg, bio, NULL)) {
764 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
765 nr_reads++;
767 if (nr_reads >= max_nr_reads)
768 break;
771 while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
772 && tg_may_dispatch(td, tg, bio, NULL)) {
774 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
775 nr_writes++;
777 if (nr_writes >= max_nr_writes)
778 break;
781 return nr_reads + nr_writes;
784 static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
786 unsigned int nr_disp = 0;
787 struct throtl_grp *tg;
788 struct throtl_rb_root *st = &td->tg_service_tree;
790 while (1) {
791 tg = throtl_rb_first(st);
793 if (!tg)
794 break;
796 if (time_before(jiffies, tg->disptime))
797 break;
799 throtl_dequeue_tg(td, tg);
801 nr_disp += throtl_dispatch_tg(td, tg, bl);
803 if (tg->nr_queued[0] || tg->nr_queued[1]) {
804 tg_update_disptime(td, tg);
805 throtl_enqueue_tg(td, tg);
808 if (nr_disp >= throtl_quantum)
809 break;
812 return nr_disp;
815 static void throtl_process_limit_change(struct throtl_data *td)
817 struct request_queue *q = td->queue;
818 struct blkio_group *blkg, *n;
820 if (!td->limits_changed)
821 return;
823 xchg(&td->limits_changed, false);
825 throtl_log(td, "limits changed");
827 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
828 struct throtl_grp *tg = blkg_to_tg(blkg);
830 if (!tg->limits_changed)
831 continue;
833 if (!xchg(&tg->limits_changed, false))
834 continue;
836 throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
837 " riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
838 tg->iops[READ], tg->iops[WRITE]);
841 * Restart the slices for both READ and WRITES. It
842 * might happen that a group's limit are dropped
843 * suddenly and we don't want to account recently
844 * dispatched IO with new low rate
846 throtl_start_new_slice(td, tg, 0);
847 throtl_start_new_slice(td, tg, 1);
849 if (throtl_tg_on_rr(tg))
850 tg_update_disptime(td, tg);
854 /* Dispatch throttled bios. Should be called without queue lock held. */
855 static int throtl_dispatch(struct request_queue *q)
857 struct throtl_data *td = q->td;
858 unsigned int nr_disp = 0;
859 struct bio_list bio_list_on_stack;
860 struct bio *bio;
861 struct blk_plug plug;
863 spin_lock_irq(q->queue_lock);
865 throtl_process_limit_change(td);
867 if (!total_nr_queued(td))
868 goto out;
870 bio_list_init(&bio_list_on_stack);
872 throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
873 total_nr_queued(td), td->nr_queued[READ],
874 td->nr_queued[WRITE]);
876 nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);
878 if (nr_disp)
879 throtl_log(td, "bios disp=%u", nr_disp);
881 throtl_schedule_next_dispatch(td);
882 out:
883 spin_unlock_irq(q->queue_lock);
886 * If we dispatched some requests, unplug the queue to make sure
887 * immediate dispatch
889 if (nr_disp) {
890 blk_start_plug(&plug);
891 while((bio = bio_list_pop(&bio_list_on_stack)))
892 generic_make_request(bio);
893 blk_finish_plug(&plug);
895 return nr_disp;
898 void blk_throtl_work(struct work_struct *work)
900 struct throtl_data *td = container_of(work, struct throtl_data,
901 throtl_work.work);
902 struct request_queue *q = td->queue;
904 throtl_dispatch(q);
907 /* Call with queue lock held */
908 static void
909 throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
912 struct delayed_work *dwork = &td->throtl_work;
914 /* schedule work if limits changed even if no bio is queued */
915 if (total_nr_queued(td) || td->limits_changed) {
917 * We might have a work scheduled to be executed in future.
918 * Cancel that and schedule a new one.
920 __cancel_delayed_work(dwork);
921 queue_delayed_work(kthrotld_workqueue, dwork, delay);
922 throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
923 delay, jiffies);
927 static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
928 struct blkg_policy_data *pd, int off)
930 struct throtl_grp *tg = (void *)pd->pdata;
931 struct blkg_rwstat rwstat = { }, tmp;
932 int i, cpu;
934 for_each_possible_cpu(cpu) {
935 struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
937 tmp = blkg_rwstat_read((void *)sc + off);
938 for (i = 0; i < BLKG_RWSTAT_NR; i++)
939 rwstat.cnt[i] += tmp.cnt[i];
942 return __blkg_prfill_rwstat(sf, pd, &rwstat);
945 /* print per-cpu blkg_rwstat specified by BLKCG_STAT_PRIV() */
946 static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
947 struct seq_file *sf)
949 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
951 blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat,
952 BLKCG_STAT_POL(cft->private),
953 BLKCG_STAT_OFF(cft->private), true);
954 return 0;
957 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
958 int off)
960 u64 v = *(u64 *)((void *)pd->pdata + off);
962 if (v == -1)
963 return 0;
964 return __blkg_prfill_u64(sf, pd, v);
967 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
968 int off)
970 unsigned int v = *(unsigned int *)((void *)pd->pdata + off);
972 if (v == -1)
973 return 0;
974 return __blkg_prfill_u64(sf, pd, v);
977 static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
978 struct seq_file *sf)
980 blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_u64,
981 BLKIO_POLICY_THROTL, cft->private, false);
982 return 0;
985 static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
986 struct seq_file *sf)
988 blkcg_print_blkgs(sf, cgroup_to_blkio_cgroup(cgrp), tg_prfill_conf_uint,
989 BLKIO_POLICY_THROTL, cft->private, false);
990 return 0;
993 static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
994 bool is_u64)
996 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgrp);
997 struct blkg_conf_ctx ctx;
998 struct throtl_grp *tg;
999 int ret;
1001 ret = blkg_conf_prep(blkcg, buf, &ctx);
1002 if (ret)
1003 return ret;
1005 ret = -EINVAL;
1006 tg = blkg_to_tg(ctx.blkg);
1007 if (tg) {
1008 struct throtl_data *td = ctx.blkg->q->td;
1010 if (!ctx.v)
1011 ctx.v = -1;
1013 if (is_u64)
1014 *(u64 *)((void *)tg + cft->private) = ctx.v;
1015 else
1016 *(unsigned int *)((void *)tg + cft->private) = ctx.v;
1018 /* XXX: we don't need the following deferred processing */
1019 xchg(&tg->limits_changed, true);
1020 xchg(&td->limits_changed, true);
1021 throtl_schedule_delayed_work(td, 0);
1023 ret = 0;
1026 blkg_conf_finish(&ctx);
1027 return ret;
1030 static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
1031 const char *buf)
1033 return tg_set_conf(cgrp, cft, buf, true);
1036 static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
1037 const char *buf)
1039 return tg_set_conf(cgrp, cft, buf, false);
1042 static struct cftype throtl_files[] = {
1044 .name = "throttle.read_bps_device",
1045 .private = offsetof(struct throtl_grp, bps[READ]),
1046 .read_seq_string = tg_print_conf_u64,
1047 .write_string = tg_set_conf_u64,
1048 .max_write_len = 256,
1051 .name = "throttle.write_bps_device",
1052 .private = offsetof(struct throtl_grp, bps[WRITE]),
1053 .read_seq_string = tg_print_conf_u64,
1054 .write_string = tg_set_conf_u64,
1055 .max_write_len = 256,
1058 .name = "throttle.read_iops_device",
1059 .private = offsetof(struct throtl_grp, iops[READ]),
1060 .read_seq_string = tg_print_conf_uint,
1061 .write_string = tg_set_conf_uint,
1062 .max_write_len = 256,
1065 .name = "throttle.write_iops_device",
1066 .private = offsetof(struct throtl_grp, iops[WRITE]),
1067 .read_seq_string = tg_print_conf_uint,
1068 .write_string = tg_set_conf_uint,
1069 .max_write_len = 256,
1072 .name = "throttle.io_service_bytes",
1073 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
1074 offsetof(struct tg_stats_cpu, service_bytes)),
1075 .read_seq_string = tg_print_cpu_rwstat,
1078 .name = "throttle.io_serviced",
1079 .private = BLKCG_STAT_PRIV(BLKIO_POLICY_THROTL,
1080 offsetof(struct tg_stats_cpu, serviced)),
1081 .read_seq_string = tg_print_cpu_rwstat,
1083 { } /* terminate */
1086 static void throtl_shutdown_wq(struct request_queue *q)
1088 struct throtl_data *td = q->td;
1090 cancel_delayed_work_sync(&td->throtl_work);
1093 static struct blkio_policy_type blkio_policy_throtl = {
1094 .ops = {
1095 .blkio_init_group_fn = throtl_init_blkio_group,
1096 .blkio_exit_group_fn = throtl_exit_blkio_group,
1097 .blkio_reset_group_stats_fn = throtl_reset_group_stats,
1099 .plid = BLKIO_POLICY_THROTL,
1100 .pdata_size = sizeof(struct throtl_grp),
1101 .cftypes = throtl_files,
1104 bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1106 struct throtl_data *td = q->td;
1107 struct throtl_grp *tg;
1108 bool rw = bio_data_dir(bio), update_disptime = true;
1109 struct blkio_cgroup *blkcg;
1110 bool throttled = false;
1112 if (bio->bi_rw & REQ_THROTTLED) {
1113 bio->bi_rw &= ~REQ_THROTTLED;
1114 goto out;
1117 /* bio_associate_current() needs ioc, try creating */
1118 create_io_context(GFP_ATOMIC, q->node);
1121 * A throtl_grp pointer retrieved under rcu can be used to access
1122 * basic fields like stats and io rates. If a group has no rules,
1123 * just update the dispatch stats in lockless manner and return.
1125 rcu_read_lock();
1126 blkcg = bio_blkio_cgroup(bio);
1127 tg = throtl_lookup_tg(td, blkcg);
1128 if (tg) {
1129 if (tg_no_rule_group(tg, rw)) {
1130 throtl_update_dispatch_stats(tg_to_blkg(tg),
1131 bio->bi_size, bio->bi_rw);
1132 goto out_unlock_rcu;
1137 * Either group has not been allocated yet or it is not an unlimited
1138 * IO group
1140 spin_lock_irq(q->queue_lock);
1141 tg = throtl_lookup_create_tg(td, blkcg);
1142 if (unlikely(!tg))
1143 goto out_unlock;
1145 if (tg->nr_queued[rw]) {
1147 * There is already another bio queued in same dir. No
1148 * need to update dispatch time.
1150 update_disptime = false;
1151 goto queue_bio;
1155 /* Bio is with-in rate limit of group */
1156 if (tg_may_dispatch(td, tg, bio, NULL)) {
1157 throtl_charge_bio(tg, bio);
1160 * We need to trim slice even when bios are not being queued
1161 * otherwise it might happen that a bio is not queued for
1162 * a long time and slice keeps on extending and trim is not
1163 * called for a long time. Now if limits are reduced suddenly
1164 * we take into account all the IO dispatched so far at new
1165 * low rate and * newly queued IO gets a really long dispatch
1166 * time.
1168 * So keep on trimming slice even if bio is not queued.
1170 throtl_trim_slice(td, tg, rw);
1171 goto out_unlock;
1174 queue_bio:
1175 throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1176 " iodisp=%u iops=%u queued=%d/%d",
1177 rw == READ ? 'R' : 'W',
1178 tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1179 tg->io_disp[rw], tg->iops[rw],
1180 tg->nr_queued[READ], tg->nr_queued[WRITE]);
1182 bio_associate_current(bio);
1183 throtl_add_bio_tg(q->td, tg, bio);
1184 throttled = true;
1186 if (update_disptime) {
1187 tg_update_disptime(td, tg);
1188 throtl_schedule_next_dispatch(td);
1191 out_unlock:
1192 spin_unlock_irq(q->queue_lock);
1193 out_unlock_rcu:
1194 rcu_read_unlock();
1195 out:
1196 return throttled;
1200 * blk_throtl_drain - drain throttled bios
1201 * @q: request_queue to drain throttled bios for
1203 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1205 void blk_throtl_drain(struct request_queue *q)
1206 __releases(q->queue_lock) __acquires(q->queue_lock)
1208 struct throtl_data *td = q->td;
1209 struct throtl_rb_root *st = &td->tg_service_tree;
1210 struct throtl_grp *tg;
1211 struct bio_list bl;
1212 struct bio *bio;
1214 WARN_ON_ONCE(!queue_is_locked(q));
1216 bio_list_init(&bl);
1218 while ((tg = throtl_rb_first(st))) {
1219 throtl_dequeue_tg(td, tg);
1221 while ((bio = bio_list_peek(&tg->bio_lists[READ])))
1222 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1223 while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
1224 tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
1226 spin_unlock_irq(q->queue_lock);
1228 while ((bio = bio_list_pop(&bl)))
1229 generic_make_request(bio);
1231 spin_lock_irq(q->queue_lock);
1234 int blk_throtl_init(struct request_queue *q)
1236 struct throtl_data *td;
1237 struct blkio_group *blkg;
1239 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1240 if (!td)
1241 return -ENOMEM;
1243 td->tg_service_tree = THROTL_RB_ROOT;
1244 td->limits_changed = false;
1245 INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1247 q->td = td;
1248 td->queue = q;
1250 /* alloc and init root group. */
1251 rcu_read_lock();
1252 spin_lock_irq(q->queue_lock);
1254 blkg = blkg_lookup_create(&blkio_root_cgroup, q, true);
1255 if (!IS_ERR(blkg))
1256 td->root_tg = blkg_to_tg(blkg);
1258 spin_unlock_irq(q->queue_lock);
1259 rcu_read_unlock();
1261 if (!td->root_tg) {
1262 kfree(td);
1263 return -ENOMEM;
1265 return 0;
1268 void blk_throtl_exit(struct request_queue *q)
1270 BUG_ON(!q->td);
1271 throtl_shutdown_wq(q);
1272 kfree(q->td);
1275 static int __init throtl_init(void)
1277 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1278 if (!kthrotld_workqueue)
1279 panic("Failed to create kthrotld\n");
1281 blkio_policy_register(&blkio_policy_throtl);
1282 return 0;
1285 module_init(throtl_init);