perf record: Add --append option
[linux-2.6/libata-dev.git] / kernel / exit.c
blob99ad4063ee4a04ce4c97f5695fef47341775c7af
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/iocontext.h>
17 #include <linux/key.h>
18 #include <linux/security.h>
19 #include <linux/cpu.h>
20 #include <linux/acct.h>
21 #include <linux/tsacct_kern.h>
22 #include <linux/file.h>
23 #include <linux/fdtable.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/freezer.h>
36 #include <linux/cgroup.h>
37 #include <linux/syscalls.h>
38 #include <linux/signal.h>
39 #include <linux/posix-timers.h>
40 #include <linux/cn_proc.h>
41 #include <linux/mutex.h>
42 #include <linux/futex.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
48 #include <linux/tracehook.h>
49 #include <linux/fs_struct.h>
50 #include <linux/init_task.h>
51 #include <linux/perf_counter.h>
52 #include <trace/sched.h>
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58 #include "cred-internals.h"
60 DEFINE_TRACE(sched_process_free);
61 DEFINE_TRACE(sched_process_exit);
62 DEFINE_TRACE(sched_process_wait);
64 static void exit_mm(struct task_struct * tsk);
66 static void __unhash_process(struct task_struct *p)
68 nr_threads--;
69 detach_pid(p, PIDTYPE_PID);
70 if (thread_group_leader(p)) {
71 detach_pid(p, PIDTYPE_PGID);
72 detach_pid(p, PIDTYPE_SID);
74 list_del_rcu(&p->tasks);
75 __get_cpu_var(process_counts)--;
77 list_del_rcu(&p->thread_group);
78 list_del_init(&p->sibling);
82 * This function expects the tasklist_lock write-locked.
84 static void __exit_signal(struct task_struct *tsk)
86 struct signal_struct *sig = tsk->signal;
87 struct sighand_struct *sighand;
89 BUG_ON(!sig);
90 BUG_ON(!atomic_read(&sig->count));
92 sighand = rcu_dereference(tsk->sighand);
93 spin_lock(&sighand->siglock);
95 posix_cpu_timers_exit(tsk);
96 if (atomic_dec_and_test(&sig->count))
97 posix_cpu_timers_exit_group(tsk);
98 else {
100 * If there is any task waiting for the group exit
101 * then notify it:
103 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
104 wake_up_process(sig->group_exit_task);
106 if (tsk == sig->curr_target)
107 sig->curr_target = next_thread(tsk);
109 * Accumulate here the counters for all threads but the
110 * group leader as they die, so they can be added into
111 * the process-wide totals when those are taken.
112 * The group leader stays around as a zombie as long
113 * as there are other threads. When it gets reaped,
114 * the exit.c code will add its counts into these totals.
115 * We won't ever get here for the group leader, since it
116 * will have been the last reference on the signal_struct.
118 sig->utime = cputime_add(sig->utime, task_utime(tsk));
119 sig->stime = cputime_add(sig->stime, task_stime(tsk));
120 sig->gtime = cputime_add(sig->gtime, task_gtime(tsk));
121 sig->min_flt += tsk->min_flt;
122 sig->maj_flt += tsk->maj_flt;
123 sig->nvcsw += tsk->nvcsw;
124 sig->nivcsw += tsk->nivcsw;
125 sig->inblock += task_io_get_inblock(tsk);
126 sig->oublock += task_io_get_oublock(tsk);
127 task_io_accounting_add(&sig->ioac, &tsk->ioac);
128 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
129 sig = NULL; /* Marker for below. */
132 __unhash_process(tsk);
135 * Do this under ->siglock, we can race with another thread
136 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
138 flush_sigqueue(&tsk->pending);
140 tsk->signal = NULL;
141 tsk->sighand = NULL;
142 spin_unlock(&sighand->siglock);
144 __cleanup_sighand(sighand);
145 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
146 if (sig) {
147 flush_sigqueue(&sig->shared_pending);
148 taskstats_tgid_free(sig);
150 * Make sure ->signal can't go away under rq->lock,
151 * see account_group_exec_runtime().
153 task_rq_unlock_wait(tsk);
154 __cleanup_signal(sig);
158 static void delayed_put_task_struct(struct rcu_head *rhp)
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
162 #ifdef CONFIG_PERF_COUNTERS
163 WARN_ON_ONCE(tsk->perf_counter_ctxp);
164 #endif
165 trace_sched_process_free(tsk);
166 put_task_struct(tsk);
170 void release_task(struct task_struct * p)
172 struct task_struct *leader;
173 int zap_leader;
174 repeat:
175 tracehook_prepare_release_task(p);
176 /* don't need to get the RCU readlock here - the process is dead and
177 * can't be modifying its own credentials */
178 atomic_dec(&__task_cred(p)->user->processes);
180 proc_flush_task(p);
182 write_lock_irq(&tasklist_lock);
183 tracehook_finish_release_task(p);
184 __exit_signal(p);
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
194 BUG_ON(task_detached(leader));
195 do_notify_parent(leader, leader->exit_signal);
197 * If we were the last child thread and the leader has
198 * exited already, and the leader's parent ignores SIGCHLD,
199 * then we are the one who should release the leader.
201 * do_notify_parent() will have marked it self-reaping in
202 * that case.
204 zap_leader = task_detached(leader);
207 * This maintains the invariant that release_task()
208 * only runs on a task in EXIT_DEAD, just for sanity.
210 if (zap_leader)
211 leader->exit_state = EXIT_DEAD;
214 write_unlock_irq(&tasklist_lock);
215 release_thread(p);
216 call_rcu(&p->rcu, delayed_put_task_struct);
218 p = leader;
219 if (unlikely(zap_leader))
220 goto repeat;
224 * This checks not only the pgrp, but falls back on the pid if no
225 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
226 * without this...
228 * The caller must hold rcu lock or the tasklist lock.
230 struct pid *session_of_pgrp(struct pid *pgrp)
232 struct task_struct *p;
233 struct pid *sid = NULL;
235 p = pid_task(pgrp, PIDTYPE_PGID);
236 if (p == NULL)
237 p = pid_task(pgrp, PIDTYPE_PID);
238 if (p != NULL)
239 sid = task_session(p);
241 return sid;
245 * Determine if a process group is "orphaned", according to the POSIX
246 * definition in 2.2.2.52. Orphaned process groups are not to be affected
247 * by terminal-generated stop signals. Newly orphaned process groups are
248 * to receive a SIGHUP and a SIGCONT.
250 * "I ask you, have you ever known what it is to be an orphan?"
252 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
254 struct task_struct *p;
256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 if ((p == ignored_task) ||
258 (p->exit_state && thread_group_empty(p)) ||
259 is_global_init(p->real_parent))
260 continue;
262 if (task_pgrp(p->real_parent) != pgrp &&
263 task_session(p->real_parent) == task_session(p))
264 return 0;
265 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
267 return 1;
270 int is_current_pgrp_orphaned(void)
272 int retval;
274 read_lock(&tasklist_lock);
275 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
276 read_unlock(&tasklist_lock);
278 return retval;
281 static int has_stopped_jobs(struct pid *pgrp)
283 int retval = 0;
284 struct task_struct *p;
286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 if (!task_is_stopped(p))
288 continue;
289 retval = 1;
290 break;
291 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
292 return retval;
296 * Check to see if any process groups have become orphaned as
297 * a result of our exiting, and if they have any stopped jobs,
298 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
300 static void
301 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
303 struct pid *pgrp = task_pgrp(tsk);
304 struct task_struct *ignored_task = tsk;
306 if (!parent)
307 /* exit: our father is in a different pgrp than
308 * we are and we were the only connection outside.
310 parent = tsk->real_parent;
311 else
312 /* reparent: our child is in a different pgrp than
313 * we are, and it was the only connection outside.
315 ignored_task = NULL;
317 if (task_pgrp(parent) != pgrp &&
318 task_session(parent) == task_session(tsk) &&
319 will_become_orphaned_pgrp(pgrp, ignored_task) &&
320 has_stopped_jobs(pgrp)) {
321 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
322 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
327 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
329 * If a kernel thread is launched as a result of a system call, or if
330 * it ever exits, it should generally reparent itself to kthreadd so it
331 * isn't in the way of other processes and is correctly cleaned up on exit.
333 * The various task state such as scheduling policy and priority may have
334 * been inherited from a user process, so we reset them to sane values here.
336 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
338 static void reparent_to_kthreadd(void)
340 write_lock_irq(&tasklist_lock);
342 ptrace_unlink(current);
343 /* Reparent to init */
344 current->real_parent = current->parent = kthreadd_task;
345 list_move_tail(&current->sibling, &current->real_parent->children);
347 /* Set the exit signal to SIGCHLD so we signal init on exit */
348 current->exit_signal = SIGCHLD;
350 if (task_nice(current) < 0)
351 set_user_nice(current, 0);
352 /* cpus_allowed? */
353 /* rt_priority? */
354 /* signals? */
355 memcpy(current->signal->rlim, init_task.signal->rlim,
356 sizeof(current->signal->rlim));
358 atomic_inc(&init_cred.usage);
359 commit_creds(&init_cred);
360 write_unlock_irq(&tasklist_lock);
363 void __set_special_pids(struct pid *pid)
365 struct task_struct *curr = current->group_leader;
367 if (task_session(curr) != pid)
368 change_pid(curr, PIDTYPE_SID, pid);
370 if (task_pgrp(curr) != pid)
371 change_pid(curr, PIDTYPE_PGID, pid);
374 static void set_special_pids(struct pid *pid)
376 write_lock_irq(&tasklist_lock);
377 __set_special_pids(pid);
378 write_unlock_irq(&tasklist_lock);
382 * Let kernel threads use this to say that they
383 * allow a certain signal (since daemonize() will
384 * have disabled all of them by default).
386 int allow_signal(int sig)
388 if (!valid_signal(sig) || sig < 1)
389 return -EINVAL;
391 spin_lock_irq(&current->sighand->siglock);
392 sigdelset(&current->blocked, sig);
393 if (!current->mm) {
394 /* Kernel threads handle their own signals.
395 Let the signal code know it'll be handled, so
396 that they don't get converted to SIGKILL or
397 just silently dropped */
398 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
400 recalc_sigpending();
401 spin_unlock_irq(&current->sighand->siglock);
402 return 0;
405 EXPORT_SYMBOL(allow_signal);
407 int disallow_signal(int sig)
409 if (!valid_signal(sig) || sig < 1)
410 return -EINVAL;
412 spin_lock_irq(&current->sighand->siglock);
413 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
414 recalc_sigpending();
415 spin_unlock_irq(&current->sighand->siglock);
416 return 0;
419 EXPORT_SYMBOL(disallow_signal);
422 * Put all the gunge required to become a kernel thread without
423 * attached user resources in one place where it belongs.
426 void daemonize(const char *name, ...)
428 va_list args;
429 sigset_t blocked;
431 va_start(args, name);
432 vsnprintf(current->comm, sizeof(current->comm), name, args);
433 va_end(args);
436 * If we were started as result of loading a module, close all of the
437 * user space pages. We don't need them, and if we didn't close them
438 * they would be locked into memory.
440 exit_mm(current);
442 * We don't want to have TIF_FREEZE set if the system-wide hibernation
443 * or suspend transition begins right now.
445 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
447 if (current->nsproxy != &init_nsproxy) {
448 get_nsproxy(&init_nsproxy);
449 switch_task_namespaces(current, &init_nsproxy);
451 set_special_pids(&init_struct_pid);
452 proc_clear_tty(current);
454 /* Block and flush all signals */
455 sigfillset(&blocked);
456 sigprocmask(SIG_BLOCK, &blocked, NULL);
457 flush_signals(current);
459 /* Become as one with the init task */
461 daemonize_fs_struct();
462 exit_files(current);
463 current->files = init_task.files;
464 atomic_inc(&current->files->count);
466 reparent_to_kthreadd();
469 EXPORT_SYMBOL(daemonize);
471 static void close_files(struct files_struct * files)
473 int i, j;
474 struct fdtable *fdt;
476 j = 0;
479 * It is safe to dereference the fd table without RCU or
480 * ->file_lock because this is the last reference to the
481 * files structure.
483 fdt = files_fdtable(files);
484 for (;;) {
485 unsigned long set;
486 i = j * __NFDBITS;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds->fds_bits[j++];
490 while (set) {
491 if (set & 1) {
492 struct file * file = xchg(&fdt->fd[i], NULL);
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
498 i++;
499 set >>= 1;
504 struct files_struct *get_files_struct(struct task_struct *task)
506 struct files_struct *files;
508 task_lock(task);
509 files = task->files;
510 if (files)
511 atomic_inc(&files->count);
512 task_unlock(task);
514 return files;
517 void put_files_struct(struct files_struct *files)
519 struct fdtable *fdt;
521 if (atomic_dec_and_test(&files->count)) {
522 close_files(files);
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
529 fdt = files_fdtable(files);
530 if (fdt != &files->fdtab)
531 kmem_cache_free(files_cachep, files);
532 free_fdtable(fdt);
536 void reset_files_struct(struct files_struct *files)
538 struct task_struct *tsk = current;
539 struct files_struct *old;
541 old = tsk->files;
542 task_lock(tsk);
543 tsk->files = files;
544 task_unlock(tsk);
545 put_files_struct(old);
548 void exit_files(struct task_struct *tsk)
550 struct files_struct * files = tsk->files;
552 if (files) {
553 task_lock(tsk);
554 tsk->files = NULL;
555 task_unlock(tsk);
556 put_files_struct(files);
560 #ifdef CONFIG_MM_OWNER
562 * Task p is exiting and it owned mm, lets find a new owner for it
564 static inline int
565 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
568 * If there are other users of the mm and the owner (us) is exiting
569 * we need to find a new owner to take on the responsibility.
571 if (atomic_read(&mm->mm_users) <= 1)
572 return 0;
573 if (mm->owner != p)
574 return 0;
575 return 1;
578 void mm_update_next_owner(struct mm_struct *mm)
580 struct task_struct *c, *g, *p = current;
582 retry:
583 if (!mm_need_new_owner(mm, p))
584 return;
586 read_lock(&tasklist_lock);
588 * Search in the children
590 list_for_each_entry(c, &p->children, sibling) {
591 if (c->mm == mm)
592 goto assign_new_owner;
596 * Search in the siblings
598 list_for_each_entry(c, &p->parent->children, sibling) {
599 if (c->mm == mm)
600 goto assign_new_owner;
604 * Search through everything else. We should not get
605 * here often
607 do_each_thread(g, c) {
608 if (c->mm == mm)
609 goto assign_new_owner;
610 } while_each_thread(g, c);
612 read_unlock(&tasklist_lock);
614 * We found no owner yet mm_users > 1: this implies that we are
615 * most likely racing with swapoff (try_to_unuse()) or /proc or
616 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
618 mm->owner = NULL;
619 return;
621 assign_new_owner:
622 BUG_ON(c == p);
623 get_task_struct(c);
625 * The task_lock protects c->mm from changing.
626 * We always want mm->owner->mm == mm
628 task_lock(c);
630 * Delay read_unlock() till we have the task_lock()
631 * to ensure that c does not slip away underneath us
633 read_unlock(&tasklist_lock);
634 if (c->mm != mm) {
635 task_unlock(c);
636 put_task_struct(c);
637 goto retry;
639 mm->owner = c;
640 task_unlock(c);
641 put_task_struct(c);
643 #endif /* CONFIG_MM_OWNER */
646 * Turn us into a lazy TLB process if we
647 * aren't already..
649 static void exit_mm(struct task_struct * tsk)
651 struct mm_struct *mm = tsk->mm;
652 struct core_state *core_state;
654 mm_release(tsk, mm);
655 if (!mm)
656 return;
658 * Serialize with any possible pending coredump.
659 * We must hold mmap_sem around checking core_state
660 * and clearing tsk->mm. The core-inducing thread
661 * will increment ->nr_threads for each thread in the
662 * group with ->mm != NULL.
664 down_read(&mm->mmap_sem);
665 core_state = mm->core_state;
666 if (core_state) {
667 struct core_thread self;
668 up_read(&mm->mmap_sem);
670 self.task = tsk;
671 self.next = xchg(&core_state->dumper.next, &self);
673 * Implies mb(), the result of xchg() must be visible
674 * to core_state->dumper.
676 if (atomic_dec_and_test(&core_state->nr_threads))
677 complete(&core_state->startup);
679 for (;;) {
680 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
681 if (!self.task) /* see coredump_finish() */
682 break;
683 schedule();
685 __set_task_state(tsk, TASK_RUNNING);
686 down_read(&mm->mmap_sem);
688 atomic_inc(&mm->mm_count);
689 BUG_ON(mm != tsk->active_mm);
690 /* more a memory barrier than a real lock */
691 task_lock(tsk);
692 tsk->mm = NULL;
693 up_read(&mm->mmap_sem);
694 enter_lazy_tlb(mm, current);
695 /* We don't want this task to be frozen prematurely */
696 clear_freeze_flag(tsk);
697 task_unlock(tsk);
698 mm_update_next_owner(mm);
699 mmput(mm);
703 * When we die, we re-parent all our children.
704 * Try to give them to another thread in our thread
705 * group, and if no such member exists, give it to
706 * the child reaper process (ie "init") in our pid
707 * space.
709 static struct task_struct *find_new_reaper(struct task_struct *father)
711 struct pid_namespace *pid_ns = task_active_pid_ns(father);
712 struct task_struct *thread;
714 thread = father;
715 while_each_thread(father, thread) {
716 if (thread->flags & PF_EXITING)
717 continue;
718 if (unlikely(pid_ns->child_reaper == father))
719 pid_ns->child_reaper = thread;
720 return thread;
723 if (unlikely(pid_ns->child_reaper == father)) {
724 write_unlock_irq(&tasklist_lock);
725 if (unlikely(pid_ns == &init_pid_ns))
726 panic("Attempted to kill init!");
728 zap_pid_ns_processes(pid_ns);
729 write_lock_irq(&tasklist_lock);
731 * We can not clear ->child_reaper or leave it alone.
732 * There may by stealth EXIT_DEAD tasks on ->children,
733 * forget_original_parent() must move them somewhere.
735 pid_ns->child_reaper = init_pid_ns.child_reaper;
738 return pid_ns->child_reaper;
742 * Any that need to be release_task'd are put on the @dead list.
744 static void reparent_thread(struct task_struct *father, struct task_struct *p,
745 struct list_head *dead)
747 if (p->pdeath_signal)
748 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
750 list_move_tail(&p->sibling, &p->real_parent->children);
752 if (task_detached(p))
753 return;
755 * If this is a threaded reparent there is no need to
756 * notify anyone anything has happened.
758 if (same_thread_group(p->real_parent, father))
759 return;
761 /* We don't want people slaying init. */
762 p->exit_signal = SIGCHLD;
764 /* If it has exited notify the new parent about this child's death. */
765 if (!p->ptrace &&
766 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
767 do_notify_parent(p, p->exit_signal);
768 if (task_detached(p)) {
769 p->exit_state = EXIT_DEAD;
770 list_move_tail(&p->sibling, dead);
774 kill_orphaned_pgrp(p, father);
777 static void forget_original_parent(struct task_struct *father)
779 struct task_struct *p, *n, *reaper;
780 LIST_HEAD(dead_children);
782 exit_ptrace(father);
784 write_lock_irq(&tasklist_lock);
785 reaper = find_new_reaper(father);
787 list_for_each_entry_safe(p, n, &father->children, sibling) {
788 p->real_parent = reaper;
789 if (p->parent == father) {
790 BUG_ON(p->ptrace);
791 p->parent = p->real_parent;
793 reparent_thread(father, p, &dead_children);
795 write_unlock_irq(&tasklist_lock);
797 BUG_ON(!list_empty(&father->children));
799 list_for_each_entry_safe(p, n, &dead_children, sibling) {
800 list_del_init(&p->sibling);
801 release_task(p);
806 * Send signals to all our closest relatives so that they know
807 * to properly mourn us..
809 static void exit_notify(struct task_struct *tsk, int group_dead)
811 int signal;
812 void *cookie;
815 * This does two things:
817 * A. Make init inherit all the child processes
818 * B. Check to see if any process groups have become orphaned
819 * as a result of our exiting, and if they have any stopped
820 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
822 forget_original_parent(tsk);
823 exit_task_namespaces(tsk);
825 write_lock_irq(&tasklist_lock);
826 if (group_dead)
827 kill_orphaned_pgrp(tsk->group_leader, NULL);
829 /* Let father know we died
831 * Thread signals are configurable, but you aren't going to use
832 * that to send signals to arbitary processes.
833 * That stops right now.
835 * If the parent exec id doesn't match the exec id we saved
836 * when we started then we know the parent has changed security
837 * domain.
839 * If our self_exec id doesn't match our parent_exec_id then
840 * we have changed execution domain as these two values started
841 * the same after a fork.
843 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
844 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
845 tsk->self_exec_id != tsk->parent_exec_id))
846 tsk->exit_signal = SIGCHLD;
848 signal = tracehook_notify_death(tsk, &cookie, group_dead);
849 if (signal >= 0)
850 signal = do_notify_parent(tsk, signal);
852 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
854 /* mt-exec, de_thread() is waiting for us */
855 if (thread_group_leader(tsk) &&
856 tsk->signal->group_exit_task &&
857 tsk->signal->notify_count < 0)
858 wake_up_process(tsk->signal->group_exit_task);
860 write_unlock_irq(&tasklist_lock);
862 tracehook_report_death(tsk, signal, cookie, group_dead);
864 /* If the process is dead, release it - nobody will wait for it */
865 if (signal == DEATH_REAP)
866 release_task(tsk);
869 #ifdef CONFIG_DEBUG_STACK_USAGE
870 static void check_stack_usage(void)
872 static DEFINE_SPINLOCK(low_water_lock);
873 static int lowest_to_date = THREAD_SIZE;
874 unsigned long free;
876 free = stack_not_used(current);
878 if (free >= lowest_to_date)
879 return;
881 spin_lock(&low_water_lock);
882 if (free < lowest_to_date) {
883 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
884 "left\n",
885 current->comm, free);
886 lowest_to_date = free;
888 spin_unlock(&low_water_lock);
890 #else
891 static inline void check_stack_usage(void) {}
892 #endif
894 NORET_TYPE void do_exit(long code)
896 struct task_struct *tsk = current;
897 int group_dead;
899 profile_task_exit(tsk);
901 WARN_ON(atomic_read(&tsk->fs_excl));
903 if (unlikely(in_interrupt()))
904 panic("Aiee, killing interrupt handler!");
905 if (unlikely(!tsk->pid))
906 panic("Attempted to kill the idle task!");
908 tracehook_report_exit(&code);
911 * We're taking recursive faults here in do_exit. Safest is to just
912 * leave this task alone and wait for reboot.
914 if (unlikely(tsk->flags & PF_EXITING)) {
915 printk(KERN_ALERT
916 "Fixing recursive fault but reboot is needed!\n");
918 * We can do this unlocked here. The futex code uses
919 * this flag just to verify whether the pi state
920 * cleanup has been done or not. In the worst case it
921 * loops once more. We pretend that the cleanup was
922 * done as there is no way to return. Either the
923 * OWNER_DIED bit is set by now or we push the blocked
924 * task into the wait for ever nirwana as well.
926 tsk->flags |= PF_EXITPIDONE;
927 set_current_state(TASK_UNINTERRUPTIBLE);
928 schedule();
931 exit_irq_thread();
933 exit_signals(tsk); /* sets PF_EXITING */
935 * tsk->flags are checked in the futex code to protect against
936 * an exiting task cleaning up the robust pi futexes.
938 smp_mb();
939 spin_unlock_wait(&tsk->pi_lock);
941 if (unlikely(in_atomic()))
942 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
943 current->comm, task_pid_nr(current),
944 preempt_count());
946 acct_update_integrals(tsk);
948 group_dead = atomic_dec_and_test(&tsk->signal->live);
949 if (group_dead) {
950 hrtimer_cancel(&tsk->signal->real_timer);
951 exit_itimers(tsk->signal);
953 acct_collect(code, group_dead);
954 if (group_dead)
955 tty_audit_exit();
956 if (unlikely(tsk->audit_context))
957 audit_free(tsk);
959 tsk->exit_code = code;
960 taskstats_exit(tsk, group_dead);
962 exit_mm(tsk);
964 if (group_dead)
965 acct_process();
966 trace_sched_process_exit(tsk);
968 exit_sem(tsk);
969 exit_files(tsk);
970 exit_fs(tsk);
971 check_stack_usage();
972 exit_thread();
973 cgroup_exit(tsk, 1);
975 if (group_dead && tsk->signal->leader)
976 disassociate_ctty(1);
978 module_put(task_thread_info(tsk)->exec_domain->module);
979 if (tsk->binfmt)
980 module_put(tsk->binfmt->module);
982 proc_exit_connector(tsk);
985 * Flush inherited counters to the parent - before the parent
986 * gets woken up by child-exit notifications.
988 perf_counter_exit_task(tsk);
990 exit_notify(tsk, group_dead);
991 #ifdef CONFIG_NUMA
992 mpol_put(tsk->mempolicy);
993 tsk->mempolicy = NULL;
994 #endif
995 #ifdef CONFIG_FUTEX
996 if (unlikely(!list_empty(&tsk->pi_state_list)))
997 exit_pi_state_list(tsk);
998 if (unlikely(current->pi_state_cache))
999 kfree(current->pi_state_cache);
1000 #endif
1002 * Make sure we are holding no locks:
1004 debug_check_no_locks_held(tsk);
1006 * We can do this unlocked here. The futex code uses this flag
1007 * just to verify whether the pi state cleanup has been done
1008 * or not. In the worst case it loops once more.
1010 tsk->flags |= PF_EXITPIDONE;
1012 if (tsk->io_context)
1013 exit_io_context();
1015 if (tsk->splice_pipe)
1016 __free_pipe_info(tsk->splice_pipe);
1018 preempt_disable();
1019 /* causes final put_task_struct in finish_task_switch(). */
1020 tsk->state = TASK_DEAD;
1021 schedule();
1022 BUG();
1023 /* Avoid "noreturn function does return". */
1024 for (;;)
1025 cpu_relax(); /* For when BUG is null */
1028 EXPORT_SYMBOL_GPL(do_exit);
1030 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1032 if (comp)
1033 complete(comp);
1035 do_exit(code);
1038 EXPORT_SYMBOL(complete_and_exit);
1040 SYSCALL_DEFINE1(exit, int, error_code)
1042 do_exit((error_code&0xff)<<8);
1046 * Take down every thread in the group. This is called by fatal signals
1047 * as well as by sys_exit_group (below).
1049 NORET_TYPE void
1050 do_group_exit(int exit_code)
1052 struct signal_struct *sig = current->signal;
1054 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1056 if (signal_group_exit(sig))
1057 exit_code = sig->group_exit_code;
1058 else if (!thread_group_empty(current)) {
1059 struct sighand_struct *const sighand = current->sighand;
1060 spin_lock_irq(&sighand->siglock);
1061 if (signal_group_exit(sig))
1062 /* Another thread got here before we took the lock. */
1063 exit_code = sig->group_exit_code;
1064 else {
1065 sig->group_exit_code = exit_code;
1066 sig->flags = SIGNAL_GROUP_EXIT;
1067 zap_other_threads(current);
1069 spin_unlock_irq(&sighand->siglock);
1072 do_exit(exit_code);
1073 /* NOTREACHED */
1077 * this kills every thread in the thread group. Note that any externally
1078 * wait4()-ing process will get the correct exit code - even if this
1079 * thread is not the thread group leader.
1081 SYSCALL_DEFINE1(exit_group, int, error_code)
1083 do_group_exit((error_code & 0xff) << 8);
1084 /* NOTREACHED */
1085 return 0;
1088 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1090 struct pid *pid = NULL;
1091 if (type == PIDTYPE_PID)
1092 pid = task->pids[type].pid;
1093 else if (type < PIDTYPE_MAX)
1094 pid = task->group_leader->pids[type].pid;
1095 return pid;
1098 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1099 struct task_struct *p)
1101 int err;
1103 if (type < PIDTYPE_MAX) {
1104 if (task_pid_type(p, type) != pid)
1105 return 0;
1108 /* Wait for all children (clone and not) if __WALL is set;
1109 * otherwise, wait for clone children *only* if __WCLONE is
1110 * set; otherwise, wait for non-clone children *only*. (Note:
1111 * A "clone" child here is one that reports to its parent
1112 * using a signal other than SIGCHLD.) */
1113 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1114 && !(options & __WALL))
1115 return 0;
1117 err = security_task_wait(p);
1118 if (err)
1119 return err;
1121 return 1;
1124 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1125 int why, int status,
1126 struct siginfo __user *infop,
1127 struct rusage __user *rusagep)
1129 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1131 put_task_struct(p);
1132 if (!retval)
1133 retval = put_user(SIGCHLD, &infop->si_signo);
1134 if (!retval)
1135 retval = put_user(0, &infop->si_errno);
1136 if (!retval)
1137 retval = put_user((short)why, &infop->si_code);
1138 if (!retval)
1139 retval = put_user(pid, &infop->si_pid);
1140 if (!retval)
1141 retval = put_user(uid, &infop->si_uid);
1142 if (!retval)
1143 retval = put_user(status, &infop->si_status);
1144 if (!retval)
1145 retval = pid;
1146 return retval;
1150 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1151 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1152 * the lock and this task is uninteresting. If we return nonzero, we have
1153 * released the lock and the system call should return.
1155 static int wait_task_zombie(struct task_struct *p, int options,
1156 struct siginfo __user *infop,
1157 int __user *stat_addr, struct rusage __user *ru)
1159 unsigned long state;
1160 int retval, status, traced;
1161 pid_t pid = task_pid_vnr(p);
1162 uid_t uid = __task_cred(p)->uid;
1164 if (!likely(options & WEXITED))
1165 return 0;
1167 if (unlikely(options & WNOWAIT)) {
1168 int exit_code = p->exit_code;
1169 int why, status;
1171 get_task_struct(p);
1172 read_unlock(&tasklist_lock);
1173 if ((exit_code & 0x7f) == 0) {
1174 why = CLD_EXITED;
1175 status = exit_code >> 8;
1176 } else {
1177 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1178 status = exit_code & 0x7f;
1180 return wait_noreap_copyout(p, pid, uid, why,
1181 status, infop, ru);
1185 * Try to move the task's state to DEAD
1186 * only one thread is allowed to do this:
1188 state = xchg(&p->exit_state, EXIT_DEAD);
1189 if (state != EXIT_ZOMBIE) {
1190 BUG_ON(state != EXIT_DEAD);
1191 return 0;
1194 traced = ptrace_reparented(p);
1196 if (likely(!traced)) {
1197 struct signal_struct *psig;
1198 struct signal_struct *sig;
1199 struct task_cputime cputime;
1202 * The resource counters for the group leader are in its
1203 * own task_struct. Those for dead threads in the group
1204 * are in its signal_struct, as are those for the child
1205 * processes it has previously reaped. All these
1206 * accumulate in the parent's signal_struct c* fields.
1208 * We don't bother to take a lock here to protect these
1209 * p->signal fields, because they are only touched by
1210 * __exit_signal, which runs with tasklist_lock
1211 * write-locked anyway, and so is excluded here. We do
1212 * need to protect the access to p->parent->signal fields,
1213 * as other threads in the parent group can be right
1214 * here reaping other children at the same time.
1216 * We use thread_group_cputime() to get times for the thread
1217 * group, which consolidates times for all threads in the
1218 * group including the group leader.
1220 thread_group_cputime(p, &cputime);
1221 spin_lock_irq(&p->parent->sighand->siglock);
1222 psig = p->parent->signal;
1223 sig = p->signal;
1224 psig->cutime =
1225 cputime_add(psig->cutime,
1226 cputime_add(cputime.utime,
1227 sig->cutime));
1228 psig->cstime =
1229 cputime_add(psig->cstime,
1230 cputime_add(cputime.stime,
1231 sig->cstime));
1232 psig->cgtime =
1233 cputime_add(psig->cgtime,
1234 cputime_add(p->gtime,
1235 cputime_add(sig->gtime,
1236 sig->cgtime)));
1237 psig->cmin_flt +=
1238 p->min_flt + sig->min_flt + sig->cmin_flt;
1239 psig->cmaj_flt +=
1240 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1241 psig->cnvcsw +=
1242 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1243 psig->cnivcsw +=
1244 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1245 psig->cinblock +=
1246 task_io_get_inblock(p) +
1247 sig->inblock + sig->cinblock;
1248 psig->coublock +=
1249 task_io_get_oublock(p) +
1250 sig->oublock + sig->coublock;
1251 task_io_accounting_add(&psig->ioac, &p->ioac);
1252 task_io_accounting_add(&psig->ioac, &sig->ioac);
1253 spin_unlock_irq(&p->parent->sighand->siglock);
1257 * Now we are sure this task is interesting, and no other
1258 * thread can reap it because we set its state to EXIT_DEAD.
1260 read_unlock(&tasklist_lock);
1262 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1263 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1264 ? p->signal->group_exit_code : p->exit_code;
1265 if (!retval && stat_addr)
1266 retval = put_user(status, stat_addr);
1267 if (!retval && infop)
1268 retval = put_user(SIGCHLD, &infop->si_signo);
1269 if (!retval && infop)
1270 retval = put_user(0, &infop->si_errno);
1271 if (!retval && infop) {
1272 int why;
1274 if ((status & 0x7f) == 0) {
1275 why = CLD_EXITED;
1276 status >>= 8;
1277 } else {
1278 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1279 status &= 0x7f;
1281 retval = put_user((short)why, &infop->si_code);
1282 if (!retval)
1283 retval = put_user(status, &infop->si_status);
1285 if (!retval && infop)
1286 retval = put_user(pid, &infop->si_pid);
1287 if (!retval && infop)
1288 retval = put_user(uid, &infop->si_uid);
1289 if (!retval)
1290 retval = pid;
1292 if (traced) {
1293 write_lock_irq(&tasklist_lock);
1294 /* We dropped tasklist, ptracer could die and untrace */
1295 ptrace_unlink(p);
1297 * If this is not a detached task, notify the parent.
1298 * If it's still not detached after that, don't release
1299 * it now.
1301 if (!task_detached(p)) {
1302 do_notify_parent(p, p->exit_signal);
1303 if (!task_detached(p)) {
1304 p->exit_state = EXIT_ZOMBIE;
1305 p = NULL;
1308 write_unlock_irq(&tasklist_lock);
1310 if (p != NULL)
1311 release_task(p);
1313 return retval;
1316 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1318 if (ptrace) {
1319 if (task_is_stopped_or_traced(p))
1320 return &p->exit_code;
1321 } else {
1322 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1323 return &p->signal->group_exit_code;
1325 return NULL;
1329 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1330 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1331 * the lock and this task is uninteresting. If we return nonzero, we have
1332 * released the lock and the system call should return.
1334 static int wait_task_stopped(int ptrace, struct task_struct *p,
1335 int options, struct siginfo __user *infop,
1336 int __user *stat_addr, struct rusage __user *ru)
1338 int retval, exit_code, *p_code, why;
1339 uid_t uid = 0; /* unneeded, required by compiler */
1340 pid_t pid;
1342 if (!(options & WUNTRACED))
1343 return 0;
1345 exit_code = 0;
1346 spin_lock_irq(&p->sighand->siglock);
1348 p_code = task_stopped_code(p, ptrace);
1349 if (unlikely(!p_code))
1350 goto unlock_sig;
1352 exit_code = *p_code;
1353 if (!exit_code)
1354 goto unlock_sig;
1356 if (!unlikely(options & WNOWAIT))
1357 *p_code = 0;
1359 /* don't need the RCU readlock here as we're holding a spinlock */
1360 uid = __task_cred(p)->uid;
1361 unlock_sig:
1362 spin_unlock_irq(&p->sighand->siglock);
1363 if (!exit_code)
1364 return 0;
1367 * Now we are pretty sure this task is interesting.
1368 * Make sure it doesn't get reaped out from under us while we
1369 * give up the lock and then examine it below. We don't want to
1370 * keep holding onto the tasklist_lock while we call getrusage and
1371 * possibly take page faults for user memory.
1373 get_task_struct(p);
1374 pid = task_pid_vnr(p);
1375 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1376 read_unlock(&tasklist_lock);
1378 if (unlikely(options & WNOWAIT))
1379 return wait_noreap_copyout(p, pid, uid,
1380 why, exit_code,
1381 infop, ru);
1383 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1384 if (!retval && stat_addr)
1385 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1386 if (!retval && infop)
1387 retval = put_user(SIGCHLD, &infop->si_signo);
1388 if (!retval && infop)
1389 retval = put_user(0, &infop->si_errno);
1390 if (!retval && infop)
1391 retval = put_user((short)why, &infop->si_code);
1392 if (!retval && infop)
1393 retval = put_user(exit_code, &infop->si_status);
1394 if (!retval && infop)
1395 retval = put_user(pid, &infop->si_pid);
1396 if (!retval && infop)
1397 retval = put_user(uid, &infop->si_uid);
1398 if (!retval)
1399 retval = pid;
1400 put_task_struct(p);
1402 BUG_ON(!retval);
1403 return retval;
1407 * Handle do_wait work for one task in a live, non-stopped state.
1408 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1409 * the lock and this task is uninteresting. If we return nonzero, we have
1410 * released the lock and the system call should return.
1412 static int wait_task_continued(struct task_struct *p, int options,
1413 struct siginfo __user *infop,
1414 int __user *stat_addr, struct rusage __user *ru)
1416 int retval;
1417 pid_t pid;
1418 uid_t uid;
1420 if (!unlikely(options & WCONTINUED))
1421 return 0;
1423 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1424 return 0;
1426 spin_lock_irq(&p->sighand->siglock);
1427 /* Re-check with the lock held. */
1428 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1429 spin_unlock_irq(&p->sighand->siglock);
1430 return 0;
1432 if (!unlikely(options & WNOWAIT))
1433 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1434 uid = __task_cred(p)->uid;
1435 spin_unlock_irq(&p->sighand->siglock);
1437 pid = task_pid_vnr(p);
1438 get_task_struct(p);
1439 read_unlock(&tasklist_lock);
1441 if (!infop) {
1442 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1443 put_task_struct(p);
1444 if (!retval && stat_addr)
1445 retval = put_user(0xffff, stat_addr);
1446 if (!retval)
1447 retval = pid;
1448 } else {
1449 retval = wait_noreap_copyout(p, pid, uid,
1450 CLD_CONTINUED, SIGCONT,
1451 infop, ru);
1452 BUG_ON(retval == 0);
1455 return retval;
1459 * Consider @p for a wait by @parent.
1461 * -ECHILD should be in *@notask_error before the first call.
1462 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1463 * Returns zero if the search for a child should continue;
1464 * then *@notask_error is 0 if @p is an eligible child,
1465 * or another error from security_task_wait(), or still -ECHILD.
1467 static int wait_consider_task(struct task_struct *parent, int ptrace,
1468 struct task_struct *p, int *notask_error,
1469 enum pid_type type, struct pid *pid, int options,
1470 struct siginfo __user *infop,
1471 int __user *stat_addr, struct rusage __user *ru)
1473 int ret = eligible_child(type, pid, options, p);
1474 if (!ret)
1475 return ret;
1477 if (unlikely(ret < 0)) {
1479 * If we have not yet seen any eligible child,
1480 * then let this error code replace -ECHILD.
1481 * A permission error will give the user a clue
1482 * to look for security policy problems, rather
1483 * than for mysterious wait bugs.
1485 if (*notask_error)
1486 *notask_error = ret;
1489 if (likely(!ptrace) && unlikely(p->ptrace)) {
1491 * This child is hidden by ptrace.
1492 * We aren't allowed to see it now, but eventually we will.
1494 *notask_error = 0;
1495 return 0;
1498 if (p->exit_state == EXIT_DEAD)
1499 return 0;
1502 * We don't reap group leaders with subthreads.
1504 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1505 return wait_task_zombie(p, options, infop, stat_addr, ru);
1508 * It's stopped or running now, so it might
1509 * later continue, exit, or stop again.
1511 *notask_error = 0;
1513 if (task_stopped_code(p, ptrace))
1514 return wait_task_stopped(ptrace, p, options,
1515 infop, stat_addr, ru);
1517 return wait_task_continued(p, options, infop, stat_addr, ru);
1521 * Do the work of do_wait() for one thread in the group, @tsk.
1523 * -ECHILD should be in *@notask_error before the first call.
1524 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1525 * Returns zero if the search for a child should continue; then
1526 * *@notask_error is 0 if there were any eligible children,
1527 * or another error from security_task_wait(), or still -ECHILD.
1529 static int do_wait_thread(struct task_struct *tsk, int *notask_error,
1530 enum pid_type type, struct pid *pid, int options,
1531 struct siginfo __user *infop, int __user *stat_addr,
1532 struct rusage __user *ru)
1534 struct task_struct *p;
1536 list_for_each_entry(p, &tsk->children, sibling) {
1538 * Do not consider detached threads.
1540 if (!task_detached(p)) {
1541 int ret = wait_consider_task(tsk, 0, p, notask_error,
1542 type, pid, options,
1543 infop, stat_addr, ru);
1544 if (ret)
1545 return ret;
1549 return 0;
1552 static int ptrace_do_wait(struct task_struct *tsk, int *notask_error,
1553 enum pid_type type, struct pid *pid, int options,
1554 struct siginfo __user *infop, int __user *stat_addr,
1555 struct rusage __user *ru)
1557 struct task_struct *p;
1560 * Traditionally we see ptrace'd stopped tasks regardless of options.
1562 options |= WUNTRACED;
1564 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1565 int ret = wait_consider_task(tsk, 1, p, notask_error,
1566 type, pid, options,
1567 infop, stat_addr, ru);
1568 if (ret)
1569 return ret;
1572 return 0;
1575 static long do_wait(enum pid_type type, struct pid *pid, int options,
1576 struct siginfo __user *infop, int __user *stat_addr,
1577 struct rusage __user *ru)
1579 DECLARE_WAITQUEUE(wait, current);
1580 struct task_struct *tsk;
1581 int retval;
1583 trace_sched_process_wait(pid);
1585 add_wait_queue(&current->signal->wait_chldexit,&wait);
1586 repeat:
1588 * If there is nothing that can match our critiera just get out.
1589 * We will clear @retval to zero if we see any child that might later
1590 * match our criteria, even if we are not able to reap it yet.
1592 retval = -ECHILD;
1593 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1594 goto end;
1596 current->state = TASK_INTERRUPTIBLE;
1597 read_lock(&tasklist_lock);
1598 tsk = current;
1599 do {
1600 int tsk_result = do_wait_thread(tsk, &retval,
1601 type, pid, options,
1602 infop, stat_addr, ru);
1603 if (!tsk_result)
1604 tsk_result = ptrace_do_wait(tsk, &retval,
1605 type, pid, options,
1606 infop, stat_addr, ru);
1607 if (tsk_result) {
1609 * tasklist_lock is unlocked and we have a final result.
1611 retval = tsk_result;
1612 goto end;
1615 if (options & __WNOTHREAD)
1616 break;
1617 tsk = next_thread(tsk);
1618 BUG_ON(tsk->signal != current->signal);
1619 } while (tsk != current);
1620 read_unlock(&tasklist_lock);
1622 if (!retval && !(options & WNOHANG)) {
1623 retval = -ERESTARTSYS;
1624 if (!signal_pending(current)) {
1625 schedule();
1626 goto repeat;
1630 end:
1631 current->state = TASK_RUNNING;
1632 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1633 if (infop) {
1634 if (retval > 0)
1635 retval = 0;
1636 else {
1638 * For a WNOHANG return, clear out all the fields
1639 * we would set so the user can easily tell the
1640 * difference.
1642 if (!retval)
1643 retval = put_user(0, &infop->si_signo);
1644 if (!retval)
1645 retval = put_user(0, &infop->si_errno);
1646 if (!retval)
1647 retval = put_user(0, &infop->si_code);
1648 if (!retval)
1649 retval = put_user(0, &infop->si_pid);
1650 if (!retval)
1651 retval = put_user(0, &infop->si_uid);
1652 if (!retval)
1653 retval = put_user(0, &infop->si_status);
1656 return retval;
1659 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1660 infop, int, options, struct rusage __user *, ru)
1662 struct pid *pid = NULL;
1663 enum pid_type type;
1664 long ret;
1666 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1667 return -EINVAL;
1668 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1669 return -EINVAL;
1671 switch (which) {
1672 case P_ALL:
1673 type = PIDTYPE_MAX;
1674 break;
1675 case P_PID:
1676 type = PIDTYPE_PID;
1677 if (upid <= 0)
1678 return -EINVAL;
1679 break;
1680 case P_PGID:
1681 type = PIDTYPE_PGID;
1682 if (upid <= 0)
1683 return -EINVAL;
1684 break;
1685 default:
1686 return -EINVAL;
1689 if (type < PIDTYPE_MAX)
1690 pid = find_get_pid(upid);
1691 ret = do_wait(type, pid, options, infop, NULL, ru);
1692 put_pid(pid);
1694 /* avoid REGPARM breakage on x86: */
1695 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1696 return ret;
1699 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1700 int, options, struct rusage __user *, ru)
1702 struct pid *pid = NULL;
1703 enum pid_type type;
1704 long ret;
1706 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1707 __WNOTHREAD|__WCLONE|__WALL))
1708 return -EINVAL;
1710 if (upid == -1)
1711 type = PIDTYPE_MAX;
1712 else if (upid < 0) {
1713 type = PIDTYPE_PGID;
1714 pid = find_get_pid(-upid);
1715 } else if (upid == 0) {
1716 type = PIDTYPE_PGID;
1717 pid = get_task_pid(current, PIDTYPE_PGID);
1718 } else /* upid > 0 */ {
1719 type = PIDTYPE_PID;
1720 pid = find_get_pid(upid);
1723 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1724 put_pid(pid);
1726 /* avoid REGPARM breakage on x86: */
1727 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1728 return ret;
1731 #ifdef __ARCH_WANT_SYS_WAITPID
1734 * sys_waitpid() remains for compatibility. waitpid() should be
1735 * implemented by calling sys_wait4() from libc.a.
1737 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1739 return sys_wait4(pid, stat_addr, options, NULL);
1742 #endif