perf record: Add --append option
[linux-2.6/libata-dev.git] / kernel / sched.c
blob8d43347a0c0dd086ee6269373fd723a8b3355e02
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/reciprocal_div.h>
68 #include <linux/unistd.h>
69 #include <linux/pagemap.h>
70 #include <linux/hrtimer.h>
71 #include <linux/tick.h>
72 #include <linux/bootmem.h>
73 #include <linux/debugfs.h>
74 #include <linux/ctype.h>
75 #include <linux/ftrace.h>
76 #include <trace/sched.h>
78 #include <asm/tlb.h>
79 #include <asm/irq_regs.h>
81 #include "sched_cpupri.h"
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 DEFINE_TRACE(sched_wait_task);
123 DEFINE_TRACE(sched_wakeup);
124 DEFINE_TRACE(sched_wakeup_new);
125 DEFINE_TRACE(sched_switch);
126 DEFINE_TRACE(sched_migrate_task);
128 #ifdef CONFIG_SMP
130 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
133 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
134 * Since cpu_power is a 'constant', we can use a reciprocal divide.
136 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
138 return reciprocal_divide(load, sg->reciprocal_cpu_power);
142 * Each time a sched group cpu_power is changed,
143 * we must compute its reciprocal value
145 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
147 sg->__cpu_power += val;
148 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
150 #endif
152 static inline int rt_policy(int policy)
154 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
155 return 1;
156 return 0;
159 static inline int task_has_rt_policy(struct task_struct *p)
161 return rt_policy(p->policy);
165 * This is the priority-queue data structure of the RT scheduling class:
167 struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
172 struct rt_bandwidth {
173 /* nests inside the rq lock: */
174 spinlock_t rt_runtime_lock;
175 ktime_t rt_period;
176 u64 rt_runtime;
177 struct hrtimer rt_period_timer;
180 static struct rt_bandwidth def_rt_bandwidth;
182 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
184 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
186 struct rt_bandwidth *rt_b =
187 container_of(timer, struct rt_bandwidth, rt_period_timer);
188 ktime_t now;
189 int overrun;
190 int idle = 0;
192 for (;;) {
193 now = hrtimer_cb_get_time(timer);
194 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
196 if (!overrun)
197 break;
199 idle = do_sched_rt_period_timer(rt_b, overrun);
202 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
205 static
206 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
208 rt_b->rt_period = ns_to_ktime(period);
209 rt_b->rt_runtime = runtime;
211 spin_lock_init(&rt_b->rt_runtime_lock);
213 hrtimer_init(&rt_b->rt_period_timer,
214 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
215 rt_b->rt_period_timer.function = sched_rt_period_timer;
218 static inline int rt_bandwidth_enabled(void)
220 return sysctl_sched_rt_runtime >= 0;
223 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
225 ktime_t now;
227 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
228 return;
230 if (hrtimer_active(&rt_b->rt_period_timer))
231 return;
233 spin_lock(&rt_b->rt_runtime_lock);
234 for (;;) {
235 unsigned long delta;
236 ktime_t soft, hard;
238 if (hrtimer_active(&rt_b->rt_period_timer))
239 break;
241 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
242 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
244 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
245 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
246 delta = ktime_to_ns(ktime_sub(hard, soft));
247 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
248 HRTIMER_MODE_ABS, 0);
250 spin_unlock(&rt_b->rt_runtime_lock);
253 #ifdef CONFIG_RT_GROUP_SCHED
254 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
256 hrtimer_cancel(&rt_b->rt_period_timer);
258 #endif
261 * sched_domains_mutex serializes calls to arch_init_sched_domains,
262 * detach_destroy_domains and partition_sched_domains.
264 static DEFINE_MUTEX(sched_domains_mutex);
266 #ifdef CONFIG_GROUP_SCHED
268 #include <linux/cgroup.h>
270 struct cfs_rq;
272 static LIST_HEAD(task_groups);
274 /* task group related information */
275 struct task_group {
276 #ifdef CONFIG_CGROUP_SCHED
277 struct cgroup_subsys_state css;
278 #endif
280 #ifdef CONFIG_USER_SCHED
281 uid_t uid;
282 #endif
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285 /* schedulable entities of this group on each cpu */
286 struct sched_entity **se;
287 /* runqueue "owned" by this group on each cpu */
288 struct cfs_rq **cfs_rq;
289 unsigned long shares;
290 #endif
292 #ifdef CONFIG_RT_GROUP_SCHED
293 struct sched_rt_entity **rt_se;
294 struct rt_rq **rt_rq;
296 struct rt_bandwidth rt_bandwidth;
297 #endif
299 struct rcu_head rcu;
300 struct list_head list;
302 struct task_group *parent;
303 struct list_head siblings;
304 struct list_head children;
307 #ifdef CONFIG_USER_SCHED
309 /* Helper function to pass uid information to create_sched_user() */
310 void set_tg_uid(struct user_struct *user)
312 user->tg->uid = user->uid;
316 * Root task group.
317 * Every UID task group (including init_task_group aka UID-0) will
318 * be a child to this group.
320 struct task_group root_task_group;
322 #ifdef CONFIG_FAIR_GROUP_SCHED
323 /* Default task group's sched entity on each cpu */
324 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
325 /* Default task group's cfs_rq on each cpu */
326 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_FAIR_GROUP_SCHED */
329 #ifdef CONFIG_RT_GROUP_SCHED
330 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
331 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
332 #endif /* CONFIG_RT_GROUP_SCHED */
333 #else /* !CONFIG_USER_SCHED */
334 #define root_task_group init_task_group
335 #endif /* CONFIG_USER_SCHED */
337 /* task_group_lock serializes add/remove of task groups and also changes to
338 * a task group's cpu shares.
340 static DEFINE_SPINLOCK(task_group_lock);
342 #ifdef CONFIG_SMP
343 static int root_task_group_empty(void)
345 return list_empty(&root_task_group.children);
347 #endif
349 #ifdef CONFIG_FAIR_GROUP_SCHED
350 #ifdef CONFIG_USER_SCHED
351 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
352 #else /* !CONFIG_USER_SCHED */
353 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
354 #endif /* CONFIG_USER_SCHED */
357 * A weight of 0 or 1 can cause arithmetics problems.
358 * A weight of a cfs_rq is the sum of weights of which entities
359 * are queued on this cfs_rq, so a weight of a entity should not be
360 * too large, so as the shares value of a task group.
361 * (The default weight is 1024 - so there's no practical
362 * limitation from this.)
364 #define MIN_SHARES 2
365 #define MAX_SHARES (1UL << 18)
367 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
368 #endif
370 /* Default task group.
371 * Every task in system belong to this group at bootup.
373 struct task_group init_task_group;
375 /* return group to which a task belongs */
376 static inline struct task_group *task_group(struct task_struct *p)
378 struct task_group *tg;
380 #ifdef CONFIG_USER_SCHED
381 rcu_read_lock();
382 tg = __task_cred(p)->user->tg;
383 rcu_read_unlock();
384 #elif defined(CONFIG_CGROUP_SCHED)
385 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
386 struct task_group, css);
387 #else
388 tg = &init_task_group;
389 #endif
390 return tg;
393 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
394 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
396 #ifdef CONFIG_FAIR_GROUP_SCHED
397 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
398 p->se.parent = task_group(p)->se[cpu];
399 #endif
401 #ifdef CONFIG_RT_GROUP_SCHED
402 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
403 p->rt.parent = task_group(p)->rt_se[cpu];
404 #endif
407 #else
409 #ifdef CONFIG_SMP
410 static int root_task_group_empty(void)
412 return 1;
414 #endif
416 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
417 static inline struct task_group *task_group(struct task_struct *p)
419 return NULL;
422 #endif /* CONFIG_GROUP_SCHED */
424 /* CFS-related fields in a runqueue */
425 struct cfs_rq {
426 struct load_weight load;
427 unsigned long nr_running;
429 u64 exec_clock;
430 u64 min_vruntime;
432 struct rb_root tasks_timeline;
433 struct rb_node *rb_leftmost;
435 struct list_head tasks;
436 struct list_head *balance_iterator;
439 * 'curr' points to currently running entity on this cfs_rq.
440 * It is set to NULL otherwise (i.e when none are currently running).
442 struct sched_entity *curr, *next, *last;
444 unsigned int nr_spread_over;
446 #ifdef CONFIG_FAIR_GROUP_SCHED
447 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
450 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
451 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
452 * (like users, containers etc.)
454 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
455 * list is used during load balance.
457 struct list_head leaf_cfs_rq_list;
458 struct task_group *tg; /* group that "owns" this runqueue */
460 #ifdef CONFIG_SMP
462 * the part of load.weight contributed by tasks
464 unsigned long task_weight;
467 * h_load = weight * f(tg)
469 * Where f(tg) is the recursive weight fraction assigned to
470 * this group.
472 unsigned long h_load;
475 * this cpu's part of tg->shares
477 unsigned long shares;
480 * load.weight at the time we set shares
482 unsigned long rq_weight;
483 #endif
484 #endif
487 /* Real-Time classes' related field in a runqueue: */
488 struct rt_rq {
489 struct rt_prio_array active;
490 unsigned long rt_nr_running;
491 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
492 struct {
493 int curr; /* highest queued rt task prio */
494 #ifdef CONFIG_SMP
495 int next; /* next highest */
496 #endif
497 } highest_prio;
498 #endif
499 #ifdef CONFIG_SMP
500 unsigned long rt_nr_migratory;
501 int overloaded;
502 struct plist_head pushable_tasks;
503 #endif
504 int rt_throttled;
505 u64 rt_time;
506 u64 rt_runtime;
507 /* Nests inside the rq lock: */
508 spinlock_t rt_runtime_lock;
510 #ifdef CONFIG_RT_GROUP_SCHED
511 unsigned long rt_nr_boosted;
513 struct rq *rq;
514 struct list_head leaf_rt_rq_list;
515 struct task_group *tg;
516 struct sched_rt_entity *rt_se;
517 #endif
520 #ifdef CONFIG_SMP
523 * We add the notion of a root-domain which will be used to define per-domain
524 * variables. Each exclusive cpuset essentially defines an island domain by
525 * fully partitioning the member cpus from any other cpuset. Whenever a new
526 * exclusive cpuset is created, we also create and attach a new root-domain
527 * object.
530 struct root_domain {
531 atomic_t refcount;
532 cpumask_var_t span;
533 cpumask_var_t online;
536 * The "RT overload" flag: it gets set if a CPU has more than
537 * one runnable RT task.
539 cpumask_var_t rto_mask;
540 atomic_t rto_count;
541 #ifdef CONFIG_SMP
542 struct cpupri cpupri;
543 #endif
544 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
546 * Preferred wake up cpu nominated by sched_mc balance that will be
547 * used when most cpus are idle in the system indicating overall very
548 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
550 unsigned int sched_mc_preferred_wakeup_cpu;
551 #endif
555 * By default the system creates a single root-domain with all cpus as
556 * members (mimicking the global state we have today).
558 static struct root_domain def_root_domain;
560 #endif
563 * This is the main, per-CPU runqueue data structure.
565 * Locking rule: those places that want to lock multiple runqueues
566 * (such as the load balancing or the thread migration code), lock
567 * acquire operations must be ordered by ascending &runqueue.
569 struct rq {
570 /* runqueue lock: */
571 spinlock_t lock;
574 * nr_running and cpu_load should be in the same cacheline because
575 * remote CPUs use both these fields when doing load calculation.
577 unsigned long nr_running;
578 #define CPU_LOAD_IDX_MAX 5
579 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
580 #ifdef CONFIG_NO_HZ
581 unsigned long last_tick_seen;
582 unsigned char in_nohz_recently;
583 #endif
584 /* capture load from *all* tasks on this cpu: */
585 struct load_weight load;
586 unsigned long nr_load_updates;
587 u64 nr_switches;
588 u64 nr_migrations_in;
590 struct cfs_rq cfs;
591 struct rt_rq rt;
593 #ifdef CONFIG_FAIR_GROUP_SCHED
594 /* list of leaf cfs_rq on this cpu: */
595 struct list_head leaf_cfs_rq_list;
596 #endif
597 #ifdef CONFIG_RT_GROUP_SCHED
598 struct list_head leaf_rt_rq_list;
599 #endif
602 * This is part of a global counter where only the total sum
603 * over all CPUs matters. A task can increase this counter on
604 * one CPU and if it got migrated afterwards it may decrease
605 * it on another CPU. Always updated under the runqueue lock:
607 unsigned long nr_uninterruptible;
609 struct task_struct *curr, *idle;
610 unsigned long next_balance;
611 struct mm_struct *prev_mm;
613 u64 clock;
615 atomic_t nr_iowait;
617 #ifdef CONFIG_SMP
618 struct root_domain *rd;
619 struct sched_domain *sd;
621 unsigned char idle_at_tick;
622 /* For active balancing */
623 int active_balance;
624 int push_cpu;
625 /* cpu of this runqueue: */
626 int cpu;
627 int online;
629 unsigned long avg_load_per_task;
631 struct task_struct *migration_thread;
632 struct list_head migration_queue;
633 #endif
635 #ifdef CONFIG_SCHED_HRTICK
636 #ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639 #endif
640 struct hrtimer hrtick_timer;
641 #endif
643 #ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
649 /* sys_sched_yield() stats */
650 unsigned int yld_count;
652 /* schedule() stats */
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
657 /* try_to_wake_up() stats */
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
661 /* BKL stats */
662 unsigned int bkl_count;
663 #endif
666 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
668 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
673 static inline int cpu_of(struct rq *rq)
675 #ifdef CONFIG_SMP
676 return rq->cpu;
677 #else
678 return 0;
679 #endif
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
684 * See detach_destroy_domains: synchronize_sched for details.
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
689 #define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
692 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693 #define this_rq() (&__get_cpu_var(runqueues))
694 #define task_rq(p) cpu_rq(task_cpu(p))
695 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
697 inline void update_rq_clock(struct rq *rq)
699 rq->clock = sched_clock_cpu(cpu_of(rq));
703 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
705 #ifdef CONFIG_SCHED_DEBUG
706 # define const_debug __read_mostly
707 #else
708 # define const_debug static const
709 #endif
712 * runqueue_is_locked
714 * Returns true if the current cpu runqueue is locked.
715 * This interface allows printk to be called with the runqueue lock
716 * held and know whether or not it is OK to wake up the klogd.
718 int runqueue_is_locked(void)
720 int cpu = get_cpu();
721 struct rq *rq = cpu_rq(cpu);
722 int ret;
724 ret = spin_is_locked(&rq->lock);
725 put_cpu();
726 return ret;
730 * Debugging: various feature bits
733 #define SCHED_FEAT(name, enabled) \
734 __SCHED_FEAT_##name ,
736 enum {
737 #include "sched_features.h"
740 #undef SCHED_FEAT
742 #define SCHED_FEAT(name, enabled) \
743 (1UL << __SCHED_FEAT_##name) * enabled |
745 const_debug unsigned int sysctl_sched_features =
746 #include "sched_features.h"
749 #undef SCHED_FEAT
751 #ifdef CONFIG_SCHED_DEBUG
752 #define SCHED_FEAT(name, enabled) \
753 #name ,
755 static __read_mostly char *sched_feat_names[] = {
756 #include "sched_features.h"
757 NULL
760 #undef SCHED_FEAT
762 static int sched_feat_show(struct seq_file *m, void *v)
764 int i;
766 for (i = 0; sched_feat_names[i]; i++) {
767 if (!(sysctl_sched_features & (1UL << i)))
768 seq_puts(m, "NO_");
769 seq_printf(m, "%s ", sched_feat_names[i]);
771 seq_puts(m, "\n");
773 return 0;
776 static ssize_t
777 sched_feat_write(struct file *filp, const char __user *ubuf,
778 size_t cnt, loff_t *ppos)
780 char buf[64];
781 char *cmp = buf;
782 int neg = 0;
783 int i;
785 if (cnt > 63)
786 cnt = 63;
788 if (copy_from_user(&buf, ubuf, cnt))
789 return -EFAULT;
791 buf[cnt] = 0;
793 if (strncmp(buf, "NO_", 3) == 0) {
794 neg = 1;
795 cmp += 3;
798 for (i = 0; sched_feat_names[i]; i++) {
799 int len = strlen(sched_feat_names[i]);
801 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
802 if (neg)
803 sysctl_sched_features &= ~(1UL << i);
804 else
805 sysctl_sched_features |= (1UL << i);
806 break;
810 if (!sched_feat_names[i])
811 return -EINVAL;
813 filp->f_pos += cnt;
815 return cnt;
818 static int sched_feat_open(struct inode *inode, struct file *filp)
820 return single_open(filp, sched_feat_show, NULL);
823 static struct file_operations sched_feat_fops = {
824 .open = sched_feat_open,
825 .write = sched_feat_write,
826 .read = seq_read,
827 .llseek = seq_lseek,
828 .release = single_release,
831 static __init int sched_init_debug(void)
833 debugfs_create_file("sched_features", 0644, NULL, NULL,
834 &sched_feat_fops);
836 return 0;
838 late_initcall(sched_init_debug);
840 #endif
842 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
845 * Number of tasks to iterate in a single balance run.
846 * Limited because this is done with IRQs disabled.
848 const_debug unsigned int sysctl_sched_nr_migrate = 32;
851 * ratelimit for updating the group shares.
852 * default: 0.25ms
854 unsigned int sysctl_sched_shares_ratelimit = 250000;
857 * Inject some fuzzyness into changing the per-cpu group shares
858 * this avoids remote rq-locks at the expense of fairness.
859 * default: 4
861 unsigned int sysctl_sched_shares_thresh = 4;
864 * period over which we measure -rt task cpu usage in us.
865 * default: 1s
867 unsigned int sysctl_sched_rt_period = 1000000;
869 static __read_mostly int scheduler_running;
872 * part of the period that we allow rt tasks to run in us.
873 * default: 0.95s
875 int sysctl_sched_rt_runtime = 950000;
877 static inline u64 global_rt_period(void)
879 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882 static inline u64 global_rt_runtime(void)
884 if (sysctl_sched_rt_runtime < 0)
885 return RUNTIME_INF;
887 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890 #ifndef prepare_arch_switch
891 # define prepare_arch_switch(next) do { } while (0)
892 #endif
893 #ifndef finish_arch_switch
894 # define finish_arch_switch(prev) do { } while (0)
895 #endif
897 static inline int task_current(struct rq *rq, struct task_struct *p)
899 return rq->curr == p;
902 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
903 static inline int task_running(struct rq *rq, struct task_struct *p)
905 return task_current(rq, p);
908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914 #ifdef CONFIG_DEBUG_SPINLOCK
915 /* this is a valid case when another task releases the spinlock */
916 rq->lock.owner = current;
917 #endif
919 * If we are tracking spinlock dependencies then we have to
920 * fix up the runqueue lock - which gets 'carried over' from
921 * prev into current:
923 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
925 spin_unlock_irq(&rq->lock);
928 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
929 static inline int task_running(struct rq *rq, struct task_struct *p)
931 #ifdef CONFIG_SMP
932 return p->oncpu;
933 #else
934 return task_current(rq, p);
935 #endif
938 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
940 #ifdef CONFIG_SMP
942 * We can optimise this out completely for !SMP, because the
943 * SMP rebalancing from interrupt is the only thing that cares
944 * here.
946 next->oncpu = 1;
947 #endif
948 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
949 spin_unlock_irq(&rq->lock);
950 #else
951 spin_unlock(&rq->lock);
952 #endif
955 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
957 #ifdef CONFIG_SMP
959 * After ->oncpu is cleared, the task can be moved to a different CPU.
960 * We must ensure this doesn't happen until the switch is completely
961 * finished.
963 smp_wmb();
964 prev->oncpu = 0;
965 #endif
966 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
967 local_irq_enable();
968 #endif
970 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
973 * __task_rq_lock - lock the runqueue a given task resides on.
974 * Must be called interrupts disabled.
976 static inline struct rq *__task_rq_lock(struct task_struct *p)
977 __acquires(rq->lock)
979 for (;;) {
980 struct rq *rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
984 spin_unlock(&rq->lock);
989 * task_rq_lock - lock the runqueue a given task resides on and disable
990 * interrupts. Note the ordering: we can safely lookup the task_rq without
991 * explicitly disabling preemption.
993 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
994 __acquires(rq->lock)
996 struct rq *rq;
998 for (;;) {
999 local_irq_save(*flags);
1000 rq = task_rq(p);
1001 spin_lock(&rq->lock);
1002 if (likely(rq == task_rq(p)))
1003 return rq;
1004 spin_unlock_irqrestore(&rq->lock, *flags);
1008 void task_rq_unlock_wait(struct task_struct *p)
1010 struct rq *rq = task_rq(p);
1012 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1013 spin_unlock_wait(&rq->lock);
1016 static void __task_rq_unlock(struct rq *rq)
1017 __releases(rq->lock)
1019 spin_unlock(&rq->lock);
1022 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1023 __releases(rq->lock)
1025 spin_unlock_irqrestore(&rq->lock, *flags);
1029 * this_rq_lock - lock this runqueue and disable interrupts.
1031 static struct rq *this_rq_lock(void)
1032 __acquires(rq->lock)
1034 struct rq *rq;
1036 local_irq_disable();
1037 rq = this_rq();
1038 spin_lock(&rq->lock);
1040 return rq;
1043 #ifdef CONFIG_SCHED_HRTICK
1045 * Use HR-timers to deliver accurate preemption points.
1047 * Its all a bit involved since we cannot program an hrt while holding the
1048 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * reschedule event.
1051 * When we get rescheduled we reprogram the hrtick_timer outside of the
1052 * rq->lock.
1056 * Use hrtick when:
1057 * - enabled by features
1058 * - hrtimer is actually high res
1060 static inline int hrtick_enabled(struct rq *rq)
1062 if (!sched_feat(HRTICK))
1063 return 0;
1064 if (!cpu_active(cpu_of(rq)))
1065 return 0;
1066 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069 static void hrtick_clear(struct rq *rq)
1071 if (hrtimer_active(&rq->hrtick_timer))
1072 hrtimer_cancel(&rq->hrtick_timer);
1076 * High-resolution timer tick.
1077 * Runs from hardirq context with interrupts disabled.
1079 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1081 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1083 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1085 spin_lock(&rq->lock);
1086 update_rq_clock(rq);
1087 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1088 spin_unlock(&rq->lock);
1090 return HRTIMER_NORESTART;
1093 #ifdef CONFIG_SMP
1095 * called from hardirq (IPI) context
1097 static void __hrtick_start(void *arg)
1099 struct rq *rq = arg;
1101 spin_lock(&rq->lock);
1102 hrtimer_restart(&rq->hrtick_timer);
1103 rq->hrtick_csd_pending = 0;
1104 spin_unlock(&rq->lock);
1108 * Called to set the hrtick timer state.
1110 * called with rq->lock held and irqs disabled
1112 static void hrtick_start(struct rq *rq, u64 delay)
1114 struct hrtimer *timer = &rq->hrtick_timer;
1115 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1117 hrtimer_set_expires(timer, time);
1119 if (rq == this_rq()) {
1120 hrtimer_restart(timer);
1121 } else if (!rq->hrtick_csd_pending) {
1122 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1123 rq->hrtick_csd_pending = 1;
1127 static int
1128 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1130 int cpu = (int)(long)hcpu;
1132 switch (action) {
1133 case CPU_UP_CANCELED:
1134 case CPU_UP_CANCELED_FROZEN:
1135 case CPU_DOWN_PREPARE:
1136 case CPU_DOWN_PREPARE_FROZEN:
1137 case CPU_DEAD:
1138 case CPU_DEAD_FROZEN:
1139 hrtick_clear(cpu_rq(cpu));
1140 return NOTIFY_OK;
1143 return NOTIFY_DONE;
1146 static __init void init_hrtick(void)
1148 hotcpu_notifier(hotplug_hrtick, 0);
1150 #else
1152 * Called to set the hrtick timer state.
1154 * called with rq->lock held and irqs disabled
1156 static void hrtick_start(struct rq *rq, u64 delay)
1158 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1159 HRTIMER_MODE_REL, 0);
1162 static inline void init_hrtick(void)
1165 #endif /* CONFIG_SMP */
1167 static void init_rq_hrtick(struct rq *rq)
1169 #ifdef CONFIG_SMP
1170 rq->hrtick_csd_pending = 0;
1172 rq->hrtick_csd.flags = 0;
1173 rq->hrtick_csd.func = __hrtick_start;
1174 rq->hrtick_csd.info = rq;
1175 #endif
1177 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1178 rq->hrtick_timer.function = hrtick;
1180 #else /* CONFIG_SCHED_HRTICK */
1181 static inline void hrtick_clear(struct rq *rq)
1185 static inline void init_rq_hrtick(struct rq *rq)
1189 static inline void init_hrtick(void)
1192 #endif /* CONFIG_SCHED_HRTICK */
1195 * resched_task - mark a task 'to be rescheduled now'.
1197 * On UP this means the setting of the need_resched flag, on SMP it
1198 * might also involve a cross-CPU call to trigger the scheduler on
1199 * the target CPU.
1201 #ifdef CONFIG_SMP
1203 #ifndef tsk_is_polling
1204 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205 #endif
1207 static void resched_task(struct task_struct *p)
1209 int cpu;
1211 assert_spin_locked(&task_rq(p)->lock);
1213 if (test_tsk_need_resched(p))
1214 return;
1216 set_tsk_need_resched(p);
1218 cpu = task_cpu(p);
1219 if (cpu == smp_processor_id())
1220 return;
1222 /* NEED_RESCHED must be visible before we test polling */
1223 smp_mb();
1224 if (!tsk_is_polling(p))
1225 smp_send_reschedule(cpu);
1228 static void resched_cpu(int cpu)
1230 struct rq *rq = cpu_rq(cpu);
1231 unsigned long flags;
1233 if (!spin_trylock_irqsave(&rq->lock, flags))
1234 return;
1235 resched_task(cpu_curr(cpu));
1236 spin_unlock_irqrestore(&rq->lock, flags);
1239 #ifdef CONFIG_NO_HZ
1241 * When add_timer_on() enqueues a timer into the timer wheel of an
1242 * idle CPU then this timer might expire before the next timer event
1243 * which is scheduled to wake up that CPU. In case of a completely
1244 * idle system the next event might even be infinite time into the
1245 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1246 * leaves the inner idle loop so the newly added timer is taken into
1247 * account when the CPU goes back to idle and evaluates the timer
1248 * wheel for the next timer event.
1250 void wake_up_idle_cpu(int cpu)
1252 struct rq *rq = cpu_rq(cpu);
1254 if (cpu == smp_processor_id())
1255 return;
1258 * This is safe, as this function is called with the timer
1259 * wheel base lock of (cpu) held. When the CPU is on the way
1260 * to idle and has not yet set rq->curr to idle then it will
1261 * be serialized on the timer wheel base lock and take the new
1262 * timer into account automatically.
1264 if (rq->curr != rq->idle)
1265 return;
1268 * We can set TIF_RESCHED on the idle task of the other CPU
1269 * lockless. The worst case is that the other CPU runs the
1270 * idle task through an additional NOOP schedule()
1272 set_tsk_need_resched(rq->idle);
1274 /* NEED_RESCHED must be visible before we test polling */
1275 smp_mb();
1276 if (!tsk_is_polling(rq->idle))
1277 smp_send_reschedule(cpu);
1279 #endif /* CONFIG_NO_HZ */
1281 #else /* !CONFIG_SMP */
1282 static void resched_task(struct task_struct *p)
1284 assert_spin_locked(&task_rq(p)->lock);
1285 set_tsk_need_resched(p);
1287 #endif /* CONFIG_SMP */
1289 #if BITS_PER_LONG == 32
1290 # define WMULT_CONST (~0UL)
1291 #else
1292 # define WMULT_CONST (1UL << 32)
1293 #endif
1295 #define WMULT_SHIFT 32
1298 * Shift right and round:
1300 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1303 * delta *= weight / lw
1305 static unsigned long
1306 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1309 u64 tmp;
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1319 tmp = (u64)delta_exec * weight;
1321 * Check whether we'd overflow the 64-bit multiplication:
1323 if (unlikely(tmp > WMULT_CONST))
1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1325 WMULT_SHIFT/2);
1326 else
1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1334 lw->weight += inc;
1335 lw->inv_weight = 0;
1338 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1340 lw->weight -= dec;
1341 lw->inv_weight = 0;
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1353 #define WEIGHT_IDLEPRIO 3
1354 #define WMULT_IDLEPRIO 1431655765
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
1368 static const int prio_to_weight[40] = {
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1386 static const u32 prio_to_wmult[40] = {
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1397 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400 * runqueue iterator, to support SMP load-balancing between different
1401 * scheduling classes, without having to expose their internal data
1402 * structures to the load-balancing proper:
1404 struct rq_iterator {
1405 void *arg;
1406 struct task_struct *(*start)(void *);
1407 struct task_struct *(*next)(void *);
1410 #ifdef CONFIG_SMP
1411 static unsigned long
1412 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 unsigned long max_load_move, struct sched_domain *sd,
1414 enum cpu_idle_type idle, int *all_pinned,
1415 int *this_best_prio, struct rq_iterator *iterator);
1417 static int
1418 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1419 struct sched_domain *sd, enum cpu_idle_type idle,
1420 struct rq_iterator *iterator);
1421 #endif
1423 /* Time spent by the tasks of the cpu accounting group executing in ... */
1424 enum cpuacct_stat_index {
1425 CPUACCT_STAT_USER, /* ... user mode */
1426 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1428 CPUACCT_STAT_NSTATS,
1431 #ifdef CONFIG_CGROUP_CPUACCT
1432 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1433 static void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val);
1435 #else
1436 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1437 static inline void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val) {}
1439 #endif
1441 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1443 update_load_add(&rq->load, load);
1446 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1448 update_load_sub(&rq->load, load);
1451 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1452 typedef int (*tg_visitor)(struct task_group *, void *);
1455 * Iterate the full tree, calling @down when first entering a node and @up when
1456 * leaving it for the final time.
1458 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1460 struct task_group *parent, *child;
1461 int ret;
1463 rcu_read_lock();
1464 parent = &root_task_group;
1465 down:
1466 ret = (*down)(parent, data);
1467 if (ret)
1468 goto out_unlock;
1469 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 parent = child;
1471 goto down;
1474 continue;
1476 ret = (*up)(parent, data);
1477 if (ret)
1478 goto out_unlock;
1480 child = parent;
1481 parent = parent->parent;
1482 if (parent)
1483 goto up;
1484 out_unlock:
1485 rcu_read_unlock();
1487 return ret;
1490 static int tg_nop(struct task_group *tg, void *data)
1492 return 0;
1494 #endif
1496 #ifdef CONFIG_SMP
1497 static unsigned long source_load(int cpu, int type);
1498 static unsigned long target_load(int cpu, int type);
1499 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1501 static unsigned long cpu_avg_load_per_task(int cpu)
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1506 if (nr_running)
1507 rq->avg_load_per_task = rq->load.weight / nr_running;
1508 else
1509 rq->avg_load_per_task = 0;
1511 return rq->avg_load_per_task;
1514 #ifdef CONFIG_FAIR_GROUP_SCHED
1516 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519 * Calculate and set the cpu's group shares.
1521 static void
1522 update_group_shares_cpu(struct task_group *tg, int cpu,
1523 unsigned long sd_shares, unsigned long sd_rq_weight)
1525 unsigned long shares;
1526 unsigned long rq_weight;
1528 if (!tg->se[cpu])
1529 return;
1531 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1534 * \Sum shares * rq_weight
1535 * shares = -----------------------
1536 * \Sum rq_weight
1539 shares = (sd_shares * rq_weight) / sd_rq_weight;
1540 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1542 if (abs(shares - tg->se[cpu]->load.weight) >
1543 sysctl_sched_shares_thresh) {
1544 struct rq *rq = cpu_rq(cpu);
1545 unsigned long flags;
1547 spin_lock_irqsave(&rq->lock, flags);
1548 tg->cfs_rq[cpu]->shares = shares;
1550 __set_se_shares(tg->se[cpu], shares);
1551 spin_unlock_irqrestore(&rq->lock, flags);
1556 * Re-compute the task group their per cpu shares over the given domain.
1557 * This needs to be done in a bottom-up fashion because the rq weight of a
1558 * parent group depends on the shares of its child groups.
1560 static int tg_shares_up(struct task_group *tg, void *data)
1562 unsigned long weight, rq_weight = 0;
1563 unsigned long shares = 0;
1564 struct sched_domain *sd = data;
1565 int i;
1567 for_each_cpu(i, sched_domain_span(sd)) {
1569 * If there are currently no tasks on the cpu pretend there
1570 * is one of average load so that when a new task gets to
1571 * run here it will not get delayed by group starvation.
1573 weight = tg->cfs_rq[i]->load.weight;
1574 if (!weight)
1575 weight = NICE_0_LOAD;
1577 tg->cfs_rq[i]->rq_weight = weight;
1578 rq_weight += weight;
1579 shares += tg->cfs_rq[i]->shares;
1582 if ((!shares && rq_weight) || shares > tg->shares)
1583 shares = tg->shares;
1585 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1586 shares = tg->shares;
1588 for_each_cpu(i, sched_domain_span(sd))
1589 update_group_shares_cpu(tg, i, shares, rq_weight);
1591 return 0;
1595 * Compute the cpu's hierarchical load factor for each task group.
1596 * This needs to be done in a top-down fashion because the load of a child
1597 * group is a fraction of its parents load.
1599 static int tg_load_down(struct task_group *tg, void *data)
1601 unsigned long load;
1602 long cpu = (long)data;
1604 if (!tg->parent) {
1605 load = cpu_rq(cpu)->load.weight;
1606 } else {
1607 load = tg->parent->cfs_rq[cpu]->h_load;
1608 load *= tg->cfs_rq[cpu]->shares;
1609 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1612 tg->cfs_rq[cpu]->h_load = load;
1614 return 0;
1617 static void update_shares(struct sched_domain *sd)
1619 u64 now = cpu_clock(raw_smp_processor_id());
1620 s64 elapsed = now - sd->last_update;
1622 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1623 sd->last_update = now;
1624 walk_tg_tree(tg_nop, tg_shares_up, sd);
1628 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1630 spin_unlock(&rq->lock);
1631 update_shares(sd);
1632 spin_lock(&rq->lock);
1635 static void update_h_load(long cpu)
1637 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1640 #else
1642 static inline void update_shares(struct sched_domain *sd)
1646 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1650 #endif
1652 #ifdef CONFIG_PREEMPT
1655 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1656 * way at the expense of forcing extra atomic operations in all
1657 * invocations. This assures that the double_lock is acquired using the
1658 * same underlying policy as the spinlock_t on this architecture, which
1659 * reduces latency compared to the unfair variant below. However, it
1660 * also adds more overhead and therefore may reduce throughput.
1662 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1663 __releases(this_rq->lock)
1664 __acquires(busiest->lock)
1665 __acquires(this_rq->lock)
1667 spin_unlock(&this_rq->lock);
1668 double_rq_lock(this_rq, busiest);
1670 return 1;
1673 #else
1675 * Unfair double_lock_balance: Optimizes throughput at the expense of
1676 * latency by eliminating extra atomic operations when the locks are
1677 * already in proper order on entry. This favors lower cpu-ids and will
1678 * grant the double lock to lower cpus over higher ids under contention,
1679 * regardless of entry order into the function.
1681 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1682 __releases(this_rq->lock)
1683 __acquires(busiest->lock)
1684 __acquires(this_rq->lock)
1686 int ret = 0;
1688 if (unlikely(!spin_trylock(&busiest->lock))) {
1689 if (busiest < this_rq) {
1690 spin_unlock(&this_rq->lock);
1691 spin_lock(&busiest->lock);
1692 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1693 ret = 1;
1694 } else
1695 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1697 return ret;
1700 #endif /* CONFIG_PREEMPT */
1703 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1705 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 if (unlikely(!irqs_disabled())) {
1708 /* printk() doesn't work good under rq->lock */
1709 spin_unlock(&this_rq->lock);
1710 BUG_ON(1);
1713 return _double_lock_balance(this_rq, busiest);
1716 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1717 __releases(busiest->lock)
1719 spin_unlock(&busiest->lock);
1720 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1722 #endif
1724 #ifdef CONFIG_FAIR_GROUP_SCHED
1725 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1727 #ifdef CONFIG_SMP
1728 cfs_rq->shares = shares;
1729 #endif
1731 #endif
1733 #include "sched_stats.h"
1734 #include "sched_idletask.c"
1735 #include "sched_fair.c"
1736 #include "sched_rt.c"
1737 #ifdef CONFIG_SCHED_DEBUG
1738 # include "sched_debug.c"
1739 #endif
1741 #define sched_class_highest (&rt_sched_class)
1742 #define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
1745 static void inc_nr_running(struct rq *rq)
1747 rq->nr_running++;
1750 static void dec_nr_running(struct rq *rq)
1752 rq->nr_running--;
1755 static void set_load_weight(struct task_struct *p)
1757 if (task_has_rt_policy(p)) {
1758 p->se.load.weight = prio_to_weight[0] * 2;
1759 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1760 return;
1764 * SCHED_IDLE tasks get minimal weight:
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1769 return;
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1776 static void update_avg(u64 *avg, u64 sample)
1778 s64 diff = sample - *avg;
1779 *avg += diff >> 3;
1782 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784 if (wakeup)
1785 p->se.start_runtime = p->se.sum_exec_runtime;
1787 sched_info_queued(p);
1788 p->sched_class->enqueue_task(rq, p, wakeup);
1789 p->se.on_rq = 1;
1792 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794 if (sleep) {
1795 if (p->se.last_wakeup) {
1796 update_avg(&p->se.avg_overlap,
1797 p->se.sum_exec_runtime - p->se.last_wakeup);
1798 p->se.last_wakeup = 0;
1799 } else {
1800 update_avg(&p->se.avg_wakeup,
1801 sysctl_sched_wakeup_granularity);
1805 sched_info_dequeued(p);
1806 p->sched_class->dequeue_task(rq, p, sleep);
1807 p->se.on_rq = 0;
1811 * __normal_prio - return the priority that is based on the static prio
1813 static inline int __normal_prio(struct task_struct *p)
1815 return p->static_prio;
1819 * Calculate the expected normal priority: i.e. priority
1820 * without taking RT-inheritance into account. Might be
1821 * boosted by interactivity modifiers. Changes upon fork,
1822 * setprio syscalls, and whenever the interactivity
1823 * estimator recalculates.
1825 static inline int normal_prio(struct task_struct *p)
1827 int prio;
1829 if (task_has_rt_policy(p))
1830 prio = MAX_RT_PRIO-1 - p->rt_priority;
1831 else
1832 prio = __normal_prio(p);
1833 return prio;
1837 * Calculate the current priority, i.e. the priority
1838 * taken into account by the scheduler. This value might
1839 * be boosted by RT tasks, or might be boosted by
1840 * interactivity modifiers. Will be RT if the task got
1841 * RT-boosted. If not then it returns p->normal_prio.
1843 static int effective_prio(struct task_struct *p)
1845 p->normal_prio = normal_prio(p);
1847 * If we are RT tasks or we were boosted to RT priority,
1848 * keep the priority unchanged. Otherwise, update priority
1849 * to the normal priority:
1851 if (!rt_prio(p->prio))
1852 return p->normal_prio;
1853 return p->prio;
1857 * activate_task - move a task to the runqueue.
1859 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1861 if (task_contributes_to_load(p))
1862 rq->nr_uninterruptible--;
1864 enqueue_task(rq, p, wakeup);
1865 inc_nr_running(rq);
1869 * deactivate_task - remove a task from the runqueue.
1871 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1873 if (task_contributes_to_load(p))
1874 rq->nr_uninterruptible++;
1876 dequeue_task(rq, p, sleep);
1877 dec_nr_running(rq);
1881 * task_curr - is this task currently executing on a CPU?
1882 * @p: the task in question.
1884 inline int task_curr(const struct task_struct *p)
1886 return cpu_curr(task_cpu(p)) == p;
1889 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891 set_task_rq(p, cpu);
1892 #ifdef CONFIG_SMP
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfuly executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1898 smp_wmb();
1899 task_thread_info(p)->cpu = cpu;
1900 #endif
1903 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1904 const struct sched_class *prev_class,
1905 int oldprio, int running)
1907 if (prev_class != p->sched_class) {
1908 if (prev_class->switched_from)
1909 prev_class->switched_from(rq, p, running);
1910 p->sched_class->switched_to(rq, p, running);
1911 } else
1912 p->sched_class->prio_changed(rq, p, oldprio, running);
1915 #ifdef CONFIG_SMP
1917 /* Used instead of source_load when we know the type == 0 */
1918 static unsigned long weighted_cpuload(const int cpu)
1920 return cpu_rq(cpu)->load.weight;
1924 * Is this task likely cache-hot:
1926 static int
1927 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929 s64 delta;
1932 * Buddy candidates are cache hot:
1934 if (sched_feat(CACHE_HOT_BUDDY) &&
1935 (&p->se == cfs_rq_of(&p->se)->next ||
1936 &p->se == cfs_rq_of(&p->se)->last))
1937 return 1;
1939 if (p->sched_class != &fair_sched_class)
1940 return 0;
1942 if (sysctl_sched_migration_cost == -1)
1943 return 1;
1944 if (sysctl_sched_migration_cost == 0)
1945 return 0;
1947 delta = now - p->se.exec_start;
1949 return delta < (s64)sysctl_sched_migration_cost;
1953 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1955 int old_cpu = task_cpu(p);
1956 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1957 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1958 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1959 u64 clock_offset;
1961 clock_offset = old_rq->clock - new_rq->clock;
1963 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1965 #ifdef CONFIG_SCHEDSTATS
1966 if (p->se.wait_start)
1967 p->se.wait_start -= clock_offset;
1968 if (p->se.sleep_start)
1969 p->se.sleep_start -= clock_offset;
1970 if (p->se.block_start)
1971 p->se.block_start -= clock_offset;
1972 #endif
1973 if (old_cpu != new_cpu) {
1974 p->se.nr_migrations++;
1975 new_rq->nr_migrations_in++;
1976 #ifdef CONFIG_SCHEDSTATS
1977 if (task_hot(p, old_rq->clock, NULL))
1978 schedstat_inc(p, se.nr_forced2_migrations);
1979 #endif
1980 perf_counter_task_migration(p, new_cpu);
1982 p->se.vruntime -= old_cfsrq->min_vruntime -
1983 new_cfsrq->min_vruntime;
1985 __set_task_cpu(p, new_cpu);
1988 struct migration_req {
1989 struct list_head list;
1991 struct task_struct *task;
1992 int dest_cpu;
1994 struct completion done;
1998 * The task's runqueue lock must be held.
1999 * Returns true if you have to wait for migration thread.
2001 static int
2002 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2004 struct rq *rq = task_rq(p);
2007 * If the task is not on a runqueue (and not running), then
2008 * it is sufficient to simply update the task's cpu field.
2010 if (!p->se.on_rq && !task_running(rq, p)) {
2011 set_task_cpu(p, dest_cpu);
2012 return 0;
2015 init_completion(&req->done);
2016 req->task = p;
2017 req->dest_cpu = dest_cpu;
2018 list_add(&req->list, &rq->migration_queue);
2020 return 1;
2024 * wait_task_inactive - wait for a thread to unschedule.
2026 * If @match_state is nonzero, it's the @p->state value just checked and
2027 * not expected to change. If it changes, i.e. @p might have woken up,
2028 * then return zero. When we succeed in waiting for @p to be off its CPU,
2029 * we return a positive number (its total switch count). If a second call
2030 * a short while later returns the same number, the caller can be sure that
2031 * @p has remained unscheduled the whole time.
2033 * The caller must ensure that the task *will* unschedule sometime soon,
2034 * else this function might spin for a *long* time. This function can't
2035 * be called with interrupts off, or it may introduce deadlock with
2036 * smp_call_function() if an IPI is sent by the same process we are
2037 * waiting to become inactive.
2039 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2041 unsigned long flags;
2042 int running, on_rq;
2043 unsigned long ncsw;
2044 struct rq *rq;
2046 for (;;) {
2048 * We do the initial early heuristics without holding
2049 * any task-queue locks at all. We'll only try to get
2050 * the runqueue lock when things look like they will
2051 * work out!
2053 rq = task_rq(p);
2056 * If the task is actively running on another CPU
2057 * still, just relax and busy-wait without holding
2058 * any locks.
2060 * NOTE! Since we don't hold any locks, it's not
2061 * even sure that "rq" stays as the right runqueue!
2062 * But we don't care, since "task_running()" will
2063 * return false if the runqueue has changed and p
2064 * is actually now running somewhere else!
2066 while (task_running(rq, p)) {
2067 if (match_state && unlikely(p->state != match_state))
2068 return 0;
2069 cpu_relax();
2073 * Ok, time to look more closely! We need the rq
2074 * lock now, to be *sure*. If we're wrong, we'll
2075 * just go back and repeat.
2077 rq = task_rq_lock(p, &flags);
2078 trace_sched_wait_task(rq, p);
2079 running = task_running(rq, p);
2080 on_rq = p->se.on_rq;
2081 ncsw = 0;
2082 if (!match_state || p->state == match_state)
2083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2084 task_rq_unlock(rq, &flags);
2087 * If it changed from the expected state, bail out now.
2089 if (unlikely(!ncsw))
2090 break;
2093 * Was it really running after all now that we
2094 * checked with the proper locks actually held?
2096 * Oops. Go back and try again..
2098 if (unlikely(running)) {
2099 cpu_relax();
2100 continue;
2104 * It's not enough that it's not actively running,
2105 * it must be off the runqueue _entirely_, and not
2106 * preempted!
2108 * So if it was still runnable (but just not actively
2109 * running right now), it's preempted, and we should
2110 * yield - it could be a while.
2112 if (unlikely(on_rq)) {
2113 schedule_timeout_uninterruptible(1);
2114 continue;
2118 * Ahh, all good. It wasn't running, and it wasn't
2119 * runnable, which means that it will never become
2120 * running in the future either. We're all done!
2122 break;
2125 return ncsw;
2128 /***
2129 * kick_process - kick a running thread to enter/exit the kernel
2130 * @p: the to-be-kicked thread
2132 * Cause a process which is running on another CPU to enter
2133 * kernel-mode, without any delay. (to get signals handled.)
2135 * NOTE: this function doesnt have to take the runqueue lock,
2136 * because all it wants to ensure is that the remote task enters
2137 * the kernel. If the IPI races and the task has been migrated
2138 * to another CPU then no harm is done and the purpose has been
2139 * achieved as well.
2141 void kick_process(struct task_struct *p)
2143 int cpu;
2145 preempt_disable();
2146 cpu = task_cpu(p);
2147 if ((cpu != smp_processor_id()) && task_curr(p))
2148 smp_send_reschedule(cpu);
2149 preempt_enable();
2153 * Return a low guess at the load of a migration-source cpu weighted
2154 * according to the scheduling class and "nice" value.
2156 * We want to under-estimate the load of migration sources, to
2157 * balance conservatively.
2159 static unsigned long source_load(int cpu, int type)
2161 struct rq *rq = cpu_rq(cpu);
2162 unsigned long total = weighted_cpuload(cpu);
2164 if (type == 0 || !sched_feat(LB_BIAS))
2165 return total;
2167 return min(rq->cpu_load[type-1], total);
2171 * Return a high guess at the load of a migration-target cpu weighted
2172 * according to the scheduling class and "nice" value.
2174 static unsigned long target_load(int cpu, int type)
2176 struct rq *rq = cpu_rq(cpu);
2177 unsigned long total = weighted_cpuload(cpu);
2179 if (type == 0 || !sched_feat(LB_BIAS))
2180 return total;
2182 return max(rq->cpu_load[type-1], total);
2186 * find_idlest_group finds and returns the least busy CPU group within the
2187 * domain.
2189 static struct sched_group *
2190 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2192 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long min_load = ULONG_MAX, this_load = 0;
2194 int load_idx = sd->forkexec_idx;
2195 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2197 do {
2198 unsigned long load, avg_load;
2199 int local_group;
2200 int i;
2202 /* Skip over this group if it has no CPUs allowed */
2203 if (!cpumask_intersects(sched_group_cpus(group),
2204 &p->cpus_allowed))
2205 continue;
2207 local_group = cpumask_test_cpu(this_cpu,
2208 sched_group_cpus(group));
2210 /* Tally up the load of all CPUs in the group */
2211 avg_load = 0;
2213 for_each_cpu(i, sched_group_cpus(group)) {
2214 /* Bias balancing toward cpus of our domain */
2215 if (local_group)
2216 load = source_load(i, load_idx);
2217 else
2218 load = target_load(i, load_idx);
2220 avg_load += load;
2223 /* Adjust by relative CPU power of the group */
2224 avg_load = sg_div_cpu_power(group,
2225 avg_load * SCHED_LOAD_SCALE);
2227 if (local_group) {
2228 this_load = avg_load;
2229 this = group;
2230 } else if (avg_load < min_load) {
2231 min_load = avg_load;
2232 idlest = group;
2234 } while (group = group->next, group != sd->groups);
2236 if (!idlest || 100*this_load < imbalance*min_load)
2237 return NULL;
2238 return idlest;
2242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2244 static int
2245 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2247 unsigned long load, min_load = ULONG_MAX;
2248 int idlest = -1;
2249 int i;
2251 /* Traverse only the allowed CPUs */
2252 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2253 load = weighted_cpuload(i);
2255 if (load < min_load || (load == min_load && i == this_cpu)) {
2256 min_load = load;
2257 idlest = i;
2261 return idlest;
2265 * sched_balance_self: balance the current task (running on cpu) in domains
2266 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2267 * SD_BALANCE_EXEC.
2269 * Balance, ie. select the least loaded group.
2271 * Returns the target CPU number, or the same CPU if no balancing is needed.
2273 * preempt must be disabled.
2275 static int sched_balance_self(int cpu, int flag)
2277 struct task_struct *t = current;
2278 struct sched_domain *tmp, *sd = NULL;
2280 for_each_domain(cpu, tmp) {
2282 * If power savings logic is enabled for a domain, stop there.
2284 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2285 break;
2286 if (tmp->flags & flag)
2287 sd = tmp;
2290 if (sd)
2291 update_shares(sd);
2293 while (sd) {
2294 struct sched_group *group;
2295 int new_cpu, weight;
2297 if (!(sd->flags & flag)) {
2298 sd = sd->child;
2299 continue;
2302 group = find_idlest_group(sd, t, cpu);
2303 if (!group) {
2304 sd = sd->child;
2305 continue;
2308 new_cpu = find_idlest_cpu(group, t, cpu);
2309 if (new_cpu == -1 || new_cpu == cpu) {
2310 /* Now try balancing at a lower domain level of cpu */
2311 sd = sd->child;
2312 continue;
2315 /* Now try balancing at a lower domain level of new_cpu */
2316 cpu = new_cpu;
2317 weight = cpumask_weight(sched_domain_span(sd));
2318 sd = NULL;
2319 for_each_domain(cpu, tmp) {
2320 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2321 break;
2322 if (tmp->flags & flag)
2323 sd = tmp;
2325 /* while loop will break here if sd == NULL */
2328 return cpu;
2331 #endif /* CONFIG_SMP */
2334 * task_oncpu_function_call - call a function on the cpu on which a task runs
2335 * @p: the task to evaluate
2336 * @func: the function to be called
2337 * @info: the function call argument
2339 * Calls the function @func when the task is currently running. This might
2340 * be on the current CPU, which just calls the function directly
2342 void task_oncpu_function_call(struct task_struct *p,
2343 void (*func) (void *info), void *info)
2345 int cpu;
2347 preempt_disable();
2348 cpu = task_cpu(p);
2349 if (task_curr(p))
2350 smp_call_function_single(cpu, func, info, 1);
2351 preempt_enable();
2354 /***
2355 * try_to_wake_up - wake up a thread
2356 * @p: the to-be-woken-up thread
2357 * @state: the mask of task states that can be woken
2358 * @sync: do a synchronous wakeup?
2360 * Put it on the run-queue if it's not already there. The "current"
2361 * thread is always on the run-queue (except when the actual
2362 * re-schedule is in progress), and as such you're allowed to do
2363 * the simpler "current->state = TASK_RUNNING" to mark yourself
2364 * runnable without the overhead of this.
2366 * returns failure only if the task is already active.
2368 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2370 int cpu, orig_cpu, this_cpu, success = 0;
2371 unsigned long flags;
2372 long old_state;
2373 struct rq *rq;
2375 if (!sched_feat(SYNC_WAKEUPS))
2376 sync = 0;
2378 #ifdef CONFIG_SMP
2379 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2380 struct sched_domain *sd;
2382 this_cpu = raw_smp_processor_id();
2383 cpu = task_cpu(p);
2385 for_each_domain(this_cpu, sd) {
2386 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2387 update_shares(sd);
2388 break;
2392 #endif
2394 smp_wmb();
2395 rq = task_rq_lock(p, &flags);
2396 update_rq_clock(rq);
2397 old_state = p->state;
2398 if (!(old_state & state))
2399 goto out;
2401 if (p->se.on_rq)
2402 goto out_running;
2404 cpu = task_cpu(p);
2405 orig_cpu = cpu;
2406 this_cpu = smp_processor_id();
2408 #ifdef CONFIG_SMP
2409 if (unlikely(task_running(rq, p)))
2410 goto out_activate;
2412 cpu = p->sched_class->select_task_rq(p, sync);
2413 if (cpu != orig_cpu) {
2414 set_task_cpu(p, cpu);
2415 task_rq_unlock(rq, &flags);
2416 /* might preempt at this point */
2417 rq = task_rq_lock(p, &flags);
2418 old_state = p->state;
2419 if (!(old_state & state))
2420 goto out;
2421 if (p->se.on_rq)
2422 goto out_running;
2424 this_cpu = smp_processor_id();
2425 cpu = task_cpu(p);
2428 #ifdef CONFIG_SCHEDSTATS
2429 schedstat_inc(rq, ttwu_count);
2430 if (cpu == this_cpu)
2431 schedstat_inc(rq, ttwu_local);
2432 else {
2433 struct sched_domain *sd;
2434 for_each_domain(this_cpu, sd) {
2435 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2436 schedstat_inc(sd, ttwu_wake_remote);
2437 break;
2441 #endif /* CONFIG_SCHEDSTATS */
2443 out_activate:
2444 #endif /* CONFIG_SMP */
2445 schedstat_inc(p, se.nr_wakeups);
2446 if (sync)
2447 schedstat_inc(p, se.nr_wakeups_sync);
2448 if (orig_cpu != cpu)
2449 schedstat_inc(p, se.nr_wakeups_migrate);
2450 if (cpu == this_cpu)
2451 schedstat_inc(p, se.nr_wakeups_local);
2452 else
2453 schedstat_inc(p, se.nr_wakeups_remote);
2454 activate_task(rq, p, 1);
2455 success = 1;
2458 * Only attribute actual wakeups done by this task.
2460 if (!in_interrupt()) {
2461 struct sched_entity *se = &current->se;
2462 u64 sample = se->sum_exec_runtime;
2464 if (se->last_wakeup)
2465 sample -= se->last_wakeup;
2466 else
2467 sample -= se->start_runtime;
2468 update_avg(&se->avg_wakeup, sample);
2470 se->last_wakeup = se->sum_exec_runtime;
2473 out_running:
2474 trace_sched_wakeup(rq, p, success);
2475 check_preempt_curr(rq, p, sync);
2477 p->state = TASK_RUNNING;
2478 #ifdef CONFIG_SMP
2479 if (p->sched_class->task_wake_up)
2480 p->sched_class->task_wake_up(rq, p);
2481 #endif
2482 out:
2483 task_rq_unlock(rq, &flags);
2485 return success;
2488 int wake_up_process(struct task_struct *p)
2490 return try_to_wake_up(p, TASK_ALL, 0);
2492 EXPORT_SYMBOL(wake_up_process);
2494 int wake_up_state(struct task_struct *p, unsigned int state)
2496 return try_to_wake_up(p, state, 0);
2500 * Perform scheduler related setup for a newly forked process p.
2501 * p is forked by current.
2503 * __sched_fork() is basic setup used by init_idle() too:
2505 static void __sched_fork(struct task_struct *p)
2507 p->se.exec_start = 0;
2508 p->se.sum_exec_runtime = 0;
2509 p->se.prev_sum_exec_runtime = 0;
2510 p->se.nr_migrations = 0;
2511 p->se.last_wakeup = 0;
2512 p->se.avg_overlap = 0;
2513 p->se.start_runtime = 0;
2514 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2516 #ifdef CONFIG_SCHEDSTATS
2517 p->se.wait_start = 0;
2518 p->se.sum_sleep_runtime = 0;
2519 p->se.sleep_start = 0;
2520 p->se.block_start = 0;
2521 p->se.sleep_max = 0;
2522 p->se.block_max = 0;
2523 p->se.exec_max = 0;
2524 p->se.slice_max = 0;
2525 p->se.wait_max = 0;
2526 #endif
2528 INIT_LIST_HEAD(&p->rt.run_list);
2529 p->se.on_rq = 0;
2530 INIT_LIST_HEAD(&p->se.group_node);
2532 #ifdef CONFIG_PREEMPT_NOTIFIERS
2533 INIT_HLIST_HEAD(&p->preempt_notifiers);
2534 #endif
2537 * We mark the process as running here, but have not actually
2538 * inserted it onto the runqueue yet. This guarantees that
2539 * nobody will actually run it, and a signal or other external
2540 * event cannot wake it up and insert it on the runqueue either.
2542 p->state = TASK_RUNNING;
2546 * fork()/clone()-time setup:
2548 void sched_fork(struct task_struct *p, int clone_flags)
2550 int cpu = get_cpu();
2552 __sched_fork(p);
2554 #ifdef CONFIG_SMP
2555 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2556 #endif
2557 set_task_cpu(p, cpu);
2560 * Make sure we do not leak PI boosting priority to the child:
2562 p->prio = current->normal_prio;
2563 if (!rt_prio(p->prio))
2564 p->sched_class = &fair_sched_class;
2566 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2567 if (likely(sched_info_on()))
2568 memset(&p->sched_info, 0, sizeof(p->sched_info));
2569 #endif
2570 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2571 p->oncpu = 0;
2572 #endif
2573 #ifdef CONFIG_PREEMPT
2574 /* Want to start with kernel preemption disabled. */
2575 task_thread_info(p)->preempt_count = 1;
2576 #endif
2577 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2579 put_cpu();
2583 * wake_up_new_task - wake up a newly created task for the first time.
2585 * This function will do some initial scheduler statistics housekeeping
2586 * that must be done for every newly created context, then puts the task
2587 * on the runqueue and wakes it.
2589 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2591 unsigned long flags;
2592 struct rq *rq;
2594 rq = task_rq_lock(p, &flags);
2595 BUG_ON(p->state != TASK_RUNNING);
2596 update_rq_clock(rq);
2598 p->prio = effective_prio(p);
2600 if (!p->sched_class->task_new || !current->se.on_rq) {
2601 activate_task(rq, p, 0);
2602 } else {
2604 * Let the scheduling class do new task startup
2605 * management (if any):
2607 p->sched_class->task_new(rq, p);
2608 inc_nr_running(rq);
2610 trace_sched_wakeup_new(rq, p, 1);
2611 check_preempt_curr(rq, p, 0);
2612 #ifdef CONFIG_SMP
2613 if (p->sched_class->task_wake_up)
2614 p->sched_class->task_wake_up(rq, p);
2615 #endif
2616 task_rq_unlock(rq, &flags);
2619 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2623 * @notifier: notifier struct to register
2625 void preempt_notifier_register(struct preempt_notifier *notifier)
2627 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2629 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2632 * preempt_notifier_unregister - no longer interested in preemption notifications
2633 * @notifier: notifier struct to unregister
2635 * This is safe to call from within a preemption notifier.
2637 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2639 hlist_del(&notifier->link);
2641 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2643 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2645 struct preempt_notifier *notifier;
2646 struct hlist_node *node;
2648 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2649 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2652 static void
2653 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2654 struct task_struct *next)
2656 struct preempt_notifier *notifier;
2657 struct hlist_node *node;
2659 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2660 notifier->ops->sched_out(notifier, next);
2663 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2665 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2669 static void
2670 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2671 struct task_struct *next)
2675 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2678 * prepare_task_switch - prepare to switch tasks
2679 * @rq: the runqueue preparing to switch
2680 * @prev: the current task that is being switched out
2681 * @next: the task we are going to switch to.
2683 * This is called with the rq lock held and interrupts off. It must
2684 * be paired with a subsequent finish_task_switch after the context
2685 * switch.
2687 * prepare_task_switch sets up locking and calls architecture specific
2688 * hooks.
2690 static inline void
2691 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2692 struct task_struct *next)
2694 fire_sched_out_preempt_notifiers(prev, next);
2695 prepare_lock_switch(rq, next);
2696 prepare_arch_switch(next);
2700 * finish_task_switch - clean up after a task-switch
2701 * @rq: runqueue associated with task-switch
2702 * @prev: the thread we just switched away from.
2704 * finish_task_switch must be called after the context switch, paired
2705 * with a prepare_task_switch call before the context switch.
2706 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2707 * and do any other architecture-specific cleanup actions.
2709 * Note that we may have delayed dropping an mm in context_switch(). If
2710 * so, we finish that here outside of the runqueue lock. (Doing it
2711 * with the lock held can cause deadlocks; see schedule() for
2712 * details.)
2714 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2715 __releases(rq->lock)
2717 struct mm_struct *mm = rq->prev_mm;
2718 long prev_state;
2719 #ifdef CONFIG_SMP
2720 int post_schedule = 0;
2722 if (current->sched_class->needs_post_schedule)
2723 post_schedule = current->sched_class->needs_post_schedule(rq);
2724 #endif
2726 rq->prev_mm = NULL;
2729 * A task struct has one reference for the use as "current".
2730 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2731 * schedule one last time. The schedule call will never return, and
2732 * the scheduled task must drop that reference.
2733 * The test for TASK_DEAD must occur while the runqueue locks are
2734 * still held, otherwise prev could be scheduled on another cpu, die
2735 * there before we look at prev->state, and then the reference would
2736 * be dropped twice.
2737 * Manfred Spraul <manfred@colorfullife.com>
2739 prev_state = prev->state;
2740 finish_arch_switch(prev);
2741 perf_counter_task_sched_in(current, cpu_of(rq));
2742 finish_lock_switch(rq, prev);
2743 #ifdef CONFIG_SMP
2744 if (post_schedule)
2745 current->sched_class->post_schedule(rq);
2746 #endif
2748 fire_sched_in_preempt_notifiers(current);
2749 if (mm)
2750 mmdrop(mm);
2751 if (unlikely(prev_state == TASK_DEAD)) {
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
2756 kprobe_flush_task(prev);
2757 put_task_struct(prev);
2762 * schedule_tail - first thing a freshly forked thread must call.
2763 * @prev: the thread we just switched away from.
2765 asmlinkage void schedule_tail(struct task_struct *prev)
2766 __releases(rq->lock)
2768 struct rq *rq = this_rq();
2770 finish_task_switch(rq, prev);
2771 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2772 /* In this case, finish_task_switch does not reenable preemption */
2773 preempt_enable();
2774 #endif
2775 if (current->set_child_tid)
2776 put_user(task_pid_vnr(current), current->set_child_tid);
2780 * context_switch - switch to the new MM and the new
2781 * thread's register state.
2783 static inline void
2784 context_switch(struct rq *rq, struct task_struct *prev,
2785 struct task_struct *next)
2787 struct mm_struct *mm, *oldmm;
2789 prepare_task_switch(rq, prev, next);
2790 trace_sched_switch(rq, prev, next);
2791 mm = next->mm;
2792 oldmm = prev->active_mm;
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2796 * one hypercall.
2798 arch_enter_lazy_cpu_mode();
2800 if (unlikely(!mm)) {
2801 next->active_mm = oldmm;
2802 atomic_inc(&oldmm->mm_count);
2803 enter_lazy_tlb(oldmm, next);
2804 } else
2805 switch_mm(oldmm, mm, next);
2807 if (unlikely(!prev->mm)) {
2808 prev->active_mm = NULL;
2809 rq->prev_mm = oldmm;
2812 * Since the runqueue lock will be released by the next
2813 * task (which is an invalid locking op but in the case
2814 * of the scheduler it's an obvious special-case), so we
2815 * do an early lockdep release here:
2817 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2818 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2819 #endif
2821 /* Here we just switch the register state and the stack. */
2822 switch_to(prev, next, prev);
2824 barrier();
2826 * this_rq must be evaluated again because prev may have moved
2827 * CPUs since it called schedule(), thus the 'rq' on its stack
2828 * frame will be invalid.
2830 finish_task_switch(this_rq(), prev);
2834 * nr_running, nr_uninterruptible and nr_context_switches:
2836 * externally visible scheduler statistics: current number of runnable
2837 * threads, current number of uninterruptible-sleeping threads, total
2838 * number of context switches performed since bootup.
2840 unsigned long nr_running(void)
2842 unsigned long i, sum = 0;
2844 for_each_online_cpu(i)
2845 sum += cpu_rq(i)->nr_running;
2847 return sum;
2850 unsigned long nr_uninterruptible(void)
2852 unsigned long i, sum = 0;
2854 for_each_possible_cpu(i)
2855 sum += cpu_rq(i)->nr_uninterruptible;
2858 * Since we read the counters lockless, it might be slightly
2859 * inaccurate. Do not allow it to go below zero though:
2861 if (unlikely((long)sum < 0))
2862 sum = 0;
2864 return sum;
2867 unsigned long long nr_context_switches(void)
2869 int i;
2870 unsigned long long sum = 0;
2872 for_each_possible_cpu(i)
2873 sum += cpu_rq(i)->nr_switches;
2875 return sum;
2878 unsigned long nr_iowait(void)
2880 unsigned long i, sum = 0;
2882 for_each_possible_cpu(i)
2883 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2885 return sum;
2888 unsigned long nr_active(void)
2890 unsigned long i, running = 0, uninterruptible = 0;
2892 for_each_online_cpu(i) {
2893 running += cpu_rq(i)->nr_running;
2894 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2897 if (unlikely((long)uninterruptible < 0))
2898 uninterruptible = 0;
2900 return running + uninterruptible;
2904 * Externally visible per-cpu scheduler statistics:
2905 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2907 u64 cpu_nr_migrations(int cpu)
2909 return cpu_rq(cpu)->nr_migrations_in;
2913 * Update rq->cpu_load[] statistics. This function is usually called every
2914 * scheduler tick (TICK_NSEC).
2916 static void update_cpu_load(struct rq *this_rq)
2918 unsigned long this_load = this_rq->load.weight;
2919 int i, scale;
2921 this_rq->nr_load_updates++;
2923 /* Update our load: */
2924 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2925 unsigned long old_load, new_load;
2927 /* scale is effectively 1 << i now, and >> i divides by scale */
2929 old_load = this_rq->cpu_load[i];
2930 new_load = this_load;
2932 * Round up the averaging division if load is increasing. This
2933 * prevents us from getting stuck on 9 if the load is 10, for
2934 * example.
2936 if (new_load > old_load)
2937 new_load += scale-1;
2938 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2942 #ifdef CONFIG_SMP
2945 * double_rq_lock - safely lock two runqueues
2947 * Note this does not disable interrupts like task_rq_lock,
2948 * you need to do so manually before calling.
2950 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2951 __acquires(rq1->lock)
2952 __acquires(rq2->lock)
2954 BUG_ON(!irqs_disabled());
2955 if (rq1 == rq2) {
2956 spin_lock(&rq1->lock);
2957 __acquire(rq2->lock); /* Fake it out ;) */
2958 } else {
2959 if (rq1 < rq2) {
2960 spin_lock(&rq1->lock);
2961 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2962 } else {
2963 spin_lock(&rq2->lock);
2964 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2967 update_rq_clock(rq1);
2968 update_rq_clock(rq2);
2972 * double_rq_unlock - safely unlock two runqueues
2974 * Note this does not restore interrupts like task_rq_unlock,
2975 * you need to do so manually after calling.
2977 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2978 __releases(rq1->lock)
2979 __releases(rq2->lock)
2981 spin_unlock(&rq1->lock);
2982 if (rq1 != rq2)
2983 spin_unlock(&rq2->lock);
2984 else
2985 __release(rq2->lock);
2989 * If dest_cpu is allowed for this process, migrate the task to it.
2990 * This is accomplished by forcing the cpu_allowed mask to only
2991 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2992 * the cpu_allowed mask is restored.
2994 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2996 struct migration_req req;
2997 unsigned long flags;
2998 struct rq *rq;
3000 rq = task_rq_lock(p, &flags);
3001 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3002 || unlikely(!cpu_active(dest_cpu)))
3003 goto out;
3005 /* force the process onto the specified CPU */
3006 if (migrate_task(p, dest_cpu, &req)) {
3007 /* Need to wait for migration thread (might exit: take ref). */
3008 struct task_struct *mt = rq->migration_thread;
3010 get_task_struct(mt);
3011 task_rq_unlock(rq, &flags);
3012 wake_up_process(mt);
3013 put_task_struct(mt);
3014 wait_for_completion(&req.done);
3016 return;
3018 out:
3019 task_rq_unlock(rq, &flags);
3023 * sched_exec - execve() is a valuable balancing opportunity, because at
3024 * this point the task has the smallest effective memory and cache footprint.
3026 void sched_exec(void)
3028 int new_cpu, this_cpu = get_cpu();
3029 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3030 put_cpu();
3031 if (new_cpu != this_cpu)
3032 sched_migrate_task(current, new_cpu);
3036 * pull_task - move a task from a remote runqueue to the local runqueue.
3037 * Both runqueues must be locked.
3039 static void pull_task(struct rq *src_rq, struct task_struct *p,
3040 struct rq *this_rq, int this_cpu)
3042 deactivate_task(src_rq, p, 0);
3043 set_task_cpu(p, this_cpu);
3044 activate_task(this_rq, p, 0);
3046 * Note that idle threads have a prio of MAX_PRIO, for this test
3047 * to be always true for them.
3049 check_preempt_curr(this_rq, p, 0);
3053 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3055 static
3056 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3057 struct sched_domain *sd, enum cpu_idle_type idle,
3058 int *all_pinned)
3060 int tsk_cache_hot = 0;
3062 * We do not migrate tasks that are:
3063 * 1) running (obviously), or
3064 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3065 * 3) are cache-hot on their current CPU.
3067 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3068 schedstat_inc(p, se.nr_failed_migrations_affine);
3069 return 0;
3071 *all_pinned = 0;
3073 if (task_running(rq, p)) {
3074 schedstat_inc(p, se.nr_failed_migrations_running);
3075 return 0;
3079 * Aggressive migration if:
3080 * 1) task is cache cold, or
3081 * 2) too many balance attempts have failed.
3084 tsk_cache_hot = task_hot(p, rq->clock, sd);
3085 if (!tsk_cache_hot ||
3086 sd->nr_balance_failed > sd->cache_nice_tries) {
3087 #ifdef CONFIG_SCHEDSTATS
3088 if (tsk_cache_hot) {
3089 schedstat_inc(sd, lb_hot_gained[idle]);
3090 schedstat_inc(p, se.nr_forced_migrations);
3092 #endif
3093 return 1;
3096 if (tsk_cache_hot) {
3097 schedstat_inc(p, se.nr_failed_migrations_hot);
3098 return 0;
3100 return 1;
3103 static unsigned long
3104 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3105 unsigned long max_load_move, struct sched_domain *sd,
3106 enum cpu_idle_type idle, int *all_pinned,
3107 int *this_best_prio, struct rq_iterator *iterator)
3109 int loops = 0, pulled = 0, pinned = 0;
3110 struct task_struct *p;
3111 long rem_load_move = max_load_move;
3113 if (max_load_move == 0)
3114 goto out;
3116 pinned = 1;
3119 * Start the load-balancing iterator:
3121 p = iterator->start(iterator->arg);
3122 next:
3123 if (!p || loops++ > sysctl_sched_nr_migrate)
3124 goto out;
3126 if ((p->se.load.weight >> 1) > rem_load_move ||
3127 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3128 p = iterator->next(iterator->arg);
3129 goto next;
3132 pull_task(busiest, p, this_rq, this_cpu);
3133 pulled++;
3134 rem_load_move -= p->se.load.weight;
3136 #ifdef CONFIG_PREEMPT
3138 * NEWIDLE balancing is a source of latency, so preemptible kernels
3139 * will stop after the first task is pulled to minimize the critical
3140 * section.
3142 if (idle == CPU_NEWLY_IDLE)
3143 goto out;
3144 #endif
3147 * We only want to steal up to the prescribed amount of weighted load.
3149 if (rem_load_move > 0) {
3150 if (p->prio < *this_best_prio)
3151 *this_best_prio = p->prio;
3152 p = iterator->next(iterator->arg);
3153 goto next;
3155 out:
3157 * Right now, this is one of only two places pull_task() is called,
3158 * so we can safely collect pull_task() stats here rather than
3159 * inside pull_task().
3161 schedstat_add(sd, lb_gained[idle], pulled);
3163 if (all_pinned)
3164 *all_pinned = pinned;
3166 return max_load_move - rem_load_move;
3170 * move_tasks tries to move up to max_load_move weighted load from busiest to
3171 * this_rq, as part of a balancing operation within domain "sd".
3172 * Returns 1 if successful and 0 otherwise.
3174 * Called with both runqueues locked.
3176 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3177 unsigned long max_load_move,
3178 struct sched_domain *sd, enum cpu_idle_type idle,
3179 int *all_pinned)
3181 const struct sched_class *class = sched_class_highest;
3182 unsigned long total_load_moved = 0;
3183 int this_best_prio = this_rq->curr->prio;
3185 do {
3186 total_load_moved +=
3187 class->load_balance(this_rq, this_cpu, busiest,
3188 max_load_move - total_load_moved,
3189 sd, idle, all_pinned, &this_best_prio);
3190 class = class->next;
3192 #ifdef CONFIG_PREEMPT
3194 * NEWIDLE balancing is a source of latency, so preemptible
3195 * kernels will stop after the first task is pulled to minimize
3196 * the critical section.
3198 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3199 break;
3200 #endif
3201 } while (class && max_load_move > total_load_moved);
3203 return total_load_moved > 0;
3206 static int
3207 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3208 struct sched_domain *sd, enum cpu_idle_type idle,
3209 struct rq_iterator *iterator)
3211 struct task_struct *p = iterator->start(iterator->arg);
3212 int pinned = 0;
3214 while (p) {
3215 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3216 pull_task(busiest, p, this_rq, this_cpu);
3218 * Right now, this is only the second place pull_task()
3219 * is called, so we can safely collect pull_task()
3220 * stats here rather than inside pull_task().
3222 schedstat_inc(sd, lb_gained[idle]);
3224 return 1;
3226 p = iterator->next(iterator->arg);
3229 return 0;
3233 * move_one_task tries to move exactly one task from busiest to this_rq, as
3234 * part of active balancing operations within "domain".
3235 * Returns 1 if successful and 0 otherwise.
3237 * Called with both runqueues locked.
3239 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3240 struct sched_domain *sd, enum cpu_idle_type idle)
3242 const struct sched_class *class;
3244 for (class = sched_class_highest; class; class = class->next)
3245 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3246 return 1;
3248 return 0;
3250 /********** Helpers for find_busiest_group ************************/
3252 * sd_lb_stats - Structure to store the statistics of a sched_domain
3253 * during load balancing.
3255 struct sd_lb_stats {
3256 struct sched_group *busiest; /* Busiest group in this sd */
3257 struct sched_group *this; /* Local group in this sd */
3258 unsigned long total_load; /* Total load of all groups in sd */
3259 unsigned long total_pwr; /* Total power of all groups in sd */
3260 unsigned long avg_load; /* Average load across all groups in sd */
3262 /** Statistics of this group */
3263 unsigned long this_load;
3264 unsigned long this_load_per_task;
3265 unsigned long this_nr_running;
3267 /* Statistics of the busiest group */
3268 unsigned long max_load;
3269 unsigned long busiest_load_per_task;
3270 unsigned long busiest_nr_running;
3272 int group_imb; /* Is there imbalance in this sd */
3273 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3274 int power_savings_balance; /* Is powersave balance needed for this sd */
3275 struct sched_group *group_min; /* Least loaded group in sd */
3276 struct sched_group *group_leader; /* Group which relieves group_min */
3277 unsigned long min_load_per_task; /* load_per_task in group_min */
3278 unsigned long leader_nr_running; /* Nr running of group_leader */
3279 unsigned long min_nr_running; /* Nr running of group_min */
3280 #endif
3284 * sg_lb_stats - stats of a sched_group required for load_balancing
3286 struct sg_lb_stats {
3287 unsigned long avg_load; /*Avg load across the CPUs of the group */
3288 unsigned long group_load; /* Total load over the CPUs of the group */
3289 unsigned long sum_nr_running; /* Nr tasks running in the group */
3290 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3291 unsigned long group_capacity;
3292 int group_imb; /* Is there an imbalance in the group ? */
3296 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3297 * @group: The group whose first cpu is to be returned.
3299 static inline unsigned int group_first_cpu(struct sched_group *group)
3301 return cpumask_first(sched_group_cpus(group));
3305 * get_sd_load_idx - Obtain the load index for a given sched domain.
3306 * @sd: The sched_domain whose load_idx is to be obtained.
3307 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3309 static inline int get_sd_load_idx(struct sched_domain *sd,
3310 enum cpu_idle_type idle)
3312 int load_idx;
3314 switch (idle) {
3315 case CPU_NOT_IDLE:
3316 load_idx = sd->busy_idx;
3317 break;
3319 case CPU_NEWLY_IDLE:
3320 load_idx = sd->newidle_idx;
3321 break;
3322 default:
3323 load_idx = sd->idle_idx;
3324 break;
3327 return load_idx;
3331 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3333 * init_sd_power_savings_stats - Initialize power savings statistics for
3334 * the given sched_domain, during load balancing.
3336 * @sd: Sched domain whose power-savings statistics are to be initialized.
3337 * @sds: Variable containing the statistics for sd.
3338 * @idle: Idle status of the CPU at which we're performing load-balancing.
3340 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3341 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3344 * Busy processors will not participate in power savings
3345 * balance.
3347 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3348 sds->power_savings_balance = 0;
3349 else {
3350 sds->power_savings_balance = 1;
3351 sds->min_nr_running = ULONG_MAX;
3352 sds->leader_nr_running = 0;
3357 * update_sd_power_savings_stats - Update the power saving stats for a
3358 * sched_domain while performing load balancing.
3360 * @group: sched_group belonging to the sched_domain under consideration.
3361 * @sds: Variable containing the statistics of the sched_domain
3362 * @local_group: Does group contain the CPU for which we're performing
3363 * load balancing ?
3364 * @sgs: Variable containing the statistics of the group.
3366 static inline void update_sd_power_savings_stats(struct sched_group *group,
3367 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3370 if (!sds->power_savings_balance)
3371 return;
3374 * If the local group is idle or completely loaded
3375 * no need to do power savings balance at this domain
3377 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3378 !sds->this_nr_running))
3379 sds->power_savings_balance = 0;
3382 * If a group is already running at full capacity or idle,
3383 * don't include that group in power savings calculations
3385 if (!sds->power_savings_balance ||
3386 sgs->sum_nr_running >= sgs->group_capacity ||
3387 !sgs->sum_nr_running)
3388 return;
3391 * Calculate the group which has the least non-idle load.
3392 * This is the group from where we need to pick up the load
3393 * for saving power
3395 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3396 (sgs->sum_nr_running == sds->min_nr_running &&
3397 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3398 sds->group_min = group;
3399 sds->min_nr_running = sgs->sum_nr_running;
3400 sds->min_load_per_task = sgs->sum_weighted_load /
3401 sgs->sum_nr_running;
3405 * Calculate the group which is almost near its
3406 * capacity but still has some space to pick up some load
3407 * from other group and save more power
3409 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3410 return;
3412 if (sgs->sum_nr_running > sds->leader_nr_running ||
3413 (sgs->sum_nr_running == sds->leader_nr_running &&
3414 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3415 sds->group_leader = group;
3416 sds->leader_nr_running = sgs->sum_nr_running;
3421 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3422 * @sds: Variable containing the statistics of the sched_domain
3423 * under consideration.
3424 * @this_cpu: Cpu at which we're currently performing load-balancing.
3425 * @imbalance: Variable to store the imbalance.
3427 * Description:
3428 * Check if we have potential to perform some power-savings balance.
3429 * If yes, set the busiest group to be the least loaded group in the
3430 * sched_domain, so that it's CPUs can be put to idle.
3432 * Returns 1 if there is potential to perform power-savings balance.
3433 * Else returns 0.
3435 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3436 int this_cpu, unsigned long *imbalance)
3438 if (!sds->power_savings_balance)
3439 return 0;
3441 if (sds->this != sds->group_leader ||
3442 sds->group_leader == sds->group_min)
3443 return 0;
3445 *imbalance = sds->min_load_per_task;
3446 sds->busiest = sds->group_min;
3448 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3449 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3450 group_first_cpu(sds->group_leader);
3453 return 1;
3456 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3457 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3458 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3460 return;
3463 static inline void update_sd_power_savings_stats(struct sched_group *group,
3464 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3466 return;
3469 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3470 int this_cpu, unsigned long *imbalance)
3472 return 0;
3474 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3478 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3479 * @group: sched_group whose statistics are to be updated.
3480 * @this_cpu: Cpu for which load balance is currently performed.
3481 * @idle: Idle status of this_cpu
3482 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3483 * @sd_idle: Idle status of the sched_domain containing group.
3484 * @local_group: Does group contain this_cpu.
3485 * @cpus: Set of cpus considered for load balancing.
3486 * @balance: Should we balance.
3487 * @sgs: variable to hold the statistics for this group.
3489 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3490 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3491 int local_group, const struct cpumask *cpus,
3492 int *balance, struct sg_lb_stats *sgs)
3494 unsigned long load, max_cpu_load, min_cpu_load;
3495 int i;
3496 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3497 unsigned long sum_avg_load_per_task;
3498 unsigned long avg_load_per_task;
3500 if (local_group)
3501 balance_cpu = group_first_cpu(group);
3503 /* Tally up the load of all CPUs in the group */
3504 sum_avg_load_per_task = avg_load_per_task = 0;
3505 max_cpu_load = 0;
3506 min_cpu_load = ~0UL;
3508 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3509 struct rq *rq = cpu_rq(i);
3511 if (*sd_idle && rq->nr_running)
3512 *sd_idle = 0;
3514 /* Bias balancing toward cpus of our domain */
3515 if (local_group) {
3516 if (idle_cpu(i) && !first_idle_cpu) {
3517 first_idle_cpu = 1;
3518 balance_cpu = i;
3521 load = target_load(i, load_idx);
3522 } else {
3523 load = source_load(i, load_idx);
3524 if (load > max_cpu_load)
3525 max_cpu_load = load;
3526 if (min_cpu_load > load)
3527 min_cpu_load = load;
3530 sgs->group_load += load;
3531 sgs->sum_nr_running += rq->nr_running;
3532 sgs->sum_weighted_load += weighted_cpuload(i);
3534 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3538 * First idle cpu or the first cpu(busiest) in this sched group
3539 * is eligible for doing load balancing at this and above
3540 * domains. In the newly idle case, we will allow all the cpu's
3541 * to do the newly idle load balance.
3543 if (idle != CPU_NEWLY_IDLE && local_group &&
3544 balance_cpu != this_cpu && balance) {
3545 *balance = 0;
3546 return;
3549 /* Adjust by relative CPU power of the group */
3550 sgs->avg_load = sg_div_cpu_power(group,
3551 sgs->group_load * SCHED_LOAD_SCALE);
3555 * Consider the group unbalanced when the imbalance is larger
3556 * than the average weight of two tasks.
3558 * APZ: with cgroup the avg task weight can vary wildly and
3559 * might not be a suitable number - should we keep a
3560 * normalized nr_running number somewhere that negates
3561 * the hierarchy?
3563 avg_load_per_task = sg_div_cpu_power(group,
3564 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3566 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3567 sgs->group_imb = 1;
3569 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3574 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3575 * @sd: sched_domain whose statistics are to be updated.
3576 * @this_cpu: Cpu for which load balance is currently performed.
3577 * @idle: Idle status of this_cpu
3578 * @sd_idle: Idle status of the sched_domain containing group.
3579 * @cpus: Set of cpus considered for load balancing.
3580 * @balance: Should we balance.
3581 * @sds: variable to hold the statistics for this sched_domain.
3583 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3584 enum cpu_idle_type idle, int *sd_idle,
3585 const struct cpumask *cpus, int *balance,
3586 struct sd_lb_stats *sds)
3588 struct sched_group *group = sd->groups;
3589 struct sg_lb_stats sgs;
3590 int load_idx;
3592 init_sd_power_savings_stats(sd, sds, idle);
3593 load_idx = get_sd_load_idx(sd, idle);
3595 do {
3596 int local_group;
3598 local_group = cpumask_test_cpu(this_cpu,
3599 sched_group_cpus(group));
3600 memset(&sgs, 0, sizeof(sgs));
3601 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3602 local_group, cpus, balance, &sgs);
3604 if (local_group && balance && !(*balance))
3605 return;
3607 sds->total_load += sgs.group_load;
3608 sds->total_pwr += group->__cpu_power;
3610 if (local_group) {
3611 sds->this_load = sgs.avg_load;
3612 sds->this = group;
3613 sds->this_nr_running = sgs.sum_nr_running;
3614 sds->this_load_per_task = sgs.sum_weighted_load;
3615 } else if (sgs.avg_load > sds->max_load &&
3616 (sgs.sum_nr_running > sgs.group_capacity ||
3617 sgs.group_imb)) {
3618 sds->max_load = sgs.avg_load;
3619 sds->busiest = group;
3620 sds->busiest_nr_running = sgs.sum_nr_running;
3621 sds->busiest_load_per_task = sgs.sum_weighted_load;
3622 sds->group_imb = sgs.group_imb;
3625 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3626 group = group->next;
3627 } while (group != sd->groups);
3632 * fix_small_imbalance - Calculate the minor imbalance that exists
3633 * amongst the groups of a sched_domain, during
3634 * load balancing.
3635 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3636 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3637 * @imbalance: Variable to store the imbalance.
3639 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3640 int this_cpu, unsigned long *imbalance)
3642 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3643 unsigned int imbn = 2;
3645 if (sds->this_nr_running) {
3646 sds->this_load_per_task /= sds->this_nr_running;
3647 if (sds->busiest_load_per_task >
3648 sds->this_load_per_task)
3649 imbn = 1;
3650 } else
3651 sds->this_load_per_task =
3652 cpu_avg_load_per_task(this_cpu);
3654 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3655 sds->busiest_load_per_task * imbn) {
3656 *imbalance = sds->busiest_load_per_task;
3657 return;
3661 * OK, we don't have enough imbalance to justify moving tasks,
3662 * however we may be able to increase total CPU power used by
3663 * moving them.
3666 pwr_now += sds->busiest->__cpu_power *
3667 min(sds->busiest_load_per_task, sds->max_load);
3668 pwr_now += sds->this->__cpu_power *
3669 min(sds->this_load_per_task, sds->this_load);
3670 pwr_now /= SCHED_LOAD_SCALE;
3672 /* Amount of load we'd subtract */
3673 tmp = sg_div_cpu_power(sds->busiest,
3674 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3675 if (sds->max_load > tmp)
3676 pwr_move += sds->busiest->__cpu_power *
3677 min(sds->busiest_load_per_task, sds->max_load - tmp);
3679 /* Amount of load we'd add */
3680 if (sds->max_load * sds->busiest->__cpu_power <
3681 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3682 tmp = sg_div_cpu_power(sds->this,
3683 sds->max_load * sds->busiest->__cpu_power);
3684 else
3685 tmp = sg_div_cpu_power(sds->this,
3686 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3687 pwr_move += sds->this->__cpu_power *
3688 min(sds->this_load_per_task, sds->this_load + tmp);
3689 pwr_move /= SCHED_LOAD_SCALE;
3691 /* Move if we gain throughput */
3692 if (pwr_move > pwr_now)
3693 *imbalance = sds->busiest_load_per_task;
3697 * calculate_imbalance - Calculate the amount of imbalance present within the
3698 * groups of a given sched_domain during load balance.
3699 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3700 * @this_cpu: Cpu for which currently load balance is being performed.
3701 * @imbalance: The variable to store the imbalance.
3703 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3704 unsigned long *imbalance)
3706 unsigned long max_pull;
3708 * In the presence of smp nice balancing, certain scenarios can have
3709 * max load less than avg load(as we skip the groups at or below
3710 * its cpu_power, while calculating max_load..)
3712 if (sds->max_load < sds->avg_load) {
3713 *imbalance = 0;
3714 return fix_small_imbalance(sds, this_cpu, imbalance);
3717 /* Don't want to pull so many tasks that a group would go idle */
3718 max_pull = min(sds->max_load - sds->avg_load,
3719 sds->max_load - sds->busiest_load_per_task);
3721 /* How much load to actually move to equalise the imbalance */
3722 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3723 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3724 / SCHED_LOAD_SCALE;
3727 * if *imbalance is less than the average load per runnable task
3728 * there is no gaurantee that any tasks will be moved so we'll have
3729 * a think about bumping its value to force at least one task to be
3730 * moved
3732 if (*imbalance < sds->busiest_load_per_task)
3733 return fix_small_imbalance(sds, this_cpu, imbalance);
3736 /******* find_busiest_group() helpers end here *********************/
3739 * find_busiest_group - Returns the busiest group within the sched_domain
3740 * if there is an imbalance. If there isn't an imbalance, and
3741 * the user has opted for power-savings, it returns a group whose
3742 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3743 * such a group exists.
3745 * Also calculates the amount of weighted load which should be moved
3746 * to restore balance.
3748 * @sd: The sched_domain whose busiest group is to be returned.
3749 * @this_cpu: The cpu for which load balancing is currently being performed.
3750 * @imbalance: Variable which stores amount of weighted load which should
3751 * be moved to restore balance/put a group to idle.
3752 * @idle: The idle status of this_cpu.
3753 * @sd_idle: The idleness of sd
3754 * @cpus: The set of CPUs under consideration for load-balancing.
3755 * @balance: Pointer to a variable indicating if this_cpu
3756 * is the appropriate cpu to perform load balancing at this_level.
3758 * Returns: - the busiest group if imbalance exists.
3759 * - If no imbalance and user has opted for power-savings balance,
3760 * return the least loaded group whose CPUs can be
3761 * put to idle by rebalancing its tasks onto our group.
3763 static struct sched_group *
3764 find_busiest_group(struct sched_domain *sd, int this_cpu,
3765 unsigned long *imbalance, enum cpu_idle_type idle,
3766 int *sd_idle, const struct cpumask *cpus, int *balance)
3768 struct sd_lb_stats sds;
3770 memset(&sds, 0, sizeof(sds));
3773 * Compute the various statistics relavent for load balancing at
3774 * this level.
3776 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3777 balance, &sds);
3779 /* Cases where imbalance does not exist from POV of this_cpu */
3780 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3781 * at this level.
3782 * 2) There is no busy sibling group to pull from.
3783 * 3) This group is the busiest group.
3784 * 4) This group is more busy than the avg busieness at this
3785 * sched_domain.
3786 * 5) The imbalance is within the specified limit.
3787 * 6) Any rebalance would lead to ping-pong
3789 if (balance && !(*balance))
3790 goto ret;
3792 if (!sds.busiest || sds.busiest_nr_running == 0)
3793 goto out_balanced;
3795 if (sds.this_load >= sds.max_load)
3796 goto out_balanced;
3798 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3800 if (sds.this_load >= sds.avg_load)
3801 goto out_balanced;
3803 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3804 goto out_balanced;
3806 sds.busiest_load_per_task /= sds.busiest_nr_running;
3807 if (sds.group_imb)
3808 sds.busiest_load_per_task =
3809 min(sds.busiest_load_per_task, sds.avg_load);
3812 * We're trying to get all the cpus to the average_load, so we don't
3813 * want to push ourselves above the average load, nor do we wish to
3814 * reduce the max loaded cpu below the average load, as either of these
3815 * actions would just result in more rebalancing later, and ping-pong
3816 * tasks around. Thus we look for the minimum possible imbalance.
3817 * Negative imbalances (*we* are more loaded than anyone else) will
3818 * be counted as no imbalance for these purposes -- we can't fix that
3819 * by pulling tasks to us. Be careful of negative numbers as they'll
3820 * appear as very large values with unsigned longs.
3822 if (sds.max_load <= sds.busiest_load_per_task)
3823 goto out_balanced;
3825 /* Looks like there is an imbalance. Compute it */
3826 calculate_imbalance(&sds, this_cpu, imbalance);
3827 return sds.busiest;
3829 out_balanced:
3831 * There is no obvious imbalance. But check if we can do some balancing
3832 * to save power.
3834 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3835 return sds.busiest;
3836 ret:
3837 *imbalance = 0;
3838 return NULL;
3842 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3844 static struct rq *
3845 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3846 unsigned long imbalance, const struct cpumask *cpus)
3848 struct rq *busiest = NULL, *rq;
3849 unsigned long max_load = 0;
3850 int i;
3852 for_each_cpu(i, sched_group_cpus(group)) {
3853 unsigned long wl;
3855 if (!cpumask_test_cpu(i, cpus))
3856 continue;
3858 rq = cpu_rq(i);
3859 wl = weighted_cpuload(i);
3861 if (rq->nr_running == 1 && wl > imbalance)
3862 continue;
3864 if (wl > max_load) {
3865 max_load = wl;
3866 busiest = rq;
3870 return busiest;
3874 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3875 * so long as it is large enough.
3877 #define MAX_PINNED_INTERVAL 512
3879 /* Working cpumask for load_balance and load_balance_newidle. */
3880 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3883 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3884 * tasks if there is an imbalance.
3886 static int load_balance(int this_cpu, struct rq *this_rq,
3887 struct sched_domain *sd, enum cpu_idle_type idle,
3888 int *balance)
3890 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3891 struct sched_group *group;
3892 unsigned long imbalance;
3893 struct rq *busiest;
3894 unsigned long flags;
3895 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3897 cpumask_setall(cpus);
3900 * When power savings policy is enabled for the parent domain, idle
3901 * sibling can pick up load irrespective of busy siblings. In this case,
3902 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3903 * portraying it as CPU_NOT_IDLE.
3905 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3906 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3907 sd_idle = 1;
3909 schedstat_inc(sd, lb_count[idle]);
3911 redo:
3912 update_shares(sd);
3913 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3914 cpus, balance);
3916 if (*balance == 0)
3917 goto out_balanced;
3919 if (!group) {
3920 schedstat_inc(sd, lb_nobusyg[idle]);
3921 goto out_balanced;
3924 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3925 if (!busiest) {
3926 schedstat_inc(sd, lb_nobusyq[idle]);
3927 goto out_balanced;
3930 BUG_ON(busiest == this_rq);
3932 schedstat_add(sd, lb_imbalance[idle], imbalance);
3934 ld_moved = 0;
3935 if (busiest->nr_running > 1) {
3937 * Attempt to move tasks. If find_busiest_group has found
3938 * an imbalance but busiest->nr_running <= 1, the group is
3939 * still unbalanced. ld_moved simply stays zero, so it is
3940 * correctly treated as an imbalance.
3942 local_irq_save(flags);
3943 double_rq_lock(this_rq, busiest);
3944 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3945 imbalance, sd, idle, &all_pinned);
3946 double_rq_unlock(this_rq, busiest);
3947 local_irq_restore(flags);
3950 * some other cpu did the load balance for us.
3952 if (ld_moved && this_cpu != smp_processor_id())
3953 resched_cpu(this_cpu);
3955 /* All tasks on this runqueue were pinned by CPU affinity */
3956 if (unlikely(all_pinned)) {
3957 cpumask_clear_cpu(cpu_of(busiest), cpus);
3958 if (!cpumask_empty(cpus))
3959 goto redo;
3960 goto out_balanced;
3964 if (!ld_moved) {
3965 schedstat_inc(sd, lb_failed[idle]);
3966 sd->nr_balance_failed++;
3968 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3970 spin_lock_irqsave(&busiest->lock, flags);
3972 /* don't kick the migration_thread, if the curr
3973 * task on busiest cpu can't be moved to this_cpu
3975 if (!cpumask_test_cpu(this_cpu,
3976 &busiest->curr->cpus_allowed)) {
3977 spin_unlock_irqrestore(&busiest->lock, flags);
3978 all_pinned = 1;
3979 goto out_one_pinned;
3982 if (!busiest->active_balance) {
3983 busiest->active_balance = 1;
3984 busiest->push_cpu = this_cpu;
3985 active_balance = 1;
3987 spin_unlock_irqrestore(&busiest->lock, flags);
3988 if (active_balance)
3989 wake_up_process(busiest->migration_thread);
3992 * We've kicked active balancing, reset the failure
3993 * counter.
3995 sd->nr_balance_failed = sd->cache_nice_tries+1;
3997 } else
3998 sd->nr_balance_failed = 0;
4000 if (likely(!active_balance)) {
4001 /* We were unbalanced, so reset the balancing interval */
4002 sd->balance_interval = sd->min_interval;
4003 } else {
4005 * If we've begun active balancing, start to back off. This
4006 * case may not be covered by the all_pinned logic if there
4007 * is only 1 task on the busy runqueue (because we don't call
4008 * move_tasks).
4010 if (sd->balance_interval < sd->max_interval)
4011 sd->balance_interval *= 2;
4014 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4015 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4016 ld_moved = -1;
4018 goto out;
4020 out_balanced:
4021 schedstat_inc(sd, lb_balanced[idle]);
4023 sd->nr_balance_failed = 0;
4025 out_one_pinned:
4026 /* tune up the balancing interval */
4027 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4028 (sd->balance_interval < sd->max_interval))
4029 sd->balance_interval *= 2;
4031 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4032 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4033 ld_moved = -1;
4034 else
4035 ld_moved = 0;
4036 out:
4037 if (ld_moved)
4038 update_shares(sd);
4039 return ld_moved;
4043 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4044 * tasks if there is an imbalance.
4046 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4047 * this_rq is locked.
4049 static int
4050 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4052 struct sched_group *group;
4053 struct rq *busiest = NULL;
4054 unsigned long imbalance;
4055 int ld_moved = 0;
4056 int sd_idle = 0;
4057 int all_pinned = 0;
4058 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4060 cpumask_setall(cpus);
4063 * When power savings policy is enabled for the parent domain, idle
4064 * sibling can pick up load irrespective of busy siblings. In this case,
4065 * let the state of idle sibling percolate up as IDLE, instead of
4066 * portraying it as CPU_NOT_IDLE.
4068 if (sd->flags & SD_SHARE_CPUPOWER &&
4069 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4070 sd_idle = 1;
4072 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4073 redo:
4074 update_shares_locked(this_rq, sd);
4075 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4076 &sd_idle, cpus, NULL);
4077 if (!group) {
4078 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4079 goto out_balanced;
4082 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4083 if (!busiest) {
4084 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4085 goto out_balanced;
4088 BUG_ON(busiest == this_rq);
4090 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4092 ld_moved = 0;
4093 if (busiest->nr_running > 1) {
4094 /* Attempt to move tasks */
4095 double_lock_balance(this_rq, busiest);
4096 /* this_rq->clock is already updated */
4097 update_rq_clock(busiest);
4098 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4099 imbalance, sd, CPU_NEWLY_IDLE,
4100 &all_pinned);
4101 double_unlock_balance(this_rq, busiest);
4103 if (unlikely(all_pinned)) {
4104 cpumask_clear_cpu(cpu_of(busiest), cpus);
4105 if (!cpumask_empty(cpus))
4106 goto redo;
4110 if (!ld_moved) {
4111 int active_balance = 0;
4113 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4114 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4115 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4116 return -1;
4118 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4119 return -1;
4121 if (sd->nr_balance_failed++ < 2)
4122 return -1;
4125 * The only task running in a non-idle cpu can be moved to this
4126 * cpu in an attempt to completely freeup the other CPU
4127 * package. The same method used to move task in load_balance()
4128 * have been extended for load_balance_newidle() to speedup
4129 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4131 * The package power saving logic comes from
4132 * find_busiest_group(). If there are no imbalance, then
4133 * f_b_g() will return NULL. However when sched_mc={1,2} then
4134 * f_b_g() will select a group from which a running task may be
4135 * pulled to this cpu in order to make the other package idle.
4136 * If there is no opportunity to make a package idle and if
4137 * there are no imbalance, then f_b_g() will return NULL and no
4138 * action will be taken in load_balance_newidle().
4140 * Under normal task pull operation due to imbalance, there
4141 * will be more than one task in the source run queue and
4142 * move_tasks() will succeed. ld_moved will be true and this
4143 * active balance code will not be triggered.
4146 /* Lock busiest in correct order while this_rq is held */
4147 double_lock_balance(this_rq, busiest);
4150 * don't kick the migration_thread, if the curr
4151 * task on busiest cpu can't be moved to this_cpu
4153 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4154 double_unlock_balance(this_rq, busiest);
4155 all_pinned = 1;
4156 return ld_moved;
4159 if (!busiest->active_balance) {
4160 busiest->active_balance = 1;
4161 busiest->push_cpu = this_cpu;
4162 active_balance = 1;
4165 double_unlock_balance(this_rq, busiest);
4167 * Should not call ttwu while holding a rq->lock
4169 spin_unlock(&this_rq->lock);
4170 if (active_balance)
4171 wake_up_process(busiest->migration_thread);
4172 spin_lock(&this_rq->lock);
4174 } else
4175 sd->nr_balance_failed = 0;
4177 update_shares_locked(this_rq, sd);
4178 return ld_moved;
4180 out_balanced:
4181 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4182 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4183 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4184 return -1;
4185 sd->nr_balance_failed = 0;
4187 return 0;
4191 * idle_balance is called by schedule() if this_cpu is about to become
4192 * idle. Attempts to pull tasks from other CPUs.
4194 static void idle_balance(int this_cpu, struct rq *this_rq)
4196 struct sched_domain *sd;
4197 int pulled_task = 0;
4198 unsigned long next_balance = jiffies + HZ;
4200 for_each_domain(this_cpu, sd) {
4201 unsigned long interval;
4203 if (!(sd->flags & SD_LOAD_BALANCE))
4204 continue;
4206 if (sd->flags & SD_BALANCE_NEWIDLE)
4207 /* If we've pulled tasks over stop searching: */
4208 pulled_task = load_balance_newidle(this_cpu, this_rq,
4209 sd);
4211 interval = msecs_to_jiffies(sd->balance_interval);
4212 if (time_after(next_balance, sd->last_balance + interval))
4213 next_balance = sd->last_balance + interval;
4214 if (pulled_task)
4215 break;
4217 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4219 * We are going idle. next_balance may be set based on
4220 * a busy processor. So reset next_balance.
4222 this_rq->next_balance = next_balance;
4227 * active_load_balance is run by migration threads. It pushes running tasks
4228 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4229 * running on each physical CPU where possible, and avoids physical /
4230 * logical imbalances.
4232 * Called with busiest_rq locked.
4234 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4236 int target_cpu = busiest_rq->push_cpu;
4237 struct sched_domain *sd;
4238 struct rq *target_rq;
4240 /* Is there any task to move? */
4241 if (busiest_rq->nr_running <= 1)
4242 return;
4244 target_rq = cpu_rq(target_cpu);
4247 * This condition is "impossible", if it occurs
4248 * we need to fix it. Originally reported by
4249 * Bjorn Helgaas on a 128-cpu setup.
4251 BUG_ON(busiest_rq == target_rq);
4253 /* move a task from busiest_rq to target_rq */
4254 double_lock_balance(busiest_rq, target_rq);
4255 update_rq_clock(busiest_rq);
4256 update_rq_clock(target_rq);
4258 /* Search for an sd spanning us and the target CPU. */
4259 for_each_domain(target_cpu, sd) {
4260 if ((sd->flags & SD_LOAD_BALANCE) &&
4261 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4262 break;
4265 if (likely(sd)) {
4266 schedstat_inc(sd, alb_count);
4268 if (move_one_task(target_rq, target_cpu, busiest_rq,
4269 sd, CPU_IDLE))
4270 schedstat_inc(sd, alb_pushed);
4271 else
4272 schedstat_inc(sd, alb_failed);
4274 double_unlock_balance(busiest_rq, target_rq);
4277 #ifdef CONFIG_NO_HZ
4278 static struct {
4279 atomic_t load_balancer;
4280 cpumask_var_t cpu_mask;
4281 } nohz ____cacheline_aligned = {
4282 .load_balancer = ATOMIC_INIT(-1),
4286 * This routine will try to nominate the ilb (idle load balancing)
4287 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4288 * load balancing on behalf of all those cpus. If all the cpus in the system
4289 * go into this tickless mode, then there will be no ilb owner (as there is
4290 * no need for one) and all the cpus will sleep till the next wakeup event
4291 * arrives...
4293 * For the ilb owner, tick is not stopped. And this tick will be used
4294 * for idle load balancing. ilb owner will still be part of
4295 * nohz.cpu_mask..
4297 * While stopping the tick, this cpu will become the ilb owner if there
4298 * is no other owner. And will be the owner till that cpu becomes busy
4299 * or if all cpus in the system stop their ticks at which point
4300 * there is no need for ilb owner.
4302 * When the ilb owner becomes busy, it nominates another owner, during the
4303 * next busy scheduler_tick()
4305 int select_nohz_load_balancer(int stop_tick)
4307 int cpu = smp_processor_id();
4309 if (stop_tick) {
4310 cpu_rq(cpu)->in_nohz_recently = 1;
4312 if (!cpu_active(cpu)) {
4313 if (atomic_read(&nohz.load_balancer) != cpu)
4314 return 0;
4317 * If we are going offline and still the leader,
4318 * give up!
4320 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4321 BUG();
4323 return 0;
4326 cpumask_set_cpu(cpu, nohz.cpu_mask);
4328 /* time for ilb owner also to sleep */
4329 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4330 if (atomic_read(&nohz.load_balancer) == cpu)
4331 atomic_set(&nohz.load_balancer, -1);
4332 return 0;
4335 if (atomic_read(&nohz.load_balancer) == -1) {
4336 /* make me the ilb owner */
4337 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4338 return 1;
4339 } else if (atomic_read(&nohz.load_balancer) == cpu)
4340 return 1;
4341 } else {
4342 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4343 return 0;
4345 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4347 if (atomic_read(&nohz.load_balancer) == cpu)
4348 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4349 BUG();
4351 return 0;
4353 #endif
4355 static DEFINE_SPINLOCK(balancing);
4358 * It checks each scheduling domain to see if it is due to be balanced,
4359 * and initiates a balancing operation if so.
4361 * Balancing parameters are set up in arch_init_sched_domains.
4363 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4365 int balance = 1;
4366 struct rq *rq = cpu_rq(cpu);
4367 unsigned long interval;
4368 struct sched_domain *sd;
4369 /* Earliest time when we have to do rebalance again */
4370 unsigned long next_balance = jiffies + 60*HZ;
4371 int update_next_balance = 0;
4372 int need_serialize;
4374 for_each_domain(cpu, sd) {
4375 if (!(sd->flags & SD_LOAD_BALANCE))
4376 continue;
4378 interval = sd->balance_interval;
4379 if (idle != CPU_IDLE)
4380 interval *= sd->busy_factor;
4382 /* scale ms to jiffies */
4383 interval = msecs_to_jiffies(interval);
4384 if (unlikely(!interval))
4385 interval = 1;
4386 if (interval > HZ*NR_CPUS/10)
4387 interval = HZ*NR_CPUS/10;
4389 need_serialize = sd->flags & SD_SERIALIZE;
4391 if (need_serialize) {
4392 if (!spin_trylock(&balancing))
4393 goto out;
4396 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4397 if (load_balance(cpu, rq, sd, idle, &balance)) {
4399 * We've pulled tasks over so either we're no
4400 * longer idle, or one of our SMT siblings is
4401 * not idle.
4403 idle = CPU_NOT_IDLE;
4405 sd->last_balance = jiffies;
4407 if (need_serialize)
4408 spin_unlock(&balancing);
4409 out:
4410 if (time_after(next_balance, sd->last_balance + interval)) {
4411 next_balance = sd->last_balance + interval;
4412 update_next_balance = 1;
4416 * Stop the load balance at this level. There is another
4417 * CPU in our sched group which is doing load balancing more
4418 * actively.
4420 if (!balance)
4421 break;
4425 * next_balance will be updated only when there is a need.
4426 * When the cpu is attached to null domain for ex, it will not be
4427 * updated.
4429 if (likely(update_next_balance))
4430 rq->next_balance = next_balance;
4434 * run_rebalance_domains is triggered when needed from the scheduler tick.
4435 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4436 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4438 static void run_rebalance_domains(struct softirq_action *h)
4440 int this_cpu = smp_processor_id();
4441 struct rq *this_rq = cpu_rq(this_cpu);
4442 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4443 CPU_IDLE : CPU_NOT_IDLE;
4445 rebalance_domains(this_cpu, idle);
4447 #ifdef CONFIG_NO_HZ
4449 * If this cpu is the owner for idle load balancing, then do the
4450 * balancing on behalf of the other idle cpus whose ticks are
4451 * stopped.
4453 if (this_rq->idle_at_tick &&
4454 atomic_read(&nohz.load_balancer) == this_cpu) {
4455 struct rq *rq;
4456 int balance_cpu;
4458 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4459 if (balance_cpu == this_cpu)
4460 continue;
4463 * If this cpu gets work to do, stop the load balancing
4464 * work being done for other cpus. Next load
4465 * balancing owner will pick it up.
4467 if (need_resched())
4468 break;
4470 rebalance_domains(balance_cpu, CPU_IDLE);
4472 rq = cpu_rq(balance_cpu);
4473 if (time_after(this_rq->next_balance, rq->next_balance))
4474 this_rq->next_balance = rq->next_balance;
4477 #endif
4480 static inline int on_null_domain(int cpu)
4482 return !rcu_dereference(cpu_rq(cpu)->sd);
4486 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4488 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4489 * idle load balancing owner or decide to stop the periodic load balancing,
4490 * if the whole system is idle.
4492 static inline void trigger_load_balance(struct rq *rq, int cpu)
4494 #ifdef CONFIG_NO_HZ
4496 * If we were in the nohz mode recently and busy at the current
4497 * scheduler tick, then check if we need to nominate new idle
4498 * load balancer.
4500 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4501 rq->in_nohz_recently = 0;
4503 if (atomic_read(&nohz.load_balancer) == cpu) {
4504 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4505 atomic_set(&nohz.load_balancer, -1);
4508 if (atomic_read(&nohz.load_balancer) == -1) {
4510 * simple selection for now: Nominate the
4511 * first cpu in the nohz list to be the next
4512 * ilb owner.
4514 * TBD: Traverse the sched domains and nominate
4515 * the nearest cpu in the nohz.cpu_mask.
4517 int ilb = cpumask_first(nohz.cpu_mask);
4519 if (ilb < nr_cpu_ids)
4520 resched_cpu(ilb);
4525 * If this cpu is idle and doing idle load balancing for all the
4526 * cpus with ticks stopped, is it time for that to stop?
4528 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4529 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4530 resched_cpu(cpu);
4531 return;
4535 * If this cpu is idle and the idle load balancing is done by
4536 * someone else, then no need raise the SCHED_SOFTIRQ
4538 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4539 cpumask_test_cpu(cpu, nohz.cpu_mask))
4540 return;
4541 #endif
4542 /* Don't need to rebalance while attached to NULL domain */
4543 if (time_after_eq(jiffies, rq->next_balance) &&
4544 likely(!on_null_domain(cpu)))
4545 raise_softirq(SCHED_SOFTIRQ);
4548 #else /* CONFIG_SMP */
4551 * on UP we do not need to balance between CPUs:
4553 static inline void idle_balance(int cpu, struct rq *rq)
4557 #endif
4559 DEFINE_PER_CPU(struct kernel_stat, kstat);
4561 EXPORT_PER_CPU_SYMBOL(kstat);
4564 * Return any ns on the sched_clock that have not yet been accounted in
4565 * @p in case that task is currently running.
4567 * Called with task_rq_lock() held on @rq.
4569 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4571 u64 ns = 0;
4573 if (task_current(rq, p)) {
4574 update_rq_clock(rq);
4575 ns = rq->clock - p->se.exec_start;
4576 if ((s64)ns < 0)
4577 ns = 0;
4580 return ns;
4583 unsigned long long task_delta_exec(struct task_struct *p)
4585 unsigned long flags;
4586 struct rq *rq;
4587 u64 ns = 0;
4589 rq = task_rq_lock(p, &flags);
4590 ns = do_task_delta_exec(p, rq);
4591 task_rq_unlock(rq, &flags);
4593 return ns;
4597 * Return accounted runtime for the task.
4598 * In case the task is currently running, return the runtime plus current's
4599 * pending runtime that have not been accounted yet.
4601 unsigned long long task_sched_runtime(struct task_struct *p)
4603 unsigned long flags;
4604 struct rq *rq;
4605 u64 ns = 0;
4607 rq = task_rq_lock(p, &flags);
4608 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4609 task_rq_unlock(rq, &flags);
4611 return ns;
4615 * Return sum_exec_runtime for the thread group.
4616 * In case the task is currently running, return the sum plus current's
4617 * pending runtime that have not been accounted yet.
4619 * Note that the thread group might have other running tasks as well,
4620 * so the return value not includes other pending runtime that other
4621 * running tasks might have.
4623 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4625 struct task_cputime totals;
4626 unsigned long flags;
4627 struct rq *rq;
4628 u64 ns;
4630 rq = task_rq_lock(p, &flags);
4631 thread_group_cputime(p, &totals);
4632 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4633 task_rq_unlock(rq, &flags);
4635 return ns;
4639 * Account user cpu time to a process.
4640 * @p: the process that the cpu time gets accounted to
4641 * @cputime: the cpu time spent in user space since the last update
4642 * @cputime_scaled: cputime scaled by cpu frequency
4644 void account_user_time(struct task_struct *p, cputime_t cputime,
4645 cputime_t cputime_scaled)
4647 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4648 cputime64_t tmp;
4650 /* Add user time to process. */
4651 p->utime = cputime_add(p->utime, cputime);
4652 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4653 account_group_user_time(p, cputime);
4655 /* Add user time to cpustat. */
4656 tmp = cputime_to_cputime64(cputime);
4657 if (TASK_NICE(p) > 0)
4658 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4659 else
4660 cpustat->user = cputime64_add(cpustat->user, tmp);
4662 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4663 /* Account for user time used */
4664 acct_update_integrals(p);
4668 * Account guest cpu time to a process.
4669 * @p: the process that the cpu time gets accounted to
4670 * @cputime: the cpu time spent in virtual machine since the last update
4671 * @cputime_scaled: cputime scaled by cpu frequency
4673 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4674 cputime_t cputime_scaled)
4676 cputime64_t tmp;
4677 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4679 tmp = cputime_to_cputime64(cputime);
4681 /* Add guest time to process. */
4682 p->utime = cputime_add(p->utime, cputime);
4683 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4684 account_group_user_time(p, cputime);
4685 p->gtime = cputime_add(p->gtime, cputime);
4687 /* Add guest time to cpustat. */
4688 cpustat->user = cputime64_add(cpustat->user, tmp);
4689 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4693 * Account system cpu time to a process.
4694 * @p: the process that the cpu time gets accounted to
4695 * @hardirq_offset: the offset to subtract from hardirq_count()
4696 * @cputime: the cpu time spent in kernel space since the last update
4697 * @cputime_scaled: cputime scaled by cpu frequency
4699 void account_system_time(struct task_struct *p, int hardirq_offset,
4700 cputime_t cputime, cputime_t cputime_scaled)
4702 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4703 cputime64_t tmp;
4705 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4706 account_guest_time(p, cputime, cputime_scaled);
4707 return;
4710 /* Add system time to process. */
4711 p->stime = cputime_add(p->stime, cputime);
4712 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4713 account_group_system_time(p, cputime);
4715 /* Add system time to cpustat. */
4716 tmp = cputime_to_cputime64(cputime);
4717 if (hardirq_count() - hardirq_offset)
4718 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4719 else if (softirq_count())
4720 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4721 else
4722 cpustat->system = cputime64_add(cpustat->system, tmp);
4724 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4726 /* Account for system time used */
4727 acct_update_integrals(p);
4731 * Account for involuntary wait time.
4732 * @steal: the cpu time spent in involuntary wait
4734 void account_steal_time(cputime_t cputime)
4736 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4737 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4739 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4743 * Account for idle time.
4744 * @cputime: the cpu time spent in idle wait
4746 void account_idle_time(cputime_t cputime)
4748 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4749 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4750 struct rq *rq = this_rq();
4752 if (atomic_read(&rq->nr_iowait) > 0)
4753 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4754 else
4755 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4758 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4761 * Account a single tick of cpu time.
4762 * @p: the process that the cpu time gets accounted to
4763 * @user_tick: indicates if the tick is a user or a system tick
4765 void account_process_tick(struct task_struct *p, int user_tick)
4767 cputime_t one_jiffy = jiffies_to_cputime(1);
4768 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4769 struct rq *rq = this_rq();
4771 if (user_tick)
4772 account_user_time(p, one_jiffy, one_jiffy_scaled);
4773 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4774 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4775 one_jiffy_scaled);
4776 else
4777 account_idle_time(one_jiffy);
4781 * Account multiple ticks of steal time.
4782 * @p: the process from which the cpu time has been stolen
4783 * @ticks: number of stolen ticks
4785 void account_steal_ticks(unsigned long ticks)
4787 account_steal_time(jiffies_to_cputime(ticks));
4791 * Account multiple ticks of idle time.
4792 * @ticks: number of stolen ticks
4794 void account_idle_ticks(unsigned long ticks)
4796 account_idle_time(jiffies_to_cputime(ticks));
4799 #endif
4802 * Use precise platform statistics if available:
4804 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4805 cputime_t task_utime(struct task_struct *p)
4807 return p->utime;
4810 cputime_t task_stime(struct task_struct *p)
4812 return p->stime;
4814 #else
4815 cputime_t task_utime(struct task_struct *p)
4817 clock_t utime = cputime_to_clock_t(p->utime),
4818 total = utime + cputime_to_clock_t(p->stime);
4819 u64 temp;
4822 * Use CFS's precise accounting:
4824 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4826 if (total) {
4827 temp *= utime;
4828 do_div(temp, total);
4830 utime = (clock_t)temp;
4832 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4833 return p->prev_utime;
4836 cputime_t task_stime(struct task_struct *p)
4838 clock_t stime;
4841 * Use CFS's precise accounting. (we subtract utime from
4842 * the total, to make sure the total observed by userspace
4843 * grows monotonically - apps rely on that):
4845 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4846 cputime_to_clock_t(task_utime(p));
4848 if (stime >= 0)
4849 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4851 return p->prev_stime;
4853 #endif
4855 inline cputime_t task_gtime(struct task_struct *p)
4857 return p->gtime;
4861 * This function gets called by the timer code, with HZ frequency.
4862 * We call it with interrupts disabled.
4864 * It also gets called by the fork code, when changing the parent's
4865 * timeslices.
4867 void scheduler_tick(void)
4869 int cpu = smp_processor_id();
4870 struct rq *rq = cpu_rq(cpu);
4871 struct task_struct *curr = rq->curr;
4873 sched_clock_tick();
4875 spin_lock(&rq->lock);
4876 update_rq_clock(rq);
4877 update_cpu_load(rq);
4878 curr->sched_class->task_tick(rq, curr, 0);
4879 spin_unlock(&rq->lock);
4881 perf_counter_task_tick(curr, cpu);
4883 #ifdef CONFIG_SMP
4884 rq->idle_at_tick = idle_cpu(cpu);
4885 trigger_load_balance(rq, cpu);
4886 #endif
4889 notrace unsigned long get_parent_ip(unsigned long addr)
4891 if (in_lock_functions(addr)) {
4892 addr = CALLER_ADDR2;
4893 if (in_lock_functions(addr))
4894 addr = CALLER_ADDR3;
4896 return addr;
4899 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4900 defined(CONFIG_PREEMPT_TRACER))
4902 void __kprobes add_preempt_count(int val)
4904 #ifdef CONFIG_DEBUG_PREEMPT
4906 * Underflow?
4908 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4909 return;
4910 #endif
4911 preempt_count() += val;
4912 #ifdef CONFIG_DEBUG_PREEMPT
4914 * Spinlock count overflowing soon?
4916 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4917 PREEMPT_MASK - 10);
4918 #endif
4919 if (preempt_count() == val)
4920 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4922 EXPORT_SYMBOL(add_preempt_count);
4924 void __kprobes sub_preempt_count(int val)
4926 #ifdef CONFIG_DEBUG_PREEMPT
4928 * Underflow?
4930 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4931 return;
4933 * Is the spinlock portion underflowing?
4935 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4936 !(preempt_count() & PREEMPT_MASK)))
4937 return;
4938 #endif
4940 if (preempt_count() == val)
4941 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4942 preempt_count() -= val;
4944 EXPORT_SYMBOL(sub_preempt_count);
4946 #endif
4949 * Print scheduling while atomic bug:
4951 static noinline void __schedule_bug(struct task_struct *prev)
4953 struct pt_regs *regs = get_irq_regs();
4955 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4956 prev->comm, prev->pid, preempt_count());
4958 debug_show_held_locks(prev);
4959 print_modules();
4960 if (irqs_disabled())
4961 print_irqtrace_events(prev);
4963 if (regs)
4964 show_regs(regs);
4965 else
4966 dump_stack();
4970 * Various schedule()-time debugging checks and statistics:
4972 static inline void schedule_debug(struct task_struct *prev)
4975 * Test if we are atomic. Since do_exit() needs to call into
4976 * schedule() atomically, we ignore that path for now.
4977 * Otherwise, whine if we are scheduling when we should not be.
4979 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4980 __schedule_bug(prev);
4982 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4984 schedstat_inc(this_rq(), sched_count);
4985 #ifdef CONFIG_SCHEDSTATS
4986 if (unlikely(prev->lock_depth >= 0)) {
4987 schedstat_inc(this_rq(), bkl_count);
4988 schedstat_inc(prev, sched_info.bkl_count);
4990 #endif
4993 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4995 if (prev->state == TASK_RUNNING) {
4996 u64 runtime = prev->se.sum_exec_runtime;
4998 runtime -= prev->se.prev_sum_exec_runtime;
4999 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5002 * In order to avoid avg_overlap growing stale when we are
5003 * indeed overlapping and hence not getting put to sleep, grow
5004 * the avg_overlap on preemption.
5006 * We use the average preemption runtime because that
5007 * correlates to the amount of cache footprint a task can
5008 * build up.
5010 update_avg(&prev->se.avg_overlap, runtime);
5012 prev->sched_class->put_prev_task(rq, prev);
5016 * Pick up the highest-prio task:
5018 static inline struct task_struct *
5019 pick_next_task(struct rq *rq)
5021 const struct sched_class *class;
5022 struct task_struct *p;
5025 * Optimization: we know that if all tasks are in
5026 * the fair class we can call that function directly:
5028 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5029 p = fair_sched_class.pick_next_task(rq);
5030 if (likely(p))
5031 return p;
5034 class = sched_class_highest;
5035 for ( ; ; ) {
5036 p = class->pick_next_task(rq);
5037 if (p)
5038 return p;
5040 * Will never be NULL as the idle class always
5041 * returns a non-NULL p:
5043 class = class->next;
5048 * schedule() is the main scheduler function.
5050 asmlinkage void __sched __schedule(void)
5052 struct task_struct *prev, *next;
5053 unsigned long *switch_count;
5054 struct rq *rq;
5055 int cpu;
5057 cpu = smp_processor_id();
5058 rq = cpu_rq(cpu);
5059 rcu_qsctr_inc(cpu);
5060 prev = rq->curr;
5061 switch_count = &prev->nivcsw;
5063 release_kernel_lock(prev);
5064 need_resched_nonpreemptible:
5066 schedule_debug(prev);
5068 if (sched_feat(HRTICK))
5069 hrtick_clear(rq);
5071 spin_lock_irq(&rq->lock);
5072 update_rq_clock(rq);
5073 clear_tsk_need_resched(prev);
5075 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5076 if (unlikely(signal_pending_state(prev->state, prev)))
5077 prev->state = TASK_RUNNING;
5078 else
5079 deactivate_task(rq, prev, 1);
5080 switch_count = &prev->nvcsw;
5083 #ifdef CONFIG_SMP
5084 if (prev->sched_class->pre_schedule)
5085 prev->sched_class->pre_schedule(rq, prev);
5086 #endif
5088 if (unlikely(!rq->nr_running))
5089 idle_balance(cpu, rq);
5091 put_prev_task(rq, prev);
5092 next = pick_next_task(rq);
5094 if (likely(prev != next)) {
5095 sched_info_switch(prev, next);
5096 perf_counter_task_sched_out(prev, next, cpu);
5098 rq->nr_switches++;
5099 rq->curr = next;
5100 ++*switch_count;
5102 context_switch(rq, prev, next); /* unlocks the rq */
5104 * the context switch might have flipped the stack from under
5105 * us, hence refresh the local variables.
5107 cpu = smp_processor_id();
5108 rq = cpu_rq(cpu);
5109 } else
5110 spin_unlock_irq(&rq->lock);
5112 if (unlikely(reacquire_kernel_lock(current) < 0))
5113 goto need_resched_nonpreemptible;
5116 asmlinkage void __sched schedule(void)
5118 need_resched:
5119 preempt_disable();
5120 __schedule();
5121 preempt_enable_no_resched();
5122 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5123 goto need_resched;
5125 EXPORT_SYMBOL(schedule);
5127 #ifdef CONFIG_SMP
5129 * Look out! "owner" is an entirely speculative pointer
5130 * access and not reliable.
5132 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5134 unsigned int cpu;
5135 struct rq *rq;
5137 if (!sched_feat(OWNER_SPIN))
5138 return 0;
5140 #ifdef CONFIG_DEBUG_PAGEALLOC
5142 * Need to access the cpu field knowing that
5143 * DEBUG_PAGEALLOC could have unmapped it if
5144 * the mutex owner just released it and exited.
5146 if (probe_kernel_address(&owner->cpu, cpu))
5147 goto out;
5148 #else
5149 cpu = owner->cpu;
5150 #endif
5153 * Even if the access succeeded (likely case),
5154 * the cpu field may no longer be valid.
5156 if (cpu >= nr_cpumask_bits)
5157 goto out;
5160 * We need to validate that we can do a
5161 * get_cpu() and that we have the percpu area.
5163 if (!cpu_online(cpu))
5164 goto out;
5166 rq = cpu_rq(cpu);
5168 for (;;) {
5170 * Owner changed, break to re-assess state.
5172 if (lock->owner != owner)
5173 break;
5176 * Is that owner really running on that cpu?
5178 if (task_thread_info(rq->curr) != owner || need_resched())
5179 return 0;
5181 cpu_relax();
5183 out:
5184 return 1;
5186 #endif
5188 #ifdef CONFIG_PREEMPT
5190 * this is the entry point to schedule() from in-kernel preemption
5191 * off of preempt_enable. Kernel preemptions off return from interrupt
5192 * occur there and call schedule directly.
5194 asmlinkage void __sched preempt_schedule(void)
5196 struct thread_info *ti = current_thread_info();
5199 * If there is a non-zero preempt_count or interrupts are disabled,
5200 * we do not want to preempt the current task. Just return..
5202 if (likely(ti->preempt_count || irqs_disabled()))
5203 return;
5205 do {
5206 add_preempt_count(PREEMPT_ACTIVE);
5207 schedule();
5208 sub_preempt_count(PREEMPT_ACTIVE);
5211 * Check again in case we missed a preemption opportunity
5212 * between schedule and now.
5214 barrier();
5215 } while (need_resched());
5217 EXPORT_SYMBOL(preempt_schedule);
5220 * this is the entry point to schedule() from kernel preemption
5221 * off of irq context.
5222 * Note, that this is called and return with irqs disabled. This will
5223 * protect us against recursive calling from irq.
5225 asmlinkage void __sched preempt_schedule_irq(void)
5227 struct thread_info *ti = current_thread_info();
5229 /* Catch callers which need to be fixed */
5230 BUG_ON(ti->preempt_count || !irqs_disabled());
5232 do {
5233 add_preempt_count(PREEMPT_ACTIVE);
5234 local_irq_enable();
5235 schedule();
5236 local_irq_disable();
5237 sub_preempt_count(PREEMPT_ACTIVE);
5240 * Check again in case we missed a preemption opportunity
5241 * between schedule and now.
5243 barrier();
5244 } while (need_resched());
5247 #endif /* CONFIG_PREEMPT */
5249 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5250 void *key)
5252 return try_to_wake_up(curr->private, mode, sync);
5254 EXPORT_SYMBOL(default_wake_function);
5257 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5258 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5259 * number) then we wake all the non-exclusive tasks and one exclusive task.
5261 * There are circumstances in which we can try to wake a task which has already
5262 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5263 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5265 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5266 int nr_exclusive, int sync, void *key)
5268 wait_queue_t *curr, *next;
5270 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5271 unsigned flags = curr->flags;
5273 if (curr->func(curr, mode, sync, key) &&
5274 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5275 break;
5280 * __wake_up - wake up threads blocked on a waitqueue.
5281 * @q: the waitqueue
5282 * @mode: which threads
5283 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5284 * @key: is directly passed to the wakeup function
5286 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5287 int nr_exclusive, void *key)
5289 unsigned long flags;
5291 spin_lock_irqsave(&q->lock, flags);
5292 __wake_up_common(q, mode, nr_exclusive, 0, key);
5293 spin_unlock_irqrestore(&q->lock, flags);
5295 EXPORT_SYMBOL(__wake_up);
5298 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5300 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5302 __wake_up_common(q, mode, 1, 0, NULL);
5305 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5307 __wake_up_common(q, mode, 1, 0, key);
5311 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5312 * @q: the waitqueue
5313 * @mode: which threads
5314 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5315 * @key: opaque value to be passed to wakeup targets
5317 * The sync wakeup differs that the waker knows that it will schedule
5318 * away soon, so while the target thread will be woken up, it will not
5319 * be migrated to another CPU - ie. the two threads are 'synchronized'
5320 * with each other. This can prevent needless bouncing between CPUs.
5322 * On UP it can prevent extra preemption.
5324 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5325 int nr_exclusive, void *key)
5327 unsigned long flags;
5328 int sync = 1;
5330 if (unlikely(!q))
5331 return;
5333 if (unlikely(!nr_exclusive))
5334 sync = 0;
5336 spin_lock_irqsave(&q->lock, flags);
5337 __wake_up_common(q, mode, nr_exclusive, sync, key);
5338 spin_unlock_irqrestore(&q->lock, flags);
5340 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5343 * __wake_up_sync - see __wake_up_sync_key()
5345 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5347 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5349 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5352 * complete: - signals a single thread waiting on this completion
5353 * @x: holds the state of this particular completion
5355 * This will wake up a single thread waiting on this completion. Threads will be
5356 * awakened in the same order in which they were queued.
5358 * See also complete_all(), wait_for_completion() and related routines.
5360 void complete(struct completion *x)
5362 unsigned long flags;
5364 spin_lock_irqsave(&x->wait.lock, flags);
5365 x->done++;
5366 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5367 spin_unlock_irqrestore(&x->wait.lock, flags);
5369 EXPORT_SYMBOL(complete);
5372 * complete_all: - signals all threads waiting on this completion
5373 * @x: holds the state of this particular completion
5375 * This will wake up all threads waiting on this particular completion event.
5377 void complete_all(struct completion *x)
5379 unsigned long flags;
5381 spin_lock_irqsave(&x->wait.lock, flags);
5382 x->done += UINT_MAX/2;
5383 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5384 spin_unlock_irqrestore(&x->wait.lock, flags);
5386 EXPORT_SYMBOL(complete_all);
5388 static inline long __sched
5389 do_wait_for_common(struct completion *x, long timeout, int state)
5391 if (!x->done) {
5392 DECLARE_WAITQUEUE(wait, current);
5394 wait.flags |= WQ_FLAG_EXCLUSIVE;
5395 __add_wait_queue_tail(&x->wait, &wait);
5396 do {
5397 if (signal_pending_state(state, current)) {
5398 timeout = -ERESTARTSYS;
5399 break;
5401 __set_current_state(state);
5402 spin_unlock_irq(&x->wait.lock);
5403 timeout = schedule_timeout(timeout);
5404 spin_lock_irq(&x->wait.lock);
5405 } while (!x->done && timeout);
5406 __remove_wait_queue(&x->wait, &wait);
5407 if (!x->done)
5408 return timeout;
5410 x->done--;
5411 return timeout ?: 1;
5414 static long __sched
5415 wait_for_common(struct completion *x, long timeout, int state)
5417 might_sleep();
5419 spin_lock_irq(&x->wait.lock);
5420 timeout = do_wait_for_common(x, timeout, state);
5421 spin_unlock_irq(&x->wait.lock);
5422 return timeout;
5426 * wait_for_completion: - waits for completion of a task
5427 * @x: holds the state of this particular completion
5429 * This waits to be signaled for completion of a specific task. It is NOT
5430 * interruptible and there is no timeout.
5432 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5433 * and interrupt capability. Also see complete().
5435 void __sched wait_for_completion(struct completion *x)
5437 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5439 EXPORT_SYMBOL(wait_for_completion);
5442 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5443 * @x: holds the state of this particular completion
5444 * @timeout: timeout value in jiffies
5446 * This waits for either a completion of a specific task to be signaled or for a
5447 * specified timeout to expire. The timeout is in jiffies. It is not
5448 * interruptible.
5450 unsigned long __sched
5451 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5453 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5455 EXPORT_SYMBOL(wait_for_completion_timeout);
5458 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5459 * @x: holds the state of this particular completion
5461 * This waits for completion of a specific task to be signaled. It is
5462 * interruptible.
5464 int __sched wait_for_completion_interruptible(struct completion *x)
5466 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5467 if (t == -ERESTARTSYS)
5468 return t;
5469 return 0;
5471 EXPORT_SYMBOL(wait_for_completion_interruptible);
5474 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5475 * @x: holds the state of this particular completion
5476 * @timeout: timeout value in jiffies
5478 * This waits for either a completion of a specific task to be signaled or for a
5479 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5481 unsigned long __sched
5482 wait_for_completion_interruptible_timeout(struct completion *x,
5483 unsigned long timeout)
5485 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5487 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5490 * wait_for_completion_killable: - waits for completion of a task (killable)
5491 * @x: holds the state of this particular completion
5493 * This waits to be signaled for completion of a specific task. It can be
5494 * interrupted by a kill signal.
5496 int __sched wait_for_completion_killable(struct completion *x)
5498 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5499 if (t == -ERESTARTSYS)
5500 return t;
5501 return 0;
5503 EXPORT_SYMBOL(wait_for_completion_killable);
5506 * try_wait_for_completion - try to decrement a completion without blocking
5507 * @x: completion structure
5509 * Returns: 0 if a decrement cannot be done without blocking
5510 * 1 if a decrement succeeded.
5512 * If a completion is being used as a counting completion,
5513 * attempt to decrement the counter without blocking. This
5514 * enables us to avoid waiting if the resource the completion
5515 * is protecting is not available.
5517 bool try_wait_for_completion(struct completion *x)
5519 int ret = 1;
5521 spin_lock_irq(&x->wait.lock);
5522 if (!x->done)
5523 ret = 0;
5524 else
5525 x->done--;
5526 spin_unlock_irq(&x->wait.lock);
5527 return ret;
5529 EXPORT_SYMBOL(try_wait_for_completion);
5532 * completion_done - Test to see if a completion has any waiters
5533 * @x: completion structure
5535 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5536 * 1 if there are no waiters.
5539 bool completion_done(struct completion *x)
5541 int ret = 1;
5543 spin_lock_irq(&x->wait.lock);
5544 if (!x->done)
5545 ret = 0;
5546 spin_unlock_irq(&x->wait.lock);
5547 return ret;
5549 EXPORT_SYMBOL(completion_done);
5551 static long __sched
5552 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5554 unsigned long flags;
5555 wait_queue_t wait;
5557 init_waitqueue_entry(&wait, current);
5559 __set_current_state(state);
5561 spin_lock_irqsave(&q->lock, flags);
5562 __add_wait_queue(q, &wait);
5563 spin_unlock(&q->lock);
5564 timeout = schedule_timeout(timeout);
5565 spin_lock_irq(&q->lock);
5566 __remove_wait_queue(q, &wait);
5567 spin_unlock_irqrestore(&q->lock, flags);
5569 return timeout;
5572 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5574 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5576 EXPORT_SYMBOL(interruptible_sleep_on);
5578 long __sched
5579 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5581 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5583 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5585 void __sched sleep_on(wait_queue_head_t *q)
5587 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5589 EXPORT_SYMBOL(sleep_on);
5591 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5593 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5595 EXPORT_SYMBOL(sleep_on_timeout);
5597 #ifdef CONFIG_RT_MUTEXES
5600 * rt_mutex_setprio - set the current priority of a task
5601 * @p: task
5602 * @prio: prio value (kernel-internal form)
5604 * This function changes the 'effective' priority of a task. It does
5605 * not touch ->normal_prio like __setscheduler().
5607 * Used by the rt_mutex code to implement priority inheritance logic.
5609 void rt_mutex_setprio(struct task_struct *p, int prio)
5611 unsigned long flags;
5612 int oldprio, on_rq, running;
5613 struct rq *rq;
5614 const struct sched_class *prev_class = p->sched_class;
5616 BUG_ON(prio < 0 || prio > MAX_PRIO);
5618 rq = task_rq_lock(p, &flags);
5619 update_rq_clock(rq);
5621 oldprio = p->prio;
5622 on_rq = p->se.on_rq;
5623 running = task_current(rq, p);
5624 if (on_rq)
5625 dequeue_task(rq, p, 0);
5626 if (running)
5627 p->sched_class->put_prev_task(rq, p);
5629 if (rt_prio(prio))
5630 p->sched_class = &rt_sched_class;
5631 else
5632 p->sched_class = &fair_sched_class;
5634 p->prio = prio;
5636 if (running)
5637 p->sched_class->set_curr_task(rq);
5638 if (on_rq) {
5639 enqueue_task(rq, p, 0);
5641 check_class_changed(rq, p, prev_class, oldprio, running);
5643 task_rq_unlock(rq, &flags);
5646 #endif
5648 void set_user_nice(struct task_struct *p, long nice)
5650 int old_prio, delta, on_rq;
5651 unsigned long flags;
5652 struct rq *rq;
5654 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5655 return;
5657 * We have to be careful, if called from sys_setpriority(),
5658 * the task might be in the middle of scheduling on another CPU.
5660 rq = task_rq_lock(p, &flags);
5661 update_rq_clock(rq);
5663 * The RT priorities are set via sched_setscheduler(), but we still
5664 * allow the 'normal' nice value to be set - but as expected
5665 * it wont have any effect on scheduling until the task is
5666 * SCHED_FIFO/SCHED_RR:
5668 if (task_has_rt_policy(p)) {
5669 p->static_prio = NICE_TO_PRIO(nice);
5670 goto out_unlock;
5672 on_rq = p->se.on_rq;
5673 if (on_rq)
5674 dequeue_task(rq, p, 0);
5676 p->static_prio = NICE_TO_PRIO(nice);
5677 set_load_weight(p);
5678 old_prio = p->prio;
5679 p->prio = effective_prio(p);
5680 delta = p->prio - old_prio;
5682 if (on_rq) {
5683 enqueue_task(rq, p, 0);
5685 * If the task increased its priority or is running and
5686 * lowered its priority, then reschedule its CPU:
5688 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5689 resched_task(rq->curr);
5691 out_unlock:
5692 task_rq_unlock(rq, &flags);
5694 EXPORT_SYMBOL(set_user_nice);
5697 * can_nice - check if a task can reduce its nice value
5698 * @p: task
5699 * @nice: nice value
5701 int can_nice(const struct task_struct *p, const int nice)
5703 /* convert nice value [19,-20] to rlimit style value [1,40] */
5704 int nice_rlim = 20 - nice;
5706 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5707 capable(CAP_SYS_NICE));
5710 #ifdef __ARCH_WANT_SYS_NICE
5713 * sys_nice - change the priority of the current process.
5714 * @increment: priority increment
5716 * sys_setpriority is a more generic, but much slower function that
5717 * does similar things.
5719 SYSCALL_DEFINE1(nice, int, increment)
5721 long nice, retval;
5724 * Setpriority might change our priority at the same moment.
5725 * We don't have to worry. Conceptually one call occurs first
5726 * and we have a single winner.
5728 if (increment < -40)
5729 increment = -40;
5730 if (increment > 40)
5731 increment = 40;
5733 nice = TASK_NICE(current) + increment;
5734 if (nice < -20)
5735 nice = -20;
5736 if (nice > 19)
5737 nice = 19;
5739 if (increment < 0 && !can_nice(current, nice))
5740 return -EPERM;
5742 retval = security_task_setnice(current, nice);
5743 if (retval)
5744 return retval;
5746 set_user_nice(current, nice);
5747 return 0;
5750 #endif
5753 * task_prio - return the priority value of a given task.
5754 * @p: the task in question.
5756 * This is the priority value as seen by users in /proc.
5757 * RT tasks are offset by -200. Normal tasks are centered
5758 * around 0, value goes from -16 to +15.
5760 int task_prio(const struct task_struct *p)
5762 return p->prio - MAX_RT_PRIO;
5766 * task_nice - return the nice value of a given task.
5767 * @p: the task in question.
5769 int task_nice(const struct task_struct *p)
5771 return TASK_NICE(p);
5773 EXPORT_SYMBOL(task_nice);
5776 * idle_cpu - is a given cpu idle currently?
5777 * @cpu: the processor in question.
5779 int idle_cpu(int cpu)
5781 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5785 * idle_task - return the idle task for a given cpu.
5786 * @cpu: the processor in question.
5788 struct task_struct *idle_task(int cpu)
5790 return cpu_rq(cpu)->idle;
5794 * find_process_by_pid - find a process with a matching PID value.
5795 * @pid: the pid in question.
5797 static struct task_struct *find_process_by_pid(pid_t pid)
5799 return pid ? find_task_by_vpid(pid) : current;
5802 /* Actually do priority change: must hold rq lock. */
5803 static void
5804 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5806 BUG_ON(p->se.on_rq);
5808 p->policy = policy;
5809 switch (p->policy) {
5810 case SCHED_NORMAL:
5811 case SCHED_BATCH:
5812 case SCHED_IDLE:
5813 p->sched_class = &fair_sched_class;
5814 break;
5815 case SCHED_FIFO:
5816 case SCHED_RR:
5817 p->sched_class = &rt_sched_class;
5818 break;
5821 p->rt_priority = prio;
5822 p->normal_prio = normal_prio(p);
5823 /* we are holding p->pi_lock already */
5824 p->prio = rt_mutex_getprio(p);
5825 set_load_weight(p);
5829 * check the target process has a UID that matches the current process's
5831 static bool check_same_owner(struct task_struct *p)
5833 const struct cred *cred = current_cred(), *pcred;
5834 bool match;
5836 rcu_read_lock();
5837 pcred = __task_cred(p);
5838 match = (cred->euid == pcred->euid ||
5839 cred->euid == pcred->uid);
5840 rcu_read_unlock();
5841 return match;
5844 static int __sched_setscheduler(struct task_struct *p, int policy,
5845 struct sched_param *param, bool user)
5847 int retval, oldprio, oldpolicy = -1, on_rq, running;
5848 unsigned long flags;
5849 const struct sched_class *prev_class = p->sched_class;
5850 struct rq *rq;
5852 /* may grab non-irq protected spin_locks */
5853 BUG_ON(in_interrupt());
5854 recheck:
5855 /* double check policy once rq lock held */
5856 if (policy < 0)
5857 policy = oldpolicy = p->policy;
5858 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5859 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5860 policy != SCHED_IDLE)
5861 return -EINVAL;
5863 * Valid priorities for SCHED_FIFO and SCHED_RR are
5864 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5865 * SCHED_BATCH and SCHED_IDLE is 0.
5867 if (param->sched_priority < 0 ||
5868 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5869 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5870 return -EINVAL;
5871 if (rt_policy(policy) != (param->sched_priority != 0))
5872 return -EINVAL;
5875 * Allow unprivileged RT tasks to decrease priority:
5877 if (user && !capable(CAP_SYS_NICE)) {
5878 if (rt_policy(policy)) {
5879 unsigned long rlim_rtprio;
5881 if (!lock_task_sighand(p, &flags))
5882 return -ESRCH;
5883 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5884 unlock_task_sighand(p, &flags);
5886 /* can't set/change the rt policy */
5887 if (policy != p->policy && !rlim_rtprio)
5888 return -EPERM;
5890 /* can't increase priority */
5891 if (param->sched_priority > p->rt_priority &&
5892 param->sched_priority > rlim_rtprio)
5893 return -EPERM;
5896 * Like positive nice levels, dont allow tasks to
5897 * move out of SCHED_IDLE either:
5899 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5900 return -EPERM;
5902 /* can't change other user's priorities */
5903 if (!check_same_owner(p))
5904 return -EPERM;
5907 if (user) {
5908 #ifdef CONFIG_RT_GROUP_SCHED
5910 * Do not allow realtime tasks into groups that have no runtime
5911 * assigned.
5913 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5914 task_group(p)->rt_bandwidth.rt_runtime == 0)
5915 return -EPERM;
5916 #endif
5918 retval = security_task_setscheduler(p, policy, param);
5919 if (retval)
5920 return retval;
5924 * make sure no PI-waiters arrive (or leave) while we are
5925 * changing the priority of the task:
5927 spin_lock_irqsave(&p->pi_lock, flags);
5929 * To be able to change p->policy safely, the apropriate
5930 * runqueue lock must be held.
5932 rq = __task_rq_lock(p);
5933 /* recheck policy now with rq lock held */
5934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5935 policy = oldpolicy = -1;
5936 __task_rq_unlock(rq);
5937 spin_unlock_irqrestore(&p->pi_lock, flags);
5938 goto recheck;
5940 update_rq_clock(rq);
5941 on_rq = p->se.on_rq;
5942 running = task_current(rq, p);
5943 if (on_rq)
5944 deactivate_task(rq, p, 0);
5945 if (running)
5946 p->sched_class->put_prev_task(rq, p);
5948 oldprio = p->prio;
5949 __setscheduler(rq, p, policy, param->sched_priority);
5951 if (running)
5952 p->sched_class->set_curr_task(rq);
5953 if (on_rq) {
5954 activate_task(rq, p, 0);
5956 check_class_changed(rq, p, prev_class, oldprio, running);
5958 __task_rq_unlock(rq);
5959 spin_unlock_irqrestore(&p->pi_lock, flags);
5961 rt_mutex_adjust_pi(p);
5963 return 0;
5967 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5968 * @p: the task in question.
5969 * @policy: new policy.
5970 * @param: structure containing the new RT priority.
5972 * NOTE that the task may be already dead.
5974 int sched_setscheduler(struct task_struct *p, int policy,
5975 struct sched_param *param)
5977 return __sched_setscheduler(p, policy, param, true);
5979 EXPORT_SYMBOL_GPL(sched_setscheduler);
5982 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5983 * @p: the task in question.
5984 * @policy: new policy.
5985 * @param: structure containing the new RT priority.
5987 * Just like sched_setscheduler, only don't bother checking if the
5988 * current context has permission. For example, this is needed in
5989 * stop_machine(): we create temporary high priority worker threads,
5990 * but our caller might not have that capability.
5992 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5993 struct sched_param *param)
5995 return __sched_setscheduler(p, policy, param, false);
5998 static int
5999 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6001 struct sched_param lparam;
6002 struct task_struct *p;
6003 int retval;
6005 if (!param || pid < 0)
6006 return -EINVAL;
6007 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6008 return -EFAULT;
6010 rcu_read_lock();
6011 retval = -ESRCH;
6012 p = find_process_by_pid(pid);
6013 if (p != NULL)
6014 retval = sched_setscheduler(p, policy, &lparam);
6015 rcu_read_unlock();
6017 return retval;
6021 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6022 * @pid: the pid in question.
6023 * @policy: new policy.
6024 * @param: structure containing the new RT priority.
6026 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6027 struct sched_param __user *, param)
6029 /* negative values for policy are not valid */
6030 if (policy < 0)
6031 return -EINVAL;
6033 return do_sched_setscheduler(pid, policy, param);
6037 * sys_sched_setparam - set/change the RT priority of a thread
6038 * @pid: the pid in question.
6039 * @param: structure containing the new RT priority.
6041 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6043 return do_sched_setscheduler(pid, -1, param);
6047 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6048 * @pid: the pid in question.
6050 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6052 struct task_struct *p;
6053 int retval;
6055 if (pid < 0)
6056 return -EINVAL;
6058 retval = -ESRCH;
6059 read_lock(&tasklist_lock);
6060 p = find_process_by_pid(pid);
6061 if (p) {
6062 retval = security_task_getscheduler(p);
6063 if (!retval)
6064 retval = p->policy;
6066 read_unlock(&tasklist_lock);
6067 return retval;
6071 * sys_sched_getscheduler - get the RT priority of a thread
6072 * @pid: the pid in question.
6073 * @param: structure containing the RT priority.
6075 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6077 struct sched_param lp;
6078 struct task_struct *p;
6079 int retval;
6081 if (!param || pid < 0)
6082 return -EINVAL;
6084 read_lock(&tasklist_lock);
6085 p = find_process_by_pid(pid);
6086 retval = -ESRCH;
6087 if (!p)
6088 goto out_unlock;
6090 retval = security_task_getscheduler(p);
6091 if (retval)
6092 goto out_unlock;
6094 lp.sched_priority = p->rt_priority;
6095 read_unlock(&tasklist_lock);
6098 * This one might sleep, we cannot do it with a spinlock held ...
6100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6102 return retval;
6104 out_unlock:
6105 read_unlock(&tasklist_lock);
6106 return retval;
6109 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6111 cpumask_var_t cpus_allowed, new_mask;
6112 struct task_struct *p;
6113 int retval;
6115 get_online_cpus();
6116 read_lock(&tasklist_lock);
6118 p = find_process_by_pid(pid);
6119 if (!p) {
6120 read_unlock(&tasklist_lock);
6121 put_online_cpus();
6122 return -ESRCH;
6126 * It is not safe to call set_cpus_allowed with the
6127 * tasklist_lock held. We will bump the task_struct's
6128 * usage count and then drop tasklist_lock.
6130 get_task_struct(p);
6131 read_unlock(&tasklist_lock);
6133 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6134 retval = -ENOMEM;
6135 goto out_put_task;
6137 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6138 retval = -ENOMEM;
6139 goto out_free_cpus_allowed;
6141 retval = -EPERM;
6142 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6143 goto out_unlock;
6145 retval = security_task_setscheduler(p, 0, NULL);
6146 if (retval)
6147 goto out_unlock;
6149 cpuset_cpus_allowed(p, cpus_allowed);
6150 cpumask_and(new_mask, in_mask, cpus_allowed);
6151 again:
6152 retval = set_cpus_allowed_ptr(p, new_mask);
6154 if (!retval) {
6155 cpuset_cpus_allowed(p, cpus_allowed);
6156 if (!cpumask_subset(new_mask, cpus_allowed)) {
6158 * We must have raced with a concurrent cpuset
6159 * update. Just reset the cpus_allowed to the
6160 * cpuset's cpus_allowed
6162 cpumask_copy(new_mask, cpus_allowed);
6163 goto again;
6166 out_unlock:
6167 free_cpumask_var(new_mask);
6168 out_free_cpus_allowed:
6169 free_cpumask_var(cpus_allowed);
6170 out_put_task:
6171 put_task_struct(p);
6172 put_online_cpus();
6173 return retval;
6176 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6177 struct cpumask *new_mask)
6179 if (len < cpumask_size())
6180 cpumask_clear(new_mask);
6181 else if (len > cpumask_size())
6182 len = cpumask_size();
6184 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6188 * sys_sched_setaffinity - set the cpu affinity of a process
6189 * @pid: pid of the process
6190 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6191 * @user_mask_ptr: user-space pointer to the new cpu mask
6193 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6194 unsigned long __user *, user_mask_ptr)
6196 cpumask_var_t new_mask;
6197 int retval;
6199 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6200 return -ENOMEM;
6202 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6203 if (retval == 0)
6204 retval = sched_setaffinity(pid, new_mask);
6205 free_cpumask_var(new_mask);
6206 return retval;
6209 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6211 struct task_struct *p;
6212 int retval;
6214 get_online_cpus();
6215 read_lock(&tasklist_lock);
6217 retval = -ESRCH;
6218 p = find_process_by_pid(pid);
6219 if (!p)
6220 goto out_unlock;
6222 retval = security_task_getscheduler(p);
6223 if (retval)
6224 goto out_unlock;
6226 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6228 out_unlock:
6229 read_unlock(&tasklist_lock);
6230 put_online_cpus();
6232 return retval;
6236 * sys_sched_getaffinity - get the cpu affinity of a process
6237 * @pid: pid of the process
6238 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6239 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6241 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6242 unsigned long __user *, user_mask_ptr)
6244 int ret;
6245 cpumask_var_t mask;
6247 if (len < cpumask_size())
6248 return -EINVAL;
6250 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6251 return -ENOMEM;
6253 ret = sched_getaffinity(pid, mask);
6254 if (ret == 0) {
6255 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6256 ret = -EFAULT;
6257 else
6258 ret = cpumask_size();
6260 free_cpumask_var(mask);
6262 return ret;
6266 * sys_sched_yield - yield the current processor to other threads.
6268 * This function yields the current CPU to other tasks. If there are no
6269 * other threads running on this CPU then this function will return.
6271 SYSCALL_DEFINE0(sched_yield)
6273 struct rq *rq = this_rq_lock();
6275 schedstat_inc(rq, yld_count);
6276 current->sched_class->yield_task(rq);
6279 * Since we are going to call schedule() anyway, there's
6280 * no need to preempt or enable interrupts:
6282 __release(rq->lock);
6283 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6284 _raw_spin_unlock(&rq->lock);
6285 preempt_enable_no_resched();
6287 schedule();
6289 return 0;
6292 static void __cond_resched(void)
6294 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6295 __might_sleep(__FILE__, __LINE__);
6296 #endif
6298 * The BKS might be reacquired before we have dropped
6299 * PREEMPT_ACTIVE, which could trigger a second
6300 * cond_resched() call.
6302 do {
6303 add_preempt_count(PREEMPT_ACTIVE);
6304 schedule();
6305 sub_preempt_count(PREEMPT_ACTIVE);
6306 } while (need_resched());
6309 int __sched _cond_resched(void)
6311 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6312 system_state == SYSTEM_RUNNING) {
6313 __cond_resched();
6314 return 1;
6316 return 0;
6318 EXPORT_SYMBOL(_cond_resched);
6321 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6322 * call schedule, and on return reacquire the lock.
6324 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6325 * operations here to prevent schedule() from being called twice (once via
6326 * spin_unlock(), once by hand).
6328 int cond_resched_lock(spinlock_t *lock)
6330 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6331 int ret = 0;
6333 if (spin_needbreak(lock) || resched) {
6334 spin_unlock(lock);
6335 if (resched && need_resched())
6336 __cond_resched();
6337 else
6338 cpu_relax();
6339 ret = 1;
6340 spin_lock(lock);
6342 return ret;
6344 EXPORT_SYMBOL(cond_resched_lock);
6346 int __sched cond_resched_softirq(void)
6348 BUG_ON(!in_softirq());
6350 if (need_resched() && system_state == SYSTEM_RUNNING) {
6351 local_bh_enable();
6352 __cond_resched();
6353 local_bh_disable();
6354 return 1;
6356 return 0;
6358 EXPORT_SYMBOL(cond_resched_softirq);
6361 * yield - yield the current processor to other threads.
6363 * This is a shortcut for kernel-space yielding - it marks the
6364 * thread runnable and calls sys_sched_yield().
6366 void __sched yield(void)
6368 set_current_state(TASK_RUNNING);
6369 sys_sched_yield();
6371 EXPORT_SYMBOL(yield);
6374 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6375 * that process accounting knows that this is a task in IO wait state.
6377 * But don't do that if it is a deliberate, throttling IO wait (this task
6378 * has set its backing_dev_info: the queue against which it should throttle)
6380 void __sched io_schedule(void)
6382 struct rq *rq = &__raw_get_cpu_var(runqueues);
6384 delayacct_blkio_start();
6385 atomic_inc(&rq->nr_iowait);
6386 schedule();
6387 atomic_dec(&rq->nr_iowait);
6388 delayacct_blkio_end();
6390 EXPORT_SYMBOL(io_schedule);
6392 long __sched io_schedule_timeout(long timeout)
6394 struct rq *rq = &__raw_get_cpu_var(runqueues);
6395 long ret;
6397 delayacct_blkio_start();
6398 atomic_inc(&rq->nr_iowait);
6399 ret = schedule_timeout(timeout);
6400 atomic_dec(&rq->nr_iowait);
6401 delayacct_blkio_end();
6402 return ret;
6406 * sys_sched_get_priority_max - return maximum RT priority.
6407 * @policy: scheduling class.
6409 * this syscall returns the maximum rt_priority that can be used
6410 * by a given scheduling class.
6412 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6414 int ret = -EINVAL;
6416 switch (policy) {
6417 case SCHED_FIFO:
6418 case SCHED_RR:
6419 ret = MAX_USER_RT_PRIO-1;
6420 break;
6421 case SCHED_NORMAL:
6422 case SCHED_BATCH:
6423 case SCHED_IDLE:
6424 ret = 0;
6425 break;
6427 return ret;
6431 * sys_sched_get_priority_min - return minimum RT priority.
6432 * @policy: scheduling class.
6434 * this syscall returns the minimum rt_priority that can be used
6435 * by a given scheduling class.
6437 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6439 int ret = -EINVAL;
6441 switch (policy) {
6442 case SCHED_FIFO:
6443 case SCHED_RR:
6444 ret = 1;
6445 break;
6446 case SCHED_NORMAL:
6447 case SCHED_BATCH:
6448 case SCHED_IDLE:
6449 ret = 0;
6451 return ret;
6455 * sys_sched_rr_get_interval - return the default timeslice of a process.
6456 * @pid: pid of the process.
6457 * @interval: userspace pointer to the timeslice value.
6459 * this syscall writes the default timeslice value of a given process
6460 * into the user-space timespec buffer. A value of '0' means infinity.
6462 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6463 struct timespec __user *, interval)
6465 struct task_struct *p;
6466 unsigned int time_slice;
6467 int retval;
6468 struct timespec t;
6470 if (pid < 0)
6471 return -EINVAL;
6473 retval = -ESRCH;
6474 read_lock(&tasklist_lock);
6475 p = find_process_by_pid(pid);
6476 if (!p)
6477 goto out_unlock;
6479 retval = security_task_getscheduler(p);
6480 if (retval)
6481 goto out_unlock;
6484 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6485 * tasks that are on an otherwise idle runqueue:
6487 time_slice = 0;
6488 if (p->policy == SCHED_RR) {
6489 time_slice = DEF_TIMESLICE;
6490 } else if (p->policy != SCHED_FIFO) {
6491 struct sched_entity *se = &p->se;
6492 unsigned long flags;
6493 struct rq *rq;
6495 rq = task_rq_lock(p, &flags);
6496 if (rq->cfs.load.weight)
6497 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6498 task_rq_unlock(rq, &flags);
6500 read_unlock(&tasklist_lock);
6501 jiffies_to_timespec(time_slice, &t);
6502 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6503 return retval;
6505 out_unlock:
6506 read_unlock(&tasklist_lock);
6507 return retval;
6510 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6512 void sched_show_task(struct task_struct *p)
6514 unsigned long free = 0;
6515 unsigned state;
6517 state = p->state ? __ffs(p->state) + 1 : 0;
6518 printk(KERN_INFO "%-13.13s %c", p->comm,
6519 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6520 #if BITS_PER_LONG == 32
6521 if (state == TASK_RUNNING)
6522 printk(KERN_CONT " running ");
6523 else
6524 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6525 #else
6526 if (state == TASK_RUNNING)
6527 printk(KERN_CONT " running task ");
6528 else
6529 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6530 #endif
6531 #ifdef CONFIG_DEBUG_STACK_USAGE
6532 free = stack_not_used(p);
6533 #endif
6534 printk(KERN_CONT "%5lu %5d %6d\n", free,
6535 task_pid_nr(p), task_pid_nr(p->real_parent));
6537 show_stack(p, NULL);
6540 void show_state_filter(unsigned long state_filter)
6542 struct task_struct *g, *p;
6544 #if BITS_PER_LONG == 32
6545 printk(KERN_INFO
6546 " task PC stack pid father\n");
6547 #else
6548 printk(KERN_INFO
6549 " task PC stack pid father\n");
6550 #endif
6551 read_lock(&tasklist_lock);
6552 do_each_thread(g, p) {
6554 * reset the NMI-timeout, listing all files on a slow
6555 * console might take alot of time:
6557 touch_nmi_watchdog();
6558 if (!state_filter || (p->state & state_filter))
6559 sched_show_task(p);
6560 } while_each_thread(g, p);
6562 touch_all_softlockup_watchdogs();
6564 #ifdef CONFIG_SCHED_DEBUG
6565 sysrq_sched_debug_show();
6566 #endif
6567 read_unlock(&tasklist_lock);
6569 * Only show locks if all tasks are dumped:
6571 if (state_filter == -1)
6572 debug_show_all_locks();
6575 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6577 idle->sched_class = &idle_sched_class;
6581 * init_idle - set up an idle thread for a given CPU
6582 * @idle: task in question
6583 * @cpu: cpu the idle task belongs to
6585 * NOTE: this function does not set the idle thread's NEED_RESCHED
6586 * flag, to make booting more robust.
6588 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6590 struct rq *rq = cpu_rq(cpu);
6591 unsigned long flags;
6593 spin_lock_irqsave(&rq->lock, flags);
6595 __sched_fork(idle);
6596 idle->se.exec_start = sched_clock();
6598 idle->prio = idle->normal_prio = MAX_PRIO;
6599 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6600 __set_task_cpu(idle, cpu);
6602 rq->curr = rq->idle = idle;
6603 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6604 idle->oncpu = 1;
6605 #endif
6606 spin_unlock_irqrestore(&rq->lock, flags);
6608 /* Set the preempt count _outside_ the spinlocks! */
6609 #if defined(CONFIG_PREEMPT)
6610 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6611 #else
6612 task_thread_info(idle)->preempt_count = 0;
6613 #endif
6615 * The idle tasks have their own, simple scheduling class:
6617 idle->sched_class = &idle_sched_class;
6618 ftrace_graph_init_task(idle);
6622 * In a system that switches off the HZ timer nohz_cpu_mask
6623 * indicates which cpus entered this state. This is used
6624 * in the rcu update to wait only for active cpus. For system
6625 * which do not switch off the HZ timer nohz_cpu_mask should
6626 * always be CPU_BITS_NONE.
6628 cpumask_var_t nohz_cpu_mask;
6631 * Increase the granularity value when there are more CPUs,
6632 * because with more CPUs the 'effective latency' as visible
6633 * to users decreases. But the relationship is not linear,
6634 * so pick a second-best guess by going with the log2 of the
6635 * number of CPUs.
6637 * This idea comes from the SD scheduler of Con Kolivas:
6639 static inline void sched_init_granularity(void)
6641 unsigned int factor = 1 + ilog2(num_online_cpus());
6642 const unsigned long limit = 200000000;
6644 sysctl_sched_min_granularity *= factor;
6645 if (sysctl_sched_min_granularity > limit)
6646 sysctl_sched_min_granularity = limit;
6648 sysctl_sched_latency *= factor;
6649 if (sysctl_sched_latency > limit)
6650 sysctl_sched_latency = limit;
6652 sysctl_sched_wakeup_granularity *= factor;
6654 sysctl_sched_shares_ratelimit *= factor;
6657 #ifdef CONFIG_SMP
6659 * This is how migration works:
6661 * 1) we queue a struct migration_req structure in the source CPU's
6662 * runqueue and wake up that CPU's migration thread.
6663 * 2) we down() the locked semaphore => thread blocks.
6664 * 3) migration thread wakes up (implicitly it forces the migrated
6665 * thread off the CPU)
6666 * 4) it gets the migration request and checks whether the migrated
6667 * task is still in the wrong runqueue.
6668 * 5) if it's in the wrong runqueue then the migration thread removes
6669 * it and puts it into the right queue.
6670 * 6) migration thread up()s the semaphore.
6671 * 7) we wake up and the migration is done.
6675 * Change a given task's CPU affinity. Migrate the thread to a
6676 * proper CPU and schedule it away if the CPU it's executing on
6677 * is removed from the allowed bitmask.
6679 * NOTE: the caller must have a valid reference to the task, the
6680 * task must not exit() & deallocate itself prematurely. The
6681 * call is not atomic; no spinlocks may be held.
6683 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6685 struct migration_req req;
6686 unsigned long flags;
6687 struct rq *rq;
6688 int ret = 0;
6690 rq = task_rq_lock(p, &flags);
6691 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6692 ret = -EINVAL;
6693 goto out;
6696 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6697 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6698 ret = -EINVAL;
6699 goto out;
6702 if (p->sched_class->set_cpus_allowed)
6703 p->sched_class->set_cpus_allowed(p, new_mask);
6704 else {
6705 cpumask_copy(&p->cpus_allowed, new_mask);
6706 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6709 /* Can the task run on the task's current CPU? If so, we're done */
6710 if (cpumask_test_cpu(task_cpu(p), new_mask))
6711 goto out;
6713 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6714 /* Need help from migration thread: drop lock and wait. */
6715 task_rq_unlock(rq, &flags);
6716 wake_up_process(rq->migration_thread);
6717 wait_for_completion(&req.done);
6718 tlb_migrate_finish(p->mm);
6719 return 0;
6721 out:
6722 task_rq_unlock(rq, &flags);
6724 return ret;
6726 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6729 * Move (not current) task off this cpu, onto dest cpu. We're doing
6730 * this because either it can't run here any more (set_cpus_allowed()
6731 * away from this CPU, or CPU going down), or because we're
6732 * attempting to rebalance this task on exec (sched_exec).
6734 * So we race with normal scheduler movements, but that's OK, as long
6735 * as the task is no longer on this CPU.
6737 * Returns non-zero if task was successfully migrated.
6739 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6741 struct rq *rq_dest, *rq_src;
6742 int ret = 0, on_rq;
6744 if (unlikely(!cpu_active(dest_cpu)))
6745 return ret;
6747 rq_src = cpu_rq(src_cpu);
6748 rq_dest = cpu_rq(dest_cpu);
6750 double_rq_lock(rq_src, rq_dest);
6751 /* Already moved. */
6752 if (task_cpu(p) != src_cpu)
6753 goto done;
6754 /* Affinity changed (again). */
6755 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6756 goto fail;
6758 on_rq = p->se.on_rq;
6759 if (on_rq)
6760 deactivate_task(rq_src, p, 0);
6762 set_task_cpu(p, dest_cpu);
6763 if (on_rq) {
6764 activate_task(rq_dest, p, 0);
6765 check_preempt_curr(rq_dest, p, 0);
6767 done:
6768 ret = 1;
6769 fail:
6770 double_rq_unlock(rq_src, rq_dest);
6771 return ret;
6775 * migration_thread - this is a highprio system thread that performs
6776 * thread migration by bumping thread off CPU then 'pushing' onto
6777 * another runqueue.
6779 static int migration_thread(void *data)
6781 int cpu = (long)data;
6782 struct rq *rq;
6784 rq = cpu_rq(cpu);
6785 BUG_ON(rq->migration_thread != current);
6787 set_current_state(TASK_INTERRUPTIBLE);
6788 while (!kthread_should_stop()) {
6789 struct migration_req *req;
6790 struct list_head *head;
6792 spin_lock_irq(&rq->lock);
6794 if (cpu_is_offline(cpu)) {
6795 spin_unlock_irq(&rq->lock);
6796 goto wait_to_die;
6799 if (rq->active_balance) {
6800 active_load_balance(rq, cpu);
6801 rq->active_balance = 0;
6804 head = &rq->migration_queue;
6806 if (list_empty(head)) {
6807 spin_unlock_irq(&rq->lock);
6808 schedule();
6809 set_current_state(TASK_INTERRUPTIBLE);
6810 continue;
6812 req = list_entry(head->next, struct migration_req, list);
6813 list_del_init(head->next);
6815 spin_unlock(&rq->lock);
6816 __migrate_task(req->task, cpu, req->dest_cpu);
6817 local_irq_enable();
6819 complete(&req->done);
6821 __set_current_state(TASK_RUNNING);
6822 return 0;
6824 wait_to_die:
6825 /* Wait for kthread_stop */
6826 set_current_state(TASK_INTERRUPTIBLE);
6827 while (!kthread_should_stop()) {
6828 schedule();
6829 set_current_state(TASK_INTERRUPTIBLE);
6831 __set_current_state(TASK_RUNNING);
6832 return 0;
6835 #ifdef CONFIG_HOTPLUG_CPU
6837 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6839 int ret;
6841 local_irq_disable();
6842 ret = __migrate_task(p, src_cpu, dest_cpu);
6843 local_irq_enable();
6844 return ret;
6848 * Figure out where task on dead CPU should go, use force if necessary.
6850 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6852 int dest_cpu;
6853 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6855 again:
6856 /* Look for allowed, online CPU in same node. */
6857 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6858 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6859 goto move;
6861 /* Any allowed, online CPU? */
6862 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6863 if (dest_cpu < nr_cpu_ids)
6864 goto move;
6866 /* No more Mr. Nice Guy. */
6867 if (dest_cpu >= nr_cpu_ids) {
6868 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6869 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6872 * Don't tell them about moving exiting tasks or
6873 * kernel threads (both mm NULL), since they never
6874 * leave kernel.
6876 if (p->mm && printk_ratelimit()) {
6877 printk(KERN_INFO "process %d (%s) no "
6878 "longer affine to cpu%d\n",
6879 task_pid_nr(p), p->comm, dead_cpu);
6883 move:
6884 /* It can have affinity changed while we were choosing. */
6885 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6886 goto again;
6890 * While a dead CPU has no uninterruptible tasks queued at this point,
6891 * it might still have a nonzero ->nr_uninterruptible counter, because
6892 * for performance reasons the counter is not stricly tracking tasks to
6893 * their home CPUs. So we just add the counter to another CPU's counter,
6894 * to keep the global sum constant after CPU-down:
6896 static void migrate_nr_uninterruptible(struct rq *rq_src)
6898 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6899 unsigned long flags;
6901 local_irq_save(flags);
6902 double_rq_lock(rq_src, rq_dest);
6903 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6904 rq_src->nr_uninterruptible = 0;
6905 double_rq_unlock(rq_src, rq_dest);
6906 local_irq_restore(flags);
6909 /* Run through task list and migrate tasks from the dead cpu. */
6910 static void migrate_live_tasks(int src_cpu)
6912 struct task_struct *p, *t;
6914 read_lock(&tasklist_lock);
6916 do_each_thread(t, p) {
6917 if (p == current)
6918 continue;
6920 if (task_cpu(p) == src_cpu)
6921 move_task_off_dead_cpu(src_cpu, p);
6922 } while_each_thread(t, p);
6924 read_unlock(&tasklist_lock);
6928 * Schedules idle task to be the next runnable task on current CPU.
6929 * It does so by boosting its priority to highest possible.
6930 * Used by CPU offline code.
6932 void sched_idle_next(void)
6934 int this_cpu = smp_processor_id();
6935 struct rq *rq = cpu_rq(this_cpu);
6936 struct task_struct *p = rq->idle;
6937 unsigned long flags;
6939 /* cpu has to be offline */
6940 BUG_ON(cpu_online(this_cpu));
6943 * Strictly not necessary since rest of the CPUs are stopped by now
6944 * and interrupts disabled on the current cpu.
6946 spin_lock_irqsave(&rq->lock, flags);
6948 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6950 update_rq_clock(rq);
6951 activate_task(rq, p, 0);
6953 spin_unlock_irqrestore(&rq->lock, flags);
6957 * Ensures that the idle task is using init_mm right before its cpu goes
6958 * offline.
6960 void idle_task_exit(void)
6962 struct mm_struct *mm = current->active_mm;
6964 BUG_ON(cpu_online(smp_processor_id()));
6966 if (mm != &init_mm)
6967 switch_mm(mm, &init_mm, current);
6968 mmdrop(mm);
6971 /* called under rq->lock with disabled interrupts */
6972 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6974 struct rq *rq = cpu_rq(dead_cpu);
6976 /* Must be exiting, otherwise would be on tasklist. */
6977 BUG_ON(!p->exit_state);
6979 /* Cannot have done final schedule yet: would have vanished. */
6980 BUG_ON(p->state == TASK_DEAD);
6982 get_task_struct(p);
6985 * Drop lock around migration; if someone else moves it,
6986 * that's OK. No task can be added to this CPU, so iteration is
6987 * fine.
6989 spin_unlock_irq(&rq->lock);
6990 move_task_off_dead_cpu(dead_cpu, p);
6991 spin_lock_irq(&rq->lock);
6993 put_task_struct(p);
6996 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6997 static void migrate_dead_tasks(unsigned int dead_cpu)
6999 struct rq *rq = cpu_rq(dead_cpu);
7000 struct task_struct *next;
7002 for ( ; ; ) {
7003 if (!rq->nr_running)
7004 break;
7005 update_rq_clock(rq);
7006 next = pick_next_task(rq);
7007 if (!next)
7008 break;
7009 next->sched_class->put_prev_task(rq, next);
7010 migrate_dead(dead_cpu, next);
7014 #endif /* CONFIG_HOTPLUG_CPU */
7016 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7018 static struct ctl_table sd_ctl_dir[] = {
7020 .procname = "sched_domain",
7021 .mode = 0555,
7023 {0, },
7026 static struct ctl_table sd_ctl_root[] = {
7028 .ctl_name = CTL_KERN,
7029 .procname = "kernel",
7030 .mode = 0555,
7031 .child = sd_ctl_dir,
7033 {0, },
7036 static struct ctl_table *sd_alloc_ctl_entry(int n)
7038 struct ctl_table *entry =
7039 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7041 return entry;
7044 static void sd_free_ctl_entry(struct ctl_table **tablep)
7046 struct ctl_table *entry;
7049 * In the intermediate directories, both the child directory and
7050 * procname are dynamically allocated and could fail but the mode
7051 * will always be set. In the lowest directory the names are
7052 * static strings and all have proc handlers.
7054 for (entry = *tablep; entry->mode; entry++) {
7055 if (entry->child)
7056 sd_free_ctl_entry(&entry->child);
7057 if (entry->proc_handler == NULL)
7058 kfree(entry->procname);
7061 kfree(*tablep);
7062 *tablep = NULL;
7065 static void
7066 set_table_entry(struct ctl_table *entry,
7067 const char *procname, void *data, int maxlen,
7068 mode_t mode, proc_handler *proc_handler)
7070 entry->procname = procname;
7071 entry->data = data;
7072 entry->maxlen = maxlen;
7073 entry->mode = mode;
7074 entry->proc_handler = proc_handler;
7077 static struct ctl_table *
7078 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7080 struct ctl_table *table = sd_alloc_ctl_entry(13);
7082 if (table == NULL)
7083 return NULL;
7085 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7086 sizeof(long), 0644, proc_doulongvec_minmax);
7087 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7088 sizeof(long), 0644, proc_doulongvec_minmax);
7089 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7090 sizeof(int), 0644, proc_dointvec_minmax);
7091 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7092 sizeof(int), 0644, proc_dointvec_minmax);
7093 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7094 sizeof(int), 0644, proc_dointvec_minmax);
7095 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7096 sizeof(int), 0644, proc_dointvec_minmax);
7097 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7098 sizeof(int), 0644, proc_dointvec_minmax);
7099 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7100 sizeof(int), 0644, proc_dointvec_minmax);
7101 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7102 sizeof(int), 0644, proc_dointvec_minmax);
7103 set_table_entry(&table[9], "cache_nice_tries",
7104 &sd->cache_nice_tries,
7105 sizeof(int), 0644, proc_dointvec_minmax);
7106 set_table_entry(&table[10], "flags", &sd->flags,
7107 sizeof(int), 0644, proc_dointvec_minmax);
7108 set_table_entry(&table[11], "name", sd->name,
7109 CORENAME_MAX_SIZE, 0444, proc_dostring);
7110 /* &table[12] is terminator */
7112 return table;
7115 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7117 struct ctl_table *entry, *table;
7118 struct sched_domain *sd;
7119 int domain_num = 0, i;
7120 char buf[32];
7122 for_each_domain(cpu, sd)
7123 domain_num++;
7124 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7125 if (table == NULL)
7126 return NULL;
7128 i = 0;
7129 for_each_domain(cpu, sd) {
7130 snprintf(buf, 32, "domain%d", i);
7131 entry->procname = kstrdup(buf, GFP_KERNEL);
7132 entry->mode = 0555;
7133 entry->child = sd_alloc_ctl_domain_table(sd);
7134 entry++;
7135 i++;
7137 return table;
7140 static struct ctl_table_header *sd_sysctl_header;
7141 static void register_sched_domain_sysctl(void)
7143 int i, cpu_num = num_online_cpus();
7144 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7145 char buf[32];
7147 WARN_ON(sd_ctl_dir[0].child);
7148 sd_ctl_dir[0].child = entry;
7150 if (entry == NULL)
7151 return;
7153 for_each_online_cpu(i) {
7154 snprintf(buf, 32, "cpu%d", i);
7155 entry->procname = kstrdup(buf, GFP_KERNEL);
7156 entry->mode = 0555;
7157 entry->child = sd_alloc_ctl_cpu_table(i);
7158 entry++;
7161 WARN_ON(sd_sysctl_header);
7162 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7165 /* may be called multiple times per register */
7166 static void unregister_sched_domain_sysctl(void)
7168 if (sd_sysctl_header)
7169 unregister_sysctl_table(sd_sysctl_header);
7170 sd_sysctl_header = NULL;
7171 if (sd_ctl_dir[0].child)
7172 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7174 #else
7175 static void register_sched_domain_sysctl(void)
7178 static void unregister_sched_domain_sysctl(void)
7181 #endif
7183 static void set_rq_online(struct rq *rq)
7185 if (!rq->online) {
7186 const struct sched_class *class;
7188 cpumask_set_cpu(rq->cpu, rq->rd->online);
7189 rq->online = 1;
7191 for_each_class(class) {
7192 if (class->rq_online)
7193 class->rq_online(rq);
7198 static void set_rq_offline(struct rq *rq)
7200 if (rq->online) {
7201 const struct sched_class *class;
7203 for_each_class(class) {
7204 if (class->rq_offline)
7205 class->rq_offline(rq);
7208 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7209 rq->online = 0;
7214 * migration_call - callback that gets triggered when a CPU is added.
7215 * Here we can start up the necessary migration thread for the new CPU.
7217 static int __cpuinit
7218 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7220 struct task_struct *p;
7221 int cpu = (long)hcpu;
7222 unsigned long flags;
7223 struct rq *rq;
7225 switch (action) {
7227 case CPU_UP_PREPARE:
7228 case CPU_UP_PREPARE_FROZEN:
7229 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7230 if (IS_ERR(p))
7231 return NOTIFY_BAD;
7232 kthread_bind(p, cpu);
7233 /* Must be high prio: stop_machine expects to yield to it. */
7234 rq = task_rq_lock(p, &flags);
7235 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7236 task_rq_unlock(rq, &flags);
7237 cpu_rq(cpu)->migration_thread = p;
7238 break;
7240 case CPU_ONLINE:
7241 case CPU_ONLINE_FROZEN:
7242 /* Strictly unnecessary, as first user will wake it. */
7243 wake_up_process(cpu_rq(cpu)->migration_thread);
7245 /* Update our root-domain */
7246 rq = cpu_rq(cpu);
7247 spin_lock_irqsave(&rq->lock, flags);
7248 if (rq->rd) {
7249 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7251 set_rq_online(rq);
7253 spin_unlock_irqrestore(&rq->lock, flags);
7254 break;
7256 #ifdef CONFIG_HOTPLUG_CPU
7257 case CPU_UP_CANCELED:
7258 case CPU_UP_CANCELED_FROZEN:
7259 if (!cpu_rq(cpu)->migration_thread)
7260 break;
7261 /* Unbind it from offline cpu so it can run. Fall thru. */
7262 kthread_bind(cpu_rq(cpu)->migration_thread,
7263 cpumask_any(cpu_online_mask));
7264 kthread_stop(cpu_rq(cpu)->migration_thread);
7265 cpu_rq(cpu)->migration_thread = NULL;
7266 break;
7268 case CPU_DEAD:
7269 case CPU_DEAD_FROZEN:
7270 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7271 migrate_live_tasks(cpu);
7272 rq = cpu_rq(cpu);
7273 kthread_stop(rq->migration_thread);
7274 rq->migration_thread = NULL;
7275 /* Idle task back to normal (off runqueue, low prio) */
7276 spin_lock_irq(&rq->lock);
7277 update_rq_clock(rq);
7278 deactivate_task(rq, rq->idle, 0);
7279 rq->idle->static_prio = MAX_PRIO;
7280 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7281 rq->idle->sched_class = &idle_sched_class;
7282 migrate_dead_tasks(cpu);
7283 spin_unlock_irq(&rq->lock);
7284 cpuset_unlock();
7285 migrate_nr_uninterruptible(rq);
7286 BUG_ON(rq->nr_running != 0);
7289 * No need to migrate the tasks: it was best-effort if
7290 * they didn't take sched_hotcpu_mutex. Just wake up
7291 * the requestors.
7293 spin_lock_irq(&rq->lock);
7294 while (!list_empty(&rq->migration_queue)) {
7295 struct migration_req *req;
7297 req = list_entry(rq->migration_queue.next,
7298 struct migration_req, list);
7299 list_del_init(&req->list);
7300 spin_unlock_irq(&rq->lock);
7301 complete(&req->done);
7302 spin_lock_irq(&rq->lock);
7304 spin_unlock_irq(&rq->lock);
7305 break;
7307 case CPU_DYING:
7308 case CPU_DYING_FROZEN:
7309 /* Update our root-domain */
7310 rq = cpu_rq(cpu);
7311 spin_lock_irqsave(&rq->lock, flags);
7312 if (rq->rd) {
7313 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7314 set_rq_offline(rq);
7316 spin_unlock_irqrestore(&rq->lock, flags);
7317 break;
7318 #endif
7320 return NOTIFY_OK;
7324 * Register at high priority so that task migration (migrate_all_tasks)
7325 * happens before everything else. This has to be lower priority than
7326 * the notifier in the perf_counter subsystem, though.
7328 static struct notifier_block __cpuinitdata migration_notifier = {
7329 .notifier_call = migration_call,
7330 .priority = 10
7333 static int __init migration_init(void)
7335 void *cpu = (void *)(long)smp_processor_id();
7336 int err;
7338 /* Start one for the boot CPU: */
7339 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7340 BUG_ON(err == NOTIFY_BAD);
7341 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7342 register_cpu_notifier(&migration_notifier);
7344 return err;
7346 early_initcall(migration_init);
7347 #endif
7349 #ifdef CONFIG_SMP
7351 #ifdef CONFIG_SCHED_DEBUG
7353 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7354 struct cpumask *groupmask)
7356 struct sched_group *group = sd->groups;
7357 char str[256];
7359 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7360 cpumask_clear(groupmask);
7362 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7364 if (!(sd->flags & SD_LOAD_BALANCE)) {
7365 printk("does not load-balance\n");
7366 if (sd->parent)
7367 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7368 " has parent");
7369 return -1;
7372 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7374 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7375 printk(KERN_ERR "ERROR: domain->span does not contain "
7376 "CPU%d\n", cpu);
7378 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7379 printk(KERN_ERR "ERROR: domain->groups does not contain"
7380 " CPU%d\n", cpu);
7383 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7384 do {
7385 if (!group) {
7386 printk("\n");
7387 printk(KERN_ERR "ERROR: group is NULL\n");
7388 break;
7391 if (!group->__cpu_power) {
7392 printk(KERN_CONT "\n");
7393 printk(KERN_ERR "ERROR: domain->cpu_power not "
7394 "set\n");
7395 break;
7398 if (!cpumask_weight(sched_group_cpus(group))) {
7399 printk(KERN_CONT "\n");
7400 printk(KERN_ERR "ERROR: empty group\n");
7401 break;
7404 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7405 printk(KERN_CONT "\n");
7406 printk(KERN_ERR "ERROR: repeated CPUs\n");
7407 break;
7410 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7412 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7414 printk(KERN_CONT " %s", str);
7415 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7416 printk(KERN_CONT " (__cpu_power = %d)",
7417 group->__cpu_power);
7420 group = group->next;
7421 } while (group != sd->groups);
7422 printk(KERN_CONT "\n");
7424 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7425 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7427 if (sd->parent &&
7428 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7429 printk(KERN_ERR "ERROR: parent span is not a superset "
7430 "of domain->span\n");
7431 return 0;
7434 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7436 cpumask_var_t groupmask;
7437 int level = 0;
7439 if (!sd) {
7440 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7441 return;
7444 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7446 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7447 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7448 return;
7451 for (;;) {
7452 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7453 break;
7454 level++;
7455 sd = sd->parent;
7456 if (!sd)
7457 break;
7459 free_cpumask_var(groupmask);
7461 #else /* !CONFIG_SCHED_DEBUG */
7462 # define sched_domain_debug(sd, cpu) do { } while (0)
7463 #endif /* CONFIG_SCHED_DEBUG */
7465 static int sd_degenerate(struct sched_domain *sd)
7467 if (cpumask_weight(sched_domain_span(sd)) == 1)
7468 return 1;
7470 /* Following flags need at least 2 groups */
7471 if (sd->flags & (SD_LOAD_BALANCE |
7472 SD_BALANCE_NEWIDLE |
7473 SD_BALANCE_FORK |
7474 SD_BALANCE_EXEC |
7475 SD_SHARE_CPUPOWER |
7476 SD_SHARE_PKG_RESOURCES)) {
7477 if (sd->groups != sd->groups->next)
7478 return 0;
7481 /* Following flags don't use groups */
7482 if (sd->flags & (SD_WAKE_IDLE |
7483 SD_WAKE_AFFINE |
7484 SD_WAKE_BALANCE))
7485 return 0;
7487 return 1;
7490 static int
7491 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7493 unsigned long cflags = sd->flags, pflags = parent->flags;
7495 if (sd_degenerate(parent))
7496 return 1;
7498 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7499 return 0;
7501 /* Does parent contain flags not in child? */
7502 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7503 if (cflags & SD_WAKE_AFFINE)
7504 pflags &= ~SD_WAKE_BALANCE;
7505 /* Flags needing groups don't count if only 1 group in parent */
7506 if (parent->groups == parent->groups->next) {
7507 pflags &= ~(SD_LOAD_BALANCE |
7508 SD_BALANCE_NEWIDLE |
7509 SD_BALANCE_FORK |
7510 SD_BALANCE_EXEC |
7511 SD_SHARE_CPUPOWER |
7512 SD_SHARE_PKG_RESOURCES);
7513 if (nr_node_ids == 1)
7514 pflags &= ~SD_SERIALIZE;
7516 if (~cflags & pflags)
7517 return 0;
7519 return 1;
7522 static void free_rootdomain(struct root_domain *rd)
7524 cpupri_cleanup(&rd->cpupri);
7526 free_cpumask_var(rd->rto_mask);
7527 free_cpumask_var(rd->online);
7528 free_cpumask_var(rd->span);
7529 kfree(rd);
7532 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7534 struct root_domain *old_rd = NULL;
7535 unsigned long flags;
7537 spin_lock_irqsave(&rq->lock, flags);
7539 if (rq->rd) {
7540 old_rd = rq->rd;
7542 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7543 set_rq_offline(rq);
7545 cpumask_clear_cpu(rq->cpu, old_rd->span);
7548 * If we dont want to free the old_rt yet then
7549 * set old_rd to NULL to skip the freeing later
7550 * in this function:
7552 if (!atomic_dec_and_test(&old_rd->refcount))
7553 old_rd = NULL;
7556 atomic_inc(&rd->refcount);
7557 rq->rd = rd;
7559 cpumask_set_cpu(rq->cpu, rd->span);
7560 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7561 set_rq_online(rq);
7563 spin_unlock_irqrestore(&rq->lock, flags);
7565 if (old_rd)
7566 free_rootdomain(old_rd);
7569 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7571 memset(rd, 0, sizeof(*rd));
7573 if (bootmem) {
7574 alloc_bootmem_cpumask_var(&def_root_domain.span);
7575 alloc_bootmem_cpumask_var(&def_root_domain.online);
7576 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7577 cpupri_init(&rd->cpupri, true);
7578 return 0;
7581 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7582 goto out;
7583 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7584 goto free_span;
7585 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7586 goto free_online;
7588 if (cpupri_init(&rd->cpupri, false) != 0)
7589 goto free_rto_mask;
7590 return 0;
7592 free_rto_mask:
7593 free_cpumask_var(rd->rto_mask);
7594 free_online:
7595 free_cpumask_var(rd->online);
7596 free_span:
7597 free_cpumask_var(rd->span);
7598 out:
7599 return -ENOMEM;
7602 static void init_defrootdomain(void)
7604 init_rootdomain(&def_root_domain, true);
7606 atomic_set(&def_root_domain.refcount, 1);
7609 static struct root_domain *alloc_rootdomain(void)
7611 struct root_domain *rd;
7613 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7614 if (!rd)
7615 return NULL;
7617 if (init_rootdomain(rd, false) != 0) {
7618 kfree(rd);
7619 return NULL;
7622 return rd;
7626 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7627 * hold the hotplug lock.
7629 static void
7630 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7632 struct rq *rq = cpu_rq(cpu);
7633 struct sched_domain *tmp;
7635 /* Remove the sched domains which do not contribute to scheduling. */
7636 for (tmp = sd; tmp; ) {
7637 struct sched_domain *parent = tmp->parent;
7638 if (!parent)
7639 break;
7641 if (sd_parent_degenerate(tmp, parent)) {
7642 tmp->parent = parent->parent;
7643 if (parent->parent)
7644 parent->parent->child = tmp;
7645 } else
7646 tmp = tmp->parent;
7649 if (sd && sd_degenerate(sd)) {
7650 sd = sd->parent;
7651 if (sd)
7652 sd->child = NULL;
7655 sched_domain_debug(sd, cpu);
7657 rq_attach_root(rq, rd);
7658 rcu_assign_pointer(rq->sd, sd);
7661 /* cpus with isolated domains */
7662 static cpumask_var_t cpu_isolated_map;
7664 /* Setup the mask of cpus configured for isolated domains */
7665 static int __init isolated_cpu_setup(char *str)
7667 cpulist_parse(str, cpu_isolated_map);
7668 return 1;
7671 __setup("isolcpus=", isolated_cpu_setup);
7674 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7675 * to a function which identifies what group(along with sched group) a CPU
7676 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7677 * (due to the fact that we keep track of groups covered with a struct cpumask).
7679 * init_sched_build_groups will build a circular linked list of the groups
7680 * covered by the given span, and will set each group's ->cpumask correctly,
7681 * and ->cpu_power to 0.
7683 static void
7684 init_sched_build_groups(const struct cpumask *span,
7685 const struct cpumask *cpu_map,
7686 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7687 struct sched_group **sg,
7688 struct cpumask *tmpmask),
7689 struct cpumask *covered, struct cpumask *tmpmask)
7691 struct sched_group *first = NULL, *last = NULL;
7692 int i;
7694 cpumask_clear(covered);
7696 for_each_cpu(i, span) {
7697 struct sched_group *sg;
7698 int group = group_fn(i, cpu_map, &sg, tmpmask);
7699 int j;
7701 if (cpumask_test_cpu(i, covered))
7702 continue;
7704 cpumask_clear(sched_group_cpus(sg));
7705 sg->__cpu_power = 0;
7707 for_each_cpu(j, span) {
7708 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7709 continue;
7711 cpumask_set_cpu(j, covered);
7712 cpumask_set_cpu(j, sched_group_cpus(sg));
7714 if (!first)
7715 first = sg;
7716 if (last)
7717 last->next = sg;
7718 last = sg;
7720 last->next = first;
7723 #define SD_NODES_PER_DOMAIN 16
7725 #ifdef CONFIG_NUMA
7728 * find_next_best_node - find the next node to include in a sched_domain
7729 * @node: node whose sched_domain we're building
7730 * @used_nodes: nodes already in the sched_domain
7732 * Find the next node to include in a given scheduling domain. Simply
7733 * finds the closest node not already in the @used_nodes map.
7735 * Should use nodemask_t.
7737 static int find_next_best_node(int node, nodemask_t *used_nodes)
7739 int i, n, val, min_val, best_node = 0;
7741 min_val = INT_MAX;
7743 for (i = 0; i < nr_node_ids; i++) {
7744 /* Start at @node */
7745 n = (node + i) % nr_node_ids;
7747 if (!nr_cpus_node(n))
7748 continue;
7750 /* Skip already used nodes */
7751 if (node_isset(n, *used_nodes))
7752 continue;
7754 /* Simple min distance search */
7755 val = node_distance(node, n);
7757 if (val < min_val) {
7758 min_val = val;
7759 best_node = n;
7763 node_set(best_node, *used_nodes);
7764 return best_node;
7768 * sched_domain_node_span - get a cpumask for a node's sched_domain
7769 * @node: node whose cpumask we're constructing
7770 * @span: resulting cpumask
7772 * Given a node, construct a good cpumask for its sched_domain to span. It
7773 * should be one that prevents unnecessary balancing, but also spreads tasks
7774 * out optimally.
7776 static void sched_domain_node_span(int node, struct cpumask *span)
7778 nodemask_t used_nodes;
7779 int i;
7781 cpumask_clear(span);
7782 nodes_clear(used_nodes);
7784 cpumask_or(span, span, cpumask_of_node(node));
7785 node_set(node, used_nodes);
7787 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7788 int next_node = find_next_best_node(node, &used_nodes);
7790 cpumask_or(span, span, cpumask_of_node(next_node));
7793 #endif /* CONFIG_NUMA */
7795 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7798 * The cpus mask in sched_group and sched_domain hangs off the end.
7799 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7800 * for nr_cpu_ids < CONFIG_NR_CPUS.
7802 struct static_sched_group {
7803 struct sched_group sg;
7804 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7807 struct static_sched_domain {
7808 struct sched_domain sd;
7809 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7813 * SMT sched-domains:
7815 #ifdef CONFIG_SCHED_SMT
7816 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7817 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7819 static int
7820 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7821 struct sched_group **sg, struct cpumask *unused)
7823 if (sg)
7824 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7825 return cpu;
7827 #endif /* CONFIG_SCHED_SMT */
7830 * multi-core sched-domains:
7832 #ifdef CONFIG_SCHED_MC
7833 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7834 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7835 #endif /* CONFIG_SCHED_MC */
7837 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7838 static int
7839 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7840 struct sched_group **sg, struct cpumask *mask)
7842 int group;
7844 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7845 group = cpumask_first(mask);
7846 if (sg)
7847 *sg = &per_cpu(sched_group_core, group).sg;
7848 return group;
7850 #elif defined(CONFIG_SCHED_MC)
7851 static int
7852 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7853 struct sched_group **sg, struct cpumask *unused)
7855 if (sg)
7856 *sg = &per_cpu(sched_group_core, cpu).sg;
7857 return cpu;
7859 #endif
7861 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7862 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7864 static int
7865 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7866 struct sched_group **sg, struct cpumask *mask)
7868 int group;
7869 #ifdef CONFIG_SCHED_MC
7870 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7871 group = cpumask_first(mask);
7872 #elif defined(CONFIG_SCHED_SMT)
7873 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7874 group = cpumask_first(mask);
7875 #else
7876 group = cpu;
7877 #endif
7878 if (sg)
7879 *sg = &per_cpu(sched_group_phys, group).sg;
7880 return group;
7883 #ifdef CONFIG_NUMA
7885 * The init_sched_build_groups can't handle what we want to do with node
7886 * groups, so roll our own. Now each node has its own list of groups which
7887 * gets dynamically allocated.
7889 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7890 static struct sched_group ***sched_group_nodes_bycpu;
7892 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7893 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7895 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7896 struct sched_group **sg,
7897 struct cpumask *nodemask)
7899 int group;
7901 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7902 group = cpumask_first(nodemask);
7904 if (sg)
7905 *sg = &per_cpu(sched_group_allnodes, group).sg;
7906 return group;
7909 static void init_numa_sched_groups_power(struct sched_group *group_head)
7911 struct sched_group *sg = group_head;
7912 int j;
7914 if (!sg)
7915 return;
7916 do {
7917 for_each_cpu(j, sched_group_cpus(sg)) {
7918 struct sched_domain *sd;
7920 sd = &per_cpu(phys_domains, j).sd;
7921 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7923 * Only add "power" once for each
7924 * physical package.
7926 continue;
7929 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7931 sg = sg->next;
7932 } while (sg != group_head);
7934 #endif /* CONFIG_NUMA */
7936 #ifdef CONFIG_NUMA
7937 /* Free memory allocated for various sched_group structures */
7938 static void free_sched_groups(const struct cpumask *cpu_map,
7939 struct cpumask *nodemask)
7941 int cpu, i;
7943 for_each_cpu(cpu, cpu_map) {
7944 struct sched_group **sched_group_nodes
7945 = sched_group_nodes_bycpu[cpu];
7947 if (!sched_group_nodes)
7948 continue;
7950 for (i = 0; i < nr_node_ids; i++) {
7951 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7953 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7954 if (cpumask_empty(nodemask))
7955 continue;
7957 if (sg == NULL)
7958 continue;
7959 sg = sg->next;
7960 next_sg:
7961 oldsg = sg;
7962 sg = sg->next;
7963 kfree(oldsg);
7964 if (oldsg != sched_group_nodes[i])
7965 goto next_sg;
7967 kfree(sched_group_nodes);
7968 sched_group_nodes_bycpu[cpu] = NULL;
7971 #else /* !CONFIG_NUMA */
7972 static void free_sched_groups(const struct cpumask *cpu_map,
7973 struct cpumask *nodemask)
7976 #endif /* CONFIG_NUMA */
7979 * Initialize sched groups cpu_power.
7981 * cpu_power indicates the capacity of sched group, which is used while
7982 * distributing the load between different sched groups in a sched domain.
7983 * Typically cpu_power for all the groups in a sched domain will be same unless
7984 * there are asymmetries in the topology. If there are asymmetries, group
7985 * having more cpu_power will pickup more load compared to the group having
7986 * less cpu_power.
7988 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7989 * the maximum number of tasks a group can handle in the presence of other idle
7990 * or lightly loaded groups in the same sched domain.
7992 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7994 struct sched_domain *child;
7995 struct sched_group *group;
7997 WARN_ON(!sd || !sd->groups);
7999 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
8000 return;
8002 child = sd->child;
8004 sd->groups->__cpu_power = 0;
8007 * For perf policy, if the groups in child domain share resources
8008 * (for example cores sharing some portions of the cache hierarchy
8009 * or SMT), then set this domain groups cpu_power such that each group
8010 * can handle only one task, when there are other idle groups in the
8011 * same sched domain.
8013 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8014 (child->flags &
8015 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8016 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8017 return;
8021 * add cpu_power of each child group to this groups cpu_power
8023 group = child->groups;
8024 do {
8025 sg_inc_cpu_power(sd->groups, group->__cpu_power);
8026 group = group->next;
8027 } while (group != child->groups);
8031 * Initializers for schedule domains
8032 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8035 #ifdef CONFIG_SCHED_DEBUG
8036 # define SD_INIT_NAME(sd, type) sd->name = #type
8037 #else
8038 # define SD_INIT_NAME(sd, type) do { } while (0)
8039 #endif
8041 #define SD_INIT(sd, type) sd_init_##type(sd)
8043 #define SD_INIT_FUNC(type) \
8044 static noinline void sd_init_##type(struct sched_domain *sd) \
8046 memset(sd, 0, sizeof(*sd)); \
8047 *sd = SD_##type##_INIT; \
8048 sd->level = SD_LV_##type; \
8049 SD_INIT_NAME(sd, type); \
8052 SD_INIT_FUNC(CPU)
8053 #ifdef CONFIG_NUMA
8054 SD_INIT_FUNC(ALLNODES)
8055 SD_INIT_FUNC(NODE)
8056 #endif
8057 #ifdef CONFIG_SCHED_SMT
8058 SD_INIT_FUNC(SIBLING)
8059 #endif
8060 #ifdef CONFIG_SCHED_MC
8061 SD_INIT_FUNC(MC)
8062 #endif
8064 static int default_relax_domain_level = -1;
8066 static int __init setup_relax_domain_level(char *str)
8068 unsigned long val;
8070 val = simple_strtoul(str, NULL, 0);
8071 if (val < SD_LV_MAX)
8072 default_relax_domain_level = val;
8074 return 1;
8076 __setup("relax_domain_level=", setup_relax_domain_level);
8078 static void set_domain_attribute(struct sched_domain *sd,
8079 struct sched_domain_attr *attr)
8081 int request;
8083 if (!attr || attr->relax_domain_level < 0) {
8084 if (default_relax_domain_level < 0)
8085 return;
8086 else
8087 request = default_relax_domain_level;
8088 } else
8089 request = attr->relax_domain_level;
8090 if (request < sd->level) {
8091 /* turn off idle balance on this domain */
8092 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8093 } else {
8094 /* turn on idle balance on this domain */
8095 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8100 * Build sched domains for a given set of cpus and attach the sched domains
8101 * to the individual cpus
8103 static int __build_sched_domains(const struct cpumask *cpu_map,
8104 struct sched_domain_attr *attr)
8106 int i, err = -ENOMEM;
8107 struct root_domain *rd;
8108 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8109 tmpmask;
8110 #ifdef CONFIG_NUMA
8111 cpumask_var_t domainspan, covered, notcovered;
8112 struct sched_group **sched_group_nodes = NULL;
8113 int sd_allnodes = 0;
8115 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8116 goto out;
8117 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8118 goto free_domainspan;
8119 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8120 goto free_covered;
8121 #endif
8123 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8124 goto free_notcovered;
8125 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8126 goto free_nodemask;
8127 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8128 goto free_this_sibling_map;
8129 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8130 goto free_this_core_map;
8131 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8132 goto free_send_covered;
8134 #ifdef CONFIG_NUMA
8136 * Allocate the per-node list of sched groups
8138 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8139 GFP_KERNEL);
8140 if (!sched_group_nodes) {
8141 printk(KERN_WARNING "Can not alloc sched group node list\n");
8142 goto free_tmpmask;
8144 #endif
8146 rd = alloc_rootdomain();
8147 if (!rd) {
8148 printk(KERN_WARNING "Cannot alloc root domain\n");
8149 goto free_sched_groups;
8152 #ifdef CONFIG_NUMA
8153 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8154 #endif
8157 * Set up domains for cpus specified by the cpu_map.
8159 for_each_cpu(i, cpu_map) {
8160 struct sched_domain *sd = NULL, *p;
8162 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8164 #ifdef CONFIG_NUMA
8165 if (cpumask_weight(cpu_map) >
8166 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8167 sd = &per_cpu(allnodes_domains, i).sd;
8168 SD_INIT(sd, ALLNODES);
8169 set_domain_attribute(sd, attr);
8170 cpumask_copy(sched_domain_span(sd), cpu_map);
8171 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8172 p = sd;
8173 sd_allnodes = 1;
8174 } else
8175 p = NULL;
8177 sd = &per_cpu(node_domains, i).sd;
8178 SD_INIT(sd, NODE);
8179 set_domain_attribute(sd, attr);
8180 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8181 sd->parent = p;
8182 if (p)
8183 p->child = sd;
8184 cpumask_and(sched_domain_span(sd),
8185 sched_domain_span(sd), cpu_map);
8186 #endif
8188 p = sd;
8189 sd = &per_cpu(phys_domains, i).sd;
8190 SD_INIT(sd, CPU);
8191 set_domain_attribute(sd, attr);
8192 cpumask_copy(sched_domain_span(sd), nodemask);
8193 sd->parent = p;
8194 if (p)
8195 p->child = sd;
8196 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8198 #ifdef CONFIG_SCHED_MC
8199 p = sd;
8200 sd = &per_cpu(core_domains, i).sd;
8201 SD_INIT(sd, MC);
8202 set_domain_attribute(sd, attr);
8203 cpumask_and(sched_domain_span(sd), cpu_map,
8204 cpu_coregroup_mask(i));
8205 sd->parent = p;
8206 p->child = sd;
8207 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8208 #endif
8210 #ifdef CONFIG_SCHED_SMT
8211 p = sd;
8212 sd = &per_cpu(cpu_domains, i).sd;
8213 SD_INIT(sd, SIBLING);
8214 set_domain_attribute(sd, attr);
8215 cpumask_and(sched_domain_span(sd),
8216 topology_thread_cpumask(i), cpu_map);
8217 sd->parent = p;
8218 p->child = sd;
8219 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8220 #endif
8223 #ifdef CONFIG_SCHED_SMT
8224 /* Set up CPU (sibling) groups */
8225 for_each_cpu(i, cpu_map) {
8226 cpumask_and(this_sibling_map,
8227 topology_thread_cpumask(i), cpu_map);
8228 if (i != cpumask_first(this_sibling_map))
8229 continue;
8231 init_sched_build_groups(this_sibling_map, cpu_map,
8232 &cpu_to_cpu_group,
8233 send_covered, tmpmask);
8235 #endif
8237 #ifdef CONFIG_SCHED_MC
8238 /* Set up multi-core groups */
8239 for_each_cpu(i, cpu_map) {
8240 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8241 if (i != cpumask_first(this_core_map))
8242 continue;
8244 init_sched_build_groups(this_core_map, cpu_map,
8245 &cpu_to_core_group,
8246 send_covered, tmpmask);
8248 #endif
8250 /* Set up physical groups */
8251 for (i = 0; i < nr_node_ids; i++) {
8252 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8253 if (cpumask_empty(nodemask))
8254 continue;
8256 init_sched_build_groups(nodemask, cpu_map,
8257 &cpu_to_phys_group,
8258 send_covered, tmpmask);
8261 #ifdef CONFIG_NUMA
8262 /* Set up node groups */
8263 if (sd_allnodes) {
8264 init_sched_build_groups(cpu_map, cpu_map,
8265 &cpu_to_allnodes_group,
8266 send_covered, tmpmask);
8269 for (i = 0; i < nr_node_ids; i++) {
8270 /* Set up node groups */
8271 struct sched_group *sg, *prev;
8272 int j;
8274 cpumask_clear(covered);
8275 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8276 if (cpumask_empty(nodemask)) {
8277 sched_group_nodes[i] = NULL;
8278 continue;
8281 sched_domain_node_span(i, domainspan);
8282 cpumask_and(domainspan, domainspan, cpu_map);
8284 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8285 GFP_KERNEL, i);
8286 if (!sg) {
8287 printk(KERN_WARNING "Can not alloc domain group for "
8288 "node %d\n", i);
8289 goto error;
8291 sched_group_nodes[i] = sg;
8292 for_each_cpu(j, nodemask) {
8293 struct sched_domain *sd;
8295 sd = &per_cpu(node_domains, j).sd;
8296 sd->groups = sg;
8298 sg->__cpu_power = 0;
8299 cpumask_copy(sched_group_cpus(sg), nodemask);
8300 sg->next = sg;
8301 cpumask_or(covered, covered, nodemask);
8302 prev = sg;
8304 for (j = 0; j < nr_node_ids; j++) {
8305 int n = (i + j) % nr_node_ids;
8307 cpumask_complement(notcovered, covered);
8308 cpumask_and(tmpmask, notcovered, cpu_map);
8309 cpumask_and(tmpmask, tmpmask, domainspan);
8310 if (cpumask_empty(tmpmask))
8311 break;
8313 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8314 if (cpumask_empty(tmpmask))
8315 continue;
8317 sg = kmalloc_node(sizeof(struct sched_group) +
8318 cpumask_size(),
8319 GFP_KERNEL, i);
8320 if (!sg) {
8321 printk(KERN_WARNING
8322 "Can not alloc domain group for node %d\n", j);
8323 goto error;
8325 sg->__cpu_power = 0;
8326 cpumask_copy(sched_group_cpus(sg), tmpmask);
8327 sg->next = prev->next;
8328 cpumask_or(covered, covered, tmpmask);
8329 prev->next = sg;
8330 prev = sg;
8333 #endif
8335 /* Calculate CPU power for physical packages and nodes */
8336 #ifdef CONFIG_SCHED_SMT
8337 for_each_cpu(i, cpu_map) {
8338 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8340 init_sched_groups_power(i, sd);
8342 #endif
8343 #ifdef CONFIG_SCHED_MC
8344 for_each_cpu(i, cpu_map) {
8345 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8347 init_sched_groups_power(i, sd);
8349 #endif
8351 for_each_cpu(i, cpu_map) {
8352 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8354 init_sched_groups_power(i, sd);
8357 #ifdef CONFIG_NUMA
8358 for (i = 0; i < nr_node_ids; i++)
8359 init_numa_sched_groups_power(sched_group_nodes[i]);
8361 if (sd_allnodes) {
8362 struct sched_group *sg;
8364 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8365 tmpmask);
8366 init_numa_sched_groups_power(sg);
8368 #endif
8370 /* Attach the domains */
8371 for_each_cpu(i, cpu_map) {
8372 struct sched_domain *sd;
8373 #ifdef CONFIG_SCHED_SMT
8374 sd = &per_cpu(cpu_domains, i).sd;
8375 #elif defined(CONFIG_SCHED_MC)
8376 sd = &per_cpu(core_domains, i).sd;
8377 #else
8378 sd = &per_cpu(phys_domains, i).sd;
8379 #endif
8380 cpu_attach_domain(sd, rd, i);
8383 err = 0;
8385 free_tmpmask:
8386 free_cpumask_var(tmpmask);
8387 free_send_covered:
8388 free_cpumask_var(send_covered);
8389 free_this_core_map:
8390 free_cpumask_var(this_core_map);
8391 free_this_sibling_map:
8392 free_cpumask_var(this_sibling_map);
8393 free_nodemask:
8394 free_cpumask_var(nodemask);
8395 free_notcovered:
8396 #ifdef CONFIG_NUMA
8397 free_cpumask_var(notcovered);
8398 free_covered:
8399 free_cpumask_var(covered);
8400 free_domainspan:
8401 free_cpumask_var(domainspan);
8402 out:
8403 #endif
8404 return err;
8406 free_sched_groups:
8407 #ifdef CONFIG_NUMA
8408 kfree(sched_group_nodes);
8409 #endif
8410 goto free_tmpmask;
8412 #ifdef CONFIG_NUMA
8413 error:
8414 free_sched_groups(cpu_map, tmpmask);
8415 free_rootdomain(rd);
8416 goto free_tmpmask;
8417 #endif
8420 static int build_sched_domains(const struct cpumask *cpu_map)
8422 return __build_sched_domains(cpu_map, NULL);
8425 static struct cpumask *doms_cur; /* current sched domains */
8426 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8427 static struct sched_domain_attr *dattr_cur;
8428 /* attribues of custom domains in 'doms_cur' */
8431 * Special case: If a kmalloc of a doms_cur partition (array of
8432 * cpumask) fails, then fallback to a single sched domain,
8433 * as determined by the single cpumask fallback_doms.
8435 static cpumask_var_t fallback_doms;
8438 * arch_update_cpu_topology lets virtualized architectures update the
8439 * cpu core maps. It is supposed to return 1 if the topology changed
8440 * or 0 if it stayed the same.
8442 int __attribute__((weak)) arch_update_cpu_topology(void)
8444 return 0;
8448 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8449 * For now this just excludes isolated cpus, but could be used to
8450 * exclude other special cases in the future.
8452 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8454 int err;
8456 arch_update_cpu_topology();
8457 ndoms_cur = 1;
8458 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8459 if (!doms_cur)
8460 doms_cur = fallback_doms;
8461 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8462 dattr_cur = NULL;
8463 err = build_sched_domains(doms_cur);
8464 register_sched_domain_sysctl();
8466 return err;
8469 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8470 struct cpumask *tmpmask)
8472 free_sched_groups(cpu_map, tmpmask);
8476 * Detach sched domains from a group of cpus specified in cpu_map
8477 * These cpus will now be attached to the NULL domain
8479 static void detach_destroy_domains(const struct cpumask *cpu_map)
8481 /* Save because hotplug lock held. */
8482 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8483 int i;
8485 for_each_cpu(i, cpu_map)
8486 cpu_attach_domain(NULL, &def_root_domain, i);
8487 synchronize_sched();
8488 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8491 /* handle null as "default" */
8492 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8493 struct sched_domain_attr *new, int idx_new)
8495 struct sched_domain_attr tmp;
8497 /* fast path */
8498 if (!new && !cur)
8499 return 1;
8501 tmp = SD_ATTR_INIT;
8502 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8503 new ? (new + idx_new) : &tmp,
8504 sizeof(struct sched_domain_attr));
8508 * Partition sched domains as specified by the 'ndoms_new'
8509 * cpumasks in the array doms_new[] of cpumasks. This compares
8510 * doms_new[] to the current sched domain partitioning, doms_cur[].
8511 * It destroys each deleted domain and builds each new domain.
8513 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8514 * The masks don't intersect (don't overlap.) We should setup one
8515 * sched domain for each mask. CPUs not in any of the cpumasks will
8516 * not be load balanced. If the same cpumask appears both in the
8517 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8518 * it as it is.
8520 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8521 * ownership of it and will kfree it when done with it. If the caller
8522 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8523 * ndoms_new == 1, and partition_sched_domains() will fallback to
8524 * the single partition 'fallback_doms', it also forces the domains
8525 * to be rebuilt.
8527 * If doms_new == NULL it will be replaced with cpu_online_mask.
8528 * ndoms_new == 0 is a special case for destroying existing domains,
8529 * and it will not create the default domain.
8531 * Call with hotplug lock held
8533 /* FIXME: Change to struct cpumask *doms_new[] */
8534 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8535 struct sched_domain_attr *dattr_new)
8537 int i, j, n;
8538 int new_topology;
8540 mutex_lock(&sched_domains_mutex);
8542 /* always unregister in case we don't destroy any domains */
8543 unregister_sched_domain_sysctl();
8545 /* Let architecture update cpu core mappings. */
8546 new_topology = arch_update_cpu_topology();
8548 n = doms_new ? ndoms_new : 0;
8550 /* Destroy deleted domains */
8551 for (i = 0; i < ndoms_cur; i++) {
8552 for (j = 0; j < n && !new_topology; j++) {
8553 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8554 && dattrs_equal(dattr_cur, i, dattr_new, j))
8555 goto match1;
8557 /* no match - a current sched domain not in new doms_new[] */
8558 detach_destroy_domains(doms_cur + i);
8559 match1:
8563 if (doms_new == NULL) {
8564 ndoms_cur = 0;
8565 doms_new = fallback_doms;
8566 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8567 WARN_ON_ONCE(dattr_new);
8570 /* Build new domains */
8571 for (i = 0; i < ndoms_new; i++) {
8572 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8573 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8574 && dattrs_equal(dattr_new, i, dattr_cur, j))
8575 goto match2;
8577 /* no match - add a new doms_new */
8578 __build_sched_domains(doms_new + i,
8579 dattr_new ? dattr_new + i : NULL);
8580 match2:
8584 /* Remember the new sched domains */
8585 if (doms_cur != fallback_doms)
8586 kfree(doms_cur);
8587 kfree(dattr_cur); /* kfree(NULL) is safe */
8588 doms_cur = doms_new;
8589 dattr_cur = dattr_new;
8590 ndoms_cur = ndoms_new;
8592 register_sched_domain_sysctl();
8594 mutex_unlock(&sched_domains_mutex);
8597 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8598 static void arch_reinit_sched_domains(void)
8600 get_online_cpus();
8602 /* Destroy domains first to force the rebuild */
8603 partition_sched_domains(0, NULL, NULL);
8605 rebuild_sched_domains();
8606 put_online_cpus();
8609 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8611 unsigned int level = 0;
8613 if (sscanf(buf, "%u", &level) != 1)
8614 return -EINVAL;
8617 * level is always be positive so don't check for
8618 * level < POWERSAVINGS_BALANCE_NONE which is 0
8619 * What happens on 0 or 1 byte write,
8620 * need to check for count as well?
8623 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8624 return -EINVAL;
8626 if (smt)
8627 sched_smt_power_savings = level;
8628 else
8629 sched_mc_power_savings = level;
8631 arch_reinit_sched_domains();
8633 return count;
8636 #ifdef CONFIG_SCHED_MC
8637 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8638 char *page)
8640 return sprintf(page, "%u\n", sched_mc_power_savings);
8642 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8643 const char *buf, size_t count)
8645 return sched_power_savings_store(buf, count, 0);
8647 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8648 sched_mc_power_savings_show,
8649 sched_mc_power_savings_store);
8650 #endif
8652 #ifdef CONFIG_SCHED_SMT
8653 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8654 char *page)
8656 return sprintf(page, "%u\n", sched_smt_power_savings);
8658 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8659 const char *buf, size_t count)
8661 return sched_power_savings_store(buf, count, 1);
8663 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8664 sched_smt_power_savings_show,
8665 sched_smt_power_savings_store);
8666 #endif
8668 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8670 int err = 0;
8672 #ifdef CONFIG_SCHED_SMT
8673 if (smt_capable())
8674 err = sysfs_create_file(&cls->kset.kobj,
8675 &attr_sched_smt_power_savings.attr);
8676 #endif
8677 #ifdef CONFIG_SCHED_MC
8678 if (!err && mc_capable())
8679 err = sysfs_create_file(&cls->kset.kobj,
8680 &attr_sched_mc_power_savings.attr);
8681 #endif
8682 return err;
8684 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8686 #ifndef CONFIG_CPUSETS
8688 * Add online and remove offline CPUs from the scheduler domains.
8689 * When cpusets are enabled they take over this function.
8691 static int update_sched_domains(struct notifier_block *nfb,
8692 unsigned long action, void *hcpu)
8694 switch (action) {
8695 case CPU_ONLINE:
8696 case CPU_ONLINE_FROZEN:
8697 case CPU_DEAD:
8698 case CPU_DEAD_FROZEN:
8699 partition_sched_domains(1, NULL, NULL);
8700 return NOTIFY_OK;
8702 default:
8703 return NOTIFY_DONE;
8706 #endif
8708 static int update_runtime(struct notifier_block *nfb,
8709 unsigned long action, void *hcpu)
8711 int cpu = (int)(long)hcpu;
8713 switch (action) {
8714 case CPU_DOWN_PREPARE:
8715 case CPU_DOWN_PREPARE_FROZEN:
8716 disable_runtime(cpu_rq(cpu));
8717 return NOTIFY_OK;
8719 case CPU_DOWN_FAILED:
8720 case CPU_DOWN_FAILED_FROZEN:
8721 case CPU_ONLINE:
8722 case CPU_ONLINE_FROZEN:
8723 enable_runtime(cpu_rq(cpu));
8724 return NOTIFY_OK;
8726 default:
8727 return NOTIFY_DONE;
8731 void __init sched_init_smp(void)
8733 cpumask_var_t non_isolated_cpus;
8735 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8737 #if defined(CONFIG_NUMA)
8738 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8739 GFP_KERNEL);
8740 BUG_ON(sched_group_nodes_bycpu == NULL);
8741 #endif
8742 get_online_cpus();
8743 mutex_lock(&sched_domains_mutex);
8744 arch_init_sched_domains(cpu_online_mask);
8745 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8746 if (cpumask_empty(non_isolated_cpus))
8747 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8748 mutex_unlock(&sched_domains_mutex);
8749 put_online_cpus();
8751 #ifndef CONFIG_CPUSETS
8752 /* XXX: Theoretical race here - CPU may be hotplugged now */
8753 hotcpu_notifier(update_sched_domains, 0);
8754 #endif
8756 /* RT runtime code needs to handle some hotplug events */
8757 hotcpu_notifier(update_runtime, 0);
8759 init_hrtick();
8761 /* Move init over to a non-isolated CPU */
8762 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8763 BUG();
8764 sched_init_granularity();
8765 free_cpumask_var(non_isolated_cpus);
8767 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8768 init_sched_rt_class();
8770 #else
8771 void __init sched_init_smp(void)
8773 sched_init_granularity();
8775 #endif /* CONFIG_SMP */
8777 int in_sched_functions(unsigned long addr)
8779 return in_lock_functions(addr) ||
8780 (addr >= (unsigned long)__sched_text_start
8781 && addr < (unsigned long)__sched_text_end);
8784 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8786 cfs_rq->tasks_timeline = RB_ROOT;
8787 INIT_LIST_HEAD(&cfs_rq->tasks);
8788 #ifdef CONFIG_FAIR_GROUP_SCHED
8789 cfs_rq->rq = rq;
8790 #endif
8791 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8794 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8796 struct rt_prio_array *array;
8797 int i;
8799 array = &rt_rq->active;
8800 for (i = 0; i < MAX_RT_PRIO; i++) {
8801 INIT_LIST_HEAD(array->queue + i);
8802 __clear_bit(i, array->bitmap);
8804 /* delimiter for bitsearch: */
8805 __set_bit(MAX_RT_PRIO, array->bitmap);
8807 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8808 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8809 #ifdef CONFIG_SMP
8810 rt_rq->highest_prio.next = MAX_RT_PRIO;
8811 #endif
8812 #endif
8813 #ifdef CONFIG_SMP
8814 rt_rq->rt_nr_migratory = 0;
8815 rt_rq->overloaded = 0;
8816 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8817 #endif
8819 rt_rq->rt_time = 0;
8820 rt_rq->rt_throttled = 0;
8821 rt_rq->rt_runtime = 0;
8822 spin_lock_init(&rt_rq->rt_runtime_lock);
8824 #ifdef CONFIG_RT_GROUP_SCHED
8825 rt_rq->rt_nr_boosted = 0;
8826 rt_rq->rq = rq;
8827 #endif
8830 #ifdef CONFIG_FAIR_GROUP_SCHED
8831 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8832 struct sched_entity *se, int cpu, int add,
8833 struct sched_entity *parent)
8835 struct rq *rq = cpu_rq(cpu);
8836 tg->cfs_rq[cpu] = cfs_rq;
8837 init_cfs_rq(cfs_rq, rq);
8838 cfs_rq->tg = tg;
8839 if (add)
8840 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8842 tg->se[cpu] = se;
8843 /* se could be NULL for init_task_group */
8844 if (!se)
8845 return;
8847 if (!parent)
8848 se->cfs_rq = &rq->cfs;
8849 else
8850 se->cfs_rq = parent->my_q;
8852 se->my_q = cfs_rq;
8853 se->load.weight = tg->shares;
8854 se->load.inv_weight = 0;
8855 se->parent = parent;
8857 #endif
8859 #ifdef CONFIG_RT_GROUP_SCHED
8860 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8861 struct sched_rt_entity *rt_se, int cpu, int add,
8862 struct sched_rt_entity *parent)
8864 struct rq *rq = cpu_rq(cpu);
8866 tg->rt_rq[cpu] = rt_rq;
8867 init_rt_rq(rt_rq, rq);
8868 rt_rq->tg = tg;
8869 rt_rq->rt_se = rt_se;
8870 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8871 if (add)
8872 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8874 tg->rt_se[cpu] = rt_se;
8875 if (!rt_se)
8876 return;
8878 if (!parent)
8879 rt_se->rt_rq = &rq->rt;
8880 else
8881 rt_se->rt_rq = parent->my_q;
8883 rt_se->my_q = rt_rq;
8884 rt_se->parent = parent;
8885 INIT_LIST_HEAD(&rt_se->run_list);
8887 #endif
8889 void __init sched_init(void)
8891 int i, j;
8892 unsigned long alloc_size = 0, ptr;
8894 #ifdef CONFIG_FAIR_GROUP_SCHED
8895 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8896 #endif
8897 #ifdef CONFIG_RT_GROUP_SCHED
8898 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8899 #endif
8900 #ifdef CONFIG_USER_SCHED
8901 alloc_size *= 2;
8902 #endif
8903 #ifdef CONFIG_CPUMASK_OFFSTACK
8904 alloc_size += num_possible_cpus() * cpumask_size();
8905 #endif
8907 * As sched_init() is called before page_alloc is setup,
8908 * we use alloc_bootmem().
8910 if (alloc_size) {
8911 ptr = (unsigned long)alloc_bootmem(alloc_size);
8913 #ifdef CONFIG_FAIR_GROUP_SCHED
8914 init_task_group.se = (struct sched_entity **)ptr;
8915 ptr += nr_cpu_ids * sizeof(void **);
8917 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8918 ptr += nr_cpu_ids * sizeof(void **);
8920 #ifdef CONFIG_USER_SCHED
8921 root_task_group.se = (struct sched_entity **)ptr;
8922 ptr += nr_cpu_ids * sizeof(void **);
8924 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8925 ptr += nr_cpu_ids * sizeof(void **);
8926 #endif /* CONFIG_USER_SCHED */
8927 #endif /* CONFIG_FAIR_GROUP_SCHED */
8928 #ifdef CONFIG_RT_GROUP_SCHED
8929 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8930 ptr += nr_cpu_ids * sizeof(void **);
8932 init_task_group.rt_rq = (struct rt_rq **)ptr;
8933 ptr += nr_cpu_ids * sizeof(void **);
8935 #ifdef CONFIG_USER_SCHED
8936 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8937 ptr += nr_cpu_ids * sizeof(void **);
8939 root_task_group.rt_rq = (struct rt_rq **)ptr;
8940 ptr += nr_cpu_ids * sizeof(void **);
8941 #endif /* CONFIG_USER_SCHED */
8942 #endif /* CONFIG_RT_GROUP_SCHED */
8943 #ifdef CONFIG_CPUMASK_OFFSTACK
8944 for_each_possible_cpu(i) {
8945 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8946 ptr += cpumask_size();
8948 #endif /* CONFIG_CPUMASK_OFFSTACK */
8951 #ifdef CONFIG_SMP
8952 init_defrootdomain();
8953 #endif
8955 init_rt_bandwidth(&def_rt_bandwidth,
8956 global_rt_period(), global_rt_runtime());
8958 #ifdef CONFIG_RT_GROUP_SCHED
8959 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8960 global_rt_period(), global_rt_runtime());
8961 #ifdef CONFIG_USER_SCHED
8962 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8963 global_rt_period(), RUNTIME_INF);
8964 #endif /* CONFIG_USER_SCHED */
8965 #endif /* CONFIG_RT_GROUP_SCHED */
8967 #ifdef CONFIG_GROUP_SCHED
8968 list_add(&init_task_group.list, &task_groups);
8969 INIT_LIST_HEAD(&init_task_group.children);
8971 #ifdef CONFIG_USER_SCHED
8972 INIT_LIST_HEAD(&root_task_group.children);
8973 init_task_group.parent = &root_task_group;
8974 list_add(&init_task_group.siblings, &root_task_group.children);
8975 #endif /* CONFIG_USER_SCHED */
8976 #endif /* CONFIG_GROUP_SCHED */
8978 for_each_possible_cpu(i) {
8979 struct rq *rq;
8981 rq = cpu_rq(i);
8982 spin_lock_init(&rq->lock);
8983 rq->nr_running = 0;
8984 init_cfs_rq(&rq->cfs, rq);
8985 init_rt_rq(&rq->rt, rq);
8986 #ifdef CONFIG_FAIR_GROUP_SCHED
8987 init_task_group.shares = init_task_group_load;
8988 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8989 #ifdef CONFIG_CGROUP_SCHED
8991 * How much cpu bandwidth does init_task_group get?
8993 * In case of task-groups formed thr' the cgroup filesystem, it
8994 * gets 100% of the cpu resources in the system. This overall
8995 * system cpu resource is divided among the tasks of
8996 * init_task_group and its child task-groups in a fair manner,
8997 * based on each entity's (task or task-group's) weight
8998 * (se->load.weight).
9000 * In other words, if init_task_group has 10 tasks of weight
9001 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9002 * then A0's share of the cpu resource is:
9004 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9006 * We achieve this by letting init_task_group's tasks sit
9007 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9009 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9010 #elif defined CONFIG_USER_SCHED
9011 root_task_group.shares = NICE_0_LOAD;
9012 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9014 * In case of task-groups formed thr' the user id of tasks,
9015 * init_task_group represents tasks belonging to root user.
9016 * Hence it forms a sibling of all subsequent groups formed.
9017 * In this case, init_task_group gets only a fraction of overall
9018 * system cpu resource, based on the weight assigned to root
9019 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9020 * by letting tasks of init_task_group sit in a separate cfs_rq
9021 * (init_cfs_rq) and having one entity represent this group of
9022 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9024 init_tg_cfs_entry(&init_task_group,
9025 &per_cpu(init_cfs_rq, i),
9026 &per_cpu(init_sched_entity, i), i, 1,
9027 root_task_group.se[i]);
9029 #endif
9030 #endif /* CONFIG_FAIR_GROUP_SCHED */
9032 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9033 #ifdef CONFIG_RT_GROUP_SCHED
9034 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9035 #ifdef CONFIG_CGROUP_SCHED
9036 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9037 #elif defined CONFIG_USER_SCHED
9038 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9039 init_tg_rt_entry(&init_task_group,
9040 &per_cpu(init_rt_rq, i),
9041 &per_cpu(init_sched_rt_entity, i), i, 1,
9042 root_task_group.rt_se[i]);
9043 #endif
9044 #endif
9046 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9047 rq->cpu_load[j] = 0;
9048 #ifdef CONFIG_SMP
9049 rq->sd = NULL;
9050 rq->rd = NULL;
9051 rq->active_balance = 0;
9052 rq->next_balance = jiffies;
9053 rq->push_cpu = 0;
9054 rq->cpu = i;
9055 rq->online = 0;
9056 rq->migration_thread = NULL;
9057 INIT_LIST_HEAD(&rq->migration_queue);
9058 rq_attach_root(rq, &def_root_domain);
9059 #endif
9060 init_rq_hrtick(rq);
9061 atomic_set(&rq->nr_iowait, 0);
9064 set_load_weight(&init_task);
9066 #ifdef CONFIG_PREEMPT_NOTIFIERS
9067 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9068 #endif
9070 #ifdef CONFIG_SMP
9071 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9072 #endif
9074 #ifdef CONFIG_RT_MUTEXES
9075 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9076 #endif
9079 * The boot idle thread does lazy MMU switching as well:
9081 atomic_inc(&init_mm.mm_count);
9082 enter_lazy_tlb(&init_mm, current);
9085 * Make us the idle thread. Technically, schedule() should not be
9086 * called from this thread, however somewhere below it might be,
9087 * but because we are the idle thread, we just pick up running again
9088 * when this runqueue becomes "idle".
9090 init_idle(current, smp_processor_id());
9092 * During early bootup we pretend to be a normal task:
9094 current->sched_class = &fair_sched_class;
9096 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9097 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9098 #ifdef CONFIG_SMP
9099 #ifdef CONFIG_NO_HZ
9100 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9101 #endif
9102 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9103 #endif /* SMP */
9105 perf_counter_init();
9107 scheduler_running = 1;
9110 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9111 void __might_sleep(char *file, int line)
9113 #ifdef in_atomic
9114 static unsigned long prev_jiffy; /* ratelimiting */
9116 if ((!in_atomic() && !irqs_disabled()) ||
9117 system_state != SYSTEM_RUNNING || oops_in_progress)
9118 return;
9119 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9120 return;
9121 prev_jiffy = jiffies;
9123 printk(KERN_ERR
9124 "BUG: sleeping function called from invalid context at %s:%d\n",
9125 file, line);
9126 printk(KERN_ERR
9127 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9128 in_atomic(), irqs_disabled(),
9129 current->pid, current->comm);
9131 debug_show_held_locks(current);
9132 if (irqs_disabled())
9133 print_irqtrace_events(current);
9134 dump_stack();
9135 #endif
9137 EXPORT_SYMBOL(__might_sleep);
9138 #endif
9140 #ifdef CONFIG_MAGIC_SYSRQ
9141 static void normalize_task(struct rq *rq, struct task_struct *p)
9143 int on_rq;
9145 update_rq_clock(rq);
9146 on_rq = p->se.on_rq;
9147 if (on_rq)
9148 deactivate_task(rq, p, 0);
9149 __setscheduler(rq, p, SCHED_NORMAL, 0);
9150 if (on_rq) {
9151 activate_task(rq, p, 0);
9152 resched_task(rq->curr);
9156 void normalize_rt_tasks(void)
9158 struct task_struct *g, *p;
9159 unsigned long flags;
9160 struct rq *rq;
9162 read_lock_irqsave(&tasklist_lock, flags);
9163 do_each_thread(g, p) {
9165 * Only normalize user tasks:
9167 if (!p->mm)
9168 continue;
9170 p->se.exec_start = 0;
9171 #ifdef CONFIG_SCHEDSTATS
9172 p->se.wait_start = 0;
9173 p->se.sleep_start = 0;
9174 p->se.block_start = 0;
9175 #endif
9177 if (!rt_task(p)) {
9179 * Renice negative nice level userspace
9180 * tasks back to 0:
9182 if (TASK_NICE(p) < 0 && p->mm)
9183 set_user_nice(p, 0);
9184 continue;
9187 spin_lock(&p->pi_lock);
9188 rq = __task_rq_lock(p);
9190 normalize_task(rq, p);
9192 __task_rq_unlock(rq);
9193 spin_unlock(&p->pi_lock);
9194 } while_each_thread(g, p);
9196 read_unlock_irqrestore(&tasklist_lock, flags);
9199 #endif /* CONFIG_MAGIC_SYSRQ */
9201 #ifdef CONFIG_IA64
9203 * These functions are only useful for the IA64 MCA handling.
9205 * They can only be called when the whole system has been
9206 * stopped - every CPU needs to be quiescent, and no scheduling
9207 * activity can take place. Using them for anything else would
9208 * be a serious bug, and as a result, they aren't even visible
9209 * under any other configuration.
9213 * curr_task - return the current task for a given cpu.
9214 * @cpu: the processor in question.
9216 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9218 struct task_struct *curr_task(int cpu)
9220 return cpu_curr(cpu);
9224 * set_curr_task - set the current task for a given cpu.
9225 * @cpu: the processor in question.
9226 * @p: the task pointer to set.
9228 * Description: This function must only be used when non-maskable interrupts
9229 * are serviced on a separate stack. It allows the architecture to switch the
9230 * notion of the current task on a cpu in a non-blocking manner. This function
9231 * must be called with all CPU's synchronized, and interrupts disabled, the
9232 * and caller must save the original value of the current task (see
9233 * curr_task() above) and restore that value before reenabling interrupts and
9234 * re-starting the system.
9236 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9238 void set_curr_task(int cpu, struct task_struct *p)
9240 cpu_curr(cpu) = p;
9243 #endif
9245 #ifdef CONFIG_FAIR_GROUP_SCHED
9246 static void free_fair_sched_group(struct task_group *tg)
9248 int i;
9250 for_each_possible_cpu(i) {
9251 if (tg->cfs_rq)
9252 kfree(tg->cfs_rq[i]);
9253 if (tg->se)
9254 kfree(tg->se[i]);
9257 kfree(tg->cfs_rq);
9258 kfree(tg->se);
9261 static
9262 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9264 struct cfs_rq *cfs_rq;
9265 struct sched_entity *se;
9266 struct rq *rq;
9267 int i;
9269 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9270 if (!tg->cfs_rq)
9271 goto err;
9272 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9273 if (!tg->se)
9274 goto err;
9276 tg->shares = NICE_0_LOAD;
9278 for_each_possible_cpu(i) {
9279 rq = cpu_rq(i);
9281 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9282 GFP_KERNEL, cpu_to_node(i));
9283 if (!cfs_rq)
9284 goto err;
9286 se = kzalloc_node(sizeof(struct sched_entity),
9287 GFP_KERNEL, cpu_to_node(i));
9288 if (!se)
9289 goto err;
9291 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9294 return 1;
9296 err:
9297 return 0;
9300 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9302 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9303 &cpu_rq(cpu)->leaf_cfs_rq_list);
9306 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9308 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9310 #else /* !CONFG_FAIR_GROUP_SCHED */
9311 static inline void free_fair_sched_group(struct task_group *tg)
9315 static inline
9316 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9318 return 1;
9321 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9325 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9328 #endif /* CONFIG_FAIR_GROUP_SCHED */
9330 #ifdef CONFIG_RT_GROUP_SCHED
9331 static void free_rt_sched_group(struct task_group *tg)
9333 int i;
9335 destroy_rt_bandwidth(&tg->rt_bandwidth);
9337 for_each_possible_cpu(i) {
9338 if (tg->rt_rq)
9339 kfree(tg->rt_rq[i]);
9340 if (tg->rt_se)
9341 kfree(tg->rt_se[i]);
9344 kfree(tg->rt_rq);
9345 kfree(tg->rt_se);
9348 static
9349 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9351 struct rt_rq *rt_rq;
9352 struct sched_rt_entity *rt_se;
9353 struct rq *rq;
9354 int i;
9356 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9357 if (!tg->rt_rq)
9358 goto err;
9359 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9360 if (!tg->rt_se)
9361 goto err;
9363 init_rt_bandwidth(&tg->rt_bandwidth,
9364 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9366 for_each_possible_cpu(i) {
9367 rq = cpu_rq(i);
9369 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9370 GFP_KERNEL, cpu_to_node(i));
9371 if (!rt_rq)
9372 goto err;
9374 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9375 GFP_KERNEL, cpu_to_node(i));
9376 if (!rt_se)
9377 goto err;
9379 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9382 return 1;
9384 err:
9385 return 0;
9388 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9390 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9391 &cpu_rq(cpu)->leaf_rt_rq_list);
9394 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9396 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9398 #else /* !CONFIG_RT_GROUP_SCHED */
9399 static inline void free_rt_sched_group(struct task_group *tg)
9403 static inline
9404 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9406 return 1;
9409 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9413 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9416 #endif /* CONFIG_RT_GROUP_SCHED */
9418 #ifdef CONFIG_GROUP_SCHED
9419 static void free_sched_group(struct task_group *tg)
9421 free_fair_sched_group(tg);
9422 free_rt_sched_group(tg);
9423 kfree(tg);
9426 /* allocate runqueue etc for a new task group */
9427 struct task_group *sched_create_group(struct task_group *parent)
9429 struct task_group *tg;
9430 unsigned long flags;
9431 int i;
9433 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9434 if (!tg)
9435 return ERR_PTR(-ENOMEM);
9437 if (!alloc_fair_sched_group(tg, parent))
9438 goto err;
9440 if (!alloc_rt_sched_group(tg, parent))
9441 goto err;
9443 spin_lock_irqsave(&task_group_lock, flags);
9444 for_each_possible_cpu(i) {
9445 register_fair_sched_group(tg, i);
9446 register_rt_sched_group(tg, i);
9448 list_add_rcu(&tg->list, &task_groups);
9450 WARN_ON(!parent); /* root should already exist */
9452 tg->parent = parent;
9453 INIT_LIST_HEAD(&tg->children);
9454 list_add_rcu(&tg->siblings, &parent->children);
9455 spin_unlock_irqrestore(&task_group_lock, flags);
9457 return tg;
9459 err:
9460 free_sched_group(tg);
9461 return ERR_PTR(-ENOMEM);
9464 /* rcu callback to free various structures associated with a task group */
9465 static void free_sched_group_rcu(struct rcu_head *rhp)
9467 /* now it should be safe to free those cfs_rqs */
9468 free_sched_group(container_of(rhp, struct task_group, rcu));
9471 /* Destroy runqueue etc associated with a task group */
9472 void sched_destroy_group(struct task_group *tg)
9474 unsigned long flags;
9475 int i;
9477 spin_lock_irqsave(&task_group_lock, flags);
9478 for_each_possible_cpu(i) {
9479 unregister_fair_sched_group(tg, i);
9480 unregister_rt_sched_group(tg, i);
9482 list_del_rcu(&tg->list);
9483 list_del_rcu(&tg->siblings);
9484 spin_unlock_irqrestore(&task_group_lock, flags);
9486 /* wait for possible concurrent references to cfs_rqs complete */
9487 call_rcu(&tg->rcu, free_sched_group_rcu);
9490 /* change task's runqueue when it moves between groups.
9491 * The caller of this function should have put the task in its new group
9492 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9493 * reflect its new group.
9495 void sched_move_task(struct task_struct *tsk)
9497 int on_rq, running;
9498 unsigned long flags;
9499 struct rq *rq;
9501 rq = task_rq_lock(tsk, &flags);
9503 update_rq_clock(rq);
9505 running = task_current(rq, tsk);
9506 on_rq = tsk->se.on_rq;
9508 if (on_rq)
9509 dequeue_task(rq, tsk, 0);
9510 if (unlikely(running))
9511 tsk->sched_class->put_prev_task(rq, tsk);
9513 set_task_rq(tsk, task_cpu(tsk));
9515 #ifdef CONFIG_FAIR_GROUP_SCHED
9516 if (tsk->sched_class->moved_group)
9517 tsk->sched_class->moved_group(tsk);
9518 #endif
9520 if (unlikely(running))
9521 tsk->sched_class->set_curr_task(rq);
9522 if (on_rq)
9523 enqueue_task(rq, tsk, 0);
9525 task_rq_unlock(rq, &flags);
9527 #endif /* CONFIG_GROUP_SCHED */
9529 #ifdef CONFIG_FAIR_GROUP_SCHED
9530 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9532 struct cfs_rq *cfs_rq = se->cfs_rq;
9533 int on_rq;
9535 on_rq = se->on_rq;
9536 if (on_rq)
9537 dequeue_entity(cfs_rq, se, 0);
9539 se->load.weight = shares;
9540 se->load.inv_weight = 0;
9542 if (on_rq)
9543 enqueue_entity(cfs_rq, se, 0);
9546 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9548 struct cfs_rq *cfs_rq = se->cfs_rq;
9549 struct rq *rq = cfs_rq->rq;
9550 unsigned long flags;
9552 spin_lock_irqsave(&rq->lock, flags);
9553 __set_se_shares(se, shares);
9554 spin_unlock_irqrestore(&rq->lock, flags);
9557 static DEFINE_MUTEX(shares_mutex);
9559 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9561 int i;
9562 unsigned long flags;
9565 * We can't change the weight of the root cgroup.
9567 if (!tg->se[0])
9568 return -EINVAL;
9570 if (shares < MIN_SHARES)
9571 shares = MIN_SHARES;
9572 else if (shares > MAX_SHARES)
9573 shares = MAX_SHARES;
9575 mutex_lock(&shares_mutex);
9576 if (tg->shares == shares)
9577 goto done;
9579 spin_lock_irqsave(&task_group_lock, flags);
9580 for_each_possible_cpu(i)
9581 unregister_fair_sched_group(tg, i);
9582 list_del_rcu(&tg->siblings);
9583 spin_unlock_irqrestore(&task_group_lock, flags);
9585 /* wait for any ongoing reference to this group to finish */
9586 synchronize_sched();
9589 * Now we are free to modify the group's share on each cpu
9590 * w/o tripping rebalance_share or load_balance_fair.
9592 tg->shares = shares;
9593 for_each_possible_cpu(i) {
9595 * force a rebalance
9597 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9598 set_se_shares(tg->se[i], shares);
9602 * Enable load balance activity on this group, by inserting it back on
9603 * each cpu's rq->leaf_cfs_rq_list.
9605 spin_lock_irqsave(&task_group_lock, flags);
9606 for_each_possible_cpu(i)
9607 register_fair_sched_group(tg, i);
9608 list_add_rcu(&tg->siblings, &tg->parent->children);
9609 spin_unlock_irqrestore(&task_group_lock, flags);
9610 done:
9611 mutex_unlock(&shares_mutex);
9612 return 0;
9615 unsigned long sched_group_shares(struct task_group *tg)
9617 return tg->shares;
9619 #endif
9621 #ifdef CONFIG_RT_GROUP_SCHED
9623 * Ensure that the real time constraints are schedulable.
9625 static DEFINE_MUTEX(rt_constraints_mutex);
9627 static unsigned long to_ratio(u64 period, u64 runtime)
9629 if (runtime == RUNTIME_INF)
9630 return 1ULL << 20;
9632 return div64_u64(runtime << 20, period);
9635 /* Must be called with tasklist_lock held */
9636 static inline int tg_has_rt_tasks(struct task_group *tg)
9638 struct task_struct *g, *p;
9640 do_each_thread(g, p) {
9641 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9642 return 1;
9643 } while_each_thread(g, p);
9645 return 0;
9648 struct rt_schedulable_data {
9649 struct task_group *tg;
9650 u64 rt_period;
9651 u64 rt_runtime;
9654 static int tg_schedulable(struct task_group *tg, void *data)
9656 struct rt_schedulable_data *d = data;
9657 struct task_group *child;
9658 unsigned long total, sum = 0;
9659 u64 period, runtime;
9661 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9662 runtime = tg->rt_bandwidth.rt_runtime;
9664 if (tg == d->tg) {
9665 period = d->rt_period;
9666 runtime = d->rt_runtime;
9669 #ifdef CONFIG_USER_SCHED
9670 if (tg == &root_task_group) {
9671 period = global_rt_period();
9672 runtime = global_rt_runtime();
9674 #endif
9677 * Cannot have more runtime than the period.
9679 if (runtime > period && runtime != RUNTIME_INF)
9680 return -EINVAL;
9683 * Ensure we don't starve existing RT tasks.
9685 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9686 return -EBUSY;
9688 total = to_ratio(period, runtime);
9691 * Nobody can have more than the global setting allows.
9693 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9694 return -EINVAL;
9697 * The sum of our children's runtime should not exceed our own.
9699 list_for_each_entry_rcu(child, &tg->children, siblings) {
9700 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9701 runtime = child->rt_bandwidth.rt_runtime;
9703 if (child == d->tg) {
9704 period = d->rt_period;
9705 runtime = d->rt_runtime;
9708 sum += to_ratio(period, runtime);
9711 if (sum > total)
9712 return -EINVAL;
9714 return 0;
9717 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9719 struct rt_schedulable_data data = {
9720 .tg = tg,
9721 .rt_period = period,
9722 .rt_runtime = runtime,
9725 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9728 static int tg_set_bandwidth(struct task_group *tg,
9729 u64 rt_period, u64 rt_runtime)
9731 int i, err = 0;
9733 mutex_lock(&rt_constraints_mutex);
9734 read_lock(&tasklist_lock);
9735 err = __rt_schedulable(tg, rt_period, rt_runtime);
9736 if (err)
9737 goto unlock;
9739 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9740 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9741 tg->rt_bandwidth.rt_runtime = rt_runtime;
9743 for_each_possible_cpu(i) {
9744 struct rt_rq *rt_rq = tg->rt_rq[i];
9746 spin_lock(&rt_rq->rt_runtime_lock);
9747 rt_rq->rt_runtime = rt_runtime;
9748 spin_unlock(&rt_rq->rt_runtime_lock);
9750 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9751 unlock:
9752 read_unlock(&tasklist_lock);
9753 mutex_unlock(&rt_constraints_mutex);
9755 return err;
9758 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9760 u64 rt_runtime, rt_period;
9762 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9763 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9764 if (rt_runtime_us < 0)
9765 rt_runtime = RUNTIME_INF;
9767 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9770 long sched_group_rt_runtime(struct task_group *tg)
9772 u64 rt_runtime_us;
9774 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9775 return -1;
9777 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9778 do_div(rt_runtime_us, NSEC_PER_USEC);
9779 return rt_runtime_us;
9782 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9784 u64 rt_runtime, rt_period;
9786 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9787 rt_runtime = tg->rt_bandwidth.rt_runtime;
9789 if (rt_period == 0)
9790 return -EINVAL;
9792 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9795 long sched_group_rt_period(struct task_group *tg)
9797 u64 rt_period_us;
9799 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9800 do_div(rt_period_us, NSEC_PER_USEC);
9801 return rt_period_us;
9804 static int sched_rt_global_constraints(void)
9806 u64 runtime, period;
9807 int ret = 0;
9809 if (sysctl_sched_rt_period <= 0)
9810 return -EINVAL;
9812 runtime = global_rt_runtime();
9813 period = global_rt_period();
9816 * Sanity check on the sysctl variables.
9818 if (runtime > period && runtime != RUNTIME_INF)
9819 return -EINVAL;
9821 mutex_lock(&rt_constraints_mutex);
9822 read_lock(&tasklist_lock);
9823 ret = __rt_schedulable(NULL, 0, 0);
9824 read_unlock(&tasklist_lock);
9825 mutex_unlock(&rt_constraints_mutex);
9827 return ret;
9830 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9832 /* Don't accept realtime tasks when there is no way for them to run */
9833 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9834 return 0;
9836 return 1;
9839 #else /* !CONFIG_RT_GROUP_SCHED */
9840 static int sched_rt_global_constraints(void)
9842 unsigned long flags;
9843 int i;
9845 if (sysctl_sched_rt_period <= 0)
9846 return -EINVAL;
9848 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9849 for_each_possible_cpu(i) {
9850 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9852 spin_lock(&rt_rq->rt_runtime_lock);
9853 rt_rq->rt_runtime = global_rt_runtime();
9854 spin_unlock(&rt_rq->rt_runtime_lock);
9856 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9858 return 0;
9860 #endif /* CONFIG_RT_GROUP_SCHED */
9862 int sched_rt_handler(struct ctl_table *table, int write,
9863 struct file *filp, void __user *buffer, size_t *lenp,
9864 loff_t *ppos)
9866 int ret;
9867 int old_period, old_runtime;
9868 static DEFINE_MUTEX(mutex);
9870 mutex_lock(&mutex);
9871 old_period = sysctl_sched_rt_period;
9872 old_runtime = sysctl_sched_rt_runtime;
9874 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9876 if (!ret && write) {
9877 ret = sched_rt_global_constraints();
9878 if (ret) {
9879 sysctl_sched_rt_period = old_period;
9880 sysctl_sched_rt_runtime = old_runtime;
9881 } else {
9882 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9883 def_rt_bandwidth.rt_period =
9884 ns_to_ktime(global_rt_period());
9887 mutex_unlock(&mutex);
9889 return ret;
9892 #ifdef CONFIG_CGROUP_SCHED
9894 /* return corresponding task_group object of a cgroup */
9895 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9897 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9898 struct task_group, css);
9901 static struct cgroup_subsys_state *
9902 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9904 struct task_group *tg, *parent;
9906 if (!cgrp->parent) {
9907 /* This is early initialization for the top cgroup */
9908 return &init_task_group.css;
9911 parent = cgroup_tg(cgrp->parent);
9912 tg = sched_create_group(parent);
9913 if (IS_ERR(tg))
9914 return ERR_PTR(-ENOMEM);
9916 return &tg->css;
9919 static void
9920 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9922 struct task_group *tg = cgroup_tg(cgrp);
9924 sched_destroy_group(tg);
9927 static int
9928 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9929 struct task_struct *tsk)
9931 #ifdef CONFIG_RT_GROUP_SCHED
9932 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9933 return -EINVAL;
9934 #else
9935 /* We don't support RT-tasks being in separate groups */
9936 if (tsk->sched_class != &fair_sched_class)
9937 return -EINVAL;
9938 #endif
9940 return 0;
9943 static void
9944 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9945 struct cgroup *old_cont, struct task_struct *tsk)
9947 sched_move_task(tsk);
9950 #ifdef CONFIG_FAIR_GROUP_SCHED
9951 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9952 u64 shareval)
9954 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9957 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9959 struct task_group *tg = cgroup_tg(cgrp);
9961 return (u64) tg->shares;
9963 #endif /* CONFIG_FAIR_GROUP_SCHED */
9965 #ifdef CONFIG_RT_GROUP_SCHED
9966 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9967 s64 val)
9969 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9972 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9974 return sched_group_rt_runtime(cgroup_tg(cgrp));
9977 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9978 u64 rt_period_us)
9980 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9983 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9985 return sched_group_rt_period(cgroup_tg(cgrp));
9987 #endif /* CONFIG_RT_GROUP_SCHED */
9989 static struct cftype cpu_files[] = {
9990 #ifdef CONFIG_FAIR_GROUP_SCHED
9992 .name = "shares",
9993 .read_u64 = cpu_shares_read_u64,
9994 .write_u64 = cpu_shares_write_u64,
9996 #endif
9997 #ifdef CONFIG_RT_GROUP_SCHED
9999 .name = "rt_runtime_us",
10000 .read_s64 = cpu_rt_runtime_read,
10001 .write_s64 = cpu_rt_runtime_write,
10004 .name = "rt_period_us",
10005 .read_u64 = cpu_rt_period_read_uint,
10006 .write_u64 = cpu_rt_period_write_uint,
10008 #endif
10011 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10013 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10016 struct cgroup_subsys cpu_cgroup_subsys = {
10017 .name = "cpu",
10018 .create = cpu_cgroup_create,
10019 .destroy = cpu_cgroup_destroy,
10020 .can_attach = cpu_cgroup_can_attach,
10021 .attach = cpu_cgroup_attach,
10022 .populate = cpu_cgroup_populate,
10023 .subsys_id = cpu_cgroup_subsys_id,
10024 .early_init = 1,
10027 #endif /* CONFIG_CGROUP_SCHED */
10029 #ifdef CONFIG_CGROUP_CPUACCT
10032 * CPU accounting code for task groups.
10034 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10035 * (balbir@in.ibm.com).
10038 /* track cpu usage of a group of tasks and its child groups */
10039 struct cpuacct {
10040 struct cgroup_subsys_state css;
10041 /* cpuusage holds pointer to a u64-type object on every cpu */
10042 u64 *cpuusage;
10043 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10044 struct cpuacct *parent;
10047 struct cgroup_subsys cpuacct_subsys;
10049 /* return cpu accounting group corresponding to this container */
10050 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10052 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10053 struct cpuacct, css);
10056 /* return cpu accounting group to which this task belongs */
10057 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10059 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10060 struct cpuacct, css);
10063 /* create a new cpu accounting group */
10064 static struct cgroup_subsys_state *cpuacct_create(
10065 struct cgroup_subsys *ss, struct cgroup *cgrp)
10067 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10068 int i;
10070 if (!ca)
10071 goto out;
10073 ca->cpuusage = alloc_percpu(u64);
10074 if (!ca->cpuusage)
10075 goto out_free_ca;
10077 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10078 if (percpu_counter_init(&ca->cpustat[i], 0))
10079 goto out_free_counters;
10081 if (cgrp->parent)
10082 ca->parent = cgroup_ca(cgrp->parent);
10084 return &ca->css;
10086 out_free_counters:
10087 while (--i >= 0)
10088 percpu_counter_destroy(&ca->cpustat[i]);
10089 free_percpu(ca->cpuusage);
10090 out_free_ca:
10091 kfree(ca);
10092 out:
10093 return ERR_PTR(-ENOMEM);
10096 /* destroy an existing cpu accounting group */
10097 static void
10098 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10100 struct cpuacct *ca = cgroup_ca(cgrp);
10101 int i;
10103 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10104 percpu_counter_destroy(&ca->cpustat[i]);
10105 free_percpu(ca->cpuusage);
10106 kfree(ca);
10109 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10111 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10112 u64 data;
10114 #ifndef CONFIG_64BIT
10116 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10118 spin_lock_irq(&cpu_rq(cpu)->lock);
10119 data = *cpuusage;
10120 spin_unlock_irq(&cpu_rq(cpu)->lock);
10121 #else
10122 data = *cpuusage;
10123 #endif
10125 return data;
10128 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10130 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10132 #ifndef CONFIG_64BIT
10134 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10136 spin_lock_irq(&cpu_rq(cpu)->lock);
10137 *cpuusage = val;
10138 spin_unlock_irq(&cpu_rq(cpu)->lock);
10139 #else
10140 *cpuusage = val;
10141 #endif
10144 /* return total cpu usage (in nanoseconds) of a group */
10145 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10147 struct cpuacct *ca = cgroup_ca(cgrp);
10148 u64 totalcpuusage = 0;
10149 int i;
10151 for_each_present_cpu(i)
10152 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10154 return totalcpuusage;
10157 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10158 u64 reset)
10160 struct cpuacct *ca = cgroup_ca(cgrp);
10161 int err = 0;
10162 int i;
10164 if (reset) {
10165 err = -EINVAL;
10166 goto out;
10169 for_each_present_cpu(i)
10170 cpuacct_cpuusage_write(ca, i, 0);
10172 out:
10173 return err;
10176 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10177 struct seq_file *m)
10179 struct cpuacct *ca = cgroup_ca(cgroup);
10180 u64 percpu;
10181 int i;
10183 for_each_present_cpu(i) {
10184 percpu = cpuacct_cpuusage_read(ca, i);
10185 seq_printf(m, "%llu ", (unsigned long long) percpu);
10187 seq_printf(m, "\n");
10188 return 0;
10191 static const char *cpuacct_stat_desc[] = {
10192 [CPUACCT_STAT_USER] = "user",
10193 [CPUACCT_STAT_SYSTEM] = "system",
10196 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10197 struct cgroup_map_cb *cb)
10199 struct cpuacct *ca = cgroup_ca(cgrp);
10200 int i;
10202 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10203 s64 val = percpu_counter_read(&ca->cpustat[i]);
10204 val = cputime64_to_clock_t(val);
10205 cb->fill(cb, cpuacct_stat_desc[i], val);
10207 return 0;
10210 static struct cftype files[] = {
10212 .name = "usage",
10213 .read_u64 = cpuusage_read,
10214 .write_u64 = cpuusage_write,
10217 .name = "usage_percpu",
10218 .read_seq_string = cpuacct_percpu_seq_read,
10221 .name = "stat",
10222 .read_map = cpuacct_stats_show,
10226 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10228 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10232 * charge this task's execution time to its accounting group.
10234 * called with rq->lock held.
10236 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10238 struct cpuacct *ca;
10239 int cpu;
10241 if (unlikely(!cpuacct_subsys.active))
10242 return;
10244 cpu = task_cpu(tsk);
10246 rcu_read_lock();
10248 ca = task_ca(tsk);
10250 for (; ca; ca = ca->parent) {
10251 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10252 *cpuusage += cputime;
10255 rcu_read_unlock();
10259 * Charge the system/user time to the task's accounting group.
10261 static void cpuacct_update_stats(struct task_struct *tsk,
10262 enum cpuacct_stat_index idx, cputime_t val)
10264 struct cpuacct *ca;
10266 if (unlikely(!cpuacct_subsys.active))
10267 return;
10269 rcu_read_lock();
10270 ca = task_ca(tsk);
10272 do {
10273 percpu_counter_add(&ca->cpustat[idx], val);
10274 ca = ca->parent;
10275 } while (ca);
10276 rcu_read_unlock();
10279 struct cgroup_subsys cpuacct_subsys = {
10280 .name = "cpuacct",
10281 .create = cpuacct_create,
10282 .destroy = cpuacct_destroy,
10283 .populate = cpuacct_populate,
10284 .subsys_id = cpuacct_subsys_id,
10286 #endif /* CONFIG_CGROUP_CPUACCT */