Merge branch 'exynos-drm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6/libata-dev.git] / drivers / mmc / core / core.c
blob08a3cf2a7610882c3e2957a61e9318604adeeaa4
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/suspend.h>
27 #include <linux/fault-inject.h>
28 #include <linux/random.h>
29 #include <linux/slab.h>
31 #include <linux/mmc/card.h>
32 #include <linux/mmc/host.h>
33 #include <linux/mmc/mmc.h>
34 #include <linux/mmc/sd.h>
36 #include "core.h"
37 #include "bus.h"
38 #include "host.h"
39 #include "sdio_bus.h"
41 #include "mmc_ops.h"
42 #include "sd_ops.h"
43 #include "sdio_ops.h"
45 /* If the device is not responding */
46 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
49 * Background operations can take a long time, depending on the housekeeping
50 * operations the card has to perform.
52 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
54 static struct workqueue_struct *workqueue;
55 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
58 * Enabling software CRCs on the data blocks can be a significant (30%)
59 * performance cost, and for other reasons may not always be desired.
60 * So we allow it it to be disabled.
62 bool use_spi_crc = 1;
63 module_param(use_spi_crc, bool, 0);
66 * We normally treat cards as removed during suspend if they are not
67 * known to be on a non-removable bus, to avoid the risk of writing
68 * back data to a different card after resume. Allow this to be
69 * overridden if necessary.
71 #ifdef CONFIG_MMC_UNSAFE_RESUME
72 bool mmc_assume_removable;
73 #else
74 bool mmc_assume_removable = 1;
75 #endif
76 EXPORT_SYMBOL(mmc_assume_removable);
77 module_param_named(removable, mmc_assume_removable, bool, 0644);
78 MODULE_PARM_DESC(
79 removable,
80 "MMC/SD cards are removable and may be removed during suspend");
83 * Internal function. Schedule delayed work in the MMC work queue.
85 static int mmc_schedule_delayed_work(struct delayed_work *work,
86 unsigned long delay)
88 return queue_delayed_work(workqueue, work, delay);
92 * Internal function. Flush all scheduled work from the MMC work queue.
94 static void mmc_flush_scheduled_work(void)
96 flush_workqueue(workqueue);
99 #ifdef CONFIG_FAIL_MMC_REQUEST
102 * Internal function. Inject random data errors.
103 * If mmc_data is NULL no errors are injected.
105 static void mmc_should_fail_request(struct mmc_host *host,
106 struct mmc_request *mrq)
108 struct mmc_command *cmd = mrq->cmd;
109 struct mmc_data *data = mrq->data;
110 static const int data_errors[] = {
111 -ETIMEDOUT,
112 -EILSEQ,
113 -EIO,
116 if (!data)
117 return;
119 if (cmd->error || data->error ||
120 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
121 return;
123 data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
124 data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
127 #else /* CONFIG_FAIL_MMC_REQUEST */
129 static inline void mmc_should_fail_request(struct mmc_host *host,
130 struct mmc_request *mrq)
134 #endif /* CONFIG_FAIL_MMC_REQUEST */
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
149 if (err && cmd->retries && mmc_host_is_spi(host)) {
150 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
151 cmd->retries = 0;
154 if (err && cmd->retries && !mmc_card_removed(host->card)) {
156 * Request starter must handle retries - see
157 * mmc_wait_for_req_done().
159 if (mrq->done)
160 mrq->done(mrq);
161 } else {
162 mmc_should_fail_request(host, mrq);
164 led_trigger_event(host->led, LED_OFF);
166 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
167 mmc_hostname(host), cmd->opcode, err,
168 cmd->resp[0], cmd->resp[1],
169 cmd->resp[2], cmd->resp[3]);
171 if (mrq->data) {
172 pr_debug("%s: %d bytes transferred: %d\n",
173 mmc_hostname(host),
174 mrq->data->bytes_xfered, mrq->data->error);
177 if (mrq->stop) {
178 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
179 mmc_hostname(host), mrq->stop->opcode,
180 mrq->stop->error,
181 mrq->stop->resp[0], mrq->stop->resp[1],
182 mrq->stop->resp[2], mrq->stop->resp[3]);
185 if (mrq->done)
186 mrq->done(mrq);
188 mmc_host_clk_release(host);
192 EXPORT_SYMBOL(mmc_request_done);
194 static void
195 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
197 #ifdef CONFIG_MMC_DEBUG
198 unsigned int i, sz;
199 struct scatterlist *sg;
200 #endif
202 if (mrq->sbc) {
203 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
204 mmc_hostname(host), mrq->sbc->opcode,
205 mrq->sbc->arg, mrq->sbc->flags);
208 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
209 mmc_hostname(host), mrq->cmd->opcode,
210 mrq->cmd->arg, mrq->cmd->flags);
212 if (mrq->data) {
213 pr_debug("%s: blksz %d blocks %d flags %08x "
214 "tsac %d ms nsac %d\n",
215 mmc_hostname(host), mrq->data->blksz,
216 mrq->data->blocks, mrq->data->flags,
217 mrq->data->timeout_ns / 1000000,
218 mrq->data->timeout_clks);
221 if (mrq->stop) {
222 pr_debug("%s: CMD%u arg %08x flags %08x\n",
223 mmc_hostname(host), mrq->stop->opcode,
224 mrq->stop->arg, mrq->stop->flags);
227 WARN_ON(!host->claimed);
229 mrq->cmd->error = 0;
230 mrq->cmd->mrq = mrq;
231 if (mrq->data) {
232 BUG_ON(mrq->data->blksz > host->max_blk_size);
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
237 #ifdef CONFIG_MMC_DEBUG
238 sz = 0;
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242 #endif
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
253 mmc_host_clk_hold(host);
254 led_trigger_event(host->led, LED_FULL);
255 host->ops->request(host, mrq);
259 * mmc_start_bkops - start BKOPS for supported cards
260 * @card: MMC card to start BKOPS
261 * @form_exception: A flag to indicate if this function was
262 * called due to an exception raised by the card
264 * Start background operations whenever requested.
265 * When the urgent BKOPS bit is set in a R1 command response
266 * then background operations should be started immediately.
268 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
270 int err;
271 int timeout;
272 bool use_busy_signal;
274 BUG_ON(!card);
276 if (!card->ext_csd.bkops_en || mmc_card_doing_bkops(card))
277 return;
279 err = mmc_read_bkops_status(card);
280 if (err) {
281 pr_err("%s: Failed to read bkops status: %d\n",
282 mmc_hostname(card->host), err);
283 return;
286 if (!card->ext_csd.raw_bkops_status)
287 return;
289 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
290 from_exception)
291 return;
293 mmc_claim_host(card->host);
294 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
295 timeout = MMC_BKOPS_MAX_TIMEOUT;
296 use_busy_signal = true;
297 } else {
298 timeout = 0;
299 use_busy_signal = false;
302 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
303 EXT_CSD_BKOPS_START, 1, timeout, use_busy_signal);
304 if (err) {
305 pr_warn("%s: Error %d starting bkops\n",
306 mmc_hostname(card->host), err);
307 goto out;
311 * For urgent bkops status (LEVEL_2 and more)
312 * bkops executed synchronously, otherwise
313 * the operation is in progress
315 if (!use_busy_signal)
316 mmc_card_set_doing_bkops(card);
317 out:
318 mmc_release_host(card->host);
320 EXPORT_SYMBOL(mmc_start_bkops);
323 * mmc_wait_data_done() - done callback for data request
324 * @mrq: done data request
326 * Wakes up mmc context, passed as a callback to host controller driver
328 static void mmc_wait_data_done(struct mmc_request *mrq)
330 mrq->host->context_info.is_done_rcv = true;
331 wake_up_interruptible(&mrq->host->context_info.wait);
334 static void mmc_wait_done(struct mmc_request *mrq)
336 complete(&mrq->completion);
340 *__mmc_start_data_req() - starts data request
341 * @host: MMC host to start the request
342 * @mrq: data request to start
344 * Sets the done callback to be called when request is completed by the card.
345 * Starts data mmc request execution
347 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
349 mrq->done = mmc_wait_data_done;
350 mrq->host = host;
351 if (mmc_card_removed(host->card)) {
352 mrq->cmd->error = -ENOMEDIUM;
353 mmc_wait_data_done(mrq);
354 return -ENOMEDIUM;
356 mmc_start_request(host, mrq);
358 return 0;
361 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
363 init_completion(&mrq->completion);
364 mrq->done = mmc_wait_done;
365 if (mmc_card_removed(host->card)) {
366 mrq->cmd->error = -ENOMEDIUM;
367 complete(&mrq->completion);
368 return -ENOMEDIUM;
370 mmc_start_request(host, mrq);
371 return 0;
375 * mmc_wait_for_data_req_done() - wait for request completed
376 * @host: MMC host to prepare the command.
377 * @mrq: MMC request to wait for
379 * Blocks MMC context till host controller will ack end of data request
380 * execution or new request notification arrives from the block layer.
381 * Handles command retries.
383 * Returns enum mmc_blk_status after checking errors.
385 static int mmc_wait_for_data_req_done(struct mmc_host *host,
386 struct mmc_request *mrq,
387 struct mmc_async_req *next_req)
389 struct mmc_command *cmd;
390 struct mmc_context_info *context_info = &host->context_info;
391 int err;
392 unsigned long flags;
394 while (1) {
395 wait_event_interruptible(context_info->wait,
396 (context_info->is_done_rcv ||
397 context_info->is_new_req));
398 spin_lock_irqsave(&context_info->lock, flags);
399 context_info->is_waiting_last_req = false;
400 spin_unlock_irqrestore(&context_info->lock, flags);
401 if (context_info->is_done_rcv) {
402 context_info->is_done_rcv = false;
403 context_info->is_new_req = false;
404 cmd = mrq->cmd;
405 if (!cmd->error || !cmd->retries ||
406 mmc_card_removed(host->card)) {
407 err = host->areq->err_check(host->card,
408 host->areq);
409 break; /* return err */
410 } else {
411 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
412 mmc_hostname(host),
413 cmd->opcode, cmd->error);
414 cmd->retries--;
415 cmd->error = 0;
416 host->ops->request(host, mrq);
417 continue; /* wait for done/new event again */
419 } else if (context_info->is_new_req) {
420 context_info->is_new_req = false;
421 if (!next_req) {
422 err = MMC_BLK_NEW_REQUEST;
423 break; /* return err */
427 return err;
430 static void mmc_wait_for_req_done(struct mmc_host *host,
431 struct mmc_request *mrq)
433 struct mmc_command *cmd;
435 while (1) {
436 wait_for_completion(&mrq->completion);
438 cmd = mrq->cmd;
439 if (!cmd->error || !cmd->retries ||
440 mmc_card_removed(host->card))
441 break;
443 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
444 mmc_hostname(host), cmd->opcode, cmd->error);
445 cmd->retries--;
446 cmd->error = 0;
447 host->ops->request(host, mrq);
452 * mmc_pre_req - Prepare for a new request
453 * @host: MMC host to prepare command
454 * @mrq: MMC request to prepare for
455 * @is_first_req: true if there is no previous started request
456 * that may run in parellel to this call, otherwise false
458 * mmc_pre_req() is called in prior to mmc_start_req() to let
459 * host prepare for the new request. Preparation of a request may be
460 * performed while another request is running on the host.
462 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
463 bool is_first_req)
465 if (host->ops->pre_req) {
466 mmc_host_clk_hold(host);
467 host->ops->pre_req(host, mrq, is_first_req);
468 mmc_host_clk_release(host);
473 * mmc_post_req - Post process a completed request
474 * @host: MMC host to post process command
475 * @mrq: MMC request to post process for
476 * @err: Error, if non zero, clean up any resources made in pre_req
478 * Let the host post process a completed request. Post processing of
479 * a request may be performed while another reuqest is running.
481 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
482 int err)
484 if (host->ops->post_req) {
485 mmc_host_clk_hold(host);
486 host->ops->post_req(host, mrq, err);
487 mmc_host_clk_release(host);
492 * mmc_start_req - start a non-blocking request
493 * @host: MMC host to start command
494 * @areq: async request to start
495 * @error: out parameter returns 0 for success, otherwise non zero
497 * Start a new MMC custom command request for a host.
498 * If there is on ongoing async request wait for completion
499 * of that request and start the new one and return.
500 * Does not wait for the new request to complete.
502 * Returns the completed request, NULL in case of none completed.
503 * Wait for the an ongoing request (previoulsy started) to complete and
504 * return the completed request. If there is no ongoing request, NULL
505 * is returned without waiting. NULL is not an error condition.
507 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
508 struct mmc_async_req *areq, int *error)
510 int err = 0;
511 int start_err = 0;
512 struct mmc_async_req *data = host->areq;
514 /* Prepare a new request */
515 if (areq)
516 mmc_pre_req(host, areq->mrq, !host->areq);
518 if (host->areq) {
519 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
520 if (err == MMC_BLK_NEW_REQUEST) {
521 if (error)
522 *error = err;
524 * The previous request was not completed,
525 * nothing to return
527 return NULL;
530 * Check BKOPS urgency for each R1 response
532 if (host->card && mmc_card_mmc(host->card) &&
533 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
534 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
535 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT))
536 mmc_start_bkops(host->card, true);
539 if (!err && areq)
540 start_err = __mmc_start_data_req(host, areq->mrq);
542 if (host->areq)
543 mmc_post_req(host, host->areq->mrq, 0);
545 /* Cancel a prepared request if it was not started. */
546 if ((err || start_err) && areq)
547 mmc_post_req(host, areq->mrq, -EINVAL);
549 if (err)
550 host->areq = NULL;
551 else
552 host->areq = areq;
554 if (error)
555 *error = err;
556 return data;
558 EXPORT_SYMBOL(mmc_start_req);
561 * mmc_wait_for_req - start a request and wait for completion
562 * @host: MMC host to start command
563 * @mrq: MMC request to start
565 * Start a new MMC custom command request for a host, and wait
566 * for the command to complete. Does not attempt to parse the
567 * response.
569 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
571 __mmc_start_req(host, mrq);
572 mmc_wait_for_req_done(host, mrq);
574 EXPORT_SYMBOL(mmc_wait_for_req);
577 * mmc_interrupt_hpi - Issue for High priority Interrupt
578 * @card: the MMC card associated with the HPI transfer
580 * Issued High Priority Interrupt, and check for card status
581 * until out-of prg-state.
583 int mmc_interrupt_hpi(struct mmc_card *card)
585 int err;
586 u32 status;
587 unsigned long prg_wait;
589 BUG_ON(!card);
591 if (!card->ext_csd.hpi_en) {
592 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
593 return 1;
596 mmc_claim_host(card->host);
597 err = mmc_send_status(card, &status);
598 if (err) {
599 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
600 goto out;
603 switch (R1_CURRENT_STATE(status)) {
604 case R1_STATE_IDLE:
605 case R1_STATE_READY:
606 case R1_STATE_STBY:
607 case R1_STATE_TRAN:
609 * In idle and transfer states, HPI is not needed and the caller
610 * can issue the next intended command immediately
612 goto out;
613 case R1_STATE_PRG:
614 break;
615 default:
616 /* In all other states, it's illegal to issue HPI */
617 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
618 mmc_hostname(card->host), R1_CURRENT_STATE(status));
619 err = -EINVAL;
620 goto out;
623 err = mmc_send_hpi_cmd(card, &status);
624 if (err)
625 goto out;
627 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
628 do {
629 err = mmc_send_status(card, &status);
631 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
632 break;
633 if (time_after(jiffies, prg_wait))
634 err = -ETIMEDOUT;
635 } while (!err);
637 out:
638 mmc_release_host(card->host);
639 return err;
641 EXPORT_SYMBOL(mmc_interrupt_hpi);
644 * mmc_wait_for_cmd - start a command and wait for completion
645 * @host: MMC host to start command
646 * @cmd: MMC command to start
647 * @retries: maximum number of retries
649 * Start a new MMC command for a host, and wait for the command
650 * to complete. Return any error that occurred while the command
651 * was executing. Do not attempt to parse the response.
653 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
655 struct mmc_request mrq = {NULL};
657 WARN_ON(!host->claimed);
659 memset(cmd->resp, 0, sizeof(cmd->resp));
660 cmd->retries = retries;
662 mrq.cmd = cmd;
663 cmd->data = NULL;
665 mmc_wait_for_req(host, &mrq);
667 return cmd->error;
670 EXPORT_SYMBOL(mmc_wait_for_cmd);
673 * mmc_stop_bkops - stop ongoing BKOPS
674 * @card: MMC card to check BKOPS
676 * Send HPI command to stop ongoing background operations to
677 * allow rapid servicing of foreground operations, e.g. read/
678 * writes. Wait until the card comes out of the programming state
679 * to avoid errors in servicing read/write requests.
681 int mmc_stop_bkops(struct mmc_card *card)
683 int err = 0;
685 BUG_ON(!card);
686 err = mmc_interrupt_hpi(card);
689 * If err is EINVAL, we can't issue an HPI.
690 * It should complete the BKOPS.
692 if (!err || (err == -EINVAL)) {
693 mmc_card_clr_doing_bkops(card);
694 err = 0;
697 return err;
699 EXPORT_SYMBOL(mmc_stop_bkops);
701 int mmc_read_bkops_status(struct mmc_card *card)
703 int err;
704 u8 *ext_csd;
707 * In future work, we should consider storing the entire ext_csd.
709 ext_csd = kmalloc(512, GFP_KERNEL);
710 if (!ext_csd) {
711 pr_err("%s: could not allocate buffer to receive the ext_csd.\n",
712 mmc_hostname(card->host));
713 return -ENOMEM;
716 mmc_claim_host(card->host);
717 err = mmc_send_ext_csd(card, ext_csd);
718 mmc_release_host(card->host);
719 if (err)
720 goto out;
722 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
723 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
724 out:
725 kfree(ext_csd);
726 return err;
728 EXPORT_SYMBOL(mmc_read_bkops_status);
731 * mmc_set_data_timeout - set the timeout for a data command
732 * @data: data phase for command
733 * @card: the MMC card associated with the data transfer
735 * Computes the data timeout parameters according to the
736 * correct algorithm given the card type.
738 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
740 unsigned int mult;
743 * SDIO cards only define an upper 1 s limit on access.
745 if (mmc_card_sdio(card)) {
746 data->timeout_ns = 1000000000;
747 data->timeout_clks = 0;
748 return;
752 * SD cards use a 100 multiplier rather than 10
754 mult = mmc_card_sd(card) ? 100 : 10;
757 * Scale up the multiplier (and therefore the timeout) by
758 * the r2w factor for writes.
760 if (data->flags & MMC_DATA_WRITE)
761 mult <<= card->csd.r2w_factor;
763 data->timeout_ns = card->csd.tacc_ns * mult;
764 data->timeout_clks = card->csd.tacc_clks * mult;
767 * SD cards also have an upper limit on the timeout.
769 if (mmc_card_sd(card)) {
770 unsigned int timeout_us, limit_us;
772 timeout_us = data->timeout_ns / 1000;
773 if (mmc_host_clk_rate(card->host))
774 timeout_us += data->timeout_clks * 1000 /
775 (mmc_host_clk_rate(card->host) / 1000);
777 if (data->flags & MMC_DATA_WRITE)
779 * The MMC spec "It is strongly recommended
780 * for hosts to implement more than 500ms
781 * timeout value even if the card indicates
782 * the 250ms maximum busy length." Even the
783 * previous value of 300ms is known to be
784 * insufficient for some cards.
786 limit_us = 3000000;
787 else
788 limit_us = 100000;
791 * SDHC cards always use these fixed values.
793 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
794 data->timeout_ns = limit_us * 1000;
795 data->timeout_clks = 0;
800 * Some cards require longer data read timeout than indicated in CSD.
801 * Address this by setting the read timeout to a "reasonably high"
802 * value. For the cards tested, 300ms has proven enough. If necessary,
803 * this value can be increased if other problematic cards require this.
805 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
806 data->timeout_ns = 300000000;
807 data->timeout_clks = 0;
811 * Some cards need very high timeouts if driven in SPI mode.
812 * The worst observed timeout was 900ms after writing a
813 * continuous stream of data until the internal logic
814 * overflowed.
816 if (mmc_host_is_spi(card->host)) {
817 if (data->flags & MMC_DATA_WRITE) {
818 if (data->timeout_ns < 1000000000)
819 data->timeout_ns = 1000000000; /* 1s */
820 } else {
821 if (data->timeout_ns < 100000000)
822 data->timeout_ns = 100000000; /* 100ms */
826 EXPORT_SYMBOL(mmc_set_data_timeout);
829 * mmc_align_data_size - pads a transfer size to a more optimal value
830 * @card: the MMC card associated with the data transfer
831 * @sz: original transfer size
833 * Pads the original data size with a number of extra bytes in
834 * order to avoid controller bugs and/or performance hits
835 * (e.g. some controllers revert to PIO for certain sizes).
837 * Returns the improved size, which might be unmodified.
839 * Note that this function is only relevant when issuing a
840 * single scatter gather entry.
842 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
845 * FIXME: We don't have a system for the controller to tell
846 * the core about its problems yet, so for now we just 32-bit
847 * align the size.
849 sz = ((sz + 3) / 4) * 4;
851 return sz;
853 EXPORT_SYMBOL(mmc_align_data_size);
856 * __mmc_claim_host - exclusively claim a host
857 * @host: mmc host to claim
858 * @abort: whether or not the operation should be aborted
860 * Claim a host for a set of operations. If @abort is non null and
861 * dereference a non-zero value then this will return prematurely with
862 * that non-zero value without acquiring the lock. Returns zero
863 * with the lock held otherwise.
865 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
867 DECLARE_WAITQUEUE(wait, current);
868 unsigned long flags;
869 int stop;
871 might_sleep();
873 add_wait_queue(&host->wq, &wait);
874 spin_lock_irqsave(&host->lock, flags);
875 while (1) {
876 set_current_state(TASK_UNINTERRUPTIBLE);
877 stop = abort ? atomic_read(abort) : 0;
878 if (stop || !host->claimed || host->claimer == current)
879 break;
880 spin_unlock_irqrestore(&host->lock, flags);
881 schedule();
882 spin_lock_irqsave(&host->lock, flags);
884 set_current_state(TASK_RUNNING);
885 if (!stop) {
886 host->claimed = 1;
887 host->claimer = current;
888 host->claim_cnt += 1;
889 } else
890 wake_up(&host->wq);
891 spin_unlock_irqrestore(&host->lock, flags);
892 remove_wait_queue(&host->wq, &wait);
893 if (host->ops->enable && !stop && host->claim_cnt == 1)
894 host->ops->enable(host);
895 return stop;
898 EXPORT_SYMBOL(__mmc_claim_host);
901 * mmc_try_claim_host - try exclusively to claim a host
902 * @host: mmc host to claim
904 * Returns %1 if the host is claimed, %0 otherwise.
906 int mmc_try_claim_host(struct mmc_host *host)
908 int claimed_host = 0;
909 unsigned long flags;
911 spin_lock_irqsave(&host->lock, flags);
912 if (!host->claimed || host->claimer == current) {
913 host->claimed = 1;
914 host->claimer = current;
915 host->claim_cnt += 1;
916 claimed_host = 1;
918 spin_unlock_irqrestore(&host->lock, flags);
919 if (host->ops->enable && claimed_host && host->claim_cnt == 1)
920 host->ops->enable(host);
921 return claimed_host;
923 EXPORT_SYMBOL(mmc_try_claim_host);
926 * mmc_release_host - release a host
927 * @host: mmc host to release
929 * Release a MMC host, allowing others to claim the host
930 * for their operations.
932 void mmc_release_host(struct mmc_host *host)
934 unsigned long flags;
936 WARN_ON(!host->claimed);
938 if (host->ops->disable && host->claim_cnt == 1)
939 host->ops->disable(host);
941 spin_lock_irqsave(&host->lock, flags);
942 if (--host->claim_cnt) {
943 /* Release for nested claim */
944 spin_unlock_irqrestore(&host->lock, flags);
945 } else {
946 host->claimed = 0;
947 host->claimer = NULL;
948 spin_unlock_irqrestore(&host->lock, flags);
949 wake_up(&host->wq);
952 EXPORT_SYMBOL(mmc_release_host);
955 * Internal function that does the actual ios call to the host driver,
956 * optionally printing some debug output.
958 static inline void mmc_set_ios(struct mmc_host *host)
960 struct mmc_ios *ios = &host->ios;
962 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
963 "width %u timing %u\n",
964 mmc_hostname(host), ios->clock, ios->bus_mode,
965 ios->power_mode, ios->chip_select, ios->vdd,
966 ios->bus_width, ios->timing);
968 if (ios->clock > 0)
969 mmc_set_ungated(host);
970 host->ops->set_ios(host, ios);
974 * Control chip select pin on a host.
976 void mmc_set_chip_select(struct mmc_host *host, int mode)
978 mmc_host_clk_hold(host);
979 host->ios.chip_select = mode;
980 mmc_set_ios(host);
981 mmc_host_clk_release(host);
985 * Sets the host clock to the highest possible frequency that
986 * is below "hz".
988 static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
990 WARN_ON(hz < host->f_min);
992 if (hz > host->f_max)
993 hz = host->f_max;
995 host->ios.clock = hz;
996 mmc_set_ios(host);
999 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1001 mmc_host_clk_hold(host);
1002 __mmc_set_clock(host, hz);
1003 mmc_host_clk_release(host);
1006 #ifdef CONFIG_MMC_CLKGATE
1008 * This gates the clock by setting it to 0 Hz.
1010 void mmc_gate_clock(struct mmc_host *host)
1012 unsigned long flags;
1014 spin_lock_irqsave(&host->clk_lock, flags);
1015 host->clk_old = host->ios.clock;
1016 host->ios.clock = 0;
1017 host->clk_gated = true;
1018 spin_unlock_irqrestore(&host->clk_lock, flags);
1019 mmc_set_ios(host);
1023 * This restores the clock from gating by using the cached
1024 * clock value.
1026 void mmc_ungate_clock(struct mmc_host *host)
1029 * We should previously have gated the clock, so the clock shall
1030 * be 0 here! The clock may however be 0 during initialization,
1031 * when some request operations are performed before setting
1032 * the frequency. When ungate is requested in that situation
1033 * we just ignore the call.
1035 if (host->clk_old) {
1036 BUG_ON(host->ios.clock);
1037 /* This call will also set host->clk_gated to false */
1038 __mmc_set_clock(host, host->clk_old);
1042 void mmc_set_ungated(struct mmc_host *host)
1044 unsigned long flags;
1047 * We've been given a new frequency while the clock is gated,
1048 * so make sure we regard this as ungating it.
1050 spin_lock_irqsave(&host->clk_lock, flags);
1051 host->clk_gated = false;
1052 spin_unlock_irqrestore(&host->clk_lock, flags);
1055 #else
1056 void mmc_set_ungated(struct mmc_host *host)
1059 #endif
1062 * Change the bus mode (open drain/push-pull) of a host.
1064 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1066 mmc_host_clk_hold(host);
1067 host->ios.bus_mode = mode;
1068 mmc_set_ios(host);
1069 mmc_host_clk_release(host);
1073 * Change data bus width of a host.
1075 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1077 mmc_host_clk_hold(host);
1078 host->ios.bus_width = width;
1079 mmc_set_ios(host);
1080 mmc_host_clk_release(host);
1084 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1085 * @vdd: voltage (mV)
1086 * @low_bits: prefer low bits in boundary cases
1088 * This function returns the OCR bit number according to the provided @vdd
1089 * value. If conversion is not possible a negative errno value returned.
1091 * Depending on the @low_bits flag the function prefers low or high OCR bits
1092 * on boundary voltages. For example,
1093 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1094 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1096 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1098 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1100 const int max_bit = ilog2(MMC_VDD_35_36);
1101 int bit;
1103 if (vdd < 1650 || vdd > 3600)
1104 return -EINVAL;
1106 if (vdd >= 1650 && vdd <= 1950)
1107 return ilog2(MMC_VDD_165_195);
1109 if (low_bits)
1110 vdd -= 1;
1112 /* Base 2000 mV, step 100 mV, bit's base 8. */
1113 bit = (vdd - 2000) / 100 + 8;
1114 if (bit > max_bit)
1115 return max_bit;
1116 return bit;
1120 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1121 * @vdd_min: minimum voltage value (mV)
1122 * @vdd_max: maximum voltage value (mV)
1124 * This function returns the OCR mask bits according to the provided @vdd_min
1125 * and @vdd_max values. If conversion is not possible the function returns 0.
1127 * Notes wrt boundary cases:
1128 * This function sets the OCR bits for all boundary voltages, for example
1129 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1130 * MMC_VDD_34_35 mask.
1132 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1134 u32 mask = 0;
1136 if (vdd_max < vdd_min)
1137 return 0;
1139 /* Prefer high bits for the boundary vdd_max values. */
1140 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1141 if (vdd_max < 0)
1142 return 0;
1144 /* Prefer low bits for the boundary vdd_min values. */
1145 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1146 if (vdd_min < 0)
1147 return 0;
1149 /* Fill the mask, from max bit to min bit. */
1150 while (vdd_max >= vdd_min)
1151 mask |= 1 << vdd_max--;
1153 return mask;
1155 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1157 #ifdef CONFIG_REGULATOR
1160 * mmc_regulator_get_ocrmask - return mask of supported voltages
1161 * @supply: regulator to use
1163 * This returns either a negative errno, or a mask of voltages that
1164 * can be provided to MMC/SD/SDIO devices using the specified voltage
1165 * regulator. This would normally be called before registering the
1166 * MMC host adapter.
1168 int mmc_regulator_get_ocrmask(struct regulator *supply)
1170 int result = 0;
1171 int count;
1172 int i;
1174 count = regulator_count_voltages(supply);
1175 if (count < 0)
1176 return count;
1178 for (i = 0; i < count; i++) {
1179 int vdd_uV;
1180 int vdd_mV;
1182 vdd_uV = regulator_list_voltage(supply, i);
1183 if (vdd_uV <= 0)
1184 continue;
1186 vdd_mV = vdd_uV / 1000;
1187 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1190 return result;
1192 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1195 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1196 * @mmc: the host to regulate
1197 * @supply: regulator to use
1198 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1200 * Returns zero on success, else negative errno.
1202 * MMC host drivers may use this to enable or disable a regulator using
1203 * a particular supply voltage. This would normally be called from the
1204 * set_ios() method.
1206 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1207 struct regulator *supply,
1208 unsigned short vdd_bit)
1210 int result = 0;
1211 int min_uV, max_uV;
1213 if (vdd_bit) {
1214 int tmp;
1215 int voltage;
1218 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1219 * bits this regulator doesn't quite support ... don't
1220 * be too picky, most cards and regulators are OK with
1221 * a 0.1V range goof (it's a small error percentage).
1223 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1224 if (tmp == 0) {
1225 min_uV = 1650 * 1000;
1226 max_uV = 1950 * 1000;
1227 } else {
1228 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1229 max_uV = min_uV + 100 * 1000;
1233 * If we're using a fixed/static regulator, don't call
1234 * regulator_set_voltage; it would fail.
1236 voltage = regulator_get_voltage(supply);
1238 if (!regulator_can_change_voltage(supply))
1239 min_uV = max_uV = voltage;
1241 if (voltage < 0)
1242 result = voltage;
1243 else if (voltage < min_uV || voltage > max_uV)
1244 result = regulator_set_voltage(supply, min_uV, max_uV);
1245 else
1246 result = 0;
1248 if (result == 0 && !mmc->regulator_enabled) {
1249 result = regulator_enable(supply);
1250 if (!result)
1251 mmc->regulator_enabled = true;
1253 } else if (mmc->regulator_enabled) {
1254 result = regulator_disable(supply);
1255 if (result == 0)
1256 mmc->regulator_enabled = false;
1259 if (result)
1260 dev_err(mmc_dev(mmc),
1261 "could not set regulator OCR (%d)\n", result);
1262 return result;
1264 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1266 int mmc_regulator_get_supply(struct mmc_host *mmc)
1268 struct device *dev = mmc_dev(mmc);
1269 struct regulator *supply;
1270 int ret;
1272 supply = devm_regulator_get(dev, "vmmc");
1273 mmc->supply.vmmc = supply;
1274 mmc->supply.vqmmc = devm_regulator_get(dev, "vqmmc");
1276 if (IS_ERR(supply))
1277 return PTR_ERR(supply);
1279 ret = mmc_regulator_get_ocrmask(supply);
1280 if (ret > 0)
1281 mmc->ocr_avail = ret;
1282 else
1283 dev_warn(mmc_dev(mmc), "Failed getting OCR mask: %d\n", ret);
1285 return 0;
1287 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1289 #endif /* CONFIG_REGULATOR */
1292 * Mask off any voltages we don't support and select
1293 * the lowest voltage
1295 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1297 int bit;
1299 ocr &= host->ocr_avail;
1301 bit = ffs(ocr);
1302 if (bit) {
1303 bit -= 1;
1305 ocr &= 3 << bit;
1307 mmc_host_clk_hold(host);
1308 host->ios.vdd = bit;
1309 mmc_set_ios(host);
1310 mmc_host_clk_release(host);
1311 } else {
1312 pr_warning("%s: host doesn't support card's voltages\n",
1313 mmc_hostname(host));
1314 ocr = 0;
1317 return ocr;
1320 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1322 int err = 0;
1323 int old_signal_voltage = host->ios.signal_voltage;
1325 host->ios.signal_voltage = signal_voltage;
1326 if (host->ops->start_signal_voltage_switch) {
1327 mmc_host_clk_hold(host);
1328 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1329 mmc_host_clk_release(host);
1332 if (err)
1333 host->ios.signal_voltage = old_signal_voltage;
1335 return err;
1339 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1341 struct mmc_command cmd = {0};
1342 int err = 0;
1343 u32 clock;
1345 BUG_ON(!host);
1348 * Send CMD11 only if the request is to switch the card to
1349 * 1.8V signalling.
1351 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1352 return __mmc_set_signal_voltage(host, signal_voltage);
1355 * If we cannot switch voltages, return failure so the caller
1356 * can continue without UHS mode
1358 if (!host->ops->start_signal_voltage_switch)
1359 return -EPERM;
1360 if (!host->ops->card_busy)
1361 pr_warning("%s: cannot verify signal voltage switch\n",
1362 mmc_hostname(host));
1364 cmd.opcode = SD_SWITCH_VOLTAGE;
1365 cmd.arg = 0;
1366 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1368 err = mmc_wait_for_cmd(host, &cmd, 0);
1369 if (err)
1370 return err;
1372 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1373 return -EIO;
1375 mmc_host_clk_hold(host);
1377 * The card should drive cmd and dat[0:3] low immediately
1378 * after the response of cmd11, but wait 1 ms to be sure
1380 mmc_delay(1);
1381 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1382 err = -EAGAIN;
1383 goto power_cycle;
1386 * During a signal voltage level switch, the clock must be gated
1387 * for 5 ms according to the SD spec
1389 clock = host->ios.clock;
1390 host->ios.clock = 0;
1391 mmc_set_ios(host);
1393 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1395 * Voltages may not have been switched, but we've already
1396 * sent CMD11, so a power cycle is required anyway
1398 err = -EAGAIN;
1399 goto power_cycle;
1402 /* Keep clock gated for at least 5 ms */
1403 mmc_delay(5);
1404 host->ios.clock = clock;
1405 mmc_set_ios(host);
1407 /* Wait for at least 1 ms according to spec */
1408 mmc_delay(1);
1411 * Failure to switch is indicated by the card holding
1412 * dat[0:3] low
1414 if (host->ops->card_busy && host->ops->card_busy(host))
1415 err = -EAGAIN;
1417 power_cycle:
1418 if (err) {
1419 pr_debug("%s: Signal voltage switch failed, "
1420 "power cycling card\n", mmc_hostname(host));
1421 mmc_power_cycle(host);
1424 mmc_host_clk_release(host);
1426 return err;
1430 * Select timing parameters for host.
1432 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1434 mmc_host_clk_hold(host);
1435 host->ios.timing = timing;
1436 mmc_set_ios(host);
1437 mmc_host_clk_release(host);
1441 * Select appropriate driver type for host.
1443 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1445 mmc_host_clk_hold(host);
1446 host->ios.drv_type = drv_type;
1447 mmc_set_ios(host);
1448 mmc_host_clk_release(host);
1452 * Apply power to the MMC stack. This is a two-stage process.
1453 * First, we enable power to the card without the clock running.
1454 * We then wait a bit for the power to stabilise. Finally,
1455 * enable the bus drivers and clock to the card.
1457 * We must _NOT_ enable the clock prior to power stablising.
1459 * If a host does all the power sequencing itself, ignore the
1460 * initial MMC_POWER_UP stage.
1462 static void mmc_power_up(struct mmc_host *host)
1464 int bit;
1466 if (host->ios.power_mode == MMC_POWER_ON)
1467 return;
1469 mmc_host_clk_hold(host);
1471 /* If ocr is set, we use it */
1472 if (host->ocr)
1473 bit = ffs(host->ocr) - 1;
1474 else
1475 bit = fls(host->ocr_avail) - 1;
1477 host->ios.vdd = bit;
1478 if (mmc_host_is_spi(host))
1479 host->ios.chip_select = MMC_CS_HIGH;
1480 else
1481 host->ios.chip_select = MMC_CS_DONTCARE;
1482 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1483 host->ios.power_mode = MMC_POWER_UP;
1484 host->ios.bus_width = MMC_BUS_WIDTH_1;
1485 host->ios.timing = MMC_TIMING_LEGACY;
1486 mmc_set_ios(host);
1488 /* Set signal voltage to 3.3V */
1489 __mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1492 * This delay should be sufficient to allow the power supply
1493 * to reach the minimum voltage.
1495 mmc_delay(10);
1497 host->ios.clock = host->f_init;
1499 host->ios.power_mode = MMC_POWER_ON;
1500 mmc_set_ios(host);
1503 * This delay must be at least 74 clock sizes, or 1 ms, or the
1504 * time required to reach a stable voltage.
1506 mmc_delay(10);
1508 mmc_host_clk_release(host);
1511 void mmc_power_off(struct mmc_host *host)
1513 if (host->ios.power_mode == MMC_POWER_OFF)
1514 return;
1516 mmc_host_clk_hold(host);
1518 host->ios.clock = 0;
1519 host->ios.vdd = 0;
1523 * Reset ocr mask to be the highest possible voltage supported for
1524 * this mmc host. This value will be used at next power up.
1526 host->ocr = 1 << (fls(host->ocr_avail) - 1);
1528 if (!mmc_host_is_spi(host)) {
1529 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1530 host->ios.chip_select = MMC_CS_DONTCARE;
1532 host->ios.power_mode = MMC_POWER_OFF;
1533 host->ios.bus_width = MMC_BUS_WIDTH_1;
1534 host->ios.timing = MMC_TIMING_LEGACY;
1535 mmc_set_ios(host);
1538 * Some configurations, such as the 802.11 SDIO card in the OLPC
1539 * XO-1.5, require a short delay after poweroff before the card
1540 * can be successfully turned on again.
1542 mmc_delay(1);
1544 mmc_host_clk_release(host);
1547 void mmc_power_cycle(struct mmc_host *host)
1549 mmc_power_off(host);
1550 /* Wait at least 1 ms according to SD spec */
1551 mmc_delay(1);
1552 mmc_power_up(host);
1556 * Cleanup when the last reference to the bus operator is dropped.
1558 static void __mmc_release_bus(struct mmc_host *host)
1560 BUG_ON(!host);
1561 BUG_ON(host->bus_refs);
1562 BUG_ON(!host->bus_dead);
1564 host->bus_ops = NULL;
1568 * Increase reference count of bus operator
1570 static inline void mmc_bus_get(struct mmc_host *host)
1572 unsigned long flags;
1574 spin_lock_irqsave(&host->lock, flags);
1575 host->bus_refs++;
1576 spin_unlock_irqrestore(&host->lock, flags);
1580 * Decrease reference count of bus operator and free it if
1581 * it is the last reference.
1583 static inline void mmc_bus_put(struct mmc_host *host)
1585 unsigned long flags;
1587 spin_lock_irqsave(&host->lock, flags);
1588 host->bus_refs--;
1589 if ((host->bus_refs == 0) && host->bus_ops)
1590 __mmc_release_bus(host);
1591 spin_unlock_irqrestore(&host->lock, flags);
1595 * Assign a mmc bus handler to a host. Only one bus handler may control a
1596 * host at any given time.
1598 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1600 unsigned long flags;
1602 BUG_ON(!host);
1603 BUG_ON(!ops);
1605 WARN_ON(!host->claimed);
1607 spin_lock_irqsave(&host->lock, flags);
1609 BUG_ON(host->bus_ops);
1610 BUG_ON(host->bus_refs);
1612 host->bus_ops = ops;
1613 host->bus_refs = 1;
1614 host->bus_dead = 0;
1616 spin_unlock_irqrestore(&host->lock, flags);
1620 * Remove the current bus handler from a host.
1622 void mmc_detach_bus(struct mmc_host *host)
1624 unsigned long flags;
1626 BUG_ON(!host);
1628 WARN_ON(!host->claimed);
1629 WARN_ON(!host->bus_ops);
1631 spin_lock_irqsave(&host->lock, flags);
1633 host->bus_dead = 1;
1635 spin_unlock_irqrestore(&host->lock, flags);
1637 mmc_bus_put(host);
1641 * mmc_detect_change - process change of state on a MMC socket
1642 * @host: host which changed state.
1643 * @delay: optional delay to wait before detection (jiffies)
1645 * MMC drivers should call this when they detect a card has been
1646 * inserted or removed. The MMC layer will confirm that any
1647 * present card is still functional, and initialize any newly
1648 * inserted.
1650 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1652 #ifdef CONFIG_MMC_DEBUG
1653 unsigned long flags;
1654 spin_lock_irqsave(&host->lock, flags);
1655 WARN_ON(host->removed);
1656 spin_unlock_irqrestore(&host->lock, flags);
1657 #endif
1658 host->detect_change = 1;
1659 mmc_schedule_delayed_work(&host->detect, delay);
1662 EXPORT_SYMBOL(mmc_detect_change);
1664 void mmc_init_erase(struct mmc_card *card)
1666 unsigned int sz;
1668 if (is_power_of_2(card->erase_size))
1669 card->erase_shift = ffs(card->erase_size) - 1;
1670 else
1671 card->erase_shift = 0;
1674 * It is possible to erase an arbitrarily large area of an SD or MMC
1675 * card. That is not desirable because it can take a long time
1676 * (minutes) potentially delaying more important I/O, and also the
1677 * timeout calculations become increasingly hugely over-estimated.
1678 * Consequently, 'pref_erase' is defined as a guide to limit erases
1679 * to that size and alignment.
1681 * For SD cards that define Allocation Unit size, limit erases to one
1682 * Allocation Unit at a time. For MMC cards that define High Capacity
1683 * Erase Size, whether it is switched on or not, limit to that size.
1684 * Otherwise just have a stab at a good value. For modern cards it
1685 * will end up being 4MiB. Note that if the value is too small, it
1686 * can end up taking longer to erase.
1688 if (mmc_card_sd(card) && card->ssr.au) {
1689 card->pref_erase = card->ssr.au;
1690 card->erase_shift = ffs(card->ssr.au) - 1;
1691 } else if (card->ext_csd.hc_erase_size) {
1692 card->pref_erase = card->ext_csd.hc_erase_size;
1693 } else {
1694 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1695 if (sz < 128)
1696 card->pref_erase = 512 * 1024 / 512;
1697 else if (sz < 512)
1698 card->pref_erase = 1024 * 1024 / 512;
1699 else if (sz < 1024)
1700 card->pref_erase = 2 * 1024 * 1024 / 512;
1701 else
1702 card->pref_erase = 4 * 1024 * 1024 / 512;
1703 if (card->pref_erase < card->erase_size)
1704 card->pref_erase = card->erase_size;
1705 else {
1706 sz = card->pref_erase % card->erase_size;
1707 if (sz)
1708 card->pref_erase += card->erase_size - sz;
1713 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1714 unsigned int arg, unsigned int qty)
1716 unsigned int erase_timeout;
1718 if (arg == MMC_DISCARD_ARG ||
1719 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1720 erase_timeout = card->ext_csd.trim_timeout;
1721 } else if (card->ext_csd.erase_group_def & 1) {
1722 /* High Capacity Erase Group Size uses HC timeouts */
1723 if (arg == MMC_TRIM_ARG)
1724 erase_timeout = card->ext_csd.trim_timeout;
1725 else
1726 erase_timeout = card->ext_csd.hc_erase_timeout;
1727 } else {
1728 /* CSD Erase Group Size uses write timeout */
1729 unsigned int mult = (10 << card->csd.r2w_factor);
1730 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1731 unsigned int timeout_us;
1733 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1734 if (card->csd.tacc_ns < 1000000)
1735 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1736 else
1737 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1740 * ios.clock is only a target. The real clock rate might be
1741 * less but not that much less, so fudge it by multiplying by 2.
1743 timeout_clks <<= 1;
1744 timeout_us += (timeout_clks * 1000) /
1745 (mmc_host_clk_rate(card->host) / 1000);
1747 erase_timeout = timeout_us / 1000;
1750 * Theoretically, the calculation could underflow so round up
1751 * to 1ms in that case.
1753 if (!erase_timeout)
1754 erase_timeout = 1;
1757 /* Multiplier for secure operations */
1758 if (arg & MMC_SECURE_ARGS) {
1759 if (arg == MMC_SECURE_ERASE_ARG)
1760 erase_timeout *= card->ext_csd.sec_erase_mult;
1761 else
1762 erase_timeout *= card->ext_csd.sec_trim_mult;
1765 erase_timeout *= qty;
1768 * Ensure at least a 1 second timeout for SPI as per
1769 * 'mmc_set_data_timeout()'
1771 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1772 erase_timeout = 1000;
1774 return erase_timeout;
1777 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1778 unsigned int arg,
1779 unsigned int qty)
1781 unsigned int erase_timeout;
1783 if (card->ssr.erase_timeout) {
1784 /* Erase timeout specified in SD Status Register (SSR) */
1785 erase_timeout = card->ssr.erase_timeout * qty +
1786 card->ssr.erase_offset;
1787 } else {
1789 * Erase timeout not specified in SD Status Register (SSR) so
1790 * use 250ms per write block.
1792 erase_timeout = 250 * qty;
1795 /* Must not be less than 1 second */
1796 if (erase_timeout < 1000)
1797 erase_timeout = 1000;
1799 return erase_timeout;
1802 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1803 unsigned int arg,
1804 unsigned int qty)
1806 if (mmc_card_sd(card))
1807 return mmc_sd_erase_timeout(card, arg, qty);
1808 else
1809 return mmc_mmc_erase_timeout(card, arg, qty);
1812 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1813 unsigned int to, unsigned int arg)
1815 struct mmc_command cmd = {0};
1816 unsigned int qty = 0;
1817 unsigned long timeout;
1818 int err;
1821 * qty is used to calculate the erase timeout which depends on how many
1822 * erase groups (or allocation units in SD terminology) are affected.
1823 * We count erasing part of an erase group as one erase group.
1824 * For SD, the allocation units are always a power of 2. For MMC, the
1825 * erase group size is almost certainly also power of 2, but it does not
1826 * seem to insist on that in the JEDEC standard, so we fall back to
1827 * division in that case. SD may not specify an allocation unit size,
1828 * in which case the timeout is based on the number of write blocks.
1830 * Note that the timeout for secure trim 2 will only be correct if the
1831 * number of erase groups specified is the same as the total of all
1832 * preceding secure trim 1 commands. Since the power may have been
1833 * lost since the secure trim 1 commands occurred, it is generally
1834 * impossible to calculate the secure trim 2 timeout correctly.
1836 if (card->erase_shift)
1837 qty += ((to >> card->erase_shift) -
1838 (from >> card->erase_shift)) + 1;
1839 else if (mmc_card_sd(card))
1840 qty += to - from + 1;
1841 else
1842 qty += ((to / card->erase_size) -
1843 (from / card->erase_size)) + 1;
1845 if (!mmc_card_blockaddr(card)) {
1846 from <<= 9;
1847 to <<= 9;
1850 if (mmc_card_sd(card))
1851 cmd.opcode = SD_ERASE_WR_BLK_START;
1852 else
1853 cmd.opcode = MMC_ERASE_GROUP_START;
1854 cmd.arg = from;
1855 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1856 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1857 if (err) {
1858 pr_err("mmc_erase: group start error %d, "
1859 "status %#x\n", err, cmd.resp[0]);
1860 err = -EIO;
1861 goto out;
1864 memset(&cmd, 0, sizeof(struct mmc_command));
1865 if (mmc_card_sd(card))
1866 cmd.opcode = SD_ERASE_WR_BLK_END;
1867 else
1868 cmd.opcode = MMC_ERASE_GROUP_END;
1869 cmd.arg = to;
1870 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1871 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1872 if (err) {
1873 pr_err("mmc_erase: group end error %d, status %#x\n",
1874 err, cmd.resp[0]);
1875 err = -EIO;
1876 goto out;
1879 memset(&cmd, 0, sizeof(struct mmc_command));
1880 cmd.opcode = MMC_ERASE;
1881 cmd.arg = arg;
1882 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1883 cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1884 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1885 if (err) {
1886 pr_err("mmc_erase: erase error %d, status %#x\n",
1887 err, cmd.resp[0]);
1888 err = -EIO;
1889 goto out;
1892 if (mmc_host_is_spi(card->host))
1893 goto out;
1895 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
1896 do {
1897 memset(&cmd, 0, sizeof(struct mmc_command));
1898 cmd.opcode = MMC_SEND_STATUS;
1899 cmd.arg = card->rca << 16;
1900 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1901 /* Do not retry else we can't see errors */
1902 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1903 if (err || (cmd.resp[0] & 0xFDF92000)) {
1904 pr_err("error %d requesting status %#x\n",
1905 err, cmd.resp[0]);
1906 err = -EIO;
1907 goto out;
1910 /* Timeout if the device never becomes ready for data and
1911 * never leaves the program state.
1913 if (time_after(jiffies, timeout)) {
1914 pr_err("%s: Card stuck in programming state! %s\n",
1915 mmc_hostname(card->host), __func__);
1916 err = -EIO;
1917 goto out;
1920 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1921 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
1922 out:
1923 return err;
1927 * mmc_erase - erase sectors.
1928 * @card: card to erase
1929 * @from: first sector to erase
1930 * @nr: number of sectors to erase
1931 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1933 * Caller must claim host before calling this function.
1935 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1936 unsigned int arg)
1938 unsigned int rem, to = from + nr;
1940 if (!(card->host->caps & MMC_CAP_ERASE) ||
1941 !(card->csd.cmdclass & CCC_ERASE))
1942 return -EOPNOTSUPP;
1944 if (!card->erase_size)
1945 return -EOPNOTSUPP;
1947 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1948 return -EOPNOTSUPP;
1950 if ((arg & MMC_SECURE_ARGS) &&
1951 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1952 return -EOPNOTSUPP;
1954 if ((arg & MMC_TRIM_ARGS) &&
1955 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1956 return -EOPNOTSUPP;
1958 if (arg == MMC_SECURE_ERASE_ARG) {
1959 if (from % card->erase_size || nr % card->erase_size)
1960 return -EINVAL;
1963 if (arg == MMC_ERASE_ARG) {
1964 rem = from % card->erase_size;
1965 if (rem) {
1966 rem = card->erase_size - rem;
1967 from += rem;
1968 if (nr > rem)
1969 nr -= rem;
1970 else
1971 return 0;
1973 rem = nr % card->erase_size;
1974 if (rem)
1975 nr -= rem;
1978 if (nr == 0)
1979 return 0;
1981 to = from + nr;
1983 if (to <= from)
1984 return -EINVAL;
1986 /* 'from' and 'to' are inclusive */
1987 to -= 1;
1989 return mmc_do_erase(card, from, to, arg);
1991 EXPORT_SYMBOL(mmc_erase);
1993 int mmc_can_erase(struct mmc_card *card)
1995 if ((card->host->caps & MMC_CAP_ERASE) &&
1996 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1997 return 1;
1998 return 0;
2000 EXPORT_SYMBOL(mmc_can_erase);
2002 int mmc_can_trim(struct mmc_card *card)
2004 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2005 return 1;
2006 return 0;
2008 EXPORT_SYMBOL(mmc_can_trim);
2010 int mmc_can_discard(struct mmc_card *card)
2013 * As there's no way to detect the discard support bit at v4.5
2014 * use the s/w feature support filed.
2016 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2017 return 1;
2018 return 0;
2020 EXPORT_SYMBOL(mmc_can_discard);
2022 int mmc_can_sanitize(struct mmc_card *card)
2024 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2025 return 0;
2026 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2027 return 1;
2028 return 0;
2030 EXPORT_SYMBOL(mmc_can_sanitize);
2032 int mmc_can_secure_erase_trim(struct mmc_card *card)
2034 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
2035 return 1;
2036 return 0;
2038 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2040 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2041 unsigned int nr)
2043 if (!card->erase_size)
2044 return 0;
2045 if (from % card->erase_size || nr % card->erase_size)
2046 return 0;
2047 return 1;
2049 EXPORT_SYMBOL(mmc_erase_group_aligned);
2051 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2052 unsigned int arg)
2054 struct mmc_host *host = card->host;
2055 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2056 unsigned int last_timeout = 0;
2058 if (card->erase_shift)
2059 max_qty = UINT_MAX >> card->erase_shift;
2060 else if (mmc_card_sd(card))
2061 max_qty = UINT_MAX;
2062 else
2063 max_qty = UINT_MAX / card->erase_size;
2065 /* Find the largest qty with an OK timeout */
2066 do {
2067 y = 0;
2068 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2069 timeout = mmc_erase_timeout(card, arg, qty + x);
2070 if (timeout > host->max_discard_to)
2071 break;
2072 if (timeout < last_timeout)
2073 break;
2074 last_timeout = timeout;
2075 y = x;
2077 qty += y;
2078 } while (y);
2080 if (!qty)
2081 return 0;
2083 if (qty == 1)
2084 return 1;
2086 /* Convert qty to sectors */
2087 if (card->erase_shift)
2088 max_discard = --qty << card->erase_shift;
2089 else if (mmc_card_sd(card))
2090 max_discard = qty;
2091 else
2092 max_discard = --qty * card->erase_size;
2094 return max_discard;
2097 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2099 struct mmc_host *host = card->host;
2100 unsigned int max_discard, max_trim;
2102 if (!host->max_discard_to)
2103 return UINT_MAX;
2106 * Without erase_group_def set, MMC erase timeout depends on clock
2107 * frequence which can change. In that case, the best choice is
2108 * just the preferred erase size.
2110 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2111 return card->pref_erase;
2113 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2114 if (mmc_can_trim(card)) {
2115 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2116 if (max_trim < max_discard)
2117 max_discard = max_trim;
2118 } else if (max_discard < card->erase_size) {
2119 max_discard = 0;
2121 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2122 mmc_hostname(host), max_discard, host->max_discard_to);
2123 return max_discard;
2125 EXPORT_SYMBOL(mmc_calc_max_discard);
2127 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2129 struct mmc_command cmd = {0};
2131 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
2132 return 0;
2134 cmd.opcode = MMC_SET_BLOCKLEN;
2135 cmd.arg = blocklen;
2136 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2137 return mmc_wait_for_cmd(card->host, &cmd, 5);
2139 EXPORT_SYMBOL(mmc_set_blocklen);
2141 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2142 bool is_rel_write)
2144 struct mmc_command cmd = {0};
2146 cmd.opcode = MMC_SET_BLOCK_COUNT;
2147 cmd.arg = blockcount & 0x0000FFFF;
2148 if (is_rel_write)
2149 cmd.arg |= 1 << 31;
2150 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2151 return mmc_wait_for_cmd(card->host, &cmd, 5);
2153 EXPORT_SYMBOL(mmc_set_blockcount);
2155 static void mmc_hw_reset_for_init(struct mmc_host *host)
2157 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2158 return;
2159 mmc_host_clk_hold(host);
2160 host->ops->hw_reset(host);
2161 mmc_host_clk_release(host);
2164 int mmc_can_reset(struct mmc_card *card)
2166 u8 rst_n_function;
2168 if (!mmc_card_mmc(card))
2169 return 0;
2170 rst_n_function = card->ext_csd.rst_n_function;
2171 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2172 return 0;
2173 return 1;
2175 EXPORT_SYMBOL(mmc_can_reset);
2177 static int mmc_do_hw_reset(struct mmc_host *host, int check)
2179 struct mmc_card *card = host->card;
2181 if (!host->bus_ops->power_restore)
2182 return -EOPNOTSUPP;
2184 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2185 return -EOPNOTSUPP;
2187 if (!card)
2188 return -EINVAL;
2190 if (!mmc_can_reset(card))
2191 return -EOPNOTSUPP;
2193 mmc_host_clk_hold(host);
2194 mmc_set_clock(host, host->f_init);
2196 host->ops->hw_reset(host);
2198 /* If the reset has happened, then a status command will fail */
2199 if (check) {
2200 struct mmc_command cmd = {0};
2201 int err;
2203 cmd.opcode = MMC_SEND_STATUS;
2204 if (!mmc_host_is_spi(card->host))
2205 cmd.arg = card->rca << 16;
2206 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2207 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2208 if (!err) {
2209 mmc_host_clk_release(host);
2210 return -ENOSYS;
2214 host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
2215 if (mmc_host_is_spi(host)) {
2216 host->ios.chip_select = MMC_CS_HIGH;
2217 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
2218 } else {
2219 host->ios.chip_select = MMC_CS_DONTCARE;
2220 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
2222 host->ios.bus_width = MMC_BUS_WIDTH_1;
2223 host->ios.timing = MMC_TIMING_LEGACY;
2224 mmc_set_ios(host);
2226 mmc_host_clk_release(host);
2228 return host->bus_ops->power_restore(host);
2231 int mmc_hw_reset(struct mmc_host *host)
2233 return mmc_do_hw_reset(host, 0);
2235 EXPORT_SYMBOL(mmc_hw_reset);
2237 int mmc_hw_reset_check(struct mmc_host *host)
2239 return mmc_do_hw_reset(host, 1);
2241 EXPORT_SYMBOL(mmc_hw_reset_check);
2243 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2245 host->f_init = freq;
2247 #ifdef CONFIG_MMC_DEBUG
2248 pr_info("%s: %s: trying to init card at %u Hz\n",
2249 mmc_hostname(host), __func__, host->f_init);
2250 #endif
2251 mmc_power_up(host);
2254 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2255 * do a hardware reset if possible.
2257 mmc_hw_reset_for_init(host);
2260 * sdio_reset sends CMD52 to reset card. Since we do not know
2261 * if the card is being re-initialized, just send it. CMD52
2262 * should be ignored by SD/eMMC cards.
2264 sdio_reset(host);
2265 mmc_go_idle(host);
2267 mmc_send_if_cond(host, host->ocr_avail);
2269 /* Order's important: probe SDIO, then SD, then MMC */
2270 if (!mmc_attach_sdio(host))
2271 return 0;
2272 if (!mmc_attach_sd(host))
2273 return 0;
2274 if (!mmc_attach_mmc(host))
2275 return 0;
2277 mmc_power_off(host);
2278 return -EIO;
2281 int _mmc_detect_card_removed(struct mmc_host *host)
2283 int ret;
2285 if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
2286 return 0;
2288 if (!host->card || mmc_card_removed(host->card))
2289 return 1;
2291 ret = host->bus_ops->alive(host);
2292 if (ret) {
2293 mmc_card_set_removed(host->card);
2294 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2297 return ret;
2300 int mmc_detect_card_removed(struct mmc_host *host)
2302 struct mmc_card *card = host->card;
2303 int ret;
2305 WARN_ON(!host->claimed);
2307 if (!card)
2308 return 1;
2310 ret = mmc_card_removed(card);
2312 * The card will be considered unchanged unless we have been asked to
2313 * detect a change or host requires polling to provide card detection.
2315 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2316 !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
2317 return ret;
2319 host->detect_change = 0;
2320 if (!ret) {
2321 ret = _mmc_detect_card_removed(host);
2322 if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2324 * Schedule a detect work as soon as possible to let a
2325 * rescan handle the card removal.
2327 cancel_delayed_work(&host->detect);
2328 mmc_detect_change(host, 0);
2332 return ret;
2334 EXPORT_SYMBOL(mmc_detect_card_removed);
2336 void mmc_rescan(struct work_struct *work)
2338 struct mmc_host *host =
2339 container_of(work, struct mmc_host, detect.work);
2340 int i;
2342 if (host->rescan_disable)
2343 return;
2345 /* If there is a non-removable card registered, only scan once */
2346 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2347 return;
2348 host->rescan_entered = 1;
2350 mmc_bus_get(host);
2353 * if there is a _removable_ card registered, check whether it is
2354 * still present
2356 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2357 && !(host->caps & MMC_CAP_NONREMOVABLE))
2358 host->bus_ops->detect(host);
2360 host->detect_change = 0;
2363 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2364 * the card is no longer present.
2366 mmc_bus_put(host);
2367 mmc_bus_get(host);
2369 /* if there still is a card present, stop here */
2370 if (host->bus_ops != NULL) {
2371 mmc_bus_put(host);
2372 goto out;
2376 * Only we can add a new handler, so it's safe to
2377 * release the lock here.
2379 mmc_bus_put(host);
2381 if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2382 mmc_claim_host(host);
2383 mmc_power_off(host);
2384 mmc_release_host(host);
2385 goto out;
2388 mmc_claim_host(host);
2389 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2390 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2391 break;
2392 if (freqs[i] <= host->f_min)
2393 break;
2395 mmc_release_host(host);
2397 out:
2398 if (host->caps & MMC_CAP_NEEDS_POLL)
2399 mmc_schedule_delayed_work(&host->detect, HZ);
2402 void mmc_start_host(struct mmc_host *host)
2404 host->f_init = max(freqs[0], host->f_min);
2405 host->rescan_disable = 0;
2406 mmc_power_up(host);
2407 mmc_detect_change(host, 0);
2410 void mmc_stop_host(struct mmc_host *host)
2412 #ifdef CONFIG_MMC_DEBUG
2413 unsigned long flags;
2414 spin_lock_irqsave(&host->lock, flags);
2415 host->removed = 1;
2416 spin_unlock_irqrestore(&host->lock, flags);
2417 #endif
2419 host->rescan_disable = 1;
2420 cancel_delayed_work_sync(&host->detect);
2421 mmc_flush_scheduled_work();
2423 /* clear pm flags now and let card drivers set them as needed */
2424 host->pm_flags = 0;
2426 mmc_bus_get(host);
2427 if (host->bus_ops && !host->bus_dead) {
2428 /* Calling bus_ops->remove() with a claimed host can deadlock */
2429 if (host->bus_ops->remove)
2430 host->bus_ops->remove(host);
2432 mmc_claim_host(host);
2433 mmc_detach_bus(host);
2434 mmc_power_off(host);
2435 mmc_release_host(host);
2436 mmc_bus_put(host);
2437 return;
2439 mmc_bus_put(host);
2441 BUG_ON(host->card);
2443 mmc_power_off(host);
2446 int mmc_power_save_host(struct mmc_host *host)
2448 int ret = 0;
2450 #ifdef CONFIG_MMC_DEBUG
2451 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2452 #endif
2454 mmc_bus_get(host);
2456 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2457 mmc_bus_put(host);
2458 return -EINVAL;
2461 if (host->bus_ops->power_save)
2462 ret = host->bus_ops->power_save(host);
2464 mmc_bus_put(host);
2466 mmc_power_off(host);
2468 return ret;
2470 EXPORT_SYMBOL(mmc_power_save_host);
2472 int mmc_power_restore_host(struct mmc_host *host)
2474 int ret;
2476 #ifdef CONFIG_MMC_DEBUG
2477 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2478 #endif
2480 mmc_bus_get(host);
2482 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2483 mmc_bus_put(host);
2484 return -EINVAL;
2487 mmc_power_up(host);
2488 ret = host->bus_ops->power_restore(host);
2490 mmc_bus_put(host);
2492 return ret;
2494 EXPORT_SYMBOL(mmc_power_restore_host);
2496 int mmc_card_awake(struct mmc_host *host)
2498 int err = -ENOSYS;
2500 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2501 return 0;
2503 mmc_bus_get(host);
2505 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2506 err = host->bus_ops->awake(host);
2508 mmc_bus_put(host);
2510 return err;
2512 EXPORT_SYMBOL(mmc_card_awake);
2514 int mmc_card_sleep(struct mmc_host *host)
2516 int err = -ENOSYS;
2518 if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2519 return 0;
2521 mmc_bus_get(host);
2523 if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2524 err = host->bus_ops->sleep(host);
2526 mmc_bus_put(host);
2528 return err;
2530 EXPORT_SYMBOL(mmc_card_sleep);
2532 int mmc_card_can_sleep(struct mmc_host *host)
2534 struct mmc_card *card = host->card;
2536 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2537 return 1;
2538 return 0;
2540 EXPORT_SYMBOL(mmc_card_can_sleep);
2543 * Flush the cache to the non-volatile storage.
2545 int mmc_flush_cache(struct mmc_card *card)
2547 struct mmc_host *host = card->host;
2548 int err = 0;
2550 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2551 return err;
2553 if (mmc_card_mmc(card) &&
2554 (card->ext_csd.cache_size > 0) &&
2555 (card->ext_csd.cache_ctrl & 1)) {
2556 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2557 EXT_CSD_FLUSH_CACHE, 1, 0);
2558 if (err)
2559 pr_err("%s: cache flush error %d\n",
2560 mmc_hostname(card->host), err);
2563 return err;
2565 EXPORT_SYMBOL(mmc_flush_cache);
2568 * Turn the cache ON/OFF.
2569 * Turning the cache OFF shall trigger flushing of the data
2570 * to the non-volatile storage.
2571 * This function should be called with host claimed
2573 int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2575 struct mmc_card *card = host->card;
2576 unsigned int timeout;
2577 int err = 0;
2579 if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2580 mmc_card_is_removable(host))
2581 return err;
2583 if (card && mmc_card_mmc(card) &&
2584 (card->ext_csd.cache_size > 0)) {
2585 enable = !!enable;
2587 if (card->ext_csd.cache_ctrl ^ enable) {
2588 timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2589 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2590 EXT_CSD_CACHE_CTRL, enable, timeout);
2591 if (err)
2592 pr_err("%s: cache %s error %d\n",
2593 mmc_hostname(card->host),
2594 enable ? "on" : "off",
2595 err);
2596 else
2597 card->ext_csd.cache_ctrl = enable;
2601 return err;
2603 EXPORT_SYMBOL(mmc_cache_ctrl);
2605 #ifdef CONFIG_PM
2608 * mmc_suspend_host - suspend a host
2609 * @host: mmc host
2611 int mmc_suspend_host(struct mmc_host *host)
2613 int err = 0;
2615 cancel_delayed_work(&host->detect);
2616 mmc_flush_scheduled_work();
2618 mmc_bus_get(host);
2619 if (host->bus_ops && !host->bus_dead) {
2620 if (host->bus_ops->suspend) {
2621 if (mmc_card_doing_bkops(host->card)) {
2622 err = mmc_stop_bkops(host->card);
2623 if (err)
2624 goto out;
2626 err = host->bus_ops->suspend(host);
2629 if (err == -ENOSYS || !host->bus_ops->resume) {
2631 * We simply "remove" the card in this case.
2632 * It will be redetected on resume. (Calling
2633 * bus_ops->remove() with a claimed host can
2634 * deadlock.)
2636 if (host->bus_ops->remove)
2637 host->bus_ops->remove(host);
2638 mmc_claim_host(host);
2639 mmc_detach_bus(host);
2640 mmc_power_off(host);
2641 mmc_release_host(host);
2642 host->pm_flags = 0;
2643 err = 0;
2646 mmc_bus_put(host);
2648 if (!err && !mmc_card_keep_power(host))
2649 mmc_power_off(host);
2651 out:
2652 return err;
2655 EXPORT_SYMBOL(mmc_suspend_host);
2658 * mmc_resume_host - resume a previously suspended host
2659 * @host: mmc host
2661 int mmc_resume_host(struct mmc_host *host)
2663 int err = 0;
2665 mmc_bus_get(host);
2666 if (host->bus_ops && !host->bus_dead) {
2667 if (!mmc_card_keep_power(host)) {
2668 mmc_power_up(host);
2669 mmc_select_voltage(host, host->ocr);
2671 * Tell runtime PM core we just powered up the card,
2672 * since it still believes the card is powered off.
2673 * Note that currently runtime PM is only enabled
2674 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2676 if (mmc_card_sdio(host->card) &&
2677 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2678 pm_runtime_disable(&host->card->dev);
2679 pm_runtime_set_active(&host->card->dev);
2680 pm_runtime_enable(&host->card->dev);
2683 BUG_ON(!host->bus_ops->resume);
2684 err = host->bus_ops->resume(host);
2685 if (err) {
2686 pr_warning("%s: error %d during resume "
2687 "(card was removed?)\n",
2688 mmc_hostname(host), err);
2689 err = 0;
2692 host->pm_flags &= ~MMC_PM_KEEP_POWER;
2693 mmc_bus_put(host);
2695 return err;
2697 EXPORT_SYMBOL(mmc_resume_host);
2699 /* Do the card removal on suspend if card is assumed removeable
2700 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2701 to sync the card.
2703 int mmc_pm_notify(struct notifier_block *notify_block,
2704 unsigned long mode, void *unused)
2706 struct mmc_host *host = container_of(
2707 notify_block, struct mmc_host, pm_notify);
2708 unsigned long flags;
2709 int err = 0;
2711 switch (mode) {
2712 case PM_HIBERNATION_PREPARE:
2713 case PM_SUSPEND_PREPARE:
2714 if (host->card && mmc_card_mmc(host->card) &&
2715 mmc_card_doing_bkops(host->card)) {
2716 err = mmc_stop_bkops(host->card);
2717 if (err) {
2718 pr_err("%s: didn't stop bkops\n",
2719 mmc_hostname(host));
2720 return err;
2722 mmc_card_clr_doing_bkops(host->card);
2725 spin_lock_irqsave(&host->lock, flags);
2726 host->rescan_disable = 1;
2727 spin_unlock_irqrestore(&host->lock, flags);
2728 cancel_delayed_work_sync(&host->detect);
2730 if (!host->bus_ops || host->bus_ops->suspend)
2731 break;
2733 /* Calling bus_ops->remove() with a claimed host can deadlock */
2734 if (host->bus_ops->remove)
2735 host->bus_ops->remove(host);
2737 mmc_claim_host(host);
2738 mmc_detach_bus(host);
2739 mmc_power_off(host);
2740 mmc_release_host(host);
2741 host->pm_flags = 0;
2742 break;
2744 case PM_POST_SUSPEND:
2745 case PM_POST_HIBERNATION:
2746 case PM_POST_RESTORE:
2748 spin_lock_irqsave(&host->lock, flags);
2749 host->rescan_disable = 0;
2750 spin_unlock_irqrestore(&host->lock, flags);
2751 mmc_detect_change(host, 0);
2755 return 0;
2757 #endif
2760 * mmc_init_context_info() - init synchronization context
2761 * @host: mmc host
2763 * Init struct context_info needed to implement asynchronous
2764 * request mechanism, used by mmc core, host driver and mmc requests
2765 * supplier.
2767 void mmc_init_context_info(struct mmc_host *host)
2769 spin_lock_init(&host->context_info.lock);
2770 host->context_info.is_new_req = false;
2771 host->context_info.is_done_rcv = false;
2772 host->context_info.is_waiting_last_req = false;
2773 init_waitqueue_head(&host->context_info.wait);
2776 static int __init mmc_init(void)
2778 int ret;
2780 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2781 if (!workqueue)
2782 return -ENOMEM;
2784 ret = mmc_register_bus();
2785 if (ret)
2786 goto destroy_workqueue;
2788 ret = mmc_register_host_class();
2789 if (ret)
2790 goto unregister_bus;
2792 ret = sdio_register_bus();
2793 if (ret)
2794 goto unregister_host_class;
2796 return 0;
2798 unregister_host_class:
2799 mmc_unregister_host_class();
2800 unregister_bus:
2801 mmc_unregister_bus();
2802 destroy_workqueue:
2803 destroy_workqueue(workqueue);
2805 return ret;
2808 static void __exit mmc_exit(void)
2810 sdio_unregister_bus();
2811 mmc_unregister_host_class();
2812 mmc_unregister_bus();
2813 destroy_workqueue(workqueue);
2816 subsys_initcall(mmc_init);
2817 module_exit(mmc_exit);
2819 MODULE_LICENSE("GPL");