Merge branch 'exynos-drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/libata-dev.git] / drivers / spi / spi.c
blobf996c600eb8c6a63b0d3122dd0b267a95d032555
1 /*
2 * SPI init/core code
4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/mutex.h>
28 #include <linux/of_device.h>
29 #include <linux/of_irq.h>
30 #include <linux/slab.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/spi/spi.h>
33 #include <linux/of_gpio.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/ioport.h>
40 #include <linux/acpi.h>
42 static void spidev_release(struct device *dev)
44 struct spi_device *spi = to_spi_device(dev);
46 /* spi masters may cleanup for released devices */
47 if (spi->master->cleanup)
48 spi->master->cleanup(spi);
50 spi_master_put(spi->master);
51 kfree(spi);
54 static ssize_t
55 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 const struct spi_device *spi = to_spi_device(dev);
59 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
62 static struct device_attribute spi_dev_attrs[] = {
63 __ATTR_RO(modalias),
64 __ATTR_NULL,
67 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
68 * and the sysfs version makes coldplug work too.
71 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
72 const struct spi_device *sdev)
74 while (id->name[0]) {
75 if (!strcmp(sdev->modalias, id->name))
76 return id;
77 id++;
79 return NULL;
82 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
84 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
86 return spi_match_id(sdrv->id_table, sdev);
88 EXPORT_SYMBOL_GPL(spi_get_device_id);
90 static int spi_match_device(struct device *dev, struct device_driver *drv)
92 const struct spi_device *spi = to_spi_device(dev);
93 const struct spi_driver *sdrv = to_spi_driver(drv);
95 /* Attempt an OF style match */
96 if (of_driver_match_device(dev, drv))
97 return 1;
99 /* Then try ACPI */
100 if (acpi_driver_match_device(dev, drv))
101 return 1;
103 if (sdrv->id_table)
104 return !!spi_match_id(sdrv->id_table, spi);
106 return strcmp(spi->modalias, drv->name) == 0;
109 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
111 const struct spi_device *spi = to_spi_device(dev);
113 add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
114 return 0;
117 #ifdef CONFIG_PM_SLEEP
118 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
120 int value = 0;
121 struct spi_driver *drv = to_spi_driver(dev->driver);
123 /* suspend will stop irqs and dma; no more i/o */
124 if (drv) {
125 if (drv->suspend)
126 value = drv->suspend(to_spi_device(dev), message);
127 else
128 dev_dbg(dev, "... can't suspend\n");
130 return value;
133 static int spi_legacy_resume(struct device *dev)
135 int value = 0;
136 struct spi_driver *drv = to_spi_driver(dev->driver);
138 /* resume may restart the i/o queue */
139 if (drv) {
140 if (drv->resume)
141 value = drv->resume(to_spi_device(dev));
142 else
143 dev_dbg(dev, "... can't resume\n");
145 return value;
148 static int spi_pm_suspend(struct device *dev)
150 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
152 if (pm)
153 return pm_generic_suspend(dev);
154 else
155 return spi_legacy_suspend(dev, PMSG_SUSPEND);
158 static int spi_pm_resume(struct device *dev)
160 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
162 if (pm)
163 return pm_generic_resume(dev);
164 else
165 return spi_legacy_resume(dev);
168 static int spi_pm_freeze(struct device *dev)
170 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
172 if (pm)
173 return pm_generic_freeze(dev);
174 else
175 return spi_legacy_suspend(dev, PMSG_FREEZE);
178 static int spi_pm_thaw(struct device *dev)
180 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
182 if (pm)
183 return pm_generic_thaw(dev);
184 else
185 return spi_legacy_resume(dev);
188 static int spi_pm_poweroff(struct device *dev)
190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
192 if (pm)
193 return pm_generic_poweroff(dev);
194 else
195 return spi_legacy_suspend(dev, PMSG_HIBERNATE);
198 static int spi_pm_restore(struct device *dev)
200 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
202 if (pm)
203 return pm_generic_restore(dev);
204 else
205 return spi_legacy_resume(dev);
207 #else
208 #define spi_pm_suspend NULL
209 #define spi_pm_resume NULL
210 #define spi_pm_freeze NULL
211 #define spi_pm_thaw NULL
212 #define spi_pm_poweroff NULL
213 #define spi_pm_restore NULL
214 #endif
216 static const struct dev_pm_ops spi_pm = {
217 .suspend = spi_pm_suspend,
218 .resume = spi_pm_resume,
219 .freeze = spi_pm_freeze,
220 .thaw = spi_pm_thaw,
221 .poweroff = spi_pm_poweroff,
222 .restore = spi_pm_restore,
223 SET_RUNTIME_PM_OPS(
224 pm_generic_runtime_suspend,
225 pm_generic_runtime_resume,
226 pm_generic_runtime_idle
230 struct bus_type spi_bus_type = {
231 .name = "spi",
232 .dev_attrs = spi_dev_attrs,
233 .match = spi_match_device,
234 .uevent = spi_uevent,
235 .pm = &spi_pm,
237 EXPORT_SYMBOL_GPL(spi_bus_type);
240 static int spi_drv_probe(struct device *dev)
242 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
244 return sdrv->probe(to_spi_device(dev));
247 static int spi_drv_remove(struct device *dev)
249 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
251 return sdrv->remove(to_spi_device(dev));
254 static void spi_drv_shutdown(struct device *dev)
256 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
258 sdrv->shutdown(to_spi_device(dev));
262 * spi_register_driver - register a SPI driver
263 * @sdrv: the driver to register
264 * Context: can sleep
266 int spi_register_driver(struct spi_driver *sdrv)
268 sdrv->driver.bus = &spi_bus_type;
269 if (sdrv->probe)
270 sdrv->driver.probe = spi_drv_probe;
271 if (sdrv->remove)
272 sdrv->driver.remove = spi_drv_remove;
273 if (sdrv->shutdown)
274 sdrv->driver.shutdown = spi_drv_shutdown;
275 return driver_register(&sdrv->driver);
277 EXPORT_SYMBOL_GPL(spi_register_driver);
279 /*-------------------------------------------------------------------------*/
281 /* SPI devices should normally not be created by SPI device drivers; that
282 * would make them board-specific. Similarly with SPI master drivers.
283 * Device registration normally goes into like arch/.../mach.../board-YYY.c
284 * with other readonly (flashable) information about mainboard devices.
287 struct boardinfo {
288 struct list_head list;
289 struct spi_board_info board_info;
292 static LIST_HEAD(board_list);
293 static LIST_HEAD(spi_master_list);
296 * Used to protect add/del opertion for board_info list and
297 * spi_master list, and their matching process
299 static DEFINE_MUTEX(board_lock);
302 * spi_alloc_device - Allocate a new SPI device
303 * @master: Controller to which device is connected
304 * Context: can sleep
306 * Allows a driver to allocate and initialize a spi_device without
307 * registering it immediately. This allows a driver to directly
308 * fill the spi_device with device parameters before calling
309 * spi_add_device() on it.
311 * Caller is responsible to call spi_add_device() on the returned
312 * spi_device structure to add it to the SPI master. If the caller
313 * needs to discard the spi_device without adding it, then it should
314 * call spi_dev_put() on it.
316 * Returns a pointer to the new device, or NULL.
318 struct spi_device *spi_alloc_device(struct spi_master *master)
320 struct spi_device *spi;
321 struct device *dev = master->dev.parent;
323 if (!spi_master_get(master))
324 return NULL;
326 spi = kzalloc(sizeof *spi, GFP_KERNEL);
327 if (!spi) {
328 dev_err(dev, "cannot alloc spi_device\n");
329 spi_master_put(master);
330 return NULL;
333 spi->master = master;
334 spi->dev.parent = &master->dev;
335 spi->dev.bus = &spi_bus_type;
336 spi->dev.release = spidev_release;
337 spi->cs_gpio = -EINVAL;
338 device_initialize(&spi->dev);
339 return spi;
341 EXPORT_SYMBOL_GPL(spi_alloc_device);
344 * spi_add_device - Add spi_device allocated with spi_alloc_device
345 * @spi: spi_device to register
347 * Companion function to spi_alloc_device. Devices allocated with
348 * spi_alloc_device can be added onto the spi bus with this function.
350 * Returns 0 on success; negative errno on failure
352 int spi_add_device(struct spi_device *spi)
354 static DEFINE_MUTEX(spi_add_lock);
355 struct spi_master *master = spi->master;
356 struct device *dev = master->dev.parent;
357 struct device *d;
358 int status;
360 /* Chipselects are numbered 0..max; validate. */
361 if (spi->chip_select >= master->num_chipselect) {
362 dev_err(dev, "cs%d >= max %d\n",
363 spi->chip_select,
364 master->num_chipselect);
365 return -EINVAL;
368 /* Set the bus ID string */
369 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
370 spi->chip_select);
373 /* We need to make sure there's no other device with this
374 * chipselect **BEFORE** we call setup(), else we'll trash
375 * its configuration. Lock against concurrent add() calls.
377 mutex_lock(&spi_add_lock);
379 d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
380 if (d != NULL) {
381 dev_err(dev, "chipselect %d already in use\n",
382 spi->chip_select);
383 put_device(d);
384 status = -EBUSY;
385 goto done;
388 if (master->cs_gpios)
389 spi->cs_gpio = master->cs_gpios[spi->chip_select];
391 /* Drivers may modify this initial i/o setup, but will
392 * normally rely on the device being setup. Devices
393 * using SPI_CS_HIGH can't coexist well otherwise...
395 status = spi_setup(spi);
396 if (status < 0) {
397 dev_err(dev, "can't setup %s, status %d\n",
398 dev_name(&spi->dev), status);
399 goto done;
402 /* Device may be bound to an active driver when this returns */
403 status = device_add(&spi->dev);
404 if (status < 0)
405 dev_err(dev, "can't add %s, status %d\n",
406 dev_name(&spi->dev), status);
407 else
408 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
410 done:
411 mutex_unlock(&spi_add_lock);
412 return status;
414 EXPORT_SYMBOL_GPL(spi_add_device);
417 * spi_new_device - instantiate one new SPI device
418 * @master: Controller to which device is connected
419 * @chip: Describes the SPI device
420 * Context: can sleep
422 * On typical mainboards, this is purely internal; and it's not needed
423 * after board init creates the hard-wired devices. Some development
424 * platforms may not be able to use spi_register_board_info though, and
425 * this is exported so that for example a USB or parport based adapter
426 * driver could add devices (which it would learn about out-of-band).
428 * Returns the new device, or NULL.
430 struct spi_device *spi_new_device(struct spi_master *master,
431 struct spi_board_info *chip)
433 struct spi_device *proxy;
434 int status;
436 /* NOTE: caller did any chip->bus_num checks necessary.
438 * Also, unless we change the return value convention to use
439 * error-or-pointer (not NULL-or-pointer), troubleshootability
440 * suggests syslogged diagnostics are best here (ugh).
443 proxy = spi_alloc_device(master);
444 if (!proxy)
445 return NULL;
447 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
449 proxy->chip_select = chip->chip_select;
450 proxy->max_speed_hz = chip->max_speed_hz;
451 proxy->mode = chip->mode;
452 proxy->irq = chip->irq;
453 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
454 proxy->dev.platform_data = (void *) chip->platform_data;
455 proxy->controller_data = chip->controller_data;
456 proxy->controller_state = NULL;
458 status = spi_add_device(proxy);
459 if (status < 0) {
460 spi_dev_put(proxy);
461 return NULL;
464 return proxy;
466 EXPORT_SYMBOL_GPL(spi_new_device);
468 static void spi_match_master_to_boardinfo(struct spi_master *master,
469 struct spi_board_info *bi)
471 struct spi_device *dev;
473 if (master->bus_num != bi->bus_num)
474 return;
476 dev = spi_new_device(master, bi);
477 if (!dev)
478 dev_err(master->dev.parent, "can't create new device for %s\n",
479 bi->modalias);
483 * spi_register_board_info - register SPI devices for a given board
484 * @info: array of chip descriptors
485 * @n: how many descriptors are provided
486 * Context: can sleep
488 * Board-specific early init code calls this (probably during arch_initcall)
489 * with segments of the SPI device table. Any device nodes are created later,
490 * after the relevant parent SPI controller (bus_num) is defined. We keep
491 * this table of devices forever, so that reloading a controller driver will
492 * not make Linux forget about these hard-wired devices.
494 * Other code can also call this, e.g. a particular add-on board might provide
495 * SPI devices through its expansion connector, so code initializing that board
496 * would naturally declare its SPI devices.
498 * The board info passed can safely be __initdata ... but be careful of
499 * any embedded pointers (platform_data, etc), they're copied as-is.
501 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
503 struct boardinfo *bi;
504 int i;
506 bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
507 if (!bi)
508 return -ENOMEM;
510 for (i = 0; i < n; i++, bi++, info++) {
511 struct spi_master *master;
513 memcpy(&bi->board_info, info, sizeof(*info));
514 mutex_lock(&board_lock);
515 list_add_tail(&bi->list, &board_list);
516 list_for_each_entry(master, &spi_master_list, list)
517 spi_match_master_to_boardinfo(master, &bi->board_info);
518 mutex_unlock(&board_lock);
521 return 0;
524 /*-------------------------------------------------------------------------*/
527 * spi_pump_messages - kthread work function which processes spi message queue
528 * @work: pointer to kthread work struct contained in the master struct
530 * This function checks if there is any spi message in the queue that
531 * needs processing and if so call out to the driver to initialize hardware
532 * and transfer each message.
535 static void spi_pump_messages(struct kthread_work *work)
537 struct spi_master *master =
538 container_of(work, struct spi_master, pump_messages);
539 unsigned long flags;
540 bool was_busy = false;
541 int ret;
543 /* Lock queue and check for queue work */
544 spin_lock_irqsave(&master->queue_lock, flags);
545 if (list_empty(&master->queue) || !master->running) {
546 if (master->busy && master->unprepare_transfer_hardware) {
547 ret = master->unprepare_transfer_hardware(master);
548 if (ret) {
549 spin_unlock_irqrestore(&master->queue_lock, flags);
550 dev_err(&master->dev,
551 "failed to unprepare transfer hardware\n");
552 return;
555 master->busy = false;
556 spin_unlock_irqrestore(&master->queue_lock, flags);
557 return;
560 /* Make sure we are not already running a message */
561 if (master->cur_msg) {
562 spin_unlock_irqrestore(&master->queue_lock, flags);
563 return;
565 /* Extract head of queue */
566 master->cur_msg =
567 list_entry(master->queue.next, struct spi_message, queue);
569 list_del_init(&master->cur_msg->queue);
570 if (master->busy)
571 was_busy = true;
572 else
573 master->busy = true;
574 spin_unlock_irqrestore(&master->queue_lock, flags);
576 if (!was_busy && master->prepare_transfer_hardware) {
577 ret = master->prepare_transfer_hardware(master);
578 if (ret) {
579 dev_err(&master->dev,
580 "failed to prepare transfer hardware\n");
581 return;
585 ret = master->transfer_one_message(master, master->cur_msg);
586 if (ret) {
587 dev_err(&master->dev,
588 "failed to transfer one message from queue\n");
589 return;
593 static int spi_init_queue(struct spi_master *master)
595 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
597 INIT_LIST_HEAD(&master->queue);
598 spin_lock_init(&master->queue_lock);
600 master->running = false;
601 master->busy = false;
603 init_kthread_worker(&master->kworker);
604 master->kworker_task = kthread_run(kthread_worker_fn,
605 &master->kworker,
606 dev_name(&master->dev));
607 if (IS_ERR(master->kworker_task)) {
608 dev_err(&master->dev, "failed to create message pump task\n");
609 return -ENOMEM;
611 init_kthread_work(&master->pump_messages, spi_pump_messages);
614 * Master config will indicate if this controller should run the
615 * message pump with high (realtime) priority to reduce the transfer
616 * latency on the bus by minimising the delay between a transfer
617 * request and the scheduling of the message pump thread. Without this
618 * setting the message pump thread will remain at default priority.
620 if (master->rt) {
621 dev_info(&master->dev,
622 "will run message pump with realtime priority\n");
623 sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
626 return 0;
630 * spi_get_next_queued_message() - called by driver to check for queued
631 * messages
632 * @master: the master to check for queued messages
634 * If there are more messages in the queue, the next message is returned from
635 * this call.
637 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
639 struct spi_message *next;
640 unsigned long flags;
642 /* get a pointer to the next message, if any */
643 spin_lock_irqsave(&master->queue_lock, flags);
644 if (list_empty(&master->queue))
645 next = NULL;
646 else
647 next = list_entry(master->queue.next,
648 struct spi_message, queue);
649 spin_unlock_irqrestore(&master->queue_lock, flags);
651 return next;
653 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
656 * spi_finalize_current_message() - the current message is complete
657 * @master: the master to return the message to
659 * Called by the driver to notify the core that the message in the front of the
660 * queue is complete and can be removed from the queue.
662 void spi_finalize_current_message(struct spi_master *master)
664 struct spi_message *mesg;
665 unsigned long flags;
667 spin_lock_irqsave(&master->queue_lock, flags);
668 mesg = master->cur_msg;
669 master->cur_msg = NULL;
671 queue_kthread_work(&master->kworker, &master->pump_messages);
672 spin_unlock_irqrestore(&master->queue_lock, flags);
674 mesg->state = NULL;
675 if (mesg->complete)
676 mesg->complete(mesg->context);
678 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
680 static int spi_start_queue(struct spi_master *master)
682 unsigned long flags;
684 spin_lock_irqsave(&master->queue_lock, flags);
686 if (master->running || master->busy) {
687 spin_unlock_irqrestore(&master->queue_lock, flags);
688 return -EBUSY;
691 master->running = true;
692 master->cur_msg = NULL;
693 spin_unlock_irqrestore(&master->queue_lock, flags);
695 queue_kthread_work(&master->kworker, &master->pump_messages);
697 return 0;
700 static int spi_stop_queue(struct spi_master *master)
702 unsigned long flags;
703 unsigned limit = 500;
704 int ret = 0;
706 spin_lock_irqsave(&master->queue_lock, flags);
709 * This is a bit lame, but is optimized for the common execution path.
710 * A wait_queue on the master->busy could be used, but then the common
711 * execution path (pump_messages) would be required to call wake_up or
712 * friends on every SPI message. Do this instead.
714 while ((!list_empty(&master->queue) || master->busy) && limit--) {
715 spin_unlock_irqrestore(&master->queue_lock, flags);
716 msleep(10);
717 spin_lock_irqsave(&master->queue_lock, flags);
720 if (!list_empty(&master->queue) || master->busy)
721 ret = -EBUSY;
722 else
723 master->running = false;
725 spin_unlock_irqrestore(&master->queue_lock, flags);
727 if (ret) {
728 dev_warn(&master->dev,
729 "could not stop message queue\n");
730 return ret;
732 return ret;
735 static int spi_destroy_queue(struct spi_master *master)
737 int ret;
739 ret = spi_stop_queue(master);
742 * flush_kthread_worker will block until all work is done.
743 * If the reason that stop_queue timed out is that the work will never
744 * finish, then it does no good to call flush/stop thread, so
745 * return anyway.
747 if (ret) {
748 dev_err(&master->dev, "problem destroying queue\n");
749 return ret;
752 flush_kthread_worker(&master->kworker);
753 kthread_stop(master->kworker_task);
755 return 0;
759 * spi_queued_transfer - transfer function for queued transfers
760 * @spi: spi device which is requesting transfer
761 * @msg: spi message which is to handled is queued to driver queue
763 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
765 struct spi_master *master = spi->master;
766 unsigned long flags;
768 spin_lock_irqsave(&master->queue_lock, flags);
770 if (!master->running) {
771 spin_unlock_irqrestore(&master->queue_lock, flags);
772 return -ESHUTDOWN;
774 msg->actual_length = 0;
775 msg->status = -EINPROGRESS;
777 list_add_tail(&msg->queue, &master->queue);
778 if (master->running && !master->busy)
779 queue_kthread_work(&master->kworker, &master->pump_messages);
781 spin_unlock_irqrestore(&master->queue_lock, flags);
782 return 0;
785 static int spi_master_initialize_queue(struct spi_master *master)
787 int ret;
789 master->queued = true;
790 master->transfer = spi_queued_transfer;
792 /* Initialize and start queue */
793 ret = spi_init_queue(master);
794 if (ret) {
795 dev_err(&master->dev, "problem initializing queue\n");
796 goto err_init_queue;
798 ret = spi_start_queue(master);
799 if (ret) {
800 dev_err(&master->dev, "problem starting queue\n");
801 goto err_start_queue;
804 return 0;
806 err_start_queue:
807 err_init_queue:
808 spi_destroy_queue(master);
809 return ret;
812 /*-------------------------------------------------------------------------*/
814 #if defined(CONFIG_OF)
816 * of_register_spi_devices() - Register child devices onto the SPI bus
817 * @master: Pointer to spi_master device
819 * Registers an spi_device for each child node of master node which has a 'reg'
820 * property.
822 static void of_register_spi_devices(struct spi_master *master)
824 struct spi_device *spi;
825 struct device_node *nc;
826 const __be32 *prop;
827 char modalias[SPI_NAME_SIZE + 4];
828 int rc;
829 int len;
831 if (!master->dev.of_node)
832 return;
834 for_each_available_child_of_node(master->dev.of_node, nc) {
835 /* Alloc an spi_device */
836 spi = spi_alloc_device(master);
837 if (!spi) {
838 dev_err(&master->dev, "spi_device alloc error for %s\n",
839 nc->full_name);
840 spi_dev_put(spi);
841 continue;
844 /* Select device driver */
845 if (of_modalias_node(nc, spi->modalias,
846 sizeof(spi->modalias)) < 0) {
847 dev_err(&master->dev, "cannot find modalias for %s\n",
848 nc->full_name);
849 spi_dev_put(spi);
850 continue;
853 /* Device address */
854 prop = of_get_property(nc, "reg", &len);
855 if (!prop || len < sizeof(*prop)) {
856 dev_err(&master->dev, "%s has no 'reg' property\n",
857 nc->full_name);
858 spi_dev_put(spi);
859 continue;
861 spi->chip_select = be32_to_cpup(prop);
863 /* Mode (clock phase/polarity/etc.) */
864 if (of_find_property(nc, "spi-cpha", NULL))
865 spi->mode |= SPI_CPHA;
866 if (of_find_property(nc, "spi-cpol", NULL))
867 spi->mode |= SPI_CPOL;
868 if (of_find_property(nc, "spi-cs-high", NULL))
869 spi->mode |= SPI_CS_HIGH;
870 if (of_find_property(nc, "spi-3wire", NULL))
871 spi->mode |= SPI_3WIRE;
873 /* Device speed */
874 prop = of_get_property(nc, "spi-max-frequency", &len);
875 if (!prop || len < sizeof(*prop)) {
876 dev_err(&master->dev, "%s has no 'spi-max-frequency' property\n",
877 nc->full_name);
878 spi_dev_put(spi);
879 continue;
881 spi->max_speed_hz = be32_to_cpup(prop);
883 /* IRQ */
884 spi->irq = irq_of_parse_and_map(nc, 0);
886 /* Store a pointer to the node in the device structure */
887 of_node_get(nc);
888 spi->dev.of_node = nc;
890 /* Register the new device */
891 snprintf(modalias, sizeof(modalias), "%s%s", SPI_MODULE_PREFIX,
892 spi->modalias);
893 request_module(modalias);
894 rc = spi_add_device(spi);
895 if (rc) {
896 dev_err(&master->dev, "spi_device register error %s\n",
897 nc->full_name);
898 spi_dev_put(spi);
903 #else
904 static void of_register_spi_devices(struct spi_master *master) { }
905 #endif
907 #ifdef CONFIG_ACPI
908 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
910 struct spi_device *spi = data;
912 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
913 struct acpi_resource_spi_serialbus *sb;
915 sb = &ares->data.spi_serial_bus;
916 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
917 spi->chip_select = sb->device_selection;
918 spi->max_speed_hz = sb->connection_speed;
920 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
921 spi->mode |= SPI_CPHA;
922 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
923 spi->mode |= SPI_CPOL;
924 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
925 spi->mode |= SPI_CS_HIGH;
927 } else if (spi->irq < 0) {
928 struct resource r;
930 if (acpi_dev_resource_interrupt(ares, 0, &r))
931 spi->irq = r.start;
934 /* Always tell the ACPI core to skip this resource */
935 return 1;
938 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
939 void *data, void **return_value)
941 struct spi_master *master = data;
942 struct list_head resource_list;
943 struct acpi_device *adev;
944 struct spi_device *spi;
945 int ret;
947 if (acpi_bus_get_device(handle, &adev))
948 return AE_OK;
949 if (acpi_bus_get_status(adev) || !adev->status.present)
950 return AE_OK;
952 spi = spi_alloc_device(master);
953 if (!spi) {
954 dev_err(&master->dev, "failed to allocate SPI device for %s\n",
955 dev_name(&adev->dev));
956 return AE_NO_MEMORY;
959 ACPI_HANDLE_SET(&spi->dev, handle);
960 spi->irq = -1;
962 INIT_LIST_HEAD(&resource_list);
963 ret = acpi_dev_get_resources(adev, &resource_list,
964 acpi_spi_add_resource, spi);
965 acpi_dev_free_resource_list(&resource_list);
967 if (ret < 0 || !spi->max_speed_hz) {
968 spi_dev_put(spi);
969 return AE_OK;
972 strlcpy(spi->modalias, dev_name(&adev->dev), sizeof(spi->modalias));
973 if (spi_add_device(spi)) {
974 dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
975 dev_name(&adev->dev));
976 spi_dev_put(spi);
979 return AE_OK;
982 static void acpi_register_spi_devices(struct spi_master *master)
984 acpi_status status;
985 acpi_handle handle;
987 handle = ACPI_HANDLE(&master->dev);
988 if (!handle)
989 return;
991 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
992 acpi_spi_add_device, NULL,
993 master, NULL);
994 if (ACPI_FAILURE(status))
995 dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
997 #else
998 static inline void acpi_register_spi_devices(struct spi_master *master) {}
999 #endif /* CONFIG_ACPI */
1001 static void spi_master_release(struct device *dev)
1003 struct spi_master *master;
1005 master = container_of(dev, struct spi_master, dev);
1006 kfree(master);
1009 static struct class spi_master_class = {
1010 .name = "spi_master",
1011 .owner = THIS_MODULE,
1012 .dev_release = spi_master_release,
1018 * spi_alloc_master - allocate SPI master controller
1019 * @dev: the controller, possibly using the platform_bus
1020 * @size: how much zeroed driver-private data to allocate; the pointer to this
1021 * memory is in the driver_data field of the returned device,
1022 * accessible with spi_master_get_devdata().
1023 * Context: can sleep
1025 * This call is used only by SPI master controller drivers, which are the
1026 * only ones directly touching chip registers. It's how they allocate
1027 * an spi_master structure, prior to calling spi_register_master().
1029 * This must be called from context that can sleep. It returns the SPI
1030 * master structure on success, else NULL.
1032 * The caller is responsible for assigning the bus number and initializing
1033 * the master's methods before calling spi_register_master(); and (after errors
1034 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1035 * leak.
1037 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1039 struct spi_master *master;
1041 if (!dev)
1042 return NULL;
1044 master = kzalloc(size + sizeof *master, GFP_KERNEL);
1045 if (!master)
1046 return NULL;
1048 device_initialize(&master->dev);
1049 master->bus_num = -1;
1050 master->num_chipselect = 1;
1051 master->dev.class = &spi_master_class;
1052 master->dev.parent = get_device(dev);
1053 spi_master_set_devdata(master, &master[1]);
1055 return master;
1057 EXPORT_SYMBOL_GPL(spi_alloc_master);
1059 #ifdef CONFIG_OF
1060 static int of_spi_register_master(struct spi_master *master)
1062 int nb, i, *cs;
1063 struct device_node *np = master->dev.of_node;
1065 if (!np)
1066 return 0;
1068 nb = of_gpio_named_count(np, "cs-gpios");
1069 master->num_chipselect = max(nb, (int)master->num_chipselect);
1071 if (nb < 1)
1072 return 0;
1074 cs = devm_kzalloc(&master->dev,
1075 sizeof(int) * master->num_chipselect,
1076 GFP_KERNEL);
1077 master->cs_gpios = cs;
1079 if (!master->cs_gpios)
1080 return -ENOMEM;
1082 for (i = 0; i < master->num_chipselect; i++)
1083 cs[i] = -EINVAL;
1085 for (i = 0; i < nb; i++)
1086 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1088 return 0;
1090 #else
1091 static int of_spi_register_master(struct spi_master *master)
1093 return 0;
1095 #endif
1098 * spi_register_master - register SPI master controller
1099 * @master: initialized master, originally from spi_alloc_master()
1100 * Context: can sleep
1102 * SPI master controllers connect to their drivers using some non-SPI bus,
1103 * such as the platform bus. The final stage of probe() in that code
1104 * includes calling spi_register_master() to hook up to this SPI bus glue.
1106 * SPI controllers use board specific (often SOC specific) bus numbers,
1107 * and board-specific addressing for SPI devices combines those numbers
1108 * with chip select numbers. Since SPI does not directly support dynamic
1109 * device identification, boards need configuration tables telling which
1110 * chip is at which address.
1112 * This must be called from context that can sleep. It returns zero on
1113 * success, else a negative error code (dropping the master's refcount).
1114 * After a successful return, the caller is responsible for calling
1115 * spi_unregister_master().
1117 int spi_register_master(struct spi_master *master)
1119 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1120 struct device *dev = master->dev.parent;
1121 struct boardinfo *bi;
1122 int status = -ENODEV;
1123 int dynamic = 0;
1125 if (!dev)
1126 return -ENODEV;
1128 status = of_spi_register_master(master);
1129 if (status)
1130 return status;
1132 /* even if it's just one always-selected device, there must
1133 * be at least one chipselect
1135 if (master->num_chipselect == 0)
1136 return -EINVAL;
1138 if ((master->bus_num < 0) && master->dev.of_node)
1139 master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1141 /* convention: dynamically assigned bus IDs count down from the max */
1142 if (master->bus_num < 0) {
1143 /* FIXME switch to an IDR based scheme, something like
1144 * I2C now uses, so we can't run out of "dynamic" IDs
1146 master->bus_num = atomic_dec_return(&dyn_bus_id);
1147 dynamic = 1;
1150 spin_lock_init(&master->bus_lock_spinlock);
1151 mutex_init(&master->bus_lock_mutex);
1152 master->bus_lock_flag = 0;
1154 /* register the device, then userspace will see it.
1155 * registration fails if the bus ID is in use.
1157 dev_set_name(&master->dev, "spi%u", master->bus_num);
1158 status = device_add(&master->dev);
1159 if (status < 0)
1160 goto done;
1161 dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1162 dynamic ? " (dynamic)" : "");
1164 /* If we're using a queued driver, start the queue */
1165 if (master->transfer)
1166 dev_info(dev, "master is unqueued, this is deprecated\n");
1167 else {
1168 status = spi_master_initialize_queue(master);
1169 if (status) {
1170 device_unregister(&master->dev);
1171 goto done;
1175 mutex_lock(&board_lock);
1176 list_add_tail(&master->list, &spi_master_list);
1177 list_for_each_entry(bi, &board_list, list)
1178 spi_match_master_to_boardinfo(master, &bi->board_info);
1179 mutex_unlock(&board_lock);
1181 /* Register devices from the device tree and ACPI */
1182 of_register_spi_devices(master);
1183 acpi_register_spi_devices(master);
1184 done:
1185 return status;
1187 EXPORT_SYMBOL_GPL(spi_register_master);
1189 static int __unregister(struct device *dev, void *null)
1191 spi_unregister_device(to_spi_device(dev));
1192 return 0;
1196 * spi_unregister_master - unregister SPI master controller
1197 * @master: the master being unregistered
1198 * Context: can sleep
1200 * This call is used only by SPI master controller drivers, which are the
1201 * only ones directly touching chip registers.
1203 * This must be called from context that can sleep.
1205 void spi_unregister_master(struct spi_master *master)
1207 int dummy;
1209 if (master->queued) {
1210 if (spi_destroy_queue(master))
1211 dev_err(&master->dev, "queue remove failed\n");
1214 mutex_lock(&board_lock);
1215 list_del(&master->list);
1216 mutex_unlock(&board_lock);
1218 dummy = device_for_each_child(&master->dev, NULL, __unregister);
1219 device_unregister(&master->dev);
1221 EXPORT_SYMBOL_GPL(spi_unregister_master);
1223 int spi_master_suspend(struct spi_master *master)
1225 int ret;
1227 /* Basically no-ops for non-queued masters */
1228 if (!master->queued)
1229 return 0;
1231 ret = spi_stop_queue(master);
1232 if (ret)
1233 dev_err(&master->dev, "queue stop failed\n");
1235 return ret;
1237 EXPORT_SYMBOL_GPL(spi_master_suspend);
1239 int spi_master_resume(struct spi_master *master)
1241 int ret;
1243 if (!master->queued)
1244 return 0;
1246 ret = spi_start_queue(master);
1247 if (ret)
1248 dev_err(&master->dev, "queue restart failed\n");
1250 return ret;
1252 EXPORT_SYMBOL_GPL(spi_master_resume);
1254 static int __spi_master_match(struct device *dev, const void *data)
1256 struct spi_master *m;
1257 const u16 *bus_num = data;
1259 m = container_of(dev, struct spi_master, dev);
1260 return m->bus_num == *bus_num;
1264 * spi_busnum_to_master - look up master associated with bus_num
1265 * @bus_num: the master's bus number
1266 * Context: can sleep
1268 * This call may be used with devices that are registered after
1269 * arch init time. It returns a refcounted pointer to the relevant
1270 * spi_master (which the caller must release), or NULL if there is
1271 * no such master registered.
1273 struct spi_master *spi_busnum_to_master(u16 bus_num)
1275 struct device *dev;
1276 struct spi_master *master = NULL;
1278 dev = class_find_device(&spi_master_class, NULL, &bus_num,
1279 __spi_master_match);
1280 if (dev)
1281 master = container_of(dev, struct spi_master, dev);
1282 /* reference got in class_find_device */
1283 return master;
1285 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1288 /*-------------------------------------------------------------------------*/
1290 /* Core methods for SPI master protocol drivers. Some of the
1291 * other core methods are currently defined as inline functions.
1295 * spi_setup - setup SPI mode and clock rate
1296 * @spi: the device whose settings are being modified
1297 * Context: can sleep, and no requests are queued to the device
1299 * SPI protocol drivers may need to update the transfer mode if the
1300 * device doesn't work with its default. They may likewise need
1301 * to update clock rates or word sizes from initial values. This function
1302 * changes those settings, and must be called from a context that can sleep.
1303 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1304 * effect the next time the device is selected and data is transferred to
1305 * or from it. When this function returns, the spi device is deselected.
1307 * Note that this call will fail if the protocol driver specifies an option
1308 * that the underlying controller or its driver does not support. For
1309 * example, not all hardware supports wire transfers using nine bit words,
1310 * LSB-first wire encoding, or active-high chipselects.
1312 int spi_setup(struct spi_device *spi)
1314 unsigned bad_bits;
1315 int status = 0;
1317 /* help drivers fail *cleanly* when they need options
1318 * that aren't supported with their current master
1320 bad_bits = spi->mode & ~spi->master->mode_bits;
1321 if (bad_bits) {
1322 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1323 bad_bits);
1324 return -EINVAL;
1327 if (!spi->bits_per_word)
1328 spi->bits_per_word = 8;
1330 if (spi->master->setup)
1331 status = spi->master->setup(spi);
1333 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
1334 "%u bits/w, %u Hz max --> %d\n",
1335 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1336 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1337 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1338 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
1339 (spi->mode & SPI_LOOP) ? "loopback, " : "",
1340 spi->bits_per_word, spi->max_speed_hz,
1341 status);
1343 return status;
1345 EXPORT_SYMBOL_GPL(spi_setup);
1347 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1349 struct spi_master *master = spi->master;
1350 struct spi_transfer *xfer;
1352 /* Half-duplex links include original MicroWire, and ones with
1353 * only one data pin like SPI_3WIRE (switches direction) or where
1354 * either MOSI or MISO is missing. They can also be caused by
1355 * software limitations.
1357 if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1358 || (spi->mode & SPI_3WIRE)) {
1359 unsigned flags = master->flags;
1361 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1362 if (xfer->rx_buf && xfer->tx_buf)
1363 return -EINVAL;
1364 if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1365 return -EINVAL;
1366 if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1367 return -EINVAL;
1372 * Set transfer bits_per_word and max speed as spi device default if
1373 * it is not set for this transfer.
1375 list_for_each_entry(xfer, &message->transfers, transfer_list) {
1376 if (!xfer->bits_per_word)
1377 xfer->bits_per_word = spi->bits_per_word;
1378 if (!xfer->speed_hz)
1379 xfer->speed_hz = spi->max_speed_hz;
1382 message->spi = spi;
1383 message->status = -EINPROGRESS;
1384 return master->transfer(spi, message);
1388 * spi_async - asynchronous SPI transfer
1389 * @spi: device with which data will be exchanged
1390 * @message: describes the data transfers, including completion callback
1391 * Context: any (irqs may be blocked, etc)
1393 * This call may be used in_irq and other contexts which can't sleep,
1394 * as well as from task contexts which can sleep.
1396 * The completion callback is invoked in a context which can't sleep.
1397 * Before that invocation, the value of message->status is undefined.
1398 * When the callback is issued, message->status holds either zero (to
1399 * indicate complete success) or a negative error code. After that
1400 * callback returns, the driver which issued the transfer request may
1401 * deallocate the associated memory; it's no longer in use by any SPI
1402 * core or controller driver code.
1404 * Note that although all messages to a spi_device are handled in
1405 * FIFO order, messages may go to different devices in other orders.
1406 * Some device might be higher priority, or have various "hard" access
1407 * time requirements, for example.
1409 * On detection of any fault during the transfer, processing of
1410 * the entire message is aborted, and the device is deselected.
1411 * Until returning from the associated message completion callback,
1412 * no other spi_message queued to that device will be processed.
1413 * (This rule applies equally to all the synchronous transfer calls,
1414 * which are wrappers around this core asynchronous primitive.)
1416 int spi_async(struct spi_device *spi, struct spi_message *message)
1418 struct spi_master *master = spi->master;
1419 int ret;
1420 unsigned long flags;
1422 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1424 if (master->bus_lock_flag)
1425 ret = -EBUSY;
1426 else
1427 ret = __spi_async(spi, message);
1429 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1431 return ret;
1433 EXPORT_SYMBOL_GPL(spi_async);
1436 * spi_async_locked - version of spi_async with exclusive bus usage
1437 * @spi: device with which data will be exchanged
1438 * @message: describes the data transfers, including completion callback
1439 * Context: any (irqs may be blocked, etc)
1441 * This call may be used in_irq and other contexts which can't sleep,
1442 * as well as from task contexts which can sleep.
1444 * The completion callback is invoked in a context which can't sleep.
1445 * Before that invocation, the value of message->status is undefined.
1446 * When the callback is issued, message->status holds either zero (to
1447 * indicate complete success) or a negative error code. After that
1448 * callback returns, the driver which issued the transfer request may
1449 * deallocate the associated memory; it's no longer in use by any SPI
1450 * core or controller driver code.
1452 * Note that although all messages to a spi_device are handled in
1453 * FIFO order, messages may go to different devices in other orders.
1454 * Some device might be higher priority, or have various "hard" access
1455 * time requirements, for example.
1457 * On detection of any fault during the transfer, processing of
1458 * the entire message is aborted, and the device is deselected.
1459 * Until returning from the associated message completion callback,
1460 * no other spi_message queued to that device will be processed.
1461 * (This rule applies equally to all the synchronous transfer calls,
1462 * which are wrappers around this core asynchronous primitive.)
1464 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
1466 struct spi_master *master = spi->master;
1467 int ret;
1468 unsigned long flags;
1470 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1472 ret = __spi_async(spi, message);
1474 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1476 return ret;
1479 EXPORT_SYMBOL_GPL(spi_async_locked);
1482 /*-------------------------------------------------------------------------*/
1484 /* Utility methods for SPI master protocol drivers, layered on
1485 * top of the core. Some other utility methods are defined as
1486 * inline functions.
1489 static void spi_complete(void *arg)
1491 complete(arg);
1494 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
1495 int bus_locked)
1497 DECLARE_COMPLETION_ONSTACK(done);
1498 int status;
1499 struct spi_master *master = spi->master;
1501 message->complete = spi_complete;
1502 message->context = &done;
1504 if (!bus_locked)
1505 mutex_lock(&master->bus_lock_mutex);
1507 status = spi_async_locked(spi, message);
1509 if (!bus_locked)
1510 mutex_unlock(&master->bus_lock_mutex);
1512 if (status == 0) {
1513 wait_for_completion(&done);
1514 status = message->status;
1516 message->context = NULL;
1517 return status;
1521 * spi_sync - blocking/synchronous SPI data transfers
1522 * @spi: device with which data will be exchanged
1523 * @message: describes the data transfers
1524 * Context: can sleep
1526 * This call may only be used from a context that may sleep. The sleep
1527 * is non-interruptible, and has no timeout. Low-overhead controller
1528 * drivers may DMA directly into and out of the message buffers.
1530 * Note that the SPI device's chip select is active during the message,
1531 * and then is normally disabled between messages. Drivers for some
1532 * frequently-used devices may want to minimize costs of selecting a chip,
1533 * by leaving it selected in anticipation that the next message will go
1534 * to the same chip. (That may increase power usage.)
1536 * Also, the caller is guaranteeing that the memory associated with the
1537 * message will not be freed before this call returns.
1539 * It returns zero on success, else a negative error code.
1541 int spi_sync(struct spi_device *spi, struct spi_message *message)
1543 return __spi_sync(spi, message, 0);
1545 EXPORT_SYMBOL_GPL(spi_sync);
1548 * spi_sync_locked - version of spi_sync with exclusive bus usage
1549 * @spi: device with which data will be exchanged
1550 * @message: describes the data transfers
1551 * Context: can sleep
1553 * This call may only be used from a context that may sleep. The sleep
1554 * is non-interruptible, and has no timeout. Low-overhead controller
1555 * drivers may DMA directly into and out of the message buffers.
1557 * This call should be used by drivers that require exclusive access to the
1558 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
1559 * be released by a spi_bus_unlock call when the exclusive access is over.
1561 * It returns zero on success, else a negative error code.
1563 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
1565 return __spi_sync(spi, message, 1);
1567 EXPORT_SYMBOL_GPL(spi_sync_locked);
1570 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
1571 * @master: SPI bus master that should be locked for exclusive bus access
1572 * Context: can sleep
1574 * This call may only be used from a context that may sleep. The sleep
1575 * is non-interruptible, and has no timeout.
1577 * This call should be used by drivers that require exclusive access to the
1578 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
1579 * exclusive access is over. Data transfer must be done by spi_sync_locked
1580 * and spi_async_locked calls when the SPI bus lock is held.
1582 * It returns zero on success, else a negative error code.
1584 int spi_bus_lock(struct spi_master *master)
1586 unsigned long flags;
1588 mutex_lock(&master->bus_lock_mutex);
1590 spin_lock_irqsave(&master->bus_lock_spinlock, flags);
1591 master->bus_lock_flag = 1;
1592 spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
1594 /* mutex remains locked until spi_bus_unlock is called */
1596 return 0;
1598 EXPORT_SYMBOL_GPL(spi_bus_lock);
1601 * spi_bus_unlock - release the lock for exclusive SPI bus usage
1602 * @master: SPI bus master that was locked for exclusive bus access
1603 * Context: can sleep
1605 * This call may only be used from a context that may sleep. The sleep
1606 * is non-interruptible, and has no timeout.
1608 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
1609 * call.
1611 * It returns zero on success, else a negative error code.
1613 int spi_bus_unlock(struct spi_master *master)
1615 master->bus_lock_flag = 0;
1617 mutex_unlock(&master->bus_lock_mutex);
1619 return 0;
1621 EXPORT_SYMBOL_GPL(spi_bus_unlock);
1623 /* portable code must never pass more than 32 bytes */
1624 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES)
1626 static u8 *buf;
1629 * spi_write_then_read - SPI synchronous write followed by read
1630 * @spi: device with which data will be exchanged
1631 * @txbuf: data to be written (need not be dma-safe)
1632 * @n_tx: size of txbuf, in bytes
1633 * @rxbuf: buffer into which data will be read (need not be dma-safe)
1634 * @n_rx: size of rxbuf, in bytes
1635 * Context: can sleep
1637 * This performs a half duplex MicroWire style transaction with the
1638 * device, sending txbuf and then reading rxbuf. The return value
1639 * is zero for success, else a negative errno status code.
1640 * This call may only be used from a context that may sleep.
1642 * Parameters to this routine are always copied using a small buffer;
1643 * portable code should never use this for more than 32 bytes.
1644 * Performance-sensitive or bulk transfer code should instead use
1645 * spi_{async,sync}() calls with dma-safe buffers.
1647 int spi_write_then_read(struct spi_device *spi,
1648 const void *txbuf, unsigned n_tx,
1649 void *rxbuf, unsigned n_rx)
1651 static DEFINE_MUTEX(lock);
1653 int status;
1654 struct spi_message message;
1655 struct spi_transfer x[2];
1656 u8 *local_buf;
1658 /* Use preallocated DMA-safe buffer if we can. We can't avoid
1659 * copying here, (as a pure convenience thing), but we can
1660 * keep heap costs out of the hot path unless someone else is
1661 * using the pre-allocated buffer or the transfer is too large.
1663 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
1664 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
1665 GFP_KERNEL | GFP_DMA);
1666 if (!local_buf)
1667 return -ENOMEM;
1668 } else {
1669 local_buf = buf;
1672 spi_message_init(&message);
1673 memset(x, 0, sizeof x);
1674 if (n_tx) {
1675 x[0].len = n_tx;
1676 spi_message_add_tail(&x[0], &message);
1678 if (n_rx) {
1679 x[1].len = n_rx;
1680 spi_message_add_tail(&x[1], &message);
1683 memcpy(local_buf, txbuf, n_tx);
1684 x[0].tx_buf = local_buf;
1685 x[1].rx_buf = local_buf + n_tx;
1687 /* do the i/o */
1688 status = spi_sync(spi, &message);
1689 if (status == 0)
1690 memcpy(rxbuf, x[1].rx_buf, n_rx);
1692 if (x[0].tx_buf == buf)
1693 mutex_unlock(&lock);
1694 else
1695 kfree(local_buf);
1697 return status;
1699 EXPORT_SYMBOL_GPL(spi_write_then_read);
1701 /*-------------------------------------------------------------------------*/
1703 static int __init spi_init(void)
1705 int status;
1707 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
1708 if (!buf) {
1709 status = -ENOMEM;
1710 goto err0;
1713 status = bus_register(&spi_bus_type);
1714 if (status < 0)
1715 goto err1;
1717 status = class_register(&spi_master_class);
1718 if (status < 0)
1719 goto err2;
1720 return 0;
1722 err2:
1723 bus_unregister(&spi_bus_type);
1724 err1:
1725 kfree(buf);
1726 buf = NULL;
1727 err0:
1728 return status;
1731 /* board_info is normally registered in arch_initcall(),
1732 * but even essential drivers wait till later
1734 * REVISIT only boardinfo really needs static linking. the rest (device and
1735 * driver registration) _could_ be dynamically linked (modular) ... costs
1736 * include needing to have boardinfo data structures be much more public.
1738 postcore_initcall(spi_init);