drm/i915: re-initialize DDI buffer translations after resume
[linux-2.6/libata-dev.git] / drivers / gpu / drm / i915 / intel_display.c
blob4d84fcdd413f900714a9388472f33616173acdfe
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
62 typedef struct {
63 int min, max;
64 } intel_range_t;
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83 static bool
84 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
85 int target, int refclk, intel_clock_t *match_clock,
86 intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *match_clock,
90 intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
94 int target, int refclk, intel_clock_t *match_clock,
95 intel_clock_t *best_clock);
96 static bool
97 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
98 int target, int refclk, intel_clock_t *match_clock,
99 intel_clock_t *best_clock);
101 static bool
102 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
103 int target, int refclk, intel_clock_t *match_clock,
104 intel_clock_t *best_clock);
106 static inline u32 /* units of 100MHz */
107 intel_fdi_link_freq(struct drm_device *dev)
109 if (IS_GEN5(dev)) {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
112 } else
113 return 27;
116 static const intel_limit_t intel_limits_i8xx_dvo = {
117 .dot = { .min = 25000, .max = 350000 },
118 .vco = { .min = 930000, .max = 1400000 },
119 .n = { .min = 3, .max = 16 },
120 .m = { .min = 96, .max = 140 },
121 .m1 = { .min = 18, .max = 26 },
122 .m2 = { .min = 6, .max = 16 },
123 .p = { .min = 4, .max = 128 },
124 .p1 = { .min = 2, .max = 33 },
125 .p2 = { .dot_limit = 165000,
126 .p2_slow = 4, .p2_fast = 2 },
127 .find_pll = intel_find_best_PLL,
130 static const intel_limit_t intel_limits_i8xx_lvds = {
131 .dot = { .min = 25000, .max = 350000 },
132 .vco = { .min = 930000, .max = 1400000 },
133 .n = { .min = 3, .max = 16 },
134 .m = { .min = 96, .max = 140 },
135 .m1 = { .min = 18, .max = 26 },
136 .m2 = { .min = 6, .max = 16 },
137 .p = { .min = 4, .max = 128 },
138 .p1 = { .min = 1, .max = 6 },
139 .p2 = { .dot_limit = 165000,
140 .p2_slow = 14, .p2_fast = 7 },
141 .find_pll = intel_find_best_PLL,
144 static const intel_limit_t intel_limits_i9xx_sdvo = {
145 .dot = { .min = 20000, .max = 400000 },
146 .vco = { .min = 1400000, .max = 2800000 },
147 .n = { .min = 1, .max = 6 },
148 .m = { .min = 70, .max = 120 },
149 .m1 = { .min = 10, .max = 22 },
150 .m2 = { .min = 5, .max = 9 },
151 .p = { .min = 5, .max = 80 },
152 .p1 = { .min = 1, .max = 8 },
153 .p2 = { .dot_limit = 200000,
154 .p2_slow = 10, .p2_fast = 5 },
155 .find_pll = intel_find_best_PLL,
158 static const intel_limit_t intel_limits_i9xx_lvds = {
159 .dot = { .min = 20000, .max = 400000 },
160 .vco = { .min = 1400000, .max = 2800000 },
161 .n = { .min = 1, .max = 6 },
162 .m = { .min = 70, .max = 120 },
163 .m1 = { .min = 10, .max = 22 },
164 .m2 = { .min = 5, .max = 9 },
165 .p = { .min = 7, .max = 98 },
166 .p1 = { .min = 1, .max = 8 },
167 .p2 = { .dot_limit = 112000,
168 .p2_slow = 14, .p2_fast = 7 },
169 .find_pll = intel_find_best_PLL,
173 static const intel_limit_t intel_limits_g4x_sdvo = {
174 .dot = { .min = 25000, .max = 270000 },
175 .vco = { .min = 1750000, .max = 3500000},
176 .n = { .min = 1, .max = 4 },
177 .m = { .min = 104, .max = 138 },
178 .m1 = { .min = 17, .max = 23 },
179 .m2 = { .min = 5, .max = 11 },
180 .p = { .min = 10, .max = 30 },
181 .p1 = { .min = 1, .max = 3},
182 .p2 = { .dot_limit = 270000,
183 .p2_slow = 10,
184 .p2_fast = 10
186 .find_pll = intel_g4x_find_best_PLL,
189 static const intel_limit_t intel_limits_g4x_hdmi = {
190 .dot = { .min = 22000, .max = 400000 },
191 .vco = { .min = 1750000, .max = 3500000},
192 .n = { .min = 1, .max = 4 },
193 .m = { .min = 104, .max = 138 },
194 .m1 = { .min = 16, .max = 23 },
195 .m2 = { .min = 5, .max = 11 },
196 .p = { .min = 5, .max = 80 },
197 .p1 = { .min = 1, .max = 8},
198 .p2 = { .dot_limit = 165000,
199 .p2_slow = 10, .p2_fast = 5 },
200 .find_pll = intel_g4x_find_best_PLL,
203 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
204 .dot = { .min = 20000, .max = 115000 },
205 .vco = { .min = 1750000, .max = 3500000 },
206 .n = { .min = 1, .max = 3 },
207 .m = { .min = 104, .max = 138 },
208 .m1 = { .min = 17, .max = 23 },
209 .m2 = { .min = 5, .max = 11 },
210 .p = { .min = 28, .max = 112 },
211 .p1 = { .min = 2, .max = 8 },
212 .p2 = { .dot_limit = 0,
213 .p2_slow = 14, .p2_fast = 14
215 .find_pll = intel_g4x_find_best_PLL,
218 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
219 .dot = { .min = 80000, .max = 224000 },
220 .vco = { .min = 1750000, .max = 3500000 },
221 .n = { .min = 1, .max = 3 },
222 .m = { .min = 104, .max = 138 },
223 .m1 = { .min = 17, .max = 23 },
224 .m2 = { .min = 5, .max = 11 },
225 .p = { .min = 14, .max = 42 },
226 .p1 = { .min = 2, .max = 6 },
227 .p2 = { .dot_limit = 0,
228 .p2_slow = 7, .p2_fast = 7
230 .find_pll = intel_g4x_find_best_PLL,
233 static const intel_limit_t intel_limits_g4x_display_port = {
234 .dot = { .min = 161670, .max = 227000 },
235 .vco = { .min = 1750000, .max = 3500000},
236 .n = { .min = 1, .max = 2 },
237 .m = { .min = 97, .max = 108 },
238 .m1 = { .min = 0x10, .max = 0x12 },
239 .m2 = { .min = 0x05, .max = 0x06 },
240 .p = { .min = 10, .max = 20 },
241 .p1 = { .min = 1, .max = 2},
242 .p2 = { .dot_limit = 0,
243 .p2_slow = 10, .p2_fast = 10 },
244 .find_pll = intel_find_pll_g4x_dp,
247 static const intel_limit_t intel_limits_pineview_sdvo = {
248 .dot = { .min = 20000, .max = 400000},
249 .vco = { .min = 1700000, .max = 3500000 },
250 /* Pineview's Ncounter is a ring counter */
251 .n = { .min = 3, .max = 6 },
252 .m = { .min = 2, .max = 256 },
253 /* Pineview only has one combined m divider, which we treat as m2. */
254 .m1 = { .min = 0, .max = 0 },
255 .m2 = { .min = 0, .max = 254 },
256 .p = { .min = 5, .max = 80 },
257 .p1 = { .min = 1, .max = 8 },
258 .p2 = { .dot_limit = 200000,
259 .p2_slow = 10, .p2_fast = 5 },
260 .find_pll = intel_find_best_PLL,
263 static const intel_limit_t intel_limits_pineview_lvds = {
264 .dot = { .min = 20000, .max = 400000 },
265 .vco = { .min = 1700000, .max = 3500000 },
266 .n = { .min = 3, .max = 6 },
267 .m = { .min = 2, .max = 256 },
268 .m1 = { .min = 0, .max = 0 },
269 .m2 = { .min = 0, .max = 254 },
270 .p = { .min = 7, .max = 112 },
271 .p1 = { .min = 1, .max = 8 },
272 .p2 = { .dot_limit = 112000,
273 .p2_slow = 14, .p2_fast = 14 },
274 .find_pll = intel_find_best_PLL,
277 /* Ironlake / Sandybridge
279 * We calculate clock using (register_value + 2) for N/M1/M2, so here
280 * the range value for them is (actual_value - 2).
282 static const intel_limit_t intel_limits_ironlake_dac = {
283 .dot = { .min = 25000, .max = 350000 },
284 .vco = { .min = 1760000, .max = 3510000 },
285 .n = { .min = 1, .max = 5 },
286 .m = { .min = 79, .max = 127 },
287 .m1 = { .min = 12, .max = 22 },
288 .m2 = { .min = 5, .max = 9 },
289 .p = { .min = 5, .max = 80 },
290 .p1 = { .min = 1, .max = 8 },
291 .p2 = { .dot_limit = 225000,
292 .p2_slow = 10, .p2_fast = 5 },
293 .find_pll = intel_g4x_find_best_PLL,
296 static const intel_limit_t intel_limits_ironlake_single_lvds = {
297 .dot = { .min = 25000, .max = 350000 },
298 .vco = { .min = 1760000, .max = 3510000 },
299 .n = { .min = 1, .max = 3 },
300 .m = { .min = 79, .max = 118 },
301 .m1 = { .min = 12, .max = 22 },
302 .m2 = { .min = 5, .max = 9 },
303 .p = { .min = 28, .max = 112 },
304 .p1 = { .min = 2, .max = 8 },
305 .p2 = { .dot_limit = 225000,
306 .p2_slow = 14, .p2_fast = 14 },
307 .find_pll = intel_g4x_find_best_PLL,
310 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
311 .dot = { .min = 25000, .max = 350000 },
312 .vco = { .min = 1760000, .max = 3510000 },
313 .n = { .min = 1, .max = 3 },
314 .m = { .min = 79, .max = 127 },
315 .m1 = { .min = 12, .max = 22 },
316 .m2 = { .min = 5, .max = 9 },
317 .p = { .min = 14, .max = 56 },
318 .p1 = { .min = 2, .max = 8 },
319 .p2 = { .dot_limit = 225000,
320 .p2_slow = 7, .p2_fast = 7 },
321 .find_pll = intel_g4x_find_best_PLL,
324 /* LVDS 100mhz refclk limits. */
325 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
326 .dot = { .min = 25000, .max = 350000 },
327 .vco = { .min = 1760000, .max = 3510000 },
328 .n = { .min = 1, .max = 2 },
329 .m = { .min = 79, .max = 126 },
330 .m1 = { .min = 12, .max = 22 },
331 .m2 = { .min = 5, .max = 9 },
332 .p = { .min = 28, .max = 112 },
333 .p1 = { .min = 2, .max = 8 },
334 .p2 = { .dot_limit = 225000,
335 .p2_slow = 14, .p2_fast = 14 },
336 .find_pll = intel_g4x_find_best_PLL,
339 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
340 .dot = { .min = 25000, .max = 350000 },
341 .vco = { .min = 1760000, .max = 3510000 },
342 .n = { .min = 1, .max = 3 },
343 .m = { .min = 79, .max = 126 },
344 .m1 = { .min = 12, .max = 22 },
345 .m2 = { .min = 5, .max = 9 },
346 .p = { .min = 14, .max = 42 },
347 .p1 = { .min = 2, .max = 6 },
348 .p2 = { .dot_limit = 225000,
349 .p2_slow = 7, .p2_fast = 7 },
350 .find_pll = intel_g4x_find_best_PLL,
353 static const intel_limit_t intel_limits_ironlake_display_port = {
354 .dot = { .min = 25000, .max = 350000 },
355 .vco = { .min = 1760000, .max = 3510000},
356 .n = { .min = 1, .max = 2 },
357 .m = { .min = 81, .max = 90 },
358 .m1 = { .min = 12, .max = 22 },
359 .m2 = { .min = 5, .max = 9 },
360 .p = { .min = 10, .max = 20 },
361 .p1 = { .min = 1, .max = 2},
362 .p2 = { .dot_limit = 0,
363 .p2_slow = 10, .p2_fast = 10 },
364 .find_pll = intel_find_pll_ironlake_dp,
367 static const intel_limit_t intel_limits_vlv_dac = {
368 .dot = { .min = 25000, .max = 270000 },
369 .vco = { .min = 4000000, .max = 6000000 },
370 .n = { .min = 1, .max = 7 },
371 .m = { .min = 22, .max = 450 }, /* guess */
372 .m1 = { .min = 2, .max = 3 },
373 .m2 = { .min = 11, .max = 156 },
374 .p = { .min = 10, .max = 30 },
375 .p1 = { .min = 2, .max = 3 },
376 .p2 = { .dot_limit = 270000,
377 .p2_slow = 2, .p2_fast = 20 },
378 .find_pll = intel_vlv_find_best_pll,
381 static const intel_limit_t intel_limits_vlv_hdmi = {
382 .dot = { .min = 20000, .max = 165000 },
383 .vco = { .min = 5994000, .max = 4000000 },
384 .n = { .min = 1, .max = 7 },
385 .m = { .min = 60, .max = 300 }, /* guess */
386 .m1 = { .min = 2, .max = 3 },
387 .m2 = { .min = 11, .max = 156 },
388 .p = { .min = 10, .max = 30 },
389 .p1 = { .min = 2, .max = 3 },
390 .p2 = { .dot_limit = 270000,
391 .p2_slow = 2, .p2_fast = 20 },
392 .find_pll = intel_vlv_find_best_pll,
395 static const intel_limit_t intel_limits_vlv_dp = {
396 .dot = { .min = 162000, .max = 270000 },
397 .vco = { .min = 5994000, .max = 4000000 },
398 .n = { .min = 1, .max = 7 },
399 .m = { .min = 60, .max = 300 }, /* guess */
400 .m1 = { .min = 2, .max = 3 },
401 .m2 = { .min = 11, .max = 156 },
402 .p = { .min = 10, .max = 30 },
403 .p1 = { .min = 2, .max = 3 },
404 .p2 = { .dot_limit = 270000,
405 .p2_slow = 2, .p2_fast = 20 },
406 .find_pll = intel_vlv_find_best_pll,
409 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
411 unsigned long flags;
412 u32 val = 0;
414 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
415 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
416 DRM_ERROR("DPIO idle wait timed out\n");
417 goto out_unlock;
420 I915_WRITE(DPIO_REG, reg);
421 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
422 DPIO_BYTE);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO read wait timed out\n");
425 goto out_unlock;
427 val = I915_READ(DPIO_DATA);
429 out_unlock:
430 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
431 return val;
434 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
435 u32 val)
437 unsigned long flags;
439 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
440 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
441 DRM_ERROR("DPIO idle wait timed out\n");
442 goto out_unlock;
445 I915_WRITE(DPIO_DATA, val);
446 I915_WRITE(DPIO_REG, reg);
447 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
448 DPIO_BYTE);
449 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
450 DRM_ERROR("DPIO write wait timed out\n");
452 out_unlock:
453 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
456 static void vlv_init_dpio(struct drm_device *dev)
458 struct drm_i915_private *dev_priv = dev->dev_private;
460 /* Reset the DPIO config */
461 I915_WRITE(DPIO_CTL, 0);
462 POSTING_READ(DPIO_CTL);
463 I915_WRITE(DPIO_CTL, 1);
464 POSTING_READ(DPIO_CTL);
467 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
469 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
470 return 1;
473 static const struct dmi_system_id intel_dual_link_lvds[] = {
475 .callback = intel_dual_link_lvds_callback,
476 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
477 .matches = {
478 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
479 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
482 { } /* terminating entry */
485 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
486 unsigned int reg)
488 unsigned int val;
490 /* use the module option value if specified */
491 if (i915_lvds_channel_mode > 0)
492 return i915_lvds_channel_mode == 2;
494 if (dmi_check_system(intel_dual_link_lvds))
495 return true;
497 if (dev_priv->lvds_val)
498 val = dev_priv->lvds_val;
499 else {
500 /* BIOS should set the proper LVDS register value at boot, but
501 * in reality, it doesn't set the value when the lid is closed;
502 * we need to check "the value to be set" in VBT when LVDS
503 * register is uninitialized.
505 val = I915_READ(reg);
506 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
507 val = dev_priv->bios_lvds_val;
508 dev_priv->lvds_val = val;
510 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
513 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
514 int refclk)
516 struct drm_device *dev = crtc->dev;
517 struct drm_i915_private *dev_priv = dev->dev_private;
518 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
521 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
522 /* LVDS dual channel */
523 if (refclk == 100000)
524 limit = &intel_limits_ironlake_dual_lvds_100m;
525 else
526 limit = &intel_limits_ironlake_dual_lvds;
527 } else {
528 if (refclk == 100000)
529 limit = &intel_limits_ironlake_single_lvds_100m;
530 else
531 limit = &intel_limits_ironlake_single_lvds;
533 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
534 HAS_eDP)
535 limit = &intel_limits_ironlake_display_port;
536 else
537 limit = &intel_limits_ironlake_dac;
539 return limit;
542 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
544 struct drm_device *dev = crtc->dev;
545 struct drm_i915_private *dev_priv = dev->dev_private;
546 const intel_limit_t *limit;
548 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
549 if (is_dual_link_lvds(dev_priv, LVDS))
550 /* LVDS with dual channel */
551 limit = &intel_limits_g4x_dual_channel_lvds;
552 else
553 /* LVDS with dual channel */
554 limit = &intel_limits_g4x_single_channel_lvds;
555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
556 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
557 limit = &intel_limits_g4x_hdmi;
558 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
559 limit = &intel_limits_g4x_sdvo;
560 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
561 limit = &intel_limits_g4x_display_port;
562 } else /* The option is for other outputs */
563 limit = &intel_limits_i9xx_sdvo;
565 return limit;
568 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
570 struct drm_device *dev = crtc->dev;
571 const intel_limit_t *limit;
573 if (HAS_PCH_SPLIT(dev))
574 limit = intel_ironlake_limit(crtc, refclk);
575 else if (IS_G4X(dev)) {
576 limit = intel_g4x_limit(crtc);
577 } else if (IS_PINEVIEW(dev)) {
578 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
579 limit = &intel_limits_pineview_lvds;
580 else
581 limit = &intel_limits_pineview_sdvo;
582 } else if (IS_VALLEYVIEW(dev)) {
583 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
584 limit = &intel_limits_vlv_dac;
585 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
586 limit = &intel_limits_vlv_hdmi;
587 else
588 limit = &intel_limits_vlv_dp;
589 } else if (!IS_GEN2(dev)) {
590 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
591 limit = &intel_limits_i9xx_lvds;
592 else
593 limit = &intel_limits_i9xx_sdvo;
594 } else {
595 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
596 limit = &intel_limits_i8xx_lvds;
597 else
598 limit = &intel_limits_i8xx_dvo;
600 return limit;
603 /* m1 is reserved as 0 in Pineview, n is a ring counter */
604 static void pineview_clock(int refclk, intel_clock_t *clock)
606 clock->m = clock->m2 + 2;
607 clock->p = clock->p1 * clock->p2;
608 clock->vco = refclk * clock->m / clock->n;
609 clock->dot = clock->vco / clock->p;
612 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
614 if (IS_PINEVIEW(dev)) {
615 pineview_clock(refclk, clock);
616 return;
618 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
619 clock->p = clock->p1 * clock->p2;
620 clock->vco = refclk * clock->m / (clock->n + 2);
621 clock->dot = clock->vco / clock->p;
625 * Returns whether any output on the specified pipe is of the specified type
627 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
629 struct drm_device *dev = crtc->dev;
630 struct drm_mode_config *mode_config = &dev->mode_config;
631 struct intel_encoder *encoder;
633 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
634 if (encoder->base.crtc == crtc && encoder->type == type)
635 return true;
637 return false;
640 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
642 * Returns whether the given set of divisors are valid for a given refclk with
643 * the given connectors.
646 static bool intel_PLL_is_valid(struct drm_device *dev,
647 const intel_limit_t *limit,
648 const intel_clock_t *clock)
650 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
651 INTELPllInvalid("p1 out of range\n");
652 if (clock->p < limit->p.min || limit->p.max < clock->p)
653 INTELPllInvalid("p out of range\n");
654 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
655 INTELPllInvalid("m2 out of range\n");
656 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
657 INTELPllInvalid("m1 out of range\n");
658 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
659 INTELPllInvalid("m1 <= m2\n");
660 if (clock->m < limit->m.min || limit->m.max < clock->m)
661 INTELPllInvalid("m out of range\n");
662 if (clock->n < limit->n.min || limit->n.max < clock->n)
663 INTELPllInvalid("n out of range\n");
664 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
665 INTELPllInvalid("vco out of range\n");
666 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
667 * connector, etc., rather than just a single range.
669 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
670 INTELPllInvalid("dot out of range\n");
672 return true;
675 static bool
676 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
677 int target, int refclk, intel_clock_t *match_clock,
678 intel_clock_t *best_clock)
681 struct drm_device *dev = crtc->dev;
682 struct drm_i915_private *dev_priv = dev->dev_private;
683 intel_clock_t clock;
684 int err = target;
686 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
687 (I915_READ(LVDS)) != 0) {
689 * For LVDS, if the panel is on, just rely on its current
690 * settings for dual-channel. We haven't figured out how to
691 * reliably set up different single/dual channel state, if we
692 * even can.
694 if (is_dual_link_lvds(dev_priv, LVDS))
695 clock.p2 = limit->p2.p2_fast;
696 else
697 clock.p2 = limit->p2.p2_slow;
698 } else {
699 if (target < limit->p2.dot_limit)
700 clock.p2 = limit->p2.p2_slow;
701 else
702 clock.p2 = limit->p2.p2_fast;
705 memset(best_clock, 0, sizeof(*best_clock));
707 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
708 clock.m1++) {
709 for (clock.m2 = limit->m2.min;
710 clock.m2 <= limit->m2.max; clock.m2++) {
711 /* m1 is always 0 in Pineview */
712 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
713 break;
714 for (clock.n = limit->n.min;
715 clock.n <= limit->n.max; clock.n++) {
716 for (clock.p1 = limit->p1.min;
717 clock.p1 <= limit->p1.max; clock.p1++) {
718 int this_err;
720 intel_clock(dev, refclk, &clock);
721 if (!intel_PLL_is_valid(dev, limit,
722 &clock))
723 continue;
724 if (match_clock &&
725 clock.p != match_clock->p)
726 continue;
728 this_err = abs(clock.dot - target);
729 if (this_err < err) {
730 *best_clock = clock;
731 err = this_err;
738 return (err != target);
741 static bool
742 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
743 int target, int refclk, intel_clock_t *match_clock,
744 intel_clock_t *best_clock)
746 struct drm_device *dev = crtc->dev;
747 struct drm_i915_private *dev_priv = dev->dev_private;
748 intel_clock_t clock;
749 int max_n;
750 bool found;
751 /* approximately equals target * 0.00585 */
752 int err_most = (target >> 8) + (target >> 9);
753 found = false;
755 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
756 int lvds_reg;
758 if (HAS_PCH_SPLIT(dev))
759 lvds_reg = PCH_LVDS;
760 else
761 lvds_reg = LVDS;
762 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
763 LVDS_CLKB_POWER_UP)
764 clock.p2 = limit->p2.p2_fast;
765 else
766 clock.p2 = limit->p2.p2_slow;
767 } else {
768 if (target < limit->p2.dot_limit)
769 clock.p2 = limit->p2.p2_slow;
770 else
771 clock.p2 = limit->p2.p2_fast;
774 memset(best_clock, 0, sizeof(*best_clock));
775 max_n = limit->n.max;
776 /* based on hardware requirement, prefer smaller n to precision */
777 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
778 /* based on hardware requirement, prefere larger m1,m2 */
779 for (clock.m1 = limit->m1.max;
780 clock.m1 >= limit->m1.min; clock.m1--) {
781 for (clock.m2 = limit->m2.max;
782 clock.m2 >= limit->m2.min; clock.m2--) {
783 for (clock.p1 = limit->p1.max;
784 clock.p1 >= limit->p1.min; clock.p1--) {
785 int this_err;
787 intel_clock(dev, refclk, &clock);
788 if (!intel_PLL_is_valid(dev, limit,
789 &clock))
790 continue;
791 if (match_clock &&
792 clock.p != match_clock->p)
793 continue;
795 this_err = abs(clock.dot - target);
796 if (this_err < err_most) {
797 *best_clock = clock;
798 err_most = this_err;
799 max_n = clock.n;
800 found = true;
806 return found;
809 static bool
810 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
811 int target, int refclk, intel_clock_t *match_clock,
812 intel_clock_t *best_clock)
814 struct drm_device *dev = crtc->dev;
815 intel_clock_t clock;
817 if (target < 200000) {
818 clock.n = 1;
819 clock.p1 = 2;
820 clock.p2 = 10;
821 clock.m1 = 12;
822 clock.m2 = 9;
823 } else {
824 clock.n = 2;
825 clock.p1 = 1;
826 clock.p2 = 10;
827 clock.m1 = 14;
828 clock.m2 = 8;
830 intel_clock(dev, refclk, &clock);
831 memcpy(best_clock, &clock, sizeof(intel_clock_t));
832 return true;
835 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
836 static bool
837 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
838 int target, int refclk, intel_clock_t *match_clock,
839 intel_clock_t *best_clock)
841 intel_clock_t clock;
842 if (target < 200000) {
843 clock.p1 = 2;
844 clock.p2 = 10;
845 clock.n = 2;
846 clock.m1 = 23;
847 clock.m2 = 8;
848 } else {
849 clock.p1 = 1;
850 clock.p2 = 10;
851 clock.n = 1;
852 clock.m1 = 14;
853 clock.m2 = 2;
855 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
856 clock.p = (clock.p1 * clock.p2);
857 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
858 clock.vco = 0;
859 memcpy(best_clock, &clock, sizeof(intel_clock_t));
860 return true;
862 static bool
863 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
864 int target, int refclk, intel_clock_t *match_clock,
865 intel_clock_t *best_clock)
867 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
868 u32 m, n, fastclk;
869 u32 updrate, minupdate, fracbits, p;
870 unsigned long bestppm, ppm, absppm;
871 int dotclk, flag;
873 dotclk = target * 1000;
874 bestppm = 1000000;
875 ppm = absppm = 0;
876 fastclk = dotclk / (2*100);
877 updrate = 0;
878 minupdate = 19200;
879 fracbits = 1;
880 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
881 bestm1 = bestm2 = bestp1 = bestp2 = 0;
883 /* based on hardware requirement, prefer smaller n to precision */
884 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
885 updrate = refclk / n;
886 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
887 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
888 if (p2 > 10)
889 p2 = p2 - 1;
890 p = p1 * p2;
891 /* based on hardware requirement, prefer bigger m1,m2 values */
892 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
893 m2 = (((2*(fastclk * p * n / m1 )) +
894 refclk) / (2*refclk));
895 m = m1 * m2;
896 vco = updrate * m;
897 if (vco >= limit->vco.min && vco < limit->vco.max) {
898 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
899 absppm = (ppm > 0) ? ppm : (-ppm);
900 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
901 bestppm = 0;
902 flag = 1;
904 if (absppm < bestppm - 10) {
905 bestppm = absppm;
906 flag = 1;
908 if (flag) {
909 bestn = n;
910 bestm1 = m1;
911 bestm2 = m2;
912 bestp1 = p1;
913 bestp2 = p2;
914 flag = 0;
921 best_clock->n = bestn;
922 best_clock->m1 = bestm1;
923 best_clock->m2 = bestm2;
924 best_clock->p1 = bestp1;
925 best_clock->p2 = bestp2;
927 return true;
930 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
932 struct drm_i915_private *dev_priv = dev->dev_private;
933 u32 frame, frame_reg = PIPEFRAME(pipe);
935 frame = I915_READ(frame_reg);
937 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
938 DRM_DEBUG_KMS("vblank wait timed out\n");
942 * intel_wait_for_vblank - wait for vblank on a given pipe
943 * @dev: drm device
944 * @pipe: pipe to wait for
946 * Wait for vblank to occur on a given pipe. Needed for various bits of
947 * mode setting code.
949 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 int pipestat_reg = PIPESTAT(pipe);
954 if (INTEL_INFO(dev)->gen >= 5) {
955 ironlake_wait_for_vblank(dev, pipe);
956 return;
959 /* Clear existing vblank status. Note this will clear any other
960 * sticky status fields as well.
962 * This races with i915_driver_irq_handler() with the result
963 * that either function could miss a vblank event. Here it is not
964 * fatal, as we will either wait upon the next vblank interrupt or
965 * timeout. Generally speaking intel_wait_for_vblank() is only
966 * called during modeset at which time the GPU should be idle and
967 * should *not* be performing page flips and thus not waiting on
968 * vblanks...
969 * Currently, the result of us stealing a vblank from the irq
970 * handler is that a single frame will be skipped during swapbuffers.
972 I915_WRITE(pipestat_reg,
973 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
975 /* Wait for vblank interrupt bit to set */
976 if (wait_for(I915_READ(pipestat_reg) &
977 PIPE_VBLANK_INTERRUPT_STATUS,
978 50))
979 DRM_DEBUG_KMS("vblank wait timed out\n");
983 * intel_wait_for_pipe_off - wait for pipe to turn off
984 * @dev: drm device
985 * @pipe: pipe to wait for
987 * After disabling a pipe, we can't wait for vblank in the usual way,
988 * spinning on the vblank interrupt status bit, since we won't actually
989 * see an interrupt when the pipe is disabled.
991 * On Gen4 and above:
992 * wait for the pipe register state bit to turn off
994 * Otherwise:
995 * wait for the display line value to settle (it usually
996 * ends up stopping at the start of the next frame).
999 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1001 struct drm_i915_private *dev_priv = dev->dev_private;
1003 if (INTEL_INFO(dev)->gen >= 4) {
1004 int reg = PIPECONF(pipe);
1006 /* Wait for the Pipe State to go off */
1007 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1008 100))
1009 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1010 } else {
1011 u32 last_line, line_mask;
1012 int reg = PIPEDSL(pipe);
1013 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1015 if (IS_GEN2(dev))
1016 line_mask = DSL_LINEMASK_GEN2;
1017 else
1018 line_mask = DSL_LINEMASK_GEN3;
1020 /* Wait for the display line to settle */
1021 do {
1022 last_line = I915_READ(reg) & line_mask;
1023 mdelay(5);
1024 } while (((I915_READ(reg) & line_mask) != last_line) &&
1025 time_after(timeout, jiffies));
1026 if (time_after(jiffies, timeout))
1027 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1031 static const char *state_string(bool enabled)
1033 return enabled ? "on" : "off";
1036 /* Only for pre-ILK configs */
1037 static void assert_pll(struct drm_i915_private *dev_priv,
1038 enum pipe pipe, bool state)
1040 int reg;
1041 u32 val;
1042 bool cur_state;
1044 reg = DPLL(pipe);
1045 val = I915_READ(reg);
1046 cur_state = !!(val & DPLL_VCO_ENABLE);
1047 WARN(cur_state != state,
1048 "PLL state assertion failure (expected %s, current %s)\n",
1049 state_string(state), state_string(cur_state));
1051 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1052 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1054 /* For ILK+ */
1055 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1056 struct intel_pch_pll *pll,
1057 struct intel_crtc *crtc,
1058 bool state)
1060 u32 val;
1061 bool cur_state;
1063 if (HAS_PCH_LPT(dev_priv->dev)) {
1064 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1065 return;
1068 if (WARN (!pll,
1069 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1070 return;
1072 val = I915_READ(pll->pll_reg);
1073 cur_state = !!(val & DPLL_VCO_ENABLE);
1074 WARN(cur_state != state,
1075 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1076 pll->pll_reg, state_string(state), state_string(cur_state), val);
1078 /* Make sure the selected PLL is correctly attached to the transcoder */
1079 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1080 u32 pch_dpll;
1082 pch_dpll = I915_READ(PCH_DPLL_SEL);
1083 cur_state = pll->pll_reg == _PCH_DPLL_B;
1084 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1085 "PLL[%d] not attached to this transcoder %d: %08x\n",
1086 cur_state, crtc->pipe, pch_dpll)) {
1087 cur_state = !!(val >> (4*crtc->pipe + 3));
1088 WARN(cur_state != state,
1089 "PLL[%d] not %s on this transcoder %d: %08x\n",
1090 pll->pll_reg == _PCH_DPLL_B,
1091 state_string(state),
1092 crtc->pipe,
1093 val);
1097 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1098 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1100 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1101 enum pipe pipe, bool state)
1103 int reg;
1104 u32 val;
1105 bool cur_state;
1107 if (IS_HASWELL(dev_priv->dev)) {
1108 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1109 reg = DDI_FUNC_CTL(pipe);
1110 val = I915_READ(reg);
1111 cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
1112 } else {
1113 reg = FDI_TX_CTL(pipe);
1114 val = I915_READ(reg);
1115 cur_state = !!(val & FDI_TX_ENABLE);
1117 WARN(cur_state != state,
1118 "FDI TX state assertion failure (expected %s, current %s)\n",
1119 state_string(state), state_string(cur_state));
1121 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1122 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1124 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1125 enum pipe pipe, bool state)
1127 int reg;
1128 u32 val;
1129 bool cur_state;
1131 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1132 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1133 return;
1134 } else {
1135 reg = FDI_RX_CTL(pipe);
1136 val = I915_READ(reg);
1137 cur_state = !!(val & FDI_RX_ENABLE);
1139 WARN(cur_state != state,
1140 "FDI RX state assertion failure (expected %s, current %s)\n",
1141 state_string(state), state_string(cur_state));
1143 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1144 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1146 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1147 enum pipe pipe)
1149 int reg;
1150 u32 val;
1152 /* ILK FDI PLL is always enabled */
1153 if (dev_priv->info->gen == 5)
1154 return;
1156 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1157 if (IS_HASWELL(dev_priv->dev))
1158 return;
1160 reg = FDI_TX_CTL(pipe);
1161 val = I915_READ(reg);
1162 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1165 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1166 enum pipe pipe)
1168 int reg;
1169 u32 val;
1171 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1172 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1173 return;
1175 reg = FDI_RX_CTL(pipe);
1176 val = I915_READ(reg);
1177 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1180 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1183 int pp_reg, lvds_reg;
1184 u32 val;
1185 enum pipe panel_pipe = PIPE_A;
1186 bool locked = true;
1188 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1189 pp_reg = PCH_PP_CONTROL;
1190 lvds_reg = PCH_LVDS;
1191 } else {
1192 pp_reg = PP_CONTROL;
1193 lvds_reg = LVDS;
1196 val = I915_READ(pp_reg);
1197 if (!(val & PANEL_POWER_ON) ||
1198 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1199 locked = false;
1201 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1202 panel_pipe = PIPE_B;
1204 WARN(panel_pipe == pipe && locked,
1205 "panel assertion failure, pipe %c regs locked\n",
1206 pipe_name(pipe));
1209 void assert_pipe(struct drm_i915_private *dev_priv,
1210 enum pipe pipe, bool state)
1212 int reg;
1213 u32 val;
1214 bool cur_state;
1216 /* if we need the pipe A quirk it must be always on */
1217 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1218 state = true;
1220 reg = PIPECONF(pipe);
1221 val = I915_READ(reg);
1222 cur_state = !!(val & PIPECONF_ENABLE);
1223 WARN(cur_state != state,
1224 "pipe %c assertion failure (expected %s, current %s)\n",
1225 pipe_name(pipe), state_string(state), state_string(cur_state));
1228 static void assert_plane(struct drm_i915_private *dev_priv,
1229 enum plane plane, bool state)
1231 int reg;
1232 u32 val;
1233 bool cur_state;
1235 reg = DSPCNTR(plane);
1236 val = I915_READ(reg);
1237 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1238 WARN(cur_state != state,
1239 "plane %c assertion failure (expected %s, current %s)\n",
1240 plane_name(plane), state_string(state), state_string(cur_state));
1243 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1244 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1246 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1247 enum pipe pipe)
1249 int reg, i;
1250 u32 val;
1251 int cur_pipe;
1253 /* Planes are fixed to pipes on ILK+ */
1254 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1255 reg = DSPCNTR(pipe);
1256 val = I915_READ(reg);
1257 WARN((val & DISPLAY_PLANE_ENABLE),
1258 "plane %c assertion failure, should be disabled but not\n",
1259 plane_name(pipe));
1260 return;
1263 /* Need to check both planes against the pipe */
1264 for (i = 0; i < 2; i++) {
1265 reg = DSPCNTR(i);
1266 val = I915_READ(reg);
1267 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1268 DISPPLANE_SEL_PIPE_SHIFT;
1269 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1270 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1271 plane_name(i), pipe_name(pipe));
1275 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1277 u32 val;
1278 bool enabled;
1280 if (HAS_PCH_LPT(dev_priv->dev)) {
1281 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1282 return;
1285 val = I915_READ(PCH_DREF_CONTROL);
1286 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1287 DREF_SUPERSPREAD_SOURCE_MASK));
1288 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1291 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1292 enum pipe pipe)
1294 int reg;
1295 u32 val;
1296 bool enabled;
1298 reg = TRANSCONF(pipe);
1299 val = I915_READ(reg);
1300 enabled = !!(val & TRANS_ENABLE);
1301 WARN(enabled,
1302 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1303 pipe_name(pipe));
1306 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1307 enum pipe pipe, u32 port_sel, u32 val)
1309 if ((val & DP_PORT_EN) == 0)
1310 return false;
1312 if (HAS_PCH_CPT(dev_priv->dev)) {
1313 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1314 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1315 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1316 return false;
1317 } else {
1318 if ((val & DP_PIPE_MASK) != (pipe << 30))
1319 return false;
1321 return true;
1324 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1325 enum pipe pipe, u32 val)
1327 if ((val & PORT_ENABLE) == 0)
1328 return false;
1330 if (HAS_PCH_CPT(dev_priv->dev)) {
1331 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1332 return false;
1333 } else {
1334 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1335 return false;
1337 return true;
1340 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1341 enum pipe pipe, u32 val)
1343 if ((val & LVDS_PORT_EN) == 0)
1344 return false;
1346 if (HAS_PCH_CPT(dev_priv->dev)) {
1347 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1348 return false;
1349 } else {
1350 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1351 return false;
1353 return true;
1356 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1357 enum pipe pipe, u32 val)
1359 if ((val & ADPA_DAC_ENABLE) == 0)
1360 return false;
1361 if (HAS_PCH_CPT(dev_priv->dev)) {
1362 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1363 return false;
1364 } else {
1365 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1366 return false;
1368 return true;
1371 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1372 enum pipe pipe, int reg, u32 port_sel)
1374 u32 val = I915_READ(reg);
1375 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1376 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1377 reg, pipe_name(pipe));
1379 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1380 "IBX PCH dp port still using transcoder B\n");
1383 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1384 enum pipe pipe, int reg)
1386 u32 val = I915_READ(reg);
1387 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1388 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1389 reg, pipe_name(pipe));
1391 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
1392 "IBX PCH hdmi port still using transcoder B\n");
1395 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1396 enum pipe pipe)
1398 int reg;
1399 u32 val;
1401 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1402 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1403 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1405 reg = PCH_ADPA;
1406 val = I915_READ(reg);
1407 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1408 "PCH VGA enabled on transcoder %c, should be disabled\n",
1409 pipe_name(pipe));
1411 reg = PCH_LVDS;
1412 val = I915_READ(reg);
1413 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1414 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1415 pipe_name(pipe));
1417 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1418 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1419 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1423 * intel_enable_pll - enable a PLL
1424 * @dev_priv: i915 private structure
1425 * @pipe: pipe PLL to enable
1427 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1428 * make sure the PLL reg is writable first though, since the panel write
1429 * protect mechanism may be enabled.
1431 * Note! This is for pre-ILK only.
1433 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1435 int reg;
1436 u32 val;
1438 /* No really, not for ILK+ */
1439 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1441 /* PLL is protected by panel, make sure we can write it */
1442 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1443 assert_panel_unlocked(dev_priv, pipe);
1445 reg = DPLL(pipe);
1446 val = I915_READ(reg);
1447 val |= DPLL_VCO_ENABLE;
1449 /* We do this three times for luck */
1450 I915_WRITE(reg, val);
1451 POSTING_READ(reg);
1452 udelay(150); /* wait for warmup */
1453 I915_WRITE(reg, val);
1454 POSTING_READ(reg);
1455 udelay(150); /* wait for warmup */
1456 I915_WRITE(reg, val);
1457 POSTING_READ(reg);
1458 udelay(150); /* wait for warmup */
1462 * intel_disable_pll - disable a PLL
1463 * @dev_priv: i915 private structure
1464 * @pipe: pipe PLL to disable
1466 * Disable the PLL for @pipe, making sure the pipe is off first.
1468 * Note! This is for pre-ILK only.
1470 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1472 int reg;
1473 u32 val;
1475 /* Don't disable pipe A or pipe A PLLs if needed */
1476 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1477 return;
1479 /* Make sure the pipe isn't still relying on us */
1480 assert_pipe_disabled(dev_priv, pipe);
1482 reg = DPLL(pipe);
1483 val = I915_READ(reg);
1484 val &= ~DPLL_VCO_ENABLE;
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1489 /* SBI access */
1490 static void
1491 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1493 unsigned long flags;
1495 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1496 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1497 100)) {
1498 DRM_ERROR("timeout waiting for SBI to become ready\n");
1499 goto out_unlock;
1502 I915_WRITE(SBI_ADDR,
1503 (reg << 16));
1504 I915_WRITE(SBI_DATA,
1505 value);
1506 I915_WRITE(SBI_CTL_STAT,
1507 SBI_BUSY |
1508 SBI_CTL_OP_CRWR);
1510 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1511 100)) {
1512 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1513 goto out_unlock;
1516 out_unlock:
1517 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1520 static u32
1521 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1523 unsigned long flags;
1524 u32 value = 0;
1526 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1527 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1528 100)) {
1529 DRM_ERROR("timeout waiting for SBI to become ready\n");
1530 goto out_unlock;
1533 I915_WRITE(SBI_ADDR,
1534 (reg << 16));
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRRD);
1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1542 goto out_unlock;
1545 value = I915_READ(SBI_DATA);
1547 out_unlock:
1548 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1549 return value;
1553 * intel_enable_pch_pll - enable PCH PLL
1554 * @dev_priv: i915 private structure
1555 * @pipe: pipe PLL to enable
1557 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1558 * drives the transcoder clock.
1560 static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
1562 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1563 struct intel_pch_pll *pll;
1564 int reg;
1565 u32 val;
1567 /* PCH PLLs only available on ILK, SNB and IVB */
1568 BUG_ON(dev_priv->info->gen < 5);
1569 pll = intel_crtc->pch_pll;
1570 if (pll == NULL)
1571 return;
1573 if (WARN_ON(pll->refcount == 0))
1574 return;
1576 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1577 pll->pll_reg, pll->active, pll->on,
1578 intel_crtc->base.base.id);
1580 /* PCH refclock must be enabled first */
1581 assert_pch_refclk_enabled(dev_priv);
1583 if (pll->active++ && pll->on) {
1584 assert_pch_pll_enabled(dev_priv, pll, NULL);
1585 return;
1588 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1590 reg = pll->pll_reg;
1591 val = I915_READ(reg);
1592 val |= DPLL_VCO_ENABLE;
1593 I915_WRITE(reg, val);
1594 POSTING_READ(reg);
1595 udelay(200);
1597 pll->on = true;
1600 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1602 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1603 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1604 int reg;
1605 u32 val;
1607 /* PCH only available on ILK+ */
1608 BUG_ON(dev_priv->info->gen < 5);
1609 if (pll == NULL)
1610 return;
1612 if (WARN_ON(pll->refcount == 0))
1613 return;
1615 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1616 pll->pll_reg, pll->active, pll->on,
1617 intel_crtc->base.base.id);
1619 if (WARN_ON(pll->active == 0)) {
1620 assert_pch_pll_disabled(dev_priv, pll, NULL);
1621 return;
1624 if (--pll->active) {
1625 assert_pch_pll_enabled(dev_priv, pll, NULL);
1626 return;
1629 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1631 /* Make sure transcoder isn't still depending on us */
1632 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1634 reg = pll->pll_reg;
1635 val = I915_READ(reg);
1636 val &= ~DPLL_VCO_ENABLE;
1637 I915_WRITE(reg, val);
1638 POSTING_READ(reg);
1639 udelay(200);
1641 pll->on = false;
1644 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1645 enum pipe pipe)
1647 int reg;
1648 u32 val, pipeconf_val;
1649 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1651 /* PCH only available on ILK+ */
1652 BUG_ON(dev_priv->info->gen < 5);
1654 /* Make sure PCH DPLL is enabled */
1655 assert_pch_pll_enabled(dev_priv,
1656 to_intel_crtc(crtc)->pch_pll,
1657 to_intel_crtc(crtc));
1659 /* FDI must be feeding us bits for PCH ports */
1660 assert_fdi_tx_enabled(dev_priv, pipe);
1661 assert_fdi_rx_enabled(dev_priv, pipe);
1663 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1664 DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
1665 return;
1667 reg = TRANSCONF(pipe);
1668 val = I915_READ(reg);
1669 pipeconf_val = I915_READ(PIPECONF(pipe));
1671 if (HAS_PCH_IBX(dev_priv->dev)) {
1673 * make the BPC in transcoder be consistent with
1674 * that in pipeconf reg.
1676 val &= ~PIPE_BPC_MASK;
1677 val |= pipeconf_val & PIPE_BPC_MASK;
1680 val &= ~TRANS_INTERLACE_MASK;
1681 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1682 if (HAS_PCH_IBX(dev_priv->dev) &&
1683 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1684 val |= TRANS_LEGACY_INTERLACED_ILK;
1685 else
1686 val |= TRANS_INTERLACED;
1687 else
1688 val |= TRANS_PROGRESSIVE;
1690 I915_WRITE(reg, val | TRANS_ENABLE);
1691 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1692 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1695 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1696 enum pipe pipe)
1698 int reg;
1699 u32 val;
1701 /* FDI relies on the transcoder */
1702 assert_fdi_tx_disabled(dev_priv, pipe);
1703 assert_fdi_rx_disabled(dev_priv, pipe);
1705 /* Ports must be off as well */
1706 assert_pch_ports_disabled(dev_priv, pipe);
1708 reg = TRANSCONF(pipe);
1709 val = I915_READ(reg);
1710 val &= ~TRANS_ENABLE;
1711 I915_WRITE(reg, val);
1712 /* wait for PCH transcoder off, transcoder state */
1713 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1714 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1718 * intel_enable_pipe - enable a pipe, asserting requirements
1719 * @dev_priv: i915 private structure
1720 * @pipe: pipe to enable
1721 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1723 * Enable @pipe, making sure that various hardware specific requirements
1724 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1726 * @pipe should be %PIPE_A or %PIPE_B.
1728 * Will wait until the pipe is actually running (i.e. first vblank) before
1729 * returning.
1731 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1732 bool pch_port)
1734 int reg;
1735 u32 val;
1738 * A pipe without a PLL won't actually be able to drive bits from
1739 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1740 * need the check.
1742 if (!HAS_PCH_SPLIT(dev_priv->dev))
1743 assert_pll_enabled(dev_priv, pipe);
1744 else {
1745 if (pch_port) {
1746 /* if driving the PCH, we need FDI enabled */
1747 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1748 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1750 /* FIXME: assert CPU port conditions for SNB+ */
1753 reg = PIPECONF(pipe);
1754 val = I915_READ(reg);
1755 if (val & PIPECONF_ENABLE)
1756 return;
1758 I915_WRITE(reg, val | PIPECONF_ENABLE);
1759 intel_wait_for_vblank(dev_priv->dev, pipe);
1763 * intel_disable_pipe - disable a pipe, asserting requirements
1764 * @dev_priv: i915 private structure
1765 * @pipe: pipe to disable
1767 * Disable @pipe, making sure that various hardware specific requirements
1768 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1770 * @pipe should be %PIPE_A or %PIPE_B.
1772 * Will wait until the pipe has shut down before returning.
1774 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1775 enum pipe pipe)
1777 int reg;
1778 u32 val;
1781 * Make sure planes won't keep trying to pump pixels to us,
1782 * or we might hang the display.
1784 assert_planes_disabled(dev_priv, pipe);
1786 /* Don't disable pipe A or pipe A PLLs if needed */
1787 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1788 return;
1790 reg = PIPECONF(pipe);
1791 val = I915_READ(reg);
1792 if ((val & PIPECONF_ENABLE) == 0)
1793 return;
1795 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1796 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1800 * Plane regs are double buffered, going from enabled->disabled needs a
1801 * trigger in order to latch. The display address reg provides this.
1803 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1804 enum plane plane)
1806 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1807 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1811 * intel_enable_plane - enable a display plane on a given pipe
1812 * @dev_priv: i915 private structure
1813 * @plane: plane to enable
1814 * @pipe: pipe being fed
1816 * Enable @plane on @pipe, making sure that @pipe is running first.
1818 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1819 enum plane plane, enum pipe pipe)
1821 int reg;
1822 u32 val;
1824 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1825 assert_pipe_enabled(dev_priv, pipe);
1827 reg = DSPCNTR(plane);
1828 val = I915_READ(reg);
1829 if (val & DISPLAY_PLANE_ENABLE)
1830 return;
1832 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1833 intel_flush_display_plane(dev_priv, plane);
1834 intel_wait_for_vblank(dev_priv->dev, pipe);
1838 * intel_disable_plane - disable a display plane
1839 * @dev_priv: i915 private structure
1840 * @plane: plane to disable
1841 * @pipe: pipe consuming the data
1843 * Disable @plane; should be an independent operation.
1845 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1846 enum plane plane, enum pipe pipe)
1848 int reg;
1849 u32 val;
1851 reg = DSPCNTR(plane);
1852 val = I915_READ(reg);
1853 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1854 return;
1856 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1857 intel_flush_display_plane(dev_priv, plane);
1858 intel_wait_for_vblank(dev_priv->dev, pipe);
1861 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1862 enum pipe pipe, int reg, u32 port_sel)
1864 u32 val = I915_READ(reg);
1865 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1866 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1867 I915_WRITE(reg, val & ~DP_PORT_EN);
1871 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1872 enum pipe pipe, int reg)
1874 u32 val = I915_READ(reg);
1875 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1876 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1877 reg, pipe);
1878 I915_WRITE(reg, val & ~PORT_ENABLE);
1882 /* Disable any ports connected to this transcoder */
1883 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1884 enum pipe pipe)
1886 u32 reg, val;
1888 val = I915_READ(PCH_PP_CONTROL);
1889 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1891 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1892 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1893 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1895 reg = PCH_ADPA;
1896 val = I915_READ(reg);
1897 if (adpa_pipe_enabled(dev_priv, val, pipe))
1898 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1900 reg = PCH_LVDS;
1901 val = I915_READ(reg);
1902 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1903 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1904 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1905 POSTING_READ(reg);
1906 udelay(100);
1909 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1910 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1911 disable_pch_hdmi(dev_priv, pipe, HDMID);
1915 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1916 struct drm_i915_gem_object *obj,
1917 struct intel_ring_buffer *pipelined)
1919 struct drm_i915_private *dev_priv = dev->dev_private;
1920 u32 alignment;
1921 int ret;
1923 switch (obj->tiling_mode) {
1924 case I915_TILING_NONE:
1925 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1926 alignment = 128 * 1024;
1927 else if (INTEL_INFO(dev)->gen >= 4)
1928 alignment = 4 * 1024;
1929 else
1930 alignment = 64 * 1024;
1931 break;
1932 case I915_TILING_X:
1933 /* pin() will align the object as required by fence */
1934 alignment = 0;
1935 break;
1936 case I915_TILING_Y:
1937 /* FIXME: Is this true? */
1938 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1939 return -EINVAL;
1940 default:
1941 BUG();
1944 dev_priv->mm.interruptible = false;
1945 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1946 if (ret)
1947 goto err_interruptible;
1949 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1950 * fence, whereas 965+ only requires a fence if using
1951 * framebuffer compression. For simplicity, we always install
1952 * a fence as the cost is not that onerous.
1954 ret = i915_gem_object_get_fence(obj);
1955 if (ret)
1956 goto err_unpin;
1958 i915_gem_object_pin_fence(obj);
1960 dev_priv->mm.interruptible = true;
1961 return 0;
1963 err_unpin:
1964 i915_gem_object_unpin(obj);
1965 err_interruptible:
1966 dev_priv->mm.interruptible = true;
1967 return ret;
1970 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1972 i915_gem_object_unpin_fence(obj);
1973 i915_gem_object_unpin(obj);
1976 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1977 int x, int y)
1979 struct drm_device *dev = crtc->dev;
1980 struct drm_i915_private *dev_priv = dev->dev_private;
1981 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1982 struct intel_framebuffer *intel_fb;
1983 struct drm_i915_gem_object *obj;
1984 int plane = intel_crtc->plane;
1985 unsigned long Start, Offset;
1986 u32 dspcntr;
1987 u32 reg;
1989 switch (plane) {
1990 case 0:
1991 case 1:
1992 break;
1993 default:
1994 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1995 return -EINVAL;
1998 intel_fb = to_intel_framebuffer(fb);
1999 obj = intel_fb->obj;
2001 reg = DSPCNTR(plane);
2002 dspcntr = I915_READ(reg);
2003 /* Mask out pixel format bits in case we change it */
2004 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2005 switch (fb->bits_per_pixel) {
2006 case 8:
2007 dspcntr |= DISPPLANE_8BPP;
2008 break;
2009 case 16:
2010 if (fb->depth == 15)
2011 dspcntr |= DISPPLANE_15_16BPP;
2012 else
2013 dspcntr |= DISPPLANE_16BPP;
2014 break;
2015 case 24:
2016 case 32:
2017 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2018 break;
2019 default:
2020 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2021 return -EINVAL;
2023 if (INTEL_INFO(dev)->gen >= 4) {
2024 if (obj->tiling_mode != I915_TILING_NONE)
2025 dspcntr |= DISPPLANE_TILED;
2026 else
2027 dspcntr &= ~DISPPLANE_TILED;
2030 I915_WRITE(reg, dspcntr);
2032 Start = obj->gtt_offset;
2033 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2035 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2036 Start, Offset, x, y, fb->pitches[0]);
2037 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2038 if (INTEL_INFO(dev)->gen >= 4) {
2039 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
2040 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2041 I915_WRITE(DSPADDR(plane), Offset);
2042 } else
2043 I915_WRITE(DSPADDR(plane), Start + Offset);
2044 POSTING_READ(reg);
2046 return 0;
2049 static int ironlake_update_plane(struct drm_crtc *crtc,
2050 struct drm_framebuffer *fb, int x, int y)
2052 struct drm_device *dev = crtc->dev;
2053 struct drm_i915_private *dev_priv = dev->dev_private;
2054 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2055 struct intel_framebuffer *intel_fb;
2056 struct drm_i915_gem_object *obj;
2057 int plane = intel_crtc->plane;
2058 unsigned long Start, Offset;
2059 u32 dspcntr;
2060 u32 reg;
2062 switch (plane) {
2063 case 0:
2064 case 1:
2065 case 2:
2066 break;
2067 default:
2068 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2069 return -EINVAL;
2072 intel_fb = to_intel_framebuffer(fb);
2073 obj = intel_fb->obj;
2075 reg = DSPCNTR(plane);
2076 dspcntr = I915_READ(reg);
2077 /* Mask out pixel format bits in case we change it */
2078 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2079 switch (fb->bits_per_pixel) {
2080 case 8:
2081 dspcntr |= DISPPLANE_8BPP;
2082 break;
2083 case 16:
2084 if (fb->depth != 16)
2085 return -EINVAL;
2087 dspcntr |= DISPPLANE_16BPP;
2088 break;
2089 case 24:
2090 case 32:
2091 if (fb->depth == 24)
2092 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2093 else if (fb->depth == 30)
2094 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2095 else
2096 return -EINVAL;
2097 break;
2098 default:
2099 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2100 return -EINVAL;
2103 if (obj->tiling_mode != I915_TILING_NONE)
2104 dspcntr |= DISPPLANE_TILED;
2105 else
2106 dspcntr &= ~DISPPLANE_TILED;
2108 /* must disable */
2109 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2111 I915_WRITE(reg, dspcntr);
2113 Start = obj->gtt_offset;
2114 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2116 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2117 Start, Offset, x, y, fb->pitches[0]);
2118 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2119 I915_MODIFY_DISPBASE(DSPSURF(plane), Start);
2120 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2121 I915_WRITE(DSPADDR(plane), Offset);
2122 POSTING_READ(reg);
2124 return 0;
2127 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2128 static int
2129 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2130 int x, int y, enum mode_set_atomic state)
2132 struct drm_device *dev = crtc->dev;
2133 struct drm_i915_private *dev_priv = dev->dev_private;
2135 if (dev_priv->display.disable_fbc)
2136 dev_priv->display.disable_fbc(dev);
2137 intel_increase_pllclock(crtc);
2139 return dev_priv->display.update_plane(crtc, fb, x, y);
2142 static int
2143 intel_finish_fb(struct drm_framebuffer *old_fb)
2145 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2146 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2147 bool was_interruptible = dev_priv->mm.interruptible;
2148 int ret;
2150 wait_event(dev_priv->pending_flip_queue,
2151 atomic_read(&dev_priv->mm.wedged) ||
2152 atomic_read(&obj->pending_flip) == 0);
2154 /* Big Hammer, we also need to ensure that any pending
2155 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2156 * current scanout is retired before unpinning the old
2157 * framebuffer.
2159 * This should only fail upon a hung GPU, in which case we
2160 * can safely continue.
2162 dev_priv->mm.interruptible = false;
2163 ret = i915_gem_object_finish_gpu(obj);
2164 dev_priv->mm.interruptible = was_interruptible;
2166 return ret;
2169 static int
2170 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2171 struct drm_framebuffer *old_fb)
2173 struct drm_device *dev = crtc->dev;
2174 struct drm_i915_private *dev_priv = dev->dev_private;
2175 struct drm_i915_master_private *master_priv;
2176 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2177 int ret;
2179 /* no fb bound */
2180 if (!crtc->fb) {
2181 DRM_ERROR("No FB bound\n");
2182 return 0;
2185 if(intel_crtc->plane > dev_priv->num_pipe) {
2186 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2187 intel_crtc->plane,
2188 dev_priv->num_pipe);
2189 return -EINVAL;
2192 mutex_lock(&dev->struct_mutex);
2193 ret = intel_pin_and_fence_fb_obj(dev,
2194 to_intel_framebuffer(crtc->fb)->obj,
2195 NULL);
2196 if (ret != 0) {
2197 mutex_unlock(&dev->struct_mutex);
2198 DRM_ERROR("pin & fence failed\n");
2199 return ret;
2202 if (old_fb)
2203 intel_finish_fb(old_fb);
2205 ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
2206 if (ret) {
2207 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2208 mutex_unlock(&dev->struct_mutex);
2209 DRM_ERROR("failed to update base address\n");
2210 return ret;
2213 if (old_fb) {
2214 intel_wait_for_vblank(dev, intel_crtc->pipe);
2215 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2218 intel_update_fbc(dev);
2219 mutex_unlock(&dev->struct_mutex);
2221 if (!dev->primary->master)
2222 return 0;
2224 master_priv = dev->primary->master->driver_priv;
2225 if (!master_priv->sarea_priv)
2226 return 0;
2228 if (intel_crtc->pipe) {
2229 master_priv->sarea_priv->pipeB_x = x;
2230 master_priv->sarea_priv->pipeB_y = y;
2231 } else {
2232 master_priv->sarea_priv->pipeA_x = x;
2233 master_priv->sarea_priv->pipeA_y = y;
2236 return 0;
2239 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2241 struct drm_device *dev = crtc->dev;
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243 u32 dpa_ctl;
2245 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2246 dpa_ctl = I915_READ(DP_A);
2247 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2249 if (clock < 200000) {
2250 u32 temp;
2251 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2252 /* workaround for 160Mhz:
2253 1) program 0x4600c bits 15:0 = 0x8124
2254 2) program 0x46010 bit 0 = 1
2255 3) program 0x46034 bit 24 = 1
2256 4) program 0x64000 bit 14 = 1
2258 temp = I915_READ(0x4600c);
2259 temp &= 0xffff0000;
2260 I915_WRITE(0x4600c, temp | 0x8124);
2262 temp = I915_READ(0x46010);
2263 I915_WRITE(0x46010, temp | 1);
2265 temp = I915_READ(0x46034);
2266 I915_WRITE(0x46034, temp | (1 << 24));
2267 } else {
2268 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2270 I915_WRITE(DP_A, dpa_ctl);
2272 POSTING_READ(DP_A);
2273 udelay(500);
2276 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2278 struct drm_device *dev = crtc->dev;
2279 struct drm_i915_private *dev_priv = dev->dev_private;
2280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2281 int pipe = intel_crtc->pipe;
2282 u32 reg, temp;
2284 /* enable normal train */
2285 reg = FDI_TX_CTL(pipe);
2286 temp = I915_READ(reg);
2287 if (IS_IVYBRIDGE(dev)) {
2288 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2289 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2290 } else {
2291 temp &= ~FDI_LINK_TRAIN_NONE;
2292 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2294 I915_WRITE(reg, temp);
2296 reg = FDI_RX_CTL(pipe);
2297 temp = I915_READ(reg);
2298 if (HAS_PCH_CPT(dev)) {
2299 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2300 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2301 } else {
2302 temp &= ~FDI_LINK_TRAIN_NONE;
2303 temp |= FDI_LINK_TRAIN_NONE;
2305 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2307 /* wait one idle pattern time */
2308 POSTING_READ(reg);
2309 udelay(1000);
2311 /* IVB wants error correction enabled */
2312 if (IS_IVYBRIDGE(dev))
2313 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2314 FDI_FE_ERRC_ENABLE);
2317 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2319 struct drm_i915_private *dev_priv = dev->dev_private;
2320 u32 flags = I915_READ(SOUTH_CHICKEN1);
2322 flags |= FDI_PHASE_SYNC_OVR(pipe);
2323 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2324 flags |= FDI_PHASE_SYNC_EN(pipe);
2325 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2326 POSTING_READ(SOUTH_CHICKEN1);
2329 /* The FDI link training functions for ILK/Ibexpeak. */
2330 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2332 struct drm_device *dev = crtc->dev;
2333 struct drm_i915_private *dev_priv = dev->dev_private;
2334 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2335 int pipe = intel_crtc->pipe;
2336 int plane = intel_crtc->plane;
2337 u32 reg, temp, tries;
2339 /* FDI needs bits from pipe & plane first */
2340 assert_pipe_enabled(dev_priv, pipe);
2341 assert_plane_enabled(dev_priv, plane);
2343 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2344 for train result */
2345 reg = FDI_RX_IMR(pipe);
2346 temp = I915_READ(reg);
2347 temp &= ~FDI_RX_SYMBOL_LOCK;
2348 temp &= ~FDI_RX_BIT_LOCK;
2349 I915_WRITE(reg, temp);
2350 I915_READ(reg);
2351 udelay(150);
2353 /* enable CPU FDI TX and PCH FDI RX */
2354 reg = FDI_TX_CTL(pipe);
2355 temp = I915_READ(reg);
2356 temp &= ~(7 << 19);
2357 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2358 temp &= ~FDI_LINK_TRAIN_NONE;
2359 temp |= FDI_LINK_TRAIN_PATTERN_1;
2360 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2362 reg = FDI_RX_CTL(pipe);
2363 temp = I915_READ(reg);
2364 temp &= ~FDI_LINK_TRAIN_NONE;
2365 temp |= FDI_LINK_TRAIN_PATTERN_1;
2366 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2368 POSTING_READ(reg);
2369 udelay(150);
2371 /* Ironlake workaround, enable clock pointer after FDI enable*/
2372 if (HAS_PCH_IBX(dev)) {
2373 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2374 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2375 FDI_RX_PHASE_SYNC_POINTER_EN);
2378 reg = FDI_RX_IIR(pipe);
2379 for (tries = 0; tries < 5; tries++) {
2380 temp = I915_READ(reg);
2381 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2383 if ((temp & FDI_RX_BIT_LOCK)) {
2384 DRM_DEBUG_KMS("FDI train 1 done.\n");
2385 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2386 break;
2389 if (tries == 5)
2390 DRM_ERROR("FDI train 1 fail!\n");
2392 /* Train 2 */
2393 reg = FDI_TX_CTL(pipe);
2394 temp = I915_READ(reg);
2395 temp &= ~FDI_LINK_TRAIN_NONE;
2396 temp |= FDI_LINK_TRAIN_PATTERN_2;
2397 I915_WRITE(reg, temp);
2399 reg = FDI_RX_CTL(pipe);
2400 temp = I915_READ(reg);
2401 temp &= ~FDI_LINK_TRAIN_NONE;
2402 temp |= FDI_LINK_TRAIN_PATTERN_2;
2403 I915_WRITE(reg, temp);
2405 POSTING_READ(reg);
2406 udelay(150);
2408 reg = FDI_RX_IIR(pipe);
2409 for (tries = 0; tries < 5; tries++) {
2410 temp = I915_READ(reg);
2411 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2413 if (temp & FDI_RX_SYMBOL_LOCK) {
2414 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2415 DRM_DEBUG_KMS("FDI train 2 done.\n");
2416 break;
2419 if (tries == 5)
2420 DRM_ERROR("FDI train 2 fail!\n");
2422 DRM_DEBUG_KMS("FDI train done\n");
2426 static const int snb_b_fdi_train_param[] = {
2427 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2428 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2429 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2430 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2433 /* The FDI link training functions for SNB/Cougarpoint. */
2434 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2436 struct drm_device *dev = crtc->dev;
2437 struct drm_i915_private *dev_priv = dev->dev_private;
2438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2439 int pipe = intel_crtc->pipe;
2440 u32 reg, temp, i, retry;
2442 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2443 for train result */
2444 reg = FDI_RX_IMR(pipe);
2445 temp = I915_READ(reg);
2446 temp &= ~FDI_RX_SYMBOL_LOCK;
2447 temp &= ~FDI_RX_BIT_LOCK;
2448 I915_WRITE(reg, temp);
2450 POSTING_READ(reg);
2451 udelay(150);
2453 /* enable CPU FDI TX and PCH FDI RX */
2454 reg = FDI_TX_CTL(pipe);
2455 temp = I915_READ(reg);
2456 temp &= ~(7 << 19);
2457 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2458 temp &= ~FDI_LINK_TRAIN_NONE;
2459 temp |= FDI_LINK_TRAIN_PATTERN_1;
2460 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2461 /* SNB-B */
2462 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2463 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2465 reg = FDI_RX_CTL(pipe);
2466 temp = I915_READ(reg);
2467 if (HAS_PCH_CPT(dev)) {
2468 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2469 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2470 } else {
2471 temp &= ~FDI_LINK_TRAIN_NONE;
2472 temp |= FDI_LINK_TRAIN_PATTERN_1;
2474 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2476 POSTING_READ(reg);
2477 udelay(150);
2479 if (HAS_PCH_CPT(dev))
2480 cpt_phase_pointer_enable(dev, pipe);
2482 for (i = 0; i < 4; i++) {
2483 reg = FDI_TX_CTL(pipe);
2484 temp = I915_READ(reg);
2485 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2486 temp |= snb_b_fdi_train_param[i];
2487 I915_WRITE(reg, temp);
2489 POSTING_READ(reg);
2490 udelay(500);
2492 for (retry = 0; retry < 5; retry++) {
2493 reg = FDI_RX_IIR(pipe);
2494 temp = I915_READ(reg);
2495 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2496 if (temp & FDI_RX_BIT_LOCK) {
2497 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2498 DRM_DEBUG_KMS("FDI train 1 done.\n");
2499 break;
2501 udelay(50);
2503 if (retry < 5)
2504 break;
2506 if (i == 4)
2507 DRM_ERROR("FDI train 1 fail!\n");
2509 /* Train 2 */
2510 reg = FDI_TX_CTL(pipe);
2511 temp = I915_READ(reg);
2512 temp &= ~FDI_LINK_TRAIN_NONE;
2513 temp |= FDI_LINK_TRAIN_PATTERN_2;
2514 if (IS_GEN6(dev)) {
2515 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2516 /* SNB-B */
2517 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2519 I915_WRITE(reg, temp);
2521 reg = FDI_RX_CTL(pipe);
2522 temp = I915_READ(reg);
2523 if (HAS_PCH_CPT(dev)) {
2524 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2525 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2526 } else {
2527 temp &= ~FDI_LINK_TRAIN_NONE;
2528 temp |= FDI_LINK_TRAIN_PATTERN_2;
2530 I915_WRITE(reg, temp);
2532 POSTING_READ(reg);
2533 udelay(150);
2535 for (i = 0; i < 4; i++) {
2536 reg = FDI_TX_CTL(pipe);
2537 temp = I915_READ(reg);
2538 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2539 temp |= snb_b_fdi_train_param[i];
2540 I915_WRITE(reg, temp);
2542 POSTING_READ(reg);
2543 udelay(500);
2545 for (retry = 0; retry < 5; retry++) {
2546 reg = FDI_RX_IIR(pipe);
2547 temp = I915_READ(reg);
2548 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2549 if (temp & FDI_RX_SYMBOL_LOCK) {
2550 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2551 DRM_DEBUG_KMS("FDI train 2 done.\n");
2552 break;
2554 udelay(50);
2556 if (retry < 5)
2557 break;
2559 if (i == 4)
2560 DRM_ERROR("FDI train 2 fail!\n");
2562 DRM_DEBUG_KMS("FDI train done.\n");
2565 /* Manual link training for Ivy Bridge A0 parts */
2566 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2568 struct drm_device *dev = crtc->dev;
2569 struct drm_i915_private *dev_priv = dev->dev_private;
2570 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2571 int pipe = intel_crtc->pipe;
2572 u32 reg, temp, i;
2574 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2575 for train result */
2576 reg = FDI_RX_IMR(pipe);
2577 temp = I915_READ(reg);
2578 temp &= ~FDI_RX_SYMBOL_LOCK;
2579 temp &= ~FDI_RX_BIT_LOCK;
2580 I915_WRITE(reg, temp);
2582 POSTING_READ(reg);
2583 udelay(150);
2585 /* enable CPU FDI TX and PCH FDI RX */
2586 reg = FDI_TX_CTL(pipe);
2587 temp = I915_READ(reg);
2588 temp &= ~(7 << 19);
2589 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2590 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2591 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2592 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2593 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2594 temp |= FDI_COMPOSITE_SYNC;
2595 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2597 reg = FDI_RX_CTL(pipe);
2598 temp = I915_READ(reg);
2599 temp &= ~FDI_LINK_TRAIN_AUTO;
2600 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2601 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2602 temp |= FDI_COMPOSITE_SYNC;
2603 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2605 POSTING_READ(reg);
2606 udelay(150);
2608 if (HAS_PCH_CPT(dev))
2609 cpt_phase_pointer_enable(dev, pipe);
2611 for (i = 0; i < 4; i++) {
2612 reg = FDI_TX_CTL(pipe);
2613 temp = I915_READ(reg);
2614 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2615 temp |= snb_b_fdi_train_param[i];
2616 I915_WRITE(reg, temp);
2618 POSTING_READ(reg);
2619 udelay(500);
2621 reg = FDI_RX_IIR(pipe);
2622 temp = I915_READ(reg);
2623 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2625 if (temp & FDI_RX_BIT_LOCK ||
2626 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2627 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2628 DRM_DEBUG_KMS("FDI train 1 done.\n");
2629 break;
2632 if (i == 4)
2633 DRM_ERROR("FDI train 1 fail!\n");
2635 /* Train 2 */
2636 reg = FDI_TX_CTL(pipe);
2637 temp = I915_READ(reg);
2638 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2639 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2642 I915_WRITE(reg, temp);
2644 reg = FDI_RX_CTL(pipe);
2645 temp = I915_READ(reg);
2646 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2647 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2648 I915_WRITE(reg, temp);
2650 POSTING_READ(reg);
2651 udelay(150);
2653 for (i = 0; i < 4; i++) {
2654 reg = FDI_TX_CTL(pipe);
2655 temp = I915_READ(reg);
2656 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2657 temp |= snb_b_fdi_train_param[i];
2658 I915_WRITE(reg, temp);
2660 POSTING_READ(reg);
2661 udelay(500);
2663 reg = FDI_RX_IIR(pipe);
2664 temp = I915_READ(reg);
2665 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2667 if (temp & FDI_RX_SYMBOL_LOCK) {
2668 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2669 DRM_DEBUG_KMS("FDI train 2 done.\n");
2670 break;
2673 if (i == 4)
2674 DRM_ERROR("FDI train 2 fail!\n");
2676 DRM_DEBUG_KMS("FDI train done.\n");
2679 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2681 struct drm_device *dev = crtc->dev;
2682 struct drm_i915_private *dev_priv = dev->dev_private;
2683 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2684 int pipe = intel_crtc->pipe;
2685 u32 reg, temp;
2687 /* Write the TU size bits so error detection works */
2688 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2689 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2691 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2692 reg = FDI_RX_CTL(pipe);
2693 temp = I915_READ(reg);
2694 temp &= ~((0x7 << 19) | (0x7 << 16));
2695 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2696 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2697 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2699 POSTING_READ(reg);
2700 udelay(200);
2702 /* Switch from Rawclk to PCDclk */
2703 temp = I915_READ(reg);
2704 I915_WRITE(reg, temp | FDI_PCDCLK);
2706 POSTING_READ(reg);
2707 udelay(200);
2709 /* On Haswell, the PLL configuration for ports and pipes is handled
2710 * separately, as part of DDI setup */
2711 if (!IS_HASWELL(dev)) {
2712 /* Enable CPU FDI TX PLL, always on for Ironlake */
2713 reg = FDI_TX_CTL(pipe);
2714 temp = I915_READ(reg);
2715 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2716 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2718 POSTING_READ(reg);
2719 udelay(100);
2724 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2726 struct drm_i915_private *dev_priv = dev->dev_private;
2727 u32 flags = I915_READ(SOUTH_CHICKEN1);
2729 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2730 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2731 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2732 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2733 POSTING_READ(SOUTH_CHICKEN1);
2735 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2737 struct drm_device *dev = crtc->dev;
2738 struct drm_i915_private *dev_priv = dev->dev_private;
2739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2740 int pipe = intel_crtc->pipe;
2741 u32 reg, temp;
2743 /* disable CPU FDI tx and PCH FDI rx */
2744 reg = FDI_TX_CTL(pipe);
2745 temp = I915_READ(reg);
2746 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2747 POSTING_READ(reg);
2749 reg = FDI_RX_CTL(pipe);
2750 temp = I915_READ(reg);
2751 temp &= ~(0x7 << 16);
2752 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2753 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2755 POSTING_READ(reg);
2756 udelay(100);
2758 /* Ironlake workaround, disable clock pointer after downing FDI */
2759 if (HAS_PCH_IBX(dev)) {
2760 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2761 I915_WRITE(FDI_RX_CHICKEN(pipe),
2762 I915_READ(FDI_RX_CHICKEN(pipe) &
2763 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2764 } else if (HAS_PCH_CPT(dev)) {
2765 cpt_phase_pointer_disable(dev, pipe);
2768 /* still set train pattern 1 */
2769 reg = FDI_TX_CTL(pipe);
2770 temp = I915_READ(reg);
2771 temp &= ~FDI_LINK_TRAIN_NONE;
2772 temp |= FDI_LINK_TRAIN_PATTERN_1;
2773 I915_WRITE(reg, temp);
2775 reg = FDI_RX_CTL(pipe);
2776 temp = I915_READ(reg);
2777 if (HAS_PCH_CPT(dev)) {
2778 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2779 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2780 } else {
2781 temp &= ~FDI_LINK_TRAIN_NONE;
2782 temp |= FDI_LINK_TRAIN_PATTERN_1;
2784 /* BPC in FDI rx is consistent with that in PIPECONF */
2785 temp &= ~(0x07 << 16);
2786 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2787 I915_WRITE(reg, temp);
2789 POSTING_READ(reg);
2790 udelay(100);
2793 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2795 struct drm_device *dev = crtc->dev;
2797 if (crtc->fb == NULL)
2798 return;
2800 mutex_lock(&dev->struct_mutex);
2801 intel_finish_fb(crtc->fb);
2802 mutex_unlock(&dev->struct_mutex);
2805 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2807 struct drm_device *dev = crtc->dev;
2808 struct drm_mode_config *mode_config = &dev->mode_config;
2809 struct intel_encoder *encoder;
2812 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2813 * must be driven by its own crtc; no sharing is possible.
2815 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2816 if (encoder->base.crtc != crtc)
2817 continue;
2819 /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
2820 * CPU handles all others */
2821 if (IS_HASWELL(dev)) {
2822 /* It is still unclear how this will work on PPT, so throw up a warning */
2823 WARN_ON(!HAS_PCH_LPT(dev));
2825 if (encoder->type == DRM_MODE_ENCODER_DAC) {
2826 DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
2827 return true;
2828 } else {
2829 DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
2830 encoder->type);
2831 return false;
2835 switch (encoder->type) {
2836 case INTEL_OUTPUT_EDP:
2837 if (!intel_encoder_is_pch_edp(&encoder->base))
2838 return false;
2839 continue;
2843 return true;
2846 /* Program iCLKIP clock to the desired frequency */
2847 static void lpt_program_iclkip(struct drm_crtc *crtc)
2849 struct drm_device *dev = crtc->dev;
2850 struct drm_i915_private *dev_priv = dev->dev_private;
2851 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2852 u32 temp;
2854 /* It is necessary to ungate the pixclk gate prior to programming
2855 * the divisors, and gate it back when it is done.
2857 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2859 /* Disable SSCCTL */
2860 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2861 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2862 SBI_SSCCTL_DISABLE);
2864 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2865 if (crtc->mode.clock == 20000) {
2866 auxdiv = 1;
2867 divsel = 0x41;
2868 phaseinc = 0x20;
2869 } else {
2870 /* The iCLK virtual clock root frequency is in MHz,
2871 * but the crtc->mode.clock in in KHz. To get the divisors,
2872 * it is necessary to divide one by another, so we
2873 * convert the virtual clock precision to KHz here for higher
2874 * precision.
2876 u32 iclk_virtual_root_freq = 172800 * 1000;
2877 u32 iclk_pi_range = 64;
2878 u32 desired_divisor, msb_divisor_value, pi_value;
2880 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2881 msb_divisor_value = desired_divisor / iclk_pi_range;
2882 pi_value = desired_divisor % iclk_pi_range;
2884 auxdiv = 0;
2885 divsel = msb_divisor_value - 2;
2886 phaseinc = pi_value;
2889 /* This should not happen with any sane values */
2890 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2891 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2892 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2893 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2895 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2896 crtc->mode.clock,
2897 auxdiv,
2898 divsel,
2899 phasedir,
2900 phaseinc);
2902 /* Program SSCDIVINTPHASE6 */
2903 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2904 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2905 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2906 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2907 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2908 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2909 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2911 intel_sbi_write(dev_priv,
2912 SBI_SSCDIVINTPHASE6,
2913 temp);
2915 /* Program SSCAUXDIV */
2916 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2917 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2918 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2919 intel_sbi_write(dev_priv,
2920 SBI_SSCAUXDIV6,
2921 temp);
2924 /* Enable modulator and associated divider */
2925 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2926 temp &= ~SBI_SSCCTL_DISABLE;
2927 intel_sbi_write(dev_priv,
2928 SBI_SSCCTL6,
2929 temp);
2931 /* Wait for initialization time */
2932 udelay(24);
2934 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
2938 * Enable PCH resources required for PCH ports:
2939 * - PCH PLLs
2940 * - FDI training & RX/TX
2941 * - update transcoder timings
2942 * - DP transcoding bits
2943 * - transcoder
2945 static void ironlake_pch_enable(struct drm_crtc *crtc)
2947 struct drm_device *dev = crtc->dev;
2948 struct drm_i915_private *dev_priv = dev->dev_private;
2949 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2950 int pipe = intel_crtc->pipe;
2951 u32 reg, temp;
2953 assert_transcoder_disabled(dev_priv, pipe);
2955 /* For PCH output, training FDI link */
2956 dev_priv->display.fdi_link_train(crtc);
2958 intel_enable_pch_pll(intel_crtc);
2960 if (HAS_PCH_LPT(dev)) {
2961 DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
2962 lpt_program_iclkip(crtc);
2963 } else if (HAS_PCH_CPT(dev)) {
2964 u32 sel;
2966 temp = I915_READ(PCH_DPLL_SEL);
2967 switch (pipe) {
2968 default:
2969 case 0:
2970 temp |= TRANSA_DPLL_ENABLE;
2971 sel = TRANSA_DPLLB_SEL;
2972 break;
2973 case 1:
2974 temp |= TRANSB_DPLL_ENABLE;
2975 sel = TRANSB_DPLLB_SEL;
2976 break;
2977 case 2:
2978 temp |= TRANSC_DPLL_ENABLE;
2979 sel = TRANSC_DPLLB_SEL;
2980 break;
2982 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
2983 temp |= sel;
2984 else
2985 temp &= ~sel;
2986 I915_WRITE(PCH_DPLL_SEL, temp);
2989 /* set transcoder timing, panel must allow it */
2990 assert_panel_unlocked(dev_priv, pipe);
2991 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2992 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2993 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2995 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2996 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2997 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2998 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3000 if (!IS_HASWELL(dev))
3001 intel_fdi_normal_train(crtc);
3003 /* For PCH DP, enable TRANS_DP_CTL */
3004 if (HAS_PCH_CPT(dev) &&
3005 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3006 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3007 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3008 reg = TRANS_DP_CTL(pipe);
3009 temp = I915_READ(reg);
3010 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3011 TRANS_DP_SYNC_MASK |
3012 TRANS_DP_BPC_MASK);
3013 temp |= (TRANS_DP_OUTPUT_ENABLE |
3014 TRANS_DP_ENH_FRAMING);
3015 temp |= bpc << 9; /* same format but at 11:9 */
3017 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3018 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3019 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3020 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3022 switch (intel_trans_dp_port_sel(crtc)) {
3023 case PCH_DP_B:
3024 temp |= TRANS_DP_PORT_SEL_B;
3025 break;
3026 case PCH_DP_C:
3027 temp |= TRANS_DP_PORT_SEL_C;
3028 break;
3029 case PCH_DP_D:
3030 temp |= TRANS_DP_PORT_SEL_D;
3031 break;
3032 default:
3033 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3034 temp |= TRANS_DP_PORT_SEL_B;
3035 break;
3038 I915_WRITE(reg, temp);
3041 intel_enable_transcoder(dev_priv, pipe);
3044 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3046 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3048 if (pll == NULL)
3049 return;
3051 if (pll->refcount == 0) {
3052 WARN(1, "bad PCH PLL refcount\n");
3053 return;
3056 --pll->refcount;
3057 intel_crtc->pch_pll = NULL;
3060 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3062 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3063 struct intel_pch_pll *pll;
3064 int i;
3066 pll = intel_crtc->pch_pll;
3067 if (pll) {
3068 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3069 intel_crtc->base.base.id, pll->pll_reg);
3070 goto prepare;
3073 if (HAS_PCH_IBX(dev_priv->dev)) {
3074 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3075 i = intel_crtc->pipe;
3076 pll = &dev_priv->pch_plls[i];
3078 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3079 intel_crtc->base.base.id, pll->pll_reg);
3081 goto found;
3084 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3085 pll = &dev_priv->pch_plls[i];
3087 /* Only want to check enabled timings first */
3088 if (pll->refcount == 0)
3089 continue;
3091 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3092 fp == I915_READ(pll->fp0_reg)) {
3093 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3094 intel_crtc->base.base.id,
3095 pll->pll_reg, pll->refcount, pll->active);
3097 goto found;
3101 /* Ok no matching timings, maybe there's a free one? */
3102 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3103 pll = &dev_priv->pch_plls[i];
3104 if (pll->refcount == 0) {
3105 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3106 intel_crtc->base.base.id, pll->pll_reg);
3107 goto found;
3111 return NULL;
3113 found:
3114 intel_crtc->pch_pll = pll;
3115 pll->refcount++;
3116 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3117 prepare: /* separate function? */
3118 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3120 /* Wait for the clocks to stabilize before rewriting the regs */
3121 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3122 POSTING_READ(pll->pll_reg);
3123 udelay(150);
3125 I915_WRITE(pll->fp0_reg, fp);
3126 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3127 pll->on = false;
3128 return pll;
3131 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3133 struct drm_i915_private *dev_priv = dev->dev_private;
3134 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3135 u32 temp;
3137 temp = I915_READ(dslreg);
3138 udelay(500);
3139 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3140 /* Without this, mode sets may fail silently on FDI */
3141 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3142 udelay(250);
3143 I915_WRITE(tc2reg, 0);
3144 if (wait_for(I915_READ(dslreg) != temp, 5))
3145 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3149 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3151 struct drm_device *dev = crtc->dev;
3152 struct drm_i915_private *dev_priv = dev->dev_private;
3153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3154 int pipe = intel_crtc->pipe;
3155 int plane = intel_crtc->plane;
3156 u32 temp;
3157 bool is_pch_port;
3159 if (intel_crtc->active)
3160 return;
3162 intel_crtc->active = true;
3163 intel_update_watermarks(dev);
3165 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3166 temp = I915_READ(PCH_LVDS);
3167 if ((temp & LVDS_PORT_EN) == 0)
3168 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3171 is_pch_port = intel_crtc_driving_pch(crtc);
3173 if (is_pch_port)
3174 ironlake_fdi_pll_enable(crtc);
3175 else
3176 ironlake_fdi_disable(crtc);
3178 /* Enable panel fitting for LVDS */
3179 if (dev_priv->pch_pf_size &&
3180 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3181 /* Force use of hard-coded filter coefficients
3182 * as some pre-programmed values are broken,
3183 * e.g. x201.
3185 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3186 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3187 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3191 * On ILK+ LUT must be loaded before the pipe is running but with
3192 * clocks enabled
3194 intel_crtc_load_lut(crtc);
3196 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3197 intel_enable_plane(dev_priv, plane, pipe);
3199 if (is_pch_port)
3200 ironlake_pch_enable(crtc);
3202 mutex_lock(&dev->struct_mutex);
3203 intel_update_fbc(dev);
3204 mutex_unlock(&dev->struct_mutex);
3206 intel_crtc_update_cursor(crtc, true);
3209 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3211 struct drm_device *dev = crtc->dev;
3212 struct drm_i915_private *dev_priv = dev->dev_private;
3213 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3214 int pipe = intel_crtc->pipe;
3215 int plane = intel_crtc->plane;
3216 u32 reg, temp;
3218 if (!intel_crtc->active)
3219 return;
3221 intel_crtc_wait_for_pending_flips(crtc);
3222 drm_vblank_off(dev, pipe);
3223 intel_crtc_update_cursor(crtc, false);
3225 intel_disable_plane(dev_priv, plane, pipe);
3227 if (dev_priv->cfb_plane == plane)
3228 intel_disable_fbc(dev);
3230 intel_disable_pipe(dev_priv, pipe);
3232 /* Disable PF */
3233 I915_WRITE(PF_CTL(pipe), 0);
3234 I915_WRITE(PF_WIN_SZ(pipe), 0);
3236 ironlake_fdi_disable(crtc);
3238 /* This is a horrible layering violation; we should be doing this in
3239 * the connector/encoder ->prepare instead, but we don't always have
3240 * enough information there about the config to know whether it will
3241 * actually be necessary or just cause undesired flicker.
3243 intel_disable_pch_ports(dev_priv, pipe);
3245 intel_disable_transcoder(dev_priv, pipe);
3247 if (HAS_PCH_CPT(dev)) {
3248 /* disable TRANS_DP_CTL */
3249 reg = TRANS_DP_CTL(pipe);
3250 temp = I915_READ(reg);
3251 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3252 temp |= TRANS_DP_PORT_SEL_NONE;
3253 I915_WRITE(reg, temp);
3255 /* disable DPLL_SEL */
3256 temp = I915_READ(PCH_DPLL_SEL);
3257 switch (pipe) {
3258 case 0:
3259 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3260 break;
3261 case 1:
3262 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3263 break;
3264 case 2:
3265 /* C shares PLL A or B */
3266 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3267 break;
3268 default:
3269 BUG(); /* wtf */
3271 I915_WRITE(PCH_DPLL_SEL, temp);
3274 /* disable PCH DPLL */
3275 intel_disable_pch_pll(intel_crtc);
3277 /* Switch from PCDclk to Rawclk */
3278 reg = FDI_RX_CTL(pipe);
3279 temp = I915_READ(reg);
3280 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3282 /* Disable CPU FDI TX PLL */
3283 reg = FDI_TX_CTL(pipe);
3284 temp = I915_READ(reg);
3285 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3287 POSTING_READ(reg);
3288 udelay(100);
3290 reg = FDI_RX_CTL(pipe);
3291 temp = I915_READ(reg);
3292 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3294 /* Wait for the clocks to turn off. */
3295 POSTING_READ(reg);
3296 udelay(100);
3298 intel_crtc->active = false;
3299 intel_update_watermarks(dev);
3301 mutex_lock(&dev->struct_mutex);
3302 intel_update_fbc(dev);
3303 mutex_unlock(&dev->struct_mutex);
3306 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3308 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3309 int pipe = intel_crtc->pipe;
3310 int plane = intel_crtc->plane;
3312 /* XXX: When our outputs are all unaware of DPMS modes other than off
3313 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3315 switch (mode) {
3316 case DRM_MODE_DPMS_ON:
3317 case DRM_MODE_DPMS_STANDBY:
3318 case DRM_MODE_DPMS_SUSPEND:
3319 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3320 ironlake_crtc_enable(crtc);
3321 break;
3323 case DRM_MODE_DPMS_OFF:
3324 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3325 ironlake_crtc_disable(crtc);
3326 break;
3330 static void ironlake_crtc_off(struct drm_crtc *crtc)
3332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333 intel_put_pch_pll(intel_crtc);
3336 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3338 if (!enable && intel_crtc->overlay) {
3339 struct drm_device *dev = intel_crtc->base.dev;
3340 struct drm_i915_private *dev_priv = dev->dev_private;
3342 mutex_lock(&dev->struct_mutex);
3343 dev_priv->mm.interruptible = false;
3344 (void) intel_overlay_switch_off(intel_crtc->overlay);
3345 dev_priv->mm.interruptible = true;
3346 mutex_unlock(&dev->struct_mutex);
3349 /* Let userspace switch the overlay on again. In most cases userspace
3350 * has to recompute where to put it anyway.
3354 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3356 struct drm_device *dev = crtc->dev;
3357 struct drm_i915_private *dev_priv = dev->dev_private;
3358 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3359 int pipe = intel_crtc->pipe;
3360 int plane = intel_crtc->plane;
3362 if (intel_crtc->active)
3363 return;
3365 intel_crtc->active = true;
3366 intel_update_watermarks(dev);
3368 intel_enable_pll(dev_priv, pipe);
3369 intel_enable_pipe(dev_priv, pipe, false);
3370 intel_enable_plane(dev_priv, plane, pipe);
3372 intel_crtc_load_lut(crtc);
3373 intel_update_fbc(dev);
3375 /* Give the overlay scaler a chance to enable if it's on this pipe */
3376 intel_crtc_dpms_overlay(intel_crtc, true);
3377 intel_crtc_update_cursor(crtc, true);
3380 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3382 struct drm_device *dev = crtc->dev;
3383 struct drm_i915_private *dev_priv = dev->dev_private;
3384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385 int pipe = intel_crtc->pipe;
3386 int plane = intel_crtc->plane;
3388 if (!intel_crtc->active)
3389 return;
3391 /* Give the overlay scaler a chance to disable if it's on this pipe */
3392 intel_crtc_wait_for_pending_flips(crtc);
3393 drm_vblank_off(dev, pipe);
3394 intel_crtc_dpms_overlay(intel_crtc, false);
3395 intel_crtc_update_cursor(crtc, false);
3397 if (dev_priv->cfb_plane == plane)
3398 intel_disable_fbc(dev);
3400 intel_disable_plane(dev_priv, plane, pipe);
3401 intel_disable_pipe(dev_priv, pipe);
3402 intel_disable_pll(dev_priv, pipe);
3404 intel_crtc->active = false;
3405 intel_update_fbc(dev);
3406 intel_update_watermarks(dev);
3409 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3411 /* XXX: When our outputs are all unaware of DPMS modes other than off
3412 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3414 switch (mode) {
3415 case DRM_MODE_DPMS_ON:
3416 case DRM_MODE_DPMS_STANDBY:
3417 case DRM_MODE_DPMS_SUSPEND:
3418 i9xx_crtc_enable(crtc);
3419 break;
3420 case DRM_MODE_DPMS_OFF:
3421 i9xx_crtc_disable(crtc);
3422 break;
3426 static void i9xx_crtc_off(struct drm_crtc *crtc)
3431 * Sets the power management mode of the pipe and plane.
3433 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3435 struct drm_device *dev = crtc->dev;
3436 struct drm_i915_private *dev_priv = dev->dev_private;
3437 struct drm_i915_master_private *master_priv;
3438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3439 int pipe = intel_crtc->pipe;
3440 bool enabled;
3442 if (intel_crtc->dpms_mode == mode)
3443 return;
3445 intel_crtc->dpms_mode = mode;
3447 dev_priv->display.dpms(crtc, mode);
3449 if (!dev->primary->master)
3450 return;
3452 master_priv = dev->primary->master->driver_priv;
3453 if (!master_priv->sarea_priv)
3454 return;
3456 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3458 switch (pipe) {
3459 case 0:
3460 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3461 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3462 break;
3463 case 1:
3464 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3465 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3466 break;
3467 default:
3468 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3469 break;
3473 static void intel_crtc_disable(struct drm_crtc *crtc)
3475 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3476 struct drm_device *dev = crtc->dev;
3477 struct drm_i915_private *dev_priv = dev->dev_private;
3479 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3480 dev_priv->display.off(crtc);
3482 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3483 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3485 if (crtc->fb) {
3486 mutex_lock(&dev->struct_mutex);
3487 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3488 mutex_unlock(&dev->struct_mutex);
3492 /* Prepare for a mode set.
3494 * Note we could be a lot smarter here. We need to figure out which outputs
3495 * will be enabled, which disabled (in short, how the config will changes)
3496 * and perform the minimum necessary steps to accomplish that, e.g. updating
3497 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3498 * panel fitting is in the proper state, etc.
3500 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3502 i9xx_crtc_disable(crtc);
3505 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3507 i9xx_crtc_enable(crtc);
3510 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3512 ironlake_crtc_disable(crtc);
3515 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3517 ironlake_crtc_enable(crtc);
3520 void intel_encoder_prepare(struct drm_encoder *encoder)
3522 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3523 /* lvds has its own version of prepare see intel_lvds_prepare */
3524 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3527 void intel_encoder_commit(struct drm_encoder *encoder)
3529 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3530 struct drm_device *dev = encoder->dev;
3531 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
3533 /* lvds has its own version of commit see intel_lvds_commit */
3534 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3536 if (HAS_PCH_CPT(dev))
3537 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3540 void intel_encoder_destroy(struct drm_encoder *encoder)
3542 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3544 drm_encoder_cleanup(encoder);
3545 kfree(intel_encoder);
3548 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3549 struct drm_display_mode *mode,
3550 struct drm_display_mode *adjusted_mode)
3552 struct drm_device *dev = crtc->dev;
3554 if (HAS_PCH_SPLIT(dev)) {
3555 /* FDI link clock is fixed at 2.7G */
3556 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3557 return false;
3560 /* All interlaced capable intel hw wants timings in frames. Note though
3561 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3562 * timings, so we need to be careful not to clobber these.*/
3563 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3564 drm_mode_set_crtcinfo(adjusted_mode, 0);
3566 return true;
3569 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3571 return 400000; /* FIXME */
3574 static int i945_get_display_clock_speed(struct drm_device *dev)
3576 return 400000;
3579 static int i915_get_display_clock_speed(struct drm_device *dev)
3581 return 333000;
3584 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3586 return 200000;
3589 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3591 u16 gcfgc = 0;
3593 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3595 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3596 return 133000;
3597 else {
3598 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3599 case GC_DISPLAY_CLOCK_333_MHZ:
3600 return 333000;
3601 default:
3602 case GC_DISPLAY_CLOCK_190_200_MHZ:
3603 return 190000;
3608 static int i865_get_display_clock_speed(struct drm_device *dev)
3610 return 266000;
3613 static int i855_get_display_clock_speed(struct drm_device *dev)
3615 u16 hpllcc = 0;
3616 /* Assume that the hardware is in the high speed state. This
3617 * should be the default.
3619 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3620 case GC_CLOCK_133_200:
3621 case GC_CLOCK_100_200:
3622 return 200000;
3623 case GC_CLOCK_166_250:
3624 return 250000;
3625 case GC_CLOCK_100_133:
3626 return 133000;
3629 /* Shouldn't happen */
3630 return 0;
3633 static int i830_get_display_clock_speed(struct drm_device *dev)
3635 return 133000;
3638 struct fdi_m_n {
3639 u32 tu;
3640 u32 gmch_m;
3641 u32 gmch_n;
3642 u32 link_m;
3643 u32 link_n;
3646 static void
3647 fdi_reduce_ratio(u32 *num, u32 *den)
3649 while (*num > 0xffffff || *den > 0xffffff) {
3650 *num >>= 1;
3651 *den >>= 1;
3655 static void
3656 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3657 int link_clock, struct fdi_m_n *m_n)
3659 m_n->tu = 64; /* default size */
3661 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3662 m_n->gmch_m = bits_per_pixel * pixel_clock;
3663 m_n->gmch_n = link_clock * nlanes * 8;
3664 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3666 m_n->link_m = pixel_clock;
3667 m_n->link_n = link_clock;
3668 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3671 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3673 if (i915_panel_use_ssc >= 0)
3674 return i915_panel_use_ssc != 0;
3675 return dev_priv->lvds_use_ssc
3676 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3680 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3681 * @crtc: CRTC structure
3682 * @mode: requested mode
3684 * A pipe may be connected to one or more outputs. Based on the depth of the
3685 * attached framebuffer, choose a good color depth to use on the pipe.
3687 * If possible, match the pipe depth to the fb depth. In some cases, this
3688 * isn't ideal, because the connected output supports a lesser or restricted
3689 * set of depths. Resolve that here:
3690 * LVDS typically supports only 6bpc, so clamp down in that case
3691 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3692 * Displays may support a restricted set as well, check EDID and clamp as
3693 * appropriate.
3694 * DP may want to dither down to 6bpc to fit larger modes
3696 * RETURNS:
3697 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
3698 * true if they don't match).
3700 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
3701 unsigned int *pipe_bpp,
3702 struct drm_display_mode *mode)
3704 struct drm_device *dev = crtc->dev;
3705 struct drm_i915_private *dev_priv = dev->dev_private;
3706 struct drm_encoder *encoder;
3707 struct drm_connector *connector;
3708 unsigned int display_bpc = UINT_MAX, bpc;
3710 /* Walk the encoders & connectors on this crtc, get min bpc */
3711 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3712 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3714 if (encoder->crtc != crtc)
3715 continue;
3717 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
3718 unsigned int lvds_bpc;
3720 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
3721 LVDS_A3_POWER_UP)
3722 lvds_bpc = 8;
3723 else
3724 lvds_bpc = 6;
3726 if (lvds_bpc < display_bpc) {
3727 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
3728 display_bpc = lvds_bpc;
3730 continue;
3733 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
3734 /* Use VBT settings if we have an eDP panel */
3735 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
3737 if (edp_bpc < display_bpc) {
3738 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
3739 display_bpc = edp_bpc;
3741 continue;
3744 /* Not one of the known troublemakers, check the EDID */
3745 list_for_each_entry(connector, &dev->mode_config.connector_list,
3746 head) {
3747 if (connector->encoder != encoder)
3748 continue;
3750 /* Don't use an invalid EDID bpc value */
3751 if (connector->display_info.bpc &&
3752 connector->display_info.bpc < display_bpc) {
3753 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
3754 display_bpc = connector->display_info.bpc;
3759 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
3760 * through, clamp it down. (Note: >12bpc will be caught below.)
3762 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
3763 if (display_bpc > 8 && display_bpc < 12) {
3764 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
3765 display_bpc = 12;
3766 } else {
3767 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
3768 display_bpc = 8;
3773 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
3774 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
3775 display_bpc = 6;
3779 * We could just drive the pipe at the highest bpc all the time and
3780 * enable dithering as needed, but that costs bandwidth. So choose
3781 * the minimum value that expresses the full color range of the fb but
3782 * also stays within the max display bpc discovered above.
3785 switch (crtc->fb->depth) {
3786 case 8:
3787 bpc = 8; /* since we go through a colormap */
3788 break;
3789 case 15:
3790 case 16:
3791 bpc = 6; /* min is 18bpp */
3792 break;
3793 case 24:
3794 bpc = 8;
3795 break;
3796 case 30:
3797 bpc = 10;
3798 break;
3799 case 48:
3800 bpc = 12;
3801 break;
3802 default:
3803 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
3804 bpc = min((unsigned int)8, display_bpc);
3805 break;
3808 display_bpc = min(display_bpc, bpc);
3810 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
3811 bpc, display_bpc);
3813 *pipe_bpp = display_bpc * 3;
3815 return display_bpc != bpc;
3818 static int vlv_get_refclk(struct drm_crtc *crtc)
3820 struct drm_device *dev = crtc->dev;
3821 struct drm_i915_private *dev_priv = dev->dev_private;
3822 int refclk = 27000; /* for DP & HDMI */
3824 return 100000; /* only one validated so far */
3826 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
3827 refclk = 96000;
3828 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3829 if (intel_panel_use_ssc(dev_priv))
3830 refclk = 100000;
3831 else
3832 refclk = 96000;
3833 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3834 refclk = 100000;
3837 return refclk;
3840 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
3842 struct drm_device *dev = crtc->dev;
3843 struct drm_i915_private *dev_priv = dev->dev_private;
3844 int refclk;
3846 if (IS_VALLEYVIEW(dev)) {
3847 refclk = vlv_get_refclk(crtc);
3848 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3849 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
3850 refclk = dev_priv->lvds_ssc_freq * 1000;
3851 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3852 refclk / 1000);
3853 } else if (!IS_GEN2(dev)) {
3854 refclk = 96000;
3855 } else {
3856 refclk = 48000;
3859 return refclk;
3862 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
3863 intel_clock_t *clock)
3865 /* SDVO TV has fixed PLL values depend on its clock range,
3866 this mirrors vbios setting. */
3867 if (adjusted_mode->clock >= 100000
3868 && adjusted_mode->clock < 140500) {
3869 clock->p1 = 2;
3870 clock->p2 = 10;
3871 clock->n = 3;
3872 clock->m1 = 16;
3873 clock->m2 = 8;
3874 } else if (adjusted_mode->clock >= 140500
3875 && adjusted_mode->clock <= 200000) {
3876 clock->p1 = 1;
3877 clock->p2 = 10;
3878 clock->n = 6;
3879 clock->m1 = 12;
3880 clock->m2 = 8;
3884 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
3885 intel_clock_t *clock,
3886 intel_clock_t *reduced_clock)
3888 struct drm_device *dev = crtc->dev;
3889 struct drm_i915_private *dev_priv = dev->dev_private;
3890 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3891 int pipe = intel_crtc->pipe;
3892 u32 fp, fp2 = 0;
3894 if (IS_PINEVIEW(dev)) {
3895 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
3896 if (reduced_clock)
3897 fp2 = (1 << reduced_clock->n) << 16 |
3898 reduced_clock->m1 << 8 | reduced_clock->m2;
3899 } else {
3900 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
3901 if (reduced_clock)
3902 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
3903 reduced_clock->m2;
3906 I915_WRITE(FP0(pipe), fp);
3908 intel_crtc->lowfreq_avail = false;
3909 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
3910 reduced_clock && i915_powersave) {
3911 I915_WRITE(FP1(pipe), fp2);
3912 intel_crtc->lowfreq_avail = true;
3913 } else {
3914 I915_WRITE(FP1(pipe), fp);
3918 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
3919 struct drm_display_mode *adjusted_mode)
3921 struct drm_device *dev = crtc->dev;
3922 struct drm_i915_private *dev_priv = dev->dev_private;
3923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3924 int pipe = intel_crtc->pipe;
3925 u32 temp;
3927 temp = I915_READ(LVDS);
3928 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3929 if (pipe == 1) {
3930 temp |= LVDS_PIPEB_SELECT;
3931 } else {
3932 temp &= ~LVDS_PIPEB_SELECT;
3934 /* set the corresponsding LVDS_BORDER bit */
3935 temp |= dev_priv->lvds_border_bits;
3936 /* Set the B0-B3 data pairs corresponding to whether we're going to
3937 * set the DPLLs for dual-channel mode or not.
3939 if (clock->p2 == 7)
3940 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3941 else
3942 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3944 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3945 * appropriately here, but we need to look more thoroughly into how
3946 * panels behave in the two modes.
3948 /* set the dithering flag on LVDS as needed */
3949 if (INTEL_INFO(dev)->gen >= 4) {
3950 if (dev_priv->lvds_dither)
3951 temp |= LVDS_ENABLE_DITHER;
3952 else
3953 temp &= ~LVDS_ENABLE_DITHER;
3955 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
3956 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
3957 temp |= LVDS_HSYNC_POLARITY;
3958 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
3959 temp |= LVDS_VSYNC_POLARITY;
3960 I915_WRITE(LVDS, temp);
3963 static void vlv_update_pll(struct drm_crtc *crtc,
3964 struct drm_display_mode *mode,
3965 struct drm_display_mode *adjusted_mode,
3966 intel_clock_t *clock, intel_clock_t *reduced_clock,
3967 int refclk, int num_connectors)
3969 struct drm_device *dev = crtc->dev;
3970 struct drm_i915_private *dev_priv = dev->dev_private;
3971 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3972 int pipe = intel_crtc->pipe;
3973 u32 dpll, mdiv, pdiv;
3974 u32 bestn, bestm1, bestm2, bestp1, bestp2;
3975 bool is_hdmi;
3977 is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
3979 bestn = clock->n;
3980 bestm1 = clock->m1;
3981 bestm2 = clock->m2;
3982 bestp1 = clock->p1;
3983 bestp2 = clock->p2;
3985 /* Enable DPIO clock input */
3986 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
3987 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
3988 I915_WRITE(DPLL(pipe), dpll);
3989 POSTING_READ(DPLL(pipe));
3991 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
3992 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
3993 mdiv |= ((bestn << DPIO_N_SHIFT));
3994 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
3995 mdiv |= (1 << DPIO_K_SHIFT);
3996 mdiv |= DPIO_ENABLE_CALIBRATION;
3997 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
3999 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4001 pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
4002 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4003 (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4004 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4006 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
4008 dpll |= DPLL_VCO_ENABLE;
4009 I915_WRITE(DPLL(pipe), dpll);
4010 POSTING_READ(DPLL(pipe));
4011 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4012 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4014 if (is_hdmi) {
4015 u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4017 if (temp > 1)
4018 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4019 else
4020 temp = 0;
4022 I915_WRITE(DPLL_MD(pipe), temp);
4023 POSTING_READ(DPLL_MD(pipe));
4026 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
4029 static void i9xx_update_pll(struct drm_crtc *crtc,
4030 struct drm_display_mode *mode,
4031 struct drm_display_mode *adjusted_mode,
4032 intel_clock_t *clock, intel_clock_t *reduced_clock,
4033 int num_connectors)
4035 struct drm_device *dev = crtc->dev;
4036 struct drm_i915_private *dev_priv = dev->dev_private;
4037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4038 int pipe = intel_crtc->pipe;
4039 u32 dpll;
4040 bool is_sdvo;
4042 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4043 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4045 dpll = DPLL_VGA_MODE_DIS;
4047 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4048 dpll |= DPLLB_MODE_LVDS;
4049 else
4050 dpll |= DPLLB_MODE_DAC_SERIAL;
4051 if (is_sdvo) {
4052 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4053 if (pixel_multiplier > 1) {
4054 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4055 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4057 dpll |= DPLL_DVO_HIGH_SPEED;
4059 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4060 dpll |= DPLL_DVO_HIGH_SPEED;
4062 /* compute bitmask from p1 value */
4063 if (IS_PINEVIEW(dev))
4064 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4065 else {
4066 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4067 if (IS_G4X(dev) && reduced_clock)
4068 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4070 switch (clock->p2) {
4071 case 5:
4072 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4073 break;
4074 case 7:
4075 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4076 break;
4077 case 10:
4078 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4079 break;
4080 case 14:
4081 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4082 break;
4084 if (INTEL_INFO(dev)->gen >= 4)
4085 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4087 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4088 dpll |= PLL_REF_INPUT_TVCLKINBC;
4089 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4090 /* XXX: just matching BIOS for now */
4091 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4092 dpll |= 3;
4093 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4094 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4095 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4096 else
4097 dpll |= PLL_REF_INPUT_DREFCLK;
4099 dpll |= DPLL_VCO_ENABLE;
4100 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4101 POSTING_READ(DPLL(pipe));
4102 udelay(150);
4104 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4105 * This is an exception to the general rule that mode_set doesn't turn
4106 * things on.
4108 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4109 intel_update_lvds(crtc, clock, adjusted_mode);
4111 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4112 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4114 I915_WRITE(DPLL(pipe), dpll);
4116 /* Wait for the clocks to stabilize. */
4117 POSTING_READ(DPLL(pipe));
4118 udelay(150);
4120 if (INTEL_INFO(dev)->gen >= 4) {
4121 u32 temp = 0;
4122 if (is_sdvo) {
4123 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4124 if (temp > 1)
4125 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4126 else
4127 temp = 0;
4129 I915_WRITE(DPLL_MD(pipe), temp);
4130 } else {
4131 /* The pixel multiplier can only be updated once the
4132 * DPLL is enabled and the clocks are stable.
4134 * So write it again.
4136 I915_WRITE(DPLL(pipe), dpll);
4140 static void i8xx_update_pll(struct drm_crtc *crtc,
4141 struct drm_display_mode *adjusted_mode,
4142 intel_clock_t *clock,
4143 int num_connectors)
4145 struct drm_device *dev = crtc->dev;
4146 struct drm_i915_private *dev_priv = dev->dev_private;
4147 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4148 int pipe = intel_crtc->pipe;
4149 u32 dpll;
4151 dpll = DPLL_VGA_MODE_DIS;
4153 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4154 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4155 } else {
4156 if (clock->p1 == 2)
4157 dpll |= PLL_P1_DIVIDE_BY_TWO;
4158 else
4159 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4160 if (clock->p2 == 4)
4161 dpll |= PLL_P2_DIVIDE_BY_4;
4164 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4165 /* XXX: just matching BIOS for now */
4166 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4167 dpll |= 3;
4168 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4169 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4170 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4171 else
4172 dpll |= PLL_REF_INPUT_DREFCLK;
4174 dpll |= DPLL_VCO_ENABLE;
4175 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4176 POSTING_READ(DPLL(pipe));
4177 udelay(150);
4179 I915_WRITE(DPLL(pipe), dpll);
4181 /* Wait for the clocks to stabilize. */
4182 POSTING_READ(DPLL(pipe));
4183 udelay(150);
4185 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4186 * This is an exception to the general rule that mode_set doesn't turn
4187 * things on.
4189 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4190 intel_update_lvds(crtc, clock, adjusted_mode);
4192 /* The pixel multiplier can only be updated once the
4193 * DPLL is enabled and the clocks are stable.
4195 * So write it again.
4197 I915_WRITE(DPLL(pipe), dpll);
4200 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4201 struct drm_display_mode *mode,
4202 struct drm_display_mode *adjusted_mode,
4203 int x, int y,
4204 struct drm_framebuffer *old_fb)
4206 struct drm_device *dev = crtc->dev;
4207 struct drm_i915_private *dev_priv = dev->dev_private;
4208 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4209 int pipe = intel_crtc->pipe;
4210 int plane = intel_crtc->plane;
4211 int refclk, num_connectors = 0;
4212 intel_clock_t clock, reduced_clock;
4213 u32 dspcntr, pipeconf, vsyncshift;
4214 bool ok, has_reduced_clock = false, is_sdvo = false;
4215 bool is_lvds = false, is_tv = false, is_dp = false;
4216 struct drm_mode_config *mode_config = &dev->mode_config;
4217 struct intel_encoder *encoder;
4218 const intel_limit_t *limit;
4219 int ret;
4221 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4222 if (encoder->base.crtc != crtc)
4223 continue;
4225 switch (encoder->type) {
4226 case INTEL_OUTPUT_LVDS:
4227 is_lvds = true;
4228 break;
4229 case INTEL_OUTPUT_SDVO:
4230 case INTEL_OUTPUT_HDMI:
4231 is_sdvo = true;
4232 if (encoder->needs_tv_clock)
4233 is_tv = true;
4234 break;
4235 case INTEL_OUTPUT_TVOUT:
4236 is_tv = true;
4237 break;
4238 case INTEL_OUTPUT_DISPLAYPORT:
4239 is_dp = true;
4240 break;
4243 num_connectors++;
4246 refclk = i9xx_get_refclk(crtc, num_connectors);
4249 * Returns a set of divisors for the desired target clock with the given
4250 * refclk, or FALSE. The returned values represent the clock equation:
4251 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4253 limit = intel_limit(crtc, refclk);
4254 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4255 &clock);
4256 if (!ok) {
4257 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4258 return -EINVAL;
4261 /* Ensure that the cursor is valid for the new mode before changing... */
4262 intel_crtc_update_cursor(crtc, true);
4264 if (is_lvds && dev_priv->lvds_downclock_avail) {
4266 * Ensure we match the reduced clock's P to the target clock.
4267 * If the clocks don't match, we can't switch the display clock
4268 * by using the FP0/FP1. In such case we will disable the LVDS
4269 * downclock feature.
4271 has_reduced_clock = limit->find_pll(limit, crtc,
4272 dev_priv->lvds_downclock,
4273 refclk,
4274 &clock,
4275 &reduced_clock);
4278 if (is_sdvo && is_tv)
4279 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4281 i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
4282 &reduced_clock : NULL);
4284 if (IS_GEN2(dev))
4285 i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
4286 else if (IS_VALLEYVIEW(dev))
4287 vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
4288 refclk, num_connectors);
4289 else
4290 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4291 has_reduced_clock ? &reduced_clock : NULL,
4292 num_connectors);
4294 /* setup pipeconf */
4295 pipeconf = I915_READ(PIPECONF(pipe));
4297 /* Set up the display plane register */
4298 dspcntr = DISPPLANE_GAMMA_ENABLE;
4300 if (pipe == 0)
4301 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4302 else
4303 dspcntr |= DISPPLANE_SEL_PIPE_B;
4305 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4306 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4307 * core speed.
4309 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4310 * pipe == 0 check?
4312 if (mode->clock >
4313 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4314 pipeconf |= PIPECONF_DOUBLE_WIDE;
4315 else
4316 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4319 /* default to 8bpc */
4320 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4321 if (is_dp) {
4322 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4323 pipeconf |= PIPECONF_BPP_6 |
4324 PIPECONF_DITHER_EN |
4325 PIPECONF_DITHER_TYPE_SP;
4329 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4330 drm_mode_debug_printmodeline(mode);
4332 if (HAS_PIPE_CXSR(dev)) {
4333 if (intel_crtc->lowfreq_avail) {
4334 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4335 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4336 } else {
4337 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4338 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4342 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4343 if (!IS_GEN2(dev) &&
4344 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4345 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4346 /* the chip adds 2 halflines automatically */
4347 adjusted_mode->crtc_vtotal -= 1;
4348 adjusted_mode->crtc_vblank_end -= 1;
4349 vsyncshift = adjusted_mode->crtc_hsync_start
4350 - adjusted_mode->crtc_htotal/2;
4351 } else {
4352 pipeconf |= PIPECONF_PROGRESSIVE;
4353 vsyncshift = 0;
4356 if (!IS_GEN3(dev))
4357 I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
4359 I915_WRITE(HTOTAL(pipe),
4360 (adjusted_mode->crtc_hdisplay - 1) |
4361 ((adjusted_mode->crtc_htotal - 1) << 16));
4362 I915_WRITE(HBLANK(pipe),
4363 (adjusted_mode->crtc_hblank_start - 1) |
4364 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4365 I915_WRITE(HSYNC(pipe),
4366 (adjusted_mode->crtc_hsync_start - 1) |
4367 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4369 I915_WRITE(VTOTAL(pipe),
4370 (adjusted_mode->crtc_vdisplay - 1) |
4371 ((adjusted_mode->crtc_vtotal - 1) << 16));
4372 I915_WRITE(VBLANK(pipe),
4373 (adjusted_mode->crtc_vblank_start - 1) |
4374 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4375 I915_WRITE(VSYNC(pipe),
4376 (adjusted_mode->crtc_vsync_start - 1) |
4377 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4379 /* pipesrc and dspsize control the size that is scaled from,
4380 * which should always be the user's requested size.
4382 I915_WRITE(DSPSIZE(plane),
4383 ((mode->vdisplay - 1) << 16) |
4384 (mode->hdisplay - 1));
4385 I915_WRITE(DSPPOS(plane), 0);
4386 I915_WRITE(PIPESRC(pipe),
4387 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4389 I915_WRITE(PIPECONF(pipe), pipeconf);
4390 POSTING_READ(PIPECONF(pipe));
4391 intel_enable_pipe(dev_priv, pipe, false);
4393 intel_wait_for_vblank(dev, pipe);
4395 I915_WRITE(DSPCNTR(plane), dspcntr);
4396 POSTING_READ(DSPCNTR(plane));
4398 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4400 intel_update_watermarks(dev);
4402 return ret;
4406 * Initialize reference clocks when the driver loads
4408 void ironlake_init_pch_refclk(struct drm_device *dev)
4410 struct drm_i915_private *dev_priv = dev->dev_private;
4411 struct drm_mode_config *mode_config = &dev->mode_config;
4412 struct intel_encoder *encoder;
4413 u32 temp;
4414 bool has_lvds = false;
4415 bool has_cpu_edp = false;
4416 bool has_pch_edp = false;
4417 bool has_panel = false;
4418 bool has_ck505 = false;
4419 bool can_ssc = false;
4421 /* We need to take the global config into account */
4422 list_for_each_entry(encoder, &mode_config->encoder_list,
4423 base.head) {
4424 switch (encoder->type) {
4425 case INTEL_OUTPUT_LVDS:
4426 has_panel = true;
4427 has_lvds = true;
4428 break;
4429 case INTEL_OUTPUT_EDP:
4430 has_panel = true;
4431 if (intel_encoder_is_pch_edp(&encoder->base))
4432 has_pch_edp = true;
4433 else
4434 has_cpu_edp = true;
4435 break;
4439 if (HAS_PCH_IBX(dev)) {
4440 has_ck505 = dev_priv->display_clock_mode;
4441 can_ssc = has_ck505;
4442 } else {
4443 has_ck505 = false;
4444 can_ssc = true;
4447 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4448 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4449 has_ck505);
4451 /* Ironlake: try to setup display ref clock before DPLL
4452 * enabling. This is only under driver's control after
4453 * PCH B stepping, previous chipset stepping should be
4454 * ignoring this setting.
4456 temp = I915_READ(PCH_DREF_CONTROL);
4457 /* Always enable nonspread source */
4458 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4460 if (has_ck505)
4461 temp |= DREF_NONSPREAD_CK505_ENABLE;
4462 else
4463 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4465 if (has_panel) {
4466 temp &= ~DREF_SSC_SOURCE_MASK;
4467 temp |= DREF_SSC_SOURCE_ENABLE;
4469 /* SSC must be turned on before enabling the CPU output */
4470 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4471 DRM_DEBUG_KMS("Using SSC on panel\n");
4472 temp |= DREF_SSC1_ENABLE;
4473 } else
4474 temp &= ~DREF_SSC1_ENABLE;
4476 /* Get SSC going before enabling the outputs */
4477 I915_WRITE(PCH_DREF_CONTROL, temp);
4478 POSTING_READ(PCH_DREF_CONTROL);
4479 udelay(200);
4481 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4483 /* Enable CPU source on CPU attached eDP */
4484 if (has_cpu_edp) {
4485 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4486 DRM_DEBUG_KMS("Using SSC on eDP\n");
4487 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4489 else
4490 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4491 } else
4492 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4494 I915_WRITE(PCH_DREF_CONTROL, temp);
4495 POSTING_READ(PCH_DREF_CONTROL);
4496 udelay(200);
4497 } else {
4498 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4500 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4502 /* Turn off CPU output */
4503 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4505 I915_WRITE(PCH_DREF_CONTROL, temp);
4506 POSTING_READ(PCH_DREF_CONTROL);
4507 udelay(200);
4509 /* Turn off the SSC source */
4510 temp &= ~DREF_SSC_SOURCE_MASK;
4511 temp |= DREF_SSC_SOURCE_DISABLE;
4513 /* Turn off SSC1 */
4514 temp &= ~ DREF_SSC1_ENABLE;
4516 I915_WRITE(PCH_DREF_CONTROL, temp);
4517 POSTING_READ(PCH_DREF_CONTROL);
4518 udelay(200);
4522 static int ironlake_get_refclk(struct drm_crtc *crtc)
4524 struct drm_device *dev = crtc->dev;
4525 struct drm_i915_private *dev_priv = dev->dev_private;
4526 struct intel_encoder *encoder;
4527 struct drm_mode_config *mode_config = &dev->mode_config;
4528 struct intel_encoder *edp_encoder = NULL;
4529 int num_connectors = 0;
4530 bool is_lvds = false;
4532 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4533 if (encoder->base.crtc != crtc)
4534 continue;
4536 switch (encoder->type) {
4537 case INTEL_OUTPUT_LVDS:
4538 is_lvds = true;
4539 break;
4540 case INTEL_OUTPUT_EDP:
4541 edp_encoder = encoder;
4542 break;
4544 num_connectors++;
4547 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4548 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4549 dev_priv->lvds_ssc_freq);
4550 return dev_priv->lvds_ssc_freq * 1000;
4553 return 120000;
4556 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4557 struct drm_display_mode *mode,
4558 struct drm_display_mode *adjusted_mode,
4559 int x, int y,
4560 struct drm_framebuffer *old_fb)
4562 struct drm_device *dev = crtc->dev;
4563 struct drm_i915_private *dev_priv = dev->dev_private;
4564 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4565 int pipe = intel_crtc->pipe;
4566 int plane = intel_crtc->plane;
4567 int refclk, num_connectors = 0;
4568 intel_clock_t clock, reduced_clock;
4569 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4570 bool ok, has_reduced_clock = false, is_sdvo = false;
4571 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4572 struct drm_mode_config *mode_config = &dev->mode_config;
4573 struct intel_encoder *encoder, *edp_encoder = NULL;
4574 const intel_limit_t *limit;
4575 int ret;
4576 struct fdi_m_n m_n = {0};
4577 u32 temp;
4578 int target_clock, pixel_multiplier, lane, link_bw, factor;
4579 unsigned int pipe_bpp;
4580 bool dither;
4581 bool is_cpu_edp = false, is_pch_edp = false;
4583 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4584 if (encoder->base.crtc != crtc)
4585 continue;
4587 switch (encoder->type) {
4588 case INTEL_OUTPUT_LVDS:
4589 is_lvds = true;
4590 break;
4591 case INTEL_OUTPUT_SDVO:
4592 case INTEL_OUTPUT_HDMI:
4593 is_sdvo = true;
4594 if (encoder->needs_tv_clock)
4595 is_tv = true;
4596 break;
4597 case INTEL_OUTPUT_TVOUT:
4598 is_tv = true;
4599 break;
4600 case INTEL_OUTPUT_ANALOG:
4601 is_crt = true;
4602 break;
4603 case INTEL_OUTPUT_DISPLAYPORT:
4604 is_dp = true;
4605 break;
4606 case INTEL_OUTPUT_EDP:
4607 is_dp = true;
4608 if (intel_encoder_is_pch_edp(&encoder->base))
4609 is_pch_edp = true;
4610 else
4611 is_cpu_edp = true;
4612 edp_encoder = encoder;
4613 break;
4616 num_connectors++;
4619 refclk = ironlake_get_refclk(crtc);
4622 * Returns a set of divisors for the desired target clock with the given
4623 * refclk, or FALSE. The returned values represent the clock equation:
4624 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4626 limit = intel_limit(crtc, refclk);
4627 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4628 &clock);
4629 if (!ok) {
4630 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4631 return -EINVAL;
4634 /* Ensure that the cursor is valid for the new mode before changing... */
4635 intel_crtc_update_cursor(crtc, true);
4637 if (is_lvds && dev_priv->lvds_downclock_avail) {
4639 * Ensure we match the reduced clock's P to the target clock.
4640 * If the clocks don't match, we can't switch the display clock
4641 * by using the FP0/FP1. In such case we will disable the LVDS
4642 * downclock feature.
4644 has_reduced_clock = limit->find_pll(limit, crtc,
4645 dev_priv->lvds_downclock,
4646 refclk,
4647 &clock,
4648 &reduced_clock);
4651 if (is_sdvo && is_tv)
4652 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4655 /* FDI link */
4656 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4657 lane = 0;
4658 /* CPU eDP doesn't require FDI link, so just set DP M/N
4659 according to current link config */
4660 if (is_cpu_edp) {
4661 intel_edp_link_config(edp_encoder, &lane, &link_bw);
4662 } else {
4663 /* FDI is a binary signal running at ~2.7GHz, encoding
4664 * each output octet as 10 bits. The actual frequency
4665 * is stored as a divider into a 100MHz clock, and the
4666 * mode pixel clock is stored in units of 1KHz.
4667 * Hence the bw of each lane in terms of the mode signal
4668 * is:
4670 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4673 /* [e]DP over FDI requires target mode clock instead of link clock. */
4674 if (edp_encoder)
4675 target_clock = intel_edp_target_clock(edp_encoder, mode);
4676 else if (is_dp)
4677 target_clock = mode->clock;
4678 else
4679 target_clock = adjusted_mode->clock;
4681 /* determine panel color depth */
4682 temp = I915_READ(PIPECONF(pipe));
4683 temp &= ~PIPE_BPC_MASK;
4684 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
4685 switch (pipe_bpp) {
4686 case 18:
4687 temp |= PIPE_6BPC;
4688 break;
4689 case 24:
4690 temp |= PIPE_8BPC;
4691 break;
4692 case 30:
4693 temp |= PIPE_10BPC;
4694 break;
4695 case 36:
4696 temp |= PIPE_12BPC;
4697 break;
4698 default:
4699 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
4700 pipe_bpp);
4701 temp |= PIPE_8BPC;
4702 pipe_bpp = 24;
4703 break;
4706 intel_crtc->bpp = pipe_bpp;
4707 I915_WRITE(PIPECONF(pipe), temp);
4709 if (!lane) {
4711 * Account for spread spectrum to avoid
4712 * oversubscribing the link. Max center spread
4713 * is 2.5%; use 5% for safety's sake.
4715 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
4716 lane = bps / (link_bw * 8) + 1;
4719 intel_crtc->fdi_lanes = lane;
4721 if (pixel_multiplier > 1)
4722 link_bw *= pixel_multiplier;
4723 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
4724 &m_n);
4726 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4727 if (has_reduced_clock)
4728 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4729 reduced_clock.m2;
4731 /* Enable autotuning of the PLL clock (if permissible) */
4732 factor = 21;
4733 if (is_lvds) {
4734 if ((intel_panel_use_ssc(dev_priv) &&
4735 dev_priv->lvds_ssc_freq == 100) ||
4736 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4737 factor = 25;
4738 } else if (is_sdvo && is_tv)
4739 factor = 20;
4741 if (clock.m < factor * clock.n)
4742 fp |= FP_CB_TUNE;
4744 dpll = 0;
4746 if (is_lvds)
4747 dpll |= DPLLB_MODE_LVDS;
4748 else
4749 dpll |= DPLLB_MODE_DAC_SERIAL;
4750 if (is_sdvo) {
4751 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4752 if (pixel_multiplier > 1) {
4753 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4755 dpll |= DPLL_DVO_HIGH_SPEED;
4757 if (is_dp && !is_cpu_edp)
4758 dpll |= DPLL_DVO_HIGH_SPEED;
4760 /* compute bitmask from p1 value */
4761 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4762 /* also FPA1 */
4763 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4765 switch (clock.p2) {
4766 case 5:
4767 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4768 break;
4769 case 7:
4770 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4771 break;
4772 case 10:
4773 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4774 break;
4775 case 14:
4776 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4777 break;
4780 if (is_sdvo && is_tv)
4781 dpll |= PLL_REF_INPUT_TVCLKINBC;
4782 else if (is_tv)
4783 /* XXX: just matching BIOS for now */
4784 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4785 dpll |= 3;
4786 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4787 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4788 else
4789 dpll |= PLL_REF_INPUT_DREFCLK;
4791 /* setup pipeconf */
4792 pipeconf = I915_READ(PIPECONF(pipe));
4794 /* Set up the display plane register */
4795 dspcntr = DISPPLANE_GAMMA_ENABLE;
4797 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
4798 drm_mode_debug_printmodeline(mode);
4800 /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
4801 * pre-Haswell/LPT generation */
4802 if (HAS_PCH_LPT(dev)) {
4803 DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
4804 pipe);
4805 } else if (!is_cpu_edp) {
4806 struct intel_pch_pll *pll;
4808 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
4809 if (pll == NULL) {
4810 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
4811 pipe);
4812 return -EINVAL;
4814 } else
4815 intel_put_pch_pll(intel_crtc);
4817 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4818 * This is an exception to the general rule that mode_set doesn't turn
4819 * things on.
4821 if (is_lvds) {
4822 temp = I915_READ(PCH_LVDS);
4823 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4824 if (HAS_PCH_CPT(dev)) {
4825 temp &= ~PORT_TRANS_SEL_MASK;
4826 temp |= PORT_TRANS_SEL_CPT(pipe);
4827 } else {
4828 if (pipe == 1)
4829 temp |= LVDS_PIPEB_SELECT;
4830 else
4831 temp &= ~LVDS_PIPEB_SELECT;
4834 /* set the corresponsding LVDS_BORDER bit */
4835 temp |= dev_priv->lvds_border_bits;
4836 /* Set the B0-B3 data pairs corresponding to whether we're going to
4837 * set the DPLLs for dual-channel mode or not.
4839 if (clock.p2 == 7)
4840 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4841 else
4842 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4844 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4845 * appropriately here, but we need to look more thoroughly into how
4846 * panels behave in the two modes.
4848 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4849 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4850 temp |= LVDS_HSYNC_POLARITY;
4851 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4852 temp |= LVDS_VSYNC_POLARITY;
4853 I915_WRITE(PCH_LVDS, temp);
4856 pipeconf &= ~PIPECONF_DITHER_EN;
4857 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4858 if ((is_lvds && dev_priv->lvds_dither) || dither) {
4859 pipeconf |= PIPECONF_DITHER_EN;
4860 pipeconf |= PIPECONF_DITHER_TYPE_SP;
4862 if (is_dp && !is_cpu_edp) {
4863 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4864 } else {
4865 /* For non-DP output, clear any trans DP clock recovery setting.*/
4866 I915_WRITE(TRANSDATA_M1(pipe), 0);
4867 I915_WRITE(TRANSDATA_N1(pipe), 0);
4868 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
4869 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
4872 if (intel_crtc->pch_pll) {
4873 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4875 /* Wait for the clocks to stabilize. */
4876 POSTING_READ(intel_crtc->pch_pll->pll_reg);
4877 udelay(150);
4879 /* The pixel multiplier can only be updated once the
4880 * DPLL is enabled and the clocks are stable.
4882 * So write it again.
4884 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
4887 intel_crtc->lowfreq_avail = false;
4888 if (intel_crtc->pch_pll) {
4889 if (is_lvds && has_reduced_clock && i915_powersave) {
4890 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
4891 intel_crtc->lowfreq_avail = true;
4892 } else {
4893 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
4897 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4898 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4899 pipeconf |= PIPECONF_INTERLACED_ILK;
4900 /* the chip adds 2 halflines automatically */
4901 adjusted_mode->crtc_vtotal -= 1;
4902 adjusted_mode->crtc_vblank_end -= 1;
4903 I915_WRITE(VSYNCSHIFT(pipe),
4904 adjusted_mode->crtc_hsync_start
4905 - adjusted_mode->crtc_htotal/2);
4906 } else {
4907 pipeconf |= PIPECONF_PROGRESSIVE;
4908 I915_WRITE(VSYNCSHIFT(pipe), 0);
4911 I915_WRITE(HTOTAL(pipe),
4912 (adjusted_mode->crtc_hdisplay - 1) |
4913 ((adjusted_mode->crtc_htotal - 1) << 16));
4914 I915_WRITE(HBLANK(pipe),
4915 (adjusted_mode->crtc_hblank_start - 1) |
4916 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4917 I915_WRITE(HSYNC(pipe),
4918 (adjusted_mode->crtc_hsync_start - 1) |
4919 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4921 I915_WRITE(VTOTAL(pipe),
4922 (adjusted_mode->crtc_vdisplay - 1) |
4923 ((adjusted_mode->crtc_vtotal - 1) << 16));
4924 I915_WRITE(VBLANK(pipe),
4925 (adjusted_mode->crtc_vblank_start - 1) |
4926 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4927 I915_WRITE(VSYNC(pipe),
4928 (adjusted_mode->crtc_vsync_start - 1) |
4929 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4931 /* pipesrc controls the size that is scaled from, which should
4932 * always be the user's requested size.
4934 I915_WRITE(PIPESRC(pipe),
4935 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4937 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4938 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4939 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4940 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4942 if (is_cpu_edp)
4943 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4945 I915_WRITE(PIPECONF(pipe), pipeconf);
4946 POSTING_READ(PIPECONF(pipe));
4948 intel_wait_for_vblank(dev, pipe);
4950 I915_WRITE(DSPCNTR(plane), dspcntr);
4951 POSTING_READ(DSPCNTR(plane));
4953 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4955 intel_update_watermarks(dev);
4957 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
4959 return ret;
4962 static int intel_crtc_mode_set(struct drm_crtc *crtc,
4963 struct drm_display_mode *mode,
4964 struct drm_display_mode *adjusted_mode,
4965 int x, int y,
4966 struct drm_framebuffer *old_fb)
4968 struct drm_device *dev = crtc->dev;
4969 struct drm_i915_private *dev_priv = dev->dev_private;
4970 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4971 int pipe = intel_crtc->pipe;
4972 int ret;
4974 drm_vblank_pre_modeset(dev, pipe);
4976 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
4977 x, y, old_fb);
4978 drm_vblank_post_modeset(dev, pipe);
4980 if (ret)
4981 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4982 else
4983 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
4985 return ret;
4988 static bool intel_eld_uptodate(struct drm_connector *connector,
4989 int reg_eldv, uint32_t bits_eldv,
4990 int reg_elda, uint32_t bits_elda,
4991 int reg_edid)
4993 struct drm_i915_private *dev_priv = connector->dev->dev_private;
4994 uint8_t *eld = connector->eld;
4995 uint32_t i;
4997 i = I915_READ(reg_eldv);
4998 i &= bits_eldv;
5000 if (!eld[0])
5001 return !i;
5003 if (!i)
5004 return false;
5006 i = I915_READ(reg_elda);
5007 i &= ~bits_elda;
5008 I915_WRITE(reg_elda, i);
5010 for (i = 0; i < eld[2]; i++)
5011 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5012 return false;
5014 return true;
5017 static void g4x_write_eld(struct drm_connector *connector,
5018 struct drm_crtc *crtc)
5020 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5021 uint8_t *eld = connector->eld;
5022 uint32_t eldv;
5023 uint32_t len;
5024 uint32_t i;
5026 i = I915_READ(G4X_AUD_VID_DID);
5028 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5029 eldv = G4X_ELDV_DEVCL_DEVBLC;
5030 else
5031 eldv = G4X_ELDV_DEVCTG;
5033 if (intel_eld_uptodate(connector,
5034 G4X_AUD_CNTL_ST, eldv,
5035 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5036 G4X_HDMIW_HDMIEDID))
5037 return;
5039 i = I915_READ(G4X_AUD_CNTL_ST);
5040 i &= ~(eldv | G4X_ELD_ADDR);
5041 len = (i >> 9) & 0x1f; /* ELD buffer size */
5042 I915_WRITE(G4X_AUD_CNTL_ST, i);
5044 if (!eld[0])
5045 return;
5047 len = min_t(uint8_t, eld[2], len);
5048 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5049 for (i = 0; i < len; i++)
5050 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5052 i = I915_READ(G4X_AUD_CNTL_ST);
5053 i |= eldv;
5054 I915_WRITE(G4X_AUD_CNTL_ST, i);
5057 static void ironlake_write_eld(struct drm_connector *connector,
5058 struct drm_crtc *crtc)
5060 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5061 uint8_t *eld = connector->eld;
5062 uint32_t eldv;
5063 uint32_t i;
5064 int len;
5065 int hdmiw_hdmiedid;
5066 int aud_config;
5067 int aud_cntl_st;
5068 int aud_cntrl_st2;
5070 if (HAS_PCH_IBX(connector->dev)) {
5071 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
5072 aud_config = IBX_AUD_CONFIG_A;
5073 aud_cntl_st = IBX_AUD_CNTL_ST_A;
5074 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5075 } else {
5076 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
5077 aud_config = CPT_AUD_CONFIG_A;
5078 aud_cntl_st = CPT_AUD_CNTL_ST_A;
5079 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5082 i = to_intel_crtc(crtc)->pipe;
5083 hdmiw_hdmiedid += i * 0x100;
5084 aud_cntl_st += i * 0x100;
5085 aud_config += i * 0x100;
5087 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
5089 i = I915_READ(aud_cntl_st);
5090 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
5091 if (!i) {
5092 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5093 /* operate blindly on all ports */
5094 eldv = IBX_ELD_VALIDB;
5095 eldv |= IBX_ELD_VALIDB << 4;
5096 eldv |= IBX_ELD_VALIDB << 8;
5097 } else {
5098 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5099 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5102 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5103 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5104 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5105 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5106 } else
5107 I915_WRITE(aud_config, 0);
5109 if (intel_eld_uptodate(connector,
5110 aud_cntrl_st2, eldv,
5111 aud_cntl_st, IBX_ELD_ADDRESS,
5112 hdmiw_hdmiedid))
5113 return;
5115 i = I915_READ(aud_cntrl_st2);
5116 i &= ~eldv;
5117 I915_WRITE(aud_cntrl_st2, i);
5119 if (!eld[0])
5120 return;
5122 i = I915_READ(aud_cntl_st);
5123 i &= ~IBX_ELD_ADDRESS;
5124 I915_WRITE(aud_cntl_st, i);
5126 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5127 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5128 for (i = 0; i < len; i++)
5129 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5131 i = I915_READ(aud_cntrl_st2);
5132 i |= eldv;
5133 I915_WRITE(aud_cntrl_st2, i);
5136 void intel_write_eld(struct drm_encoder *encoder,
5137 struct drm_display_mode *mode)
5139 struct drm_crtc *crtc = encoder->crtc;
5140 struct drm_connector *connector;
5141 struct drm_device *dev = encoder->dev;
5142 struct drm_i915_private *dev_priv = dev->dev_private;
5144 connector = drm_select_eld(encoder, mode);
5145 if (!connector)
5146 return;
5148 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5149 connector->base.id,
5150 drm_get_connector_name(connector),
5151 connector->encoder->base.id,
5152 drm_get_encoder_name(connector->encoder));
5154 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5156 if (dev_priv->display.write_eld)
5157 dev_priv->display.write_eld(connector, crtc);
5160 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5161 void intel_crtc_load_lut(struct drm_crtc *crtc)
5163 struct drm_device *dev = crtc->dev;
5164 struct drm_i915_private *dev_priv = dev->dev_private;
5165 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5166 int palreg = PALETTE(intel_crtc->pipe);
5167 int i;
5169 /* The clocks have to be on to load the palette. */
5170 if (!crtc->enabled || !intel_crtc->active)
5171 return;
5173 /* use legacy palette for Ironlake */
5174 if (HAS_PCH_SPLIT(dev))
5175 palreg = LGC_PALETTE(intel_crtc->pipe);
5177 for (i = 0; i < 256; i++) {
5178 I915_WRITE(palreg + 4 * i,
5179 (intel_crtc->lut_r[i] << 16) |
5180 (intel_crtc->lut_g[i] << 8) |
5181 intel_crtc->lut_b[i]);
5185 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5187 struct drm_device *dev = crtc->dev;
5188 struct drm_i915_private *dev_priv = dev->dev_private;
5189 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5190 bool visible = base != 0;
5191 u32 cntl;
5193 if (intel_crtc->cursor_visible == visible)
5194 return;
5196 cntl = I915_READ(_CURACNTR);
5197 if (visible) {
5198 /* On these chipsets we can only modify the base whilst
5199 * the cursor is disabled.
5201 I915_WRITE(_CURABASE, base);
5203 cntl &= ~(CURSOR_FORMAT_MASK);
5204 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5205 cntl |= CURSOR_ENABLE |
5206 CURSOR_GAMMA_ENABLE |
5207 CURSOR_FORMAT_ARGB;
5208 } else
5209 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5210 I915_WRITE(_CURACNTR, cntl);
5212 intel_crtc->cursor_visible = visible;
5215 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5217 struct drm_device *dev = crtc->dev;
5218 struct drm_i915_private *dev_priv = dev->dev_private;
5219 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5220 int pipe = intel_crtc->pipe;
5221 bool visible = base != 0;
5223 if (intel_crtc->cursor_visible != visible) {
5224 uint32_t cntl = I915_READ(CURCNTR(pipe));
5225 if (base) {
5226 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5227 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5228 cntl |= pipe << 28; /* Connect to correct pipe */
5229 } else {
5230 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5231 cntl |= CURSOR_MODE_DISABLE;
5233 I915_WRITE(CURCNTR(pipe), cntl);
5235 intel_crtc->cursor_visible = visible;
5237 /* and commit changes on next vblank */
5238 I915_WRITE(CURBASE(pipe), base);
5241 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5243 struct drm_device *dev = crtc->dev;
5244 struct drm_i915_private *dev_priv = dev->dev_private;
5245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5246 int pipe = intel_crtc->pipe;
5247 bool visible = base != 0;
5249 if (intel_crtc->cursor_visible != visible) {
5250 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5251 if (base) {
5252 cntl &= ~CURSOR_MODE;
5253 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5254 } else {
5255 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5256 cntl |= CURSOR_MODE_DISABLE;
5258 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5260 intel_crtc->cursor_visible = visible;
5262 /* and commit changes on next vblank */
5263 I915_WRITE(CURBASE_IVB(pipe), base);
5266 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5267 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5268 bool on)
5270 struct drm_device *dev = crtc->dev;
5271 struct drm_i915_private *dev_priv = dev->dev_private;
5272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5273 int pipe = intel_crtc->pipe;
5274 int x = intel_crtc->cursor_x;
5275 int y = intel_crtc->cursor_y;
5276 u32 base, pos;
5277 bool visible;
5279 pos = 0;
5281 if (on && crtc->enabled && crtc->fb) {
5282 base = intel_crtc->cursor_addr;
5283 if (x > (int) crtc->fb->width)
5284 base = 0;
5286 if (y > (int) crtc->fb->height)
5287 base = 0;
5288 } else
5289 base = 0;
5291 if (x < 0) {
5292 if (x + intel_crtc->cursor_width < 0)
5293 base = 0;
5295 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5296 x = -x;
5298 pos |= x << CURSOR_X_SHIFT;
5300 if (y < 0) {
5301 if (y + intel_crtc->cursor_height < 0)
5302 base = 0;
5304 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5305 y = -y;
5307 pos |= y << CURSOR_Y_SHIFT;
5309 visible = base != 0;
5310 if (!visible && !intel_crtc->cursor_visible)
5311 return;
5313 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5314 I915_WRITE(CURPOS_IVB(pipe), pos);
5315 ivb_update_cursor(crtc, base);
5316 } else {
5317 I915_WRITE(CURPOS(pipe), pos);
5318 if (IS_845G(dev) || IS_I865G(dev))
5319 i845_update_cursor(crtc, base);
5320 else
5321 i9xx_update_cursor(crtc, base);
5325 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5326 struct drm_file *file,
5327 uint32_t handle,
5328 uint32_t width, uint32_t height)
5330 struct drm_device *dev = crtc->dev;
5331 struct drm_i915_private *dev_priv = dev->dev_private;
5332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5333 struct drm_i915_gem_object *obj;
5334 uint32_t addr;
5335 int ret;
5337 DRM_DEBUG_KMS("\n");
5339 /* if we want to turn off the cursor ignore width and height */
5340 if (!handle) {
5341 DRM_DEBUG_KMS("cursor off\n");
5342 addr = 0;
5343 obj = NULL;
5344 mutex_lock(&dev->struct_mutex);
5345 goto finish;
5348 /* Currently we only support 64x64 cursors */
5349 if (width != 64 || height != 64) {
5350 DRM_ERROR("we currently only support 64x64 cursors\n");
5351 return -EINVAL;
5354 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5355 if (&obj->base == NULL)
5356 return -ENOENT;
5358 if (obj->base.size < width * height * 4) {
5359 DRM_ERROR("buffer is to small\n");
5360 ret = -ENOMEM;
5361 goto fail;
5364 /* we only need to pin inside GTT if cursor is non-phy */
5365 mutex_lock(&dev->struct_mutex);
5366 if (!dev_priv->info->cursor_needs_physical) {
5367 if (obj->tiling_mode) {
5368 DRM_ERROR("cursor cannot be tiled\n");
5369 ret = -EINVAL;
5370 goto fail_locked;
5373 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5374 if (ret) {
5375 DRM_ERROR("failed to move cursor bo into the GTT\n");
5376 goto fail_locked;
5379 ret = i915_gem_object_put_fence(obj);
5380 if (ret) {
5381 DRM_ERROR("failed to release fence for cursor");
5382 goto fail_unpin;
5385 addr = obj->gtt_offset;
5386 } else {
5387 int align = IS_I830(dev) ? 16 * 1024 : 256;
5388 ret = i915_gem_attach_phys_object(dev, obj,
5389 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5390 align);
5391 if (ret) {
5392 DRM_ERROR("failed to attach phys object\n");
5393 goto fail_locked;
5395 addr = obj->phys_obj->handle->busaddr;
5398 if (IS_GEN2(dev))
5399 I915_WRITE(CURSIZE, (height << 12) | width);
5401 finish:
5402 if (intel_crtc->cursor_bo) {
5403 if (dev_priv->info->cursor_needs_physical) {
5404 if (intel_crtc->cursor_bo != obj)
5405 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5406 } else
5407 i915_gem_object_unpin(intel_crtc->cursor_bo);
5408 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5411 mutex_unlock(&dev->struct_mutex);
5413 intel_crtc->cursor_addr = addr;
5414 intel_crtc->cursor_bo = obj;
5415 intel_crtc->cursor_width = width;
5416 intel_crtc->cursor_height = height;
5418 intel_crtc_update_cursor(crtc, true);
5420 return 0;
5421 fail_unpin:
5422 i915_gem_object_unpin(obj);
5423 fail_locked:
5424 mutex_unlock(&dev->struct_mutex);
5425 fail:
5426 drm_gem_object_unreference_unlocked(&obj->base);
5427 return ret;
5430 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5432 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5434 intel_crtc->cursor_x = x;
5435 intel_crtc->cursor_y = y;
5437 intel_crtc_update_cursor(crtc, true);
5439 return 0;
5442 /** Sets the color ramps on behalf of RandR */
5443 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5444 u16 blue, int regno)
5446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5448 intel_crtc->lut_r[regno] = red >> 8;
5449 intel_crtc->lut_g[regno] = green >> 8;
5450 intel_crtc->lut_b[regno] = blue >> 8;
5453 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5454 u16 *blue, int regno)
5456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5458 *red = intel_crtc->lut_r[regno] << 8;
5459 *green = intel_crtc->lut_g[regno] << 8;
5460 *blue = intel_crtc->lut_b[regno] << 8;
5463 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5464 u16 *blue, uint32_t start, uint32_t size)
5466 int end = (start + size > 256) ? 256 : start + size, i;
5467 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5469 for (i = start; i < end; i++) {
5470 intel_crtc->lut_r[i] = red[i] >> 8;
5471 intel_crtc->lut_g[i] = green[i] >> 8;
5472 intel_crtc->lut_b[i] = blue[i] >> 8;
5475 intel_crtc_load_lut(crtc);
5479 * Get a pipe with a simple mode set on it for doing load-based monitor
5480 * detection.
5482 * It will be up to the load-detect code to adjust the pipe as appropriate for
5483 * its requirements. The pipe will be connected to no other encoders.
5485 * Currently this code will only succeed if there is a pipe with no encoders
5486 * configured for it. In the future, it could choose to temporarily disable
5487 * some outputs to free up a pipe for its use.
5489 * \return crtc, or NULL if no pipes are available.
5492 /* VESA 640x480x72Hz mode to set on the pipe */
5493 static struct drm_display_mode load_detect_mode = {
5494 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5495 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5498 static struct drm_framebuffer *
5499 intel_framebuffer_create(struct drm_device *dev,
5500 struct drm_mode_fb_cmd2 *mode_cmd,
5501 struct drm_i915_gem_object *obj)
5503 struct intel_framebuffer *intel_fb;
5504 int ret;
5506 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5507 if (!intel_fb) {
5508 drm_gem_object_unreference_unlocked(&obj->base);
5509 return ERR_PTR(-ENOMEM);
5512 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5513 if (ret) {
5514 drm_gem_object_unreference_unlocked(&obj->base);
5515 kfree(intel_fb);
5516 return ERR_PTR(ret);
5519 return &intel_fb->base;
5522 static u32
5523 intel_framebuffer_pitch_for_width(int width, int bpp)
5525 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5526 return ALIGN(pitch, 64);
5529 static u32
5530 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5532 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5533 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5536 static struct drm_framebuffer *
5537 intel_framebuffer_create_for_mode(struct drm_device *dev,
5538 struct drm_display_mode *mode,
5539 int depth, int bpp)
5541 struct drm_i915_gem_object *obj;
5542 struct drm_mode_fb_cmd2 mode_cmd;
5544 obj = i915_gem_alloc_object(dev,
5545 intel_framebuffer_size_for_mode(mode, bpp));
5546 if (obj == NULL)
5547 return ERR_PTR(-ENOMEM);
5549 mode_cmd.width = mode->hdisplay;
5550 mode_cmd.height = mode->vdisplay;
5551 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
5552 bpp);
5553 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
5555 return intel_framebuffer_create(dev, &mode_cmd, obj);
5558 static struct drm_framebuffer *
5559 mode_fits_in_fbdev(struct drm_device *dev,
5560 struct drm_display_mode *mode)
5562 struct drm_i915_private *dev_priv = dev->dev_private;
5563 struct drm_i915_gem_object *obj;
5564 struct drm_framebuffer *fb;
5566 if (dev_priv->fbdev == NULL)
5567 return NULL;
5569 obj = dev_priv->fbdev->ifb.obj;
5570 if (obj == NULL)
5571 return NULL;
5573 fb = &dev_priv->fbdev->ifb.base;
5574 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
5575 fb->bits_per_pixel))
5576 return NULL;
5578 if (obj->base.size < mode->vdisplay * fb->pitches[0])
5579 return NULL;
5581 return fb;
5584 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5585 struct drm_connector *connector,
5586 struct drm_display_mode *mode,
5587 struct intel_load_detect_pipe *old)
5589 struct intel_crtc *intel_crtc;
5590 struct drm_crtc *possible_crtc;
5591 struct drm_encoder *encoder = &intel_encoder->base;
5592 struct drm_crtc *crtc = NULL;
5593 struct drm_device *dev = encoder->dev;
5594 struct drm_framebuffer *old_fb;
5595 int i = -1;
5597 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5598 connector->base.id, drm_get_connector_name(connector),
5599 encoder->base.id, drm_get_encoder_name(encoder));
5602 * Algorithm gets a little messy:
5604 * - if the connector already has an assigned crtc, use it (but make
5605 * sure it's on first)
5607 * - try to find the first unused crtc that can drive this connector,
5608 * and use that if we find one
5611 /* See if we already have a CRTC for this connector */
5612 if (encoder->crtc) {
5613 crtc = encoder->crtc;
5615 intel_crtc = to_intel_crtc(crtc);
5616 old->dpms_mode = intel_crtc->dpms_mode;
5617 old->load_detect_temp = false;
5619 /* Make sure the crtc and connector are running */
5620 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5621 struct drm_encoder_helper_funcs *encoder_funcs;
5622 struct drm_crtc_helper_funcs *crtc_funcs;
5624 crtc_funcs = crtc->helper_private;
5625 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5627 encoder_funcs = encoder->helper_private;
5628 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5631 return true;
5634 /* Find an unused one (if possible) */
5635 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5636 i++;
5637 if (!(encoder->possible_crtcs & (1 << i)))
5638 continue;
5639 if (!possible_crtc->enabled) {
5640 crtc = possible_crtc;
5641 break;
5646 * If we didn't find an unused CRTC, don't use any.
5648 if (!crtc) {
5649 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5650 return false;
5653 encoder->crtc = crtc;
5654 connector->encoder = encoder;
5656 intel_crtc = to_intel_crtc(crtc);
5657 old->dpms_mode = intel_crtc->dpms_mode;
5658 old->load_detect_temp = true;
5659 old->release_fb = NULL;
5661 if (!mode)
5662 mode = &load_detect_mode;
5664 old_fb = crtc->fb;
5666 /* We need a framebuffer large enough to accommodate all accesses
5667 * that the plane may generate whilst we perform load detection.
5668 * We can not rely on the fbcon either being present (we get called
5669 * during its initialisation to detect all boot displays, or it may
5670 * not even exist) or that it is large enough to satisfy the
5671 * requested mode.
5673 crtc->fb = mode_fits_in_fbdev(dev, mode);
5674 if (crtc->fb == NULL) {
5675 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5676 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5677 old->release_fb = crtc->fb;
5678 } else
5679 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5680 if (IS_ERR(crtc->fb)) {
5681 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5682 crtc->fb = old_fb;
5683 return false;
5686 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5687 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5688 if (old->release_fb)
5689 old->release_fb->funcs->destroy(old->release_fb);
5690 crtc->fb = old_fb;
5691 return false;
5694 /* let the connector get through one full cycle before testing */
5695 intel_wait_for_vblank(dev, intel_crtc->pipe);
5697 return true;
5700 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5701 struct drm_connector *connector,
5702 struct intel_load_detect_pipe *old)
5704 struct drm_encoder *encoder = &intel_encoder->base;
5705 struct drm_device *dev = encoder->dev;
5706 struct drm_crtc *crtc = encoder->crtc;
5707 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5708 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5710 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5711 connector->base.id, drm_get_connector_name(connector),
5712 encoder->base.id, drm_get_encoder_name(encoder));
5714 if (old->load_detect_temp) {
5715 connector->encoder = NULL;
5716 drm_helper_disable_unused_functions(dev);
5718 if (old->release_fb)
5719 old->release_fb->funcs->destroy(old->release_fb);
5721 return;
5724 /* Switch crtc and encoder back off if necessary */
5725 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5726 encoder_funcs->dpms(encoder, old->dpms_mode);
5727 crtc_funcs->dpms(crtc, old->dpms_mode);
5731 /* Returns the clock of the currently programmed mode of the given pipe. */
5732 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5734 struct drm_i915_private *dev_priv = dev->dev_private;
5735 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5736 int pipe = intel_crtc->pipe;
5737 u32 dpll = I915_READ(DPLL(pipe));
5738 u32 fp;
5739 intel_clock_t clock;
5741 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5742 fp = I915_READ(FP0(pipe));
5743 else
5744 fp = I915_READ(FP1(pipe));
5746 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5747 if (IS_PINEVIEW(dev)) {
5748 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5749 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5750 } else {
5751 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5752 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5755 if (!IS_GEN2(dev)) {
5756 if (IS_PINEVIEW(dev))
5757 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5758 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5759 else
5760 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5761 DPLL_FPA01_P1_POST_DIV_SHIFT);
5763 switch (dpll & DPLL_MODE_MASK) {
5764 case DPLLB_MODE_DAC_SERIAL:
5765 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5766 5 : 10;
5767 break;
5768 case DPLLB_MODE_LVDS:
5769 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5770 7 : 14;
5771 break;
5772 default:
5773 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5774 "mode\n", (int)(dpll & DPLL_MODE_MASK));
5775 return 0;
5778 /* XXX: Handle the 100Mhz refclk */
5779 intel_clock(dev, 96000, &clock);
5780 } else {
5781 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5783 if (is_lvds) {
5784 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5785 DPLL_FPA01_P1_POST_DIV_SHIFT);
5786 clock.p2 = 14;
5788 if ((dpll & PLL_REF_INPUT_MASK) ==
5789 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5790 /* XXX: might not be 66MHz */
5791 intel_clock(dev, 66000, &clock);
5792 } else
5793 intel_clock(dev, 48000, &clock);
5794 } else {
5795 if (dpll & PLL_P1_DIVIDE_BY_TWO)
5796 clock.p1 = 2;
5797 else {
5798 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5799 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5801 if (dpll & PLL_P2_DIVIDE_BY_4)
5802 clock.p2 = 4;
5803 else
5804 clock.p2 = 2;
5806 intel_clock(dev, 48000, &clock);
5810 /* XXX: It would be nice to validate the clocks, but we can't reuse
5811 * i830PllIsValid() because it relies on the xf86_config connector
5812 * configuration being accurate, which it isn't necessarily.
5815 return clock.dot;
5818 /** Returns the currently programmed mode of the given pipe. */
5819 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5820 struct drm_crtc *crtc)
5822 struct drm_i915_private *dev_priv = dev->dev_private;
5823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5824 int pipe = intel_crtc->pipe;
5825 struct drm_display_mode *mode;
5826 int htot = I915_READ(HTOTAL(pipe));
5827 int hsync = I915_READ(HSYNC(pipe));
5828 int vtot = I915_READ(VTOTAL(pipe));
5829 int vsync = I915_READ(VSYNC(pipe));
5831 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5832 if (!mode)
5833 return NULL;
5835 mode->clock = intel_crtc_clock_get(dev, crtc);
5836 mode->hdisplay = (htot & 0xffff) + 1;
5837 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5838 mode->hsync_start = (hsync & 0xffff) + 1;
5839 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5840 mode->vdisplay = (vtot & 0xffff) + 1;
5841 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5842 mode->vsync_start = (vsync & 0xffff) + 1;
5843 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5845 drm_mode_set_name(mode);
5847 return mode;
5850 #define GPU_IDLE_TIMEOUT 500 /* ms */
5852 /* When this timer fires, we've been idle for awhile */
5853 static void intel_gpu_idle_timer(unsigned long arg)
5855 struct drm_device *dev = (struct drm_device *)arg;
5856 drm_i915_private_t *dev_priv = dev->dev_private;
5858 if (!list_empty(&dev_priv->mm.active_list)) {
5859 /* Still processing requests, so just re-arm the timer. */
5860 mod_timer(&dev_priv->idle_timer, jiffies +
5861 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5862 return;
5865 dev_priv->busy = false;
5866 queue_work(dev_priv->wq, &dev_priv->idle_work);
5869 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5871 static void intel_crtc_idle_timer(unsigned long arg)
5873 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5874 struct drm_crtc *crtc = &intel_crtc->base;
5875 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5876 struct intel_framebuffer *intel_fb;
5878 intel_fb = to_intel_framebuffer(crtc->fb);
5879 if (intel_fb && intel_fb->obj->active) {
5880 /* The framebuffer is still being accessed by the GPU. */
5881 mod_timer(&intel_crtc->idle_timer, jiffies +
5882 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5883 return;
5886 intel_crtc->busy = false;
5887 queue_work(dev_priv->wq, &dev_priv->idle_work);
5890 static void intel_increase_pllclock(struct drm_crtc *crtc)
5892 struct drm_device *dev = crtc->dev;
5893 drm_i915_private_t *dev_priv = dev->dev_private;
5894 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5895 int pipe = intel_crtc->pipe;
5896 int dpll_reg = DPLL(pipe);
5897 int dpll;
5899 if (HAS_PCH_SPLIT(dev))
5900 return;
5902 if (!dev_priv->lvds_downclock_avail)
5903 return;
5905 dpll = I915_READ(dpll_reg);
5906 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5907 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5909 assert_panel_unlocked(dev_priv, pipe);
5911 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5912 I915_WRITE(dpll_reg, dpll);
5913 intel_wait_for_vblank(dev, pipe);
5915 dpll = I915_READ(dpll_reg);
5916 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5917 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5920 /* Schedule downclock */
5921 mod_timer(&intel_crtc->idle_timer, jiffies +
5922 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5925 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5927 struct drm_device *dev = crtc->dev;
5928 drm_i915_private_t *dev_priv = dev->dev_private;
5929 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5931 if (HAS_PCH_SPLIT(dev))
5932 return;
5934 if (!dev_priv->lvds_downclock_avail)
5935 return;
5938 * Since this is called by a timer, we should never get here in
5939 * the manual case.
5941 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5942 int pipe = intel_crtc->pipe;
5943 int dpll_reg = DPLL(pipe);
5944 int dpll;
5946 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5948 assert_panel_unlocked(dev_priv, pipe);
5950 dpll = I915_READ(dpll_reg);
5951 dpll |= DISPLAY_RATE_SELECT_FPA1;
5952 I915_WRITE(dpll_reg, dpll);
5953 intel_wait_for_vblank(dev, pipe);
5954 dpll = I915_READ(dpll_reg);
5955 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5956 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5962 * intel_idle_update - adjust clocks for idleness
5963 * @work: work struct
5965 * Either the GPU or display (or both) went idle. Check the busy status
5966 * here and adjust the CRTC and GPU clocks as necessary.
5968 static void intel_idle_update(struct work_struct *work)
5970 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5971 idle_work);
5972 struct drm_device *dev = dev_priv->dev;
5973 struct drm_crtc *crtc;
5974 struct intel_crtc *intel_crtc;
5976 if (!i915_powersave)
5977 return;
5979 mutex_lock(&dev->struct_mutex);
5981 i915_update_gfx_val(dev_priv);
5983 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5984 /* Skip inactive CRTCs */
5985 if (!crtc->fb)
5986 continue;
5988 intel_crtc = to_intel_crtc(crtc);
5989 if (!intel_crtc->busy)
5990 intel_decrease_pllclock(crtc);
5994 mutex_unlock(&dev->struct_mutex);
5998 * intel_mark_busy - mark the GPU and possibly the display busy
5999 * @dev: drm device
6000 * @obj: object we're operating on
6002 * Callers can use this function to indicate that the GPU is busy processing
6003 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6004 * buffer), we'll also mark the display as busy, so we know to increase its
6005 * clock frequency.
6007 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6009 drm_i915_private_t *dev_priv = dev->dev_private;
6010 struct drm_crtc *crtc = NULL;
6011 struct intel_framebuffer *intel_fb;
6012 struct intel_crtc *intel_crtc;
6014 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6015 return;
6017 if (!dev_priv->busy) {
6018 intel_sanitize_pm(dev);
6019 dev_priv->busy = true;
6020 } else
6021 mod_timer(&dev_priv->idle_timer, jiffies +
6022 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6024 if (obj == NULL)
6025 return;
6027 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6028 if (!crtc->fb)
6029 continue;
6031 intel_crtc = to_intel_crtc(crtc);
6032 intel_fb = to_intel_framebuffer(crtc->fb);
6033 if (intel_fb->obj == obj) {
6034 if (!intel_crtc->busy) {
6035 /* Non-busy -> busy, upclock */
6036 intel_increase_pllclock(crtc);
6037 intel_crtc->busy = true;
6038 } else {
6039 /* Busy -> busy, put off timer */
6040 mod_timer(&intel_crtc->idle_timer, jiffies +
6041 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6047 static void intel_crtc_destroy(struct drm_crtc *crtc)
6049 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6050 struct drm_device *dev = crtc->dev;
6051 struct intel_unpin_work *work;
6052 unsigned long flags;
6054 spin_lock_irqsave(&dev->event_lock, flags);
6055 work = intel_crtc->unpin_work;
6056 intel_crtc->unpin_work = NULL;
6057 spin_unlock_irqrestore(&dev->event_lock, flags);
6059 if (work) {
6060 cancel_work_sync(&work->work);
6061 kfree(work);
6064 drm_crtc_cleanup(crtc);
6066 kfree(intel_crtc);
6069 static void intel_unpin_work_fn(struct work_struct *__work)
6071 struct intel_unpin_work *work =
6072 container_of(__work, struct intel_unpin_work, work);
6074 mutex_lock(&work->dev->struct_mutex);
6075 intel_unpin_fb_obj(work->old_fb_obj);
6076 drm_gem_object_unreference(&work->pending_flip_obj->base);
6077 drm_gem_object_unreference(&work->old_fb_obj->base);
6079 intel_update_fbc(work->dev);
6080 mutex_unlock(&work->dev->struct_mutex);
6081 kfree(work);
6084 static void do_intel_finish_page_flip(struct drm_device *dev,
6085 struct drm_crtc *crtc)
6087 drm_i915_private_t *dev_priv = dev->dev_private;
6088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6089 struct intel_unpin_work *work;
6090 struct drm_i915_gem_object *obj;
6091 struct drm_pending_vblank_event *e;
6092 struct timeval tnow, tvbl;
6093 unsigned long flags;
6095 /* Ignore early vblank irqs */
6096 if (intel_crtc == NULL)
6097 return;
6099 do_gettimeofday(&tnow);
6101 spin_lock_irqsave(&dev->event_lock, flags);
6102 work = intel_crtc->unpin_work;
6103 if (work == NULL || !work->pending) {
6104 spin_unlock_irqrestore(&dev->event_lock, flags);
6105 return;
6108 intel_crtc->unpin_work = NULL;
6110 if (work->event) {
6111 e = work->event;
6112 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6114 /* Called before vblank count and timestamps have
6115 * been updated for the vblank interval of flip
6116 * completion? Need to increment vblank count and
6117 * add one videorefresh duration to returned timestamp
6118 * to account for this. We assume this happened if we
6119 * get called over 0.9 frame durations after the last
6120 * timestamped vblank.
6122 * This calculation can not be used with vrefresh rates
6123 * below 5Hz (10Hz to be on the safe side) without
6124 * promoting to 64 integers.
6126 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6127 9 * crtc->framedur_ns) {
6128 e->event.sequence++;
6129 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6130 crtc->framedur_ns);
6133 e->event.tv_sec = tvbl.tv_sec;
6134 e->event.tv_usec = tvbl.tv_usec;
6136 list_add_tail(&e->base.link,
6137 &e->base.file_priv->event_list);
6138 wake_up_interruptible(&e->base.file_priv->event_wait);
6141 drm_vblank_put(dev, intel_crtc->pipe);
6143 spin_unlock_irqrestore(&dev->event_lock, flags);
6145 obj = work->old_fb_obj;
6147 atomic_clear_mask(1 << intel_crtc->plane,
6148 &obj->pending_flip.counter);
6149 if (atomic_read(&obj->pending_flip) == 0)
6150 wake_up(&dev_priv->pending_flip_queue);
6152 schedule_work(&work->work);
6154 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6157 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6159 drm_i915_private_t *dev_priv = dev->dev_private;
6160 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6162 do_intel_finish_page_flip(dev, crtc);
6165 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6167 drm_i915_private_t *dev_priv = dev->dev_private;
6168 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6170 do_intel_finish_page_flip(dev, crtc);
6173 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6175 drm_i915_private_t *dev_priv = dev->dev_private;
6176 struct intel_crtc *intel_crtc =
6177 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6178 unsigned long flags;
6180 spin_lock_irqsave(&dev->event_lock, flags);
6181 if (intel_crtc->unpin_work) {
6182 if ((++intel_crtc->unpin_work->pending) > 1)
6183 DRM_ERROR("Prepared flip multiple times\n");
6184 } else {
6185 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6187 spin_unlock_irqrestore(&dev->event_lock, flags);
6190 static int intel_gen2_queue_flip(struct drm_device *dev,
6191 struct drm_crtc *crtc,
6192 struct drm_framebuffer *fb,
6193 struct drm_i915_gem_object *obj)
6195 struct drm_i915_private *dev_priv = dev->dev_private;
6196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6197 unsigned long offset;
6198 u32 flip_mask;
6199 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6200 int ret;
6202 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6203 if (ret)
6204 goto err;
6206 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6207 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
6209 ret = intel_ring_begin(ring, 6);
6210 if (ret)
6211 goto err_unpin;
6213 /* Can't queue multiple flips, so wait for the previous
6214 * one to finish before executing the next.
6216 if (intel_crtc->plane)
6217 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6218 else
6219 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6220 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6221 intel_ring_emit(ring, MI_NOOP);
6222 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6223 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6224 intel_ring_emit(ring, fb->pitches[0]);
6225 intel_ring_emit(ring, obj->gtt_offset + offset);
6226 intel_ring_emit(ring, 0); /* aux display base address, unused */
6227 intel_ring_advance(ring);
6228 return 0;
6230 err_unpin:
6231 intel_unpin_fb_obj(obj);
6232 err:
6233 return ret;
6236 static int intel_gen3_queue_flip(struct drm_device *dev,
6237 struct drm_crtc *crtc,
6238 struct drm_framebuffer *fb,
6239 struct drm_i915_gem_object *obj)
6241 struct drm_i915_private *dev_priv = dev->dev_private;
6242 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6243 unsigned long offset;
6244 u32 flip_mask;
6245 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6246 int ret;
6248 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6249 if (ret)
6250 goto err;
6252 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6253 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
6255 ret = intel_ring_begin(ring, 6);
6256 if (ret)
6257 goto err_unpin;
6259 if (intel_crtc->plane)
6260 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6261 else
6262 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6263 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6264 intel_ring_emit(ring, MI_NOOP);
6265 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6266 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6267 intel_ring_emit(ring, fb->pitches[0]);
6268 intel_ring_emit(ring, obj->gtt_offset + offset);
6269 intel_ring_emit(ring, MI_NOOP);
6271 intel_ring_advance(ring);
6272 return 0;
6274 err_unpin:
6275 intel_unpin_fb_obj(obj);
6276 err:
6277 return ret;
6280 static int intel_gen4_queue_flip(struct drm_device *dev,
6281 struct drm_crtc *crtc,
6282 struct drm_framebuffer *fb,
6283 struct drm_i915_gem_object *obj)
6285 struct drm_i915_private *dev_priv = dev->dev_private;
6286 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6287 uint32_t pf, pipesrc;
6288 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6289 int ret;
6291 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6292 if (ret)
6293 goto err;
6295 ret = intel_ring_begin(ring, 4);
6296 if (ret)
6297 goto err_unpin;
6299 /* i965+ uses the linear or tiled offsets from the
6300 * Display Registers (which do not change across a page-flip)
6301 * so we need only reprogram the base address.
6303 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6304 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6305 intel_ring_emit(ring, fb->pitches[0]);
6306 intel_ring_emit(ring, obj->gtt_offset | obj->tiling_mode);
6308 /* XXX Enabling the panel-fitter across page-flip is so far
6309 * untested on non-native modes, so ignore it for now.
6310 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6312 pf = 0;
6313 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6314 intel_ring_emit(ring, pf | pipesrc);
6315 intel_ring_advance(ring);
6316 return 0;
6318 err_unpin:
6319 intel_unpin_fb_obj(obj);
6320 err:
6321 return ret;
6324 static int intel_gen6_queue_flip(struct drm_device *dev,
6325 struct drm_crtc *crtc,
6326 struct drm_framebuffer *fb,
6327 struct drm_i915_gem_object *obj)
6329 struct drm_i915_private *dev_priv = dev->dev_private;
6330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6331 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6332 uint32_t pf, pipesrc;
6333 int ret;
6335 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6336 if (ret)
6337 goto err;
6339 ret = intel_ring_begin(ring, 4);
6340 if (ret)
6341 goto err_unpin;
6343 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6344 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6345 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6346 intel_ring_emit(ring, obj->gtt_offset);
6348 /* Contrary to the suggestions in the documentation,
6349 * "Enable Panel Fitter" does not seem to be required when page
6350 * flipping with a non-native mode, and worse causes a normal
6351 * modeset to fail.
6352 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6354 pf = 0;
6355 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6356 intel_ring_emit(ring, pf | pipesrc);
6357 intel_ring_advance(ring);
6358 return 0;
6360 err_unpin:
6361 intel_unpin_fb_obj(obj);
6362 err:
6363 return ret;
6367 * On gen7 we currently use the blit ring because (in early silicon at least)
6368 * the render ring doesn't give us interrpts for page flip completion, which
6369 * means clients will hang after the first flip is queued. Fortunately the
6370 * blit ring generates interrupts properly, so use it instead.
6372 static int intel_gen7_queue_flip(struct drm_device *dev,
6373 struct drm_crtc *crtc,
6374 struct drm_framebuffer *fb,
6375 struct drm_i915_gem_object *obj)
6377 struct drm_i915_private *dev_priv = dev->dev_private;
6378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6379 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6380 uint32_t plane_bit = 0;
6381 int ret;
6383 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6384 if (ret)
6385 goto err;
6387 switch(intel_crtc->plane) {
6388 case PLANE_A:
6389 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6390 break;
6391 case PLANE_B:
6392 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6393 break;
6394 case PLANE_C:
6395 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6396 break;
6397 default:
6398 WARN_ONCE(1, "unknown plane in flip command\n");
6399 ret = -ENODEV;
6400 goto err;
6403 ret = intel_ring_begin(ring, 4);
6404 if (ret)
6405 goto err_unpin;
6407 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6408 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6409 intel_ring_emit(ring, (obj->gtt_offset));
6410 intel_ring_emit(ring, (MI_NOOP));
6411 intel_ring_advance(ring);
6412 return 0;
6414 err_unpin:
6415 intel_unpin_fb_obj(obj);
6416 err:
6417 return ret;
6420 static int intel_default_queue_flip(struct drm_device *dev,
6421 struct drm_crtc *crtc,
6422 struct drm_framebuffer *fb,
6423 struct drm_i915_gem_object *obj)
6425 return -ENODEV;
6428 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6429 struct drm_framebuffer *fb,
6430 struct drm_pending_vblank_event *event)
6432 struct drm_device *dev = crtc->dev;
6433 struct drm_i915_private *dev_priv = dev->dev_private;
6434 struct intel_framebuffer *intel_fb;
6435 struct drm_i915_gem_object *obj;
6436 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6437 struct intel_unpin_work *work;
6438 unsigned long flags;
6439 int ret;
6441 work = kzalloc(sizeof *work, GFP_KERNEL);
6442 if (work == NULL)
6443 return -ENOMEM;
6445 work->event = event;
6446 work->dev = crtc->dev;
6447 intel_fb = to_intel_framebuffer(crtc->fb);
6448 work->old_fb_obj = intel_fb->obj;
6449 INIT_WORK(&work->work, intel_unpin_work_fn);
6451 ret = drm_vblank_get(dev, intel_crtc->pipe);
6452 if (ret)
6453 goto free_work;
6455 /* We borrow the event spin lock for protecting unpin_work */
6456 spin_lock_irqsave(&dev->event_lock, flags);
6457 if (intel_crtc->unpin_work) {
6458 spin_unlock_irqrestore(&dev->event_lock, flags);
6459 kfree(work);
6460 drm_vblank_put(dev, intel_crtc->pipe);
6462 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6463 return -EBUSY;
6465 intel_crtc->unpin_work = work;
6466 spin_unlock_irqrestore(&dev->event_lock, flags);
6468 intel_fb = to_intel_framebuffer(fb);
6469 obj = intel_fb->obj;
6471 mutex_lock(&dev->struct_mutex);
6473 /* Reference the objects for the scheduled work. */
6474 drm_gem_object_reference(&work->old_fb_obj->base);
6475 drm_gem_object_reference(&obj->base);
6477 crtc->fb = fb;
6479 work->pending_flip_obj = obj;
6481 work->enable_stall_check = true;
6483 /* Block clients from rendering to the new back buffer until
6484 * the flip occurs and the object is no longer visible.
6486 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6488 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6489 if (ret)
6490 goto cleanup_pending;
6492 intel_disable_fbc(dev);
6493 intel_mark_busy(dev, obj);
6494 mutex_unlock(&dev->struct_mutex);
6496 trace_i915_flip_request(intel_crtc->plane, obj);
6498 return 0;
6500 cleanup_pending:
6501 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6502 drm_gem_object_unreference(&work->old_fb_obj->base);
6503 drm_gem_object_unreference(&obj->base);
6504 mutex_unlock(&dev->struct_mutex);
6506 spin_lock_irqsave(&dev->event_lock, flags);
6507 intel_crtc->unpin_work = NULL;
6508 spin_unlock_irqrestore(&dev->event_lock, flags);
6510 drm_vblank_put(dev, intel_crtc->pipe);
6511 free_work:
6512 kfree(work);
6514 return ret;
6517 static void intel_sanitize_modesetting(struct drm_device *dev,
6518 int pipe, int plane)
6520 struct drm_i915_private *dev_priv = dev->dev_private;
6521 u32 reg, val;
6522 int i;
6524 /* Clear any frame start delays used for debugging left by the BIOS */
6525 for_each_pipe(i) {
6526 reg = PIPECONF(i);
6527 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
6530 if (HAS_PCH_SPLIT(dev))
6531 return;
6533 /* Who knows what state these registers were left in by the BIOS or
6534 * grub?
6536 * If we leave the registers in a conflicting state (e.g. with the
6537 * display plane reading from the other pipe than the one we intend
6538 * to use) then when we attempt to teardown the active mode, we will
6539 * not disable the pipes and planes in the correct order -- leaving
6540 * a plane reading from a disabled pipe and possibly leading to
6541 * undefined behaviour.
6544 reg = DSPCNTR(plane);
6545 val = I915_READ(reg);
6547 if ((val & DISPLAY_PLANE_ENABLE) == 0)
6548 return;
6549 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6550 return;
6552 /* This display plane is active and attached to the other CPU pipe. */
6553 pipe = !pipe;
6555 /* Disable the plane and wait for it to stop reading from the pipe. */
6556 intel_disable_plane(dev_priv, plane, pipe);
6557 intel_disable_pipe(dev_priv, pipe);
6560 static void intel_crtc_reset(struct drm_crtc *crtc)
6562 struct drm_device *dev = crtc->dev;
6563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6565 /* Reset flags back to the 'unknown' status so that they
6566 * will be correctly set on the initial modeset.
6568 intel_crtc->dpms_mode = -1;
6570 /* We need to fix up any BIOS configuration that conflicts with
6571 * our expectations.
6573 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6576 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6577 .dpms = intel_crtc_dpms,
6578 .mode_fixup = intel_crtc_mode_fixup,
6579 .mode_set = intel_crtc_mode_set,
6580 .mode_set_base = intel_pipe_set_base,
6581 .mode_set_base_atomic = intel_pipe_set_base_atomic,
6582 .load_lut = intel_crtc_load_lut,
6583 .disable = intel_crtc_disable,
6586 static const struct drm_crtc_funcs intel_crtc_funcs = {
6587 .reset = intel_crtc_reset,
6588 .cursor_set = intel_crtc_cursor_set,
6589 .cursor_move = intel_crtc_cursor_move,
6590 .gamma_set = intel_crtc_gamma_set,
6591 .set_config = drm_crtc_helper_set_config,
6592 .destroy = intel_crtc_destroy,
6593 .page_flip = intel_crtc_page_flip,
6596 static void intel_pch_pll_init(struct drm_device *dev)
6598 drm_i915_private_t *dev_priv = dev->dev_private;
6599 int i;
6601 if (dev_priv->num_pch_pll == 0) {
6602 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
6603 return;
6606 for (i = 0; i < dev_priv->num_pch_pll; i++) {
6607 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
6608 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
6609 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
6613 static void intel_crtc_init(struct drm_device *dev, int pipe)
6615 drm_i915_private_t *dev_priv = dev->dev_private;
6616 struct intel_crtc *intel_crtc;
6617 int i;
6619 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6620 if (intel_crtc == NULL)
6621 return;
6623 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6625 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6626 for (i = 0; i < 256; i++) {
6627 intel_crtc->lut_r[i] = i;
6628 intel_crtc->lut_g[i] = i;
6629 intel_crtc->lut_b[i] = i;
6632 /* Swap pipes & planes for FBC on pre-965 */
6633 intel_crtc->pipe = pipe;
6634 intel_crtc->plane = pipe;
6635 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6636 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6637 intel_crtc->plane = !pipe;
6640 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6641 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6642 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6643 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6645 intel_crtc_reset(&intel_crtc->base);
6646 intel_crtc->active = true; /* force the pipe off on setup_init_config */
6647 intel_crtc->bpp = 24; /* default for pre-Ironlake */
6649 if (HAS_PCH_SPLIT(dev)) {
6650 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6651 intel_helper_funcs.commit = ironlake_crtc_commit;
6652 } else {
6653 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6654 intel_helper_funcs.commit = i9xx_crtc_commit;
6657 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6659 intel_crtc->busy = false;
6661 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6662 (unsigned long)intel_crtc);
6665 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6666 struct drm_file *file)
6668 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6669 struct drm_mode_object *drmmode_obj;
6670 struct intel_crtc *crtc;
6672 if (!drm_core_check_feature(dev, DRIVER_MODESET))
6673 return -ENODEV;
6675 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6676 DRM_MODE_OBJECT_CRTC);
6678 if (!drmmode_obj) {
6679 DRM_ERROR("no such CRTC id\n");
6680 return -EINVAL;
6683 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6684 pipe_from_crtc_id->pipe = crtc->pipe;
6686 return 0;
6689 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6691 struct intel_encoder *encoder;
6692 int index_mask = 0;
6693 int entry = 0;
6695 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6696 if (type_mask & encoder->clone_mask)
6697 index_mask |= (1 << entry);
6698 entry++;
6701 return index_mask;
6704 static bool has_edp_a(struct drm_device *dev)
6706 struct drm_i915_private *dev_priv = dev->dev_private;
6708 if (!IS_MOBILE(dev))
6709 return false;
6711 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6712 return false;
6714 if (IS_GEN5(dev) &&
6715 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6716 return false;
6718 return true;
6721 static void intel_setup_outputs(struct drm_device *dev)
6723 struct drm_i915_private *dev_priv = dev->dev_private;
6724 struct intel_encoder *encoder;
6725 bool dpd_is_edp = false;
6726 bool has_lvds;
6728 has_lvds = intel_lvds_init(dev);
6729 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6730 /* disable the panel fitter on everything but LVDS */
6731 I915_WRITE(PFIT_CONTROL, 0);
6734 if (HAS_PCH_SPLIT(dev)) {
6735 dpd_is_edp = intel_dpd_is_edp(dev);
6737 if (has_edp_a(dev))
6738 intel_dp_init(dev, DP_A);
6740 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6741 intel_dp_init(dev, PCH_DP_D);
6744 intel_crt_init(dev);
6746 if (IS_HASWELL(dev)) {
6747 int found;
6749 /* Haswell uses DDI functions to detect digital outputs */
6750 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
6751 /* DDI A only supports eDP */
6752 if (found)
6753 intel_ddi_init(dev, PORT_A);
6755 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
6756 * register */
6757 found = I915_READ(SFUSE_STRAP);
6759 if (found & SFUSE_STRAP_DDIB_DETECTED)
6760 intel_ddi_init(dev, PORT_B);
6761 if (found & SFUSE_STRAP_DDIC_DETECTED)
6762 intel_ddi_init(dev, PORT_C);
6763 if (found & SFUSE_STRAP_DDID_DETECTED)
6764 intel_ddi_init(dev, PORT_D);
6765 } else if (HAS_PCH_SPLIT(dev)) {
6766 int found;
6768 if (I915_READ(HDMIB) & PORT_DETECTED) {
6769 /* PCH SDVOB multiplex with HDMIB */
6770 found = intel_sdvo_init(dev, PCH_SDVOB, true);
6771 if (!found)
6772 intel_hdmi_init(dev, HDMIB);
6773 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6774 intel_dp_init(dev, PCH_DP_B);
6777 if (I915_READ(HDMIC) & PORT_DETECTED)
6778 intel_hdmi_init(dev, HDMIC);
6780 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
6781 intel_hdmi_init(dev, HDMID);
6783 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6784 intel_dp_init(dev, PCH_DP_C);
6786 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6787 intel_dp_init(dev, PCH_DP_D);
6788 } else if (IS_VALLEYVIEW(dev)) {
6789 int found;
6791 if (I915_READ(SDVOB) & PORT_DETECTED) {
6792 /* SDVOB multiplex with HDMIB */
6793 found = intel_sdvo_init(dev, SDVOB, true);
6794 if (!found)
6795 intel_hdmi_init(dev, SDVOB);
6796 if (!found && (I915_READ(DP_B) & DP_DETECTED))
6797 intel_dp_init(dev, DP_B);
6800 if (I915_READ(SDVOC) & PORT_DETECTED)
6801 intel_hdmi_init(dev, SDVOC);
6803 /* Shares lanes with HDMI on SDVOC */
6804 if (I915_READ(DP_C) & DP_DETECTED)
6805 intel_dp_init(dev, DP_C);
6806 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6807 bool found = false;
6809 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6810 DRM_DEBUG_KMS("probing SDVOB\n");
6811 found = intel_sdvo_init(dev, SDVOB, true);
6812 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6813 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6814 intel_hdmi_init(dev, SDVOB);
6817 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6818 DRM_DEBUG_KMS("probing DP_B\n");
6819 intel_dp_init(dev, DP_B);
6823 /* Before G4X SDVOC doesn't have its own detect register */
6825 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6826 DRM_DEBUG_KMS("probing SDVOC\n");
6827 found = intel_sdvo_init(dev, SDVOC, false);
6830 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6832 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6833 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6834 intel_hdmi_init(dev, SDVOC);
6836 if (SUPPORTS_INTEGRATED_DP(dev)) {
6837 DRM_DEBUG_KMS("probing DP_C\n");
6838 intel_dp_init(dev, DP_C);
6842 if (SUPPORTS_INTEGRATED_DP(dev) &&
6843 (I915_READ(DP_D) & DP_DETECTED)) {
6844 DRM_DEBUG_KMS("probing DP_D\n");
6845 intel_dp_init(dev, DP_D);
6847 } else if (IS_GEN2(dev))
6848 intel_dvo_init(dev);
6850 if (SUPPORTS_TV(dev))
6851 intel_tv_init(dev);
6853 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6854 encoder->base.possible_crtcs = encoder->crtc_mask;
6855 encoder->base.possible_clones =
6856 intel_encoder_clones(dev, encoder->clone_mask);
6859 /* disable all the possible outputs/crtcs before entering KMS mode */
6860 drm_helper_disable_unused_functions(dev);
6862 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
6863 ironlake_init_pch_refclk(dev);
6866 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6868 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6870 drm_framebuffer_cleanup(fb);
6871 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6873 kfree(intel_fb);
6876 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6877 struct drm_file *file,
6878 unsigned int *handle)
6880 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6881 struct drm_i915_gem_object *obj = intel_fb->obj;
6883 return drm_gem_handle_create(file, &obj->base, handle);
6886 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6887 .destroy = intel_user_framebuffer_destroy,
6888 .create_handle = intel_user_framebuffer_create_handle,
6891 int intel_framebuffer_init(struct drm_device *dev,
6892 struct intel_framebuffer *intel_fb,
6893 struct drm_mode_fb_cmd2 *mode_cmd,
6894 struct drm_i915_gem_object *obj)
6896 int ret;
6898 if (obj->tiling_mode == I915_TILING_Y)
6899 return -EINVAL;
6901 if (mode_cmd->pitches[0] & 63)
6902 return -EINVAL;
6904 switch (mode_cmd->pixel_format) {
6905 case DRM_FORMAT_RGB332:
6906 case DRM_FORMAT_RGB565:
6907 case DRM_FORMAT_XRGB8888:
6908 case DRM_FORMAT_XBGR8888:
6909 case DRM_FORMAT_ARGB8888:
6910 case DRM_FORMAT_XRGB2101010:
6911 case DRM_FORMAT_ARGB2101010:
6912 /* RGB formats are common across chipsets */
6913 break;
6914 case DRM_FORMAT_YUYV:
6915 case DRM_FORMAT_UYVY:
6916 case DRM_FORMAT_YVYU:
6917 case DRM_FORMAT_VYUY:
6918 break;
6919 default:
6920 DRM_DEBUG_KMS("unsupported pixel format %u\n",
6921 mode_cmd->pixel_format);
6922 return -EINVAL;
6925 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6926 if (ret) {
6927 DRM_ERROR("framebuffer init failed %d\n", ret);
6928 return ret;
6931 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6932 intel_fb->obj = obj;
6933 return 0;
6936 static struct drm_framebuffer *
6937 intel_user_framebuffer_create(struct drm_device *dev,
6938 struct drm_file *filp,
6939 struct drm_mode_fb_cmd2 *mode_cmd)
6941 struct drm_i915_gem_object *obj;
6943 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
6944 mode_cmd->handles[0]));
6945 if (&obj->base == NULL)
6946 return ERR_PTR(-ENOENT);
6948 return intel_framebuffer_create(dev, mode_cmd, obj);
6951 static const struct drm_mode_config_funcs intel_mode_funcs = {
6952 .fb_create = intel_user_framebuffer_create,
6953 .output_poll_changed = intel_fb_output_poll_changed,
6956 /* Set up chip specific display functions */
6957 static void intel_init_display(struct drm_device *dev)
6959 struct drm_i915_private *dev_priv = dev->dev_private;
6961 /* We always want a DPMS function */
6962 if (HAS_PCH_SPLIT(dev)) {
6963 dev_priv->display.dpms = ironlake_crtc_dpms;
6964 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
6965 dev_priv->display.off = ironlake_crtc_off;
6966 dev_priv->display.update_plane = ironlake_update_plane;
6967 } else {
6968 dev_priv->display.dpms = i9xx_crtc_dpms;
6969 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
6970 dev_priv->display.off = i9xx_crtc_off;
6971 dev_priv->display.update_plane = i9xx_update_plane;
6974 /* Returns the core display clock speed */
6975 if (IS_VALLEYVIEW(dev))
6976 dev_priv->display.get_display_clock_speed =
6977 valleyview_get_display_clock_speed;
6978 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
6979 dev_priv->display.get_display_clock_speed =
6980 i945_get_display_clock_speed;
6981 else if (IS_I915G(dev))
6982 dev_priv->display.get_display_clock_speed =
6983 i915_get_display_clock_speed;
6984 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
6985 dev_priv->display.get_display_clock_speed =
6986 i9xx_misc_get_display_clock_speed;
6987 else if (IS_I915GM(dev))
6988 dev_priv->display.get_display_clock_speed =
6989 i915gm_get_display_clock_speed;
6990 else if (IS_I865G(dev))
6991 dev_priv->display.get_display_clock_speed =
6992 i865_get_display_clock_speed;
6993 else if (IS_I85X(dev))
6994 dev_priv->display.get_display_clock_speed =
6995 i855_get_display_clock_speed;
6996 else /* 852, 830 */
6997 dev_priv->display.get_display_clock_speed =
6998 i830_get_display_clock_speed;
7000 if (HAS_PCH_SPLIT(dev)) {
7001 if (IS_GEN5(dev)) {
7002 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
7003 dev_priv->display.write_eld = ironlake_write_eld;
7004 } else if (IS_GEN6(dev)) {
7005 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
7006 dev_priv->display.write_eld = ironlake_write_eld;
7007 } else if (IS_IVYBRIDGE(dev)) {
7008 /* FIXME: detect B0+ stepping and use auto training */
7009 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
7010 dev_priv->display.write_eld = ironlake_write_eld;
7011 } else if (IS_HASWELL(dev)) {
7012 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
7013 dev_priv->display.write_eld = ironlake_write_eld;
7014 } else
7015 dev_priv->display.update_wm = NULL;
7016 } else if (IS_G4X(dev)) {
7017 dev_priv->display.write_eld = g4x_write_eld;
7020 /* Default just returns -ENODEV to indicate unsupported */
7021 dev_priv->display.queue_flip = intel_default_queue_flip;
7023 switch (INTEL_INFO(dev)->gen) {
7024 case 2:
7025 dev_priv->display.queue_flip = intel_gen2_queue_flip;
7026 break;
7028 case 3:
7029 dev_priv->display.queue_flip = intel_gen3_queue_flip;
7030 break;
7032 case 4:
7033 case 5:
7034 dev_priv->display.queue_flip = intel_gen4_queue_flip;
7035 break;
7037 case 6:
7038 dev_priv->display.queue_flip = intel_gen6_queue_flip;
7039 break;
7040 case 7:
7041 dev_priv->display.queue_flip = intel_gen7_queue_flip;
7042 break;
7047 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7048 * resume, or other times. This quirk makes sure that's the case for
7049 * affected systems.
7051 static void quirk_pipea_force(struct drm_device *dev)
7053 struct drm_i915_private *dev_priv = dev->dev_private;
7055 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7056 DRM_INFO("applying pipe a force quirk\n");
7060 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
7062 static void quirk_ssc_force_disable(struct drm_device *dev)
7064 struct drm_i915_private *dev_priv = dev->dev_private;
7065 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
7066 DRM_INFO("applying lvds SSC disable quirk\n");
7070 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
7071 * brightness value
7073 static void quirk_invert_brightness(struct drm_device *dev)
7075 struct drm_i915_private *dev_priv = dev->dev_private;
7076 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
7077 DRM_INFO("applying inverted panel brightness quirk\n");
7080 struct intel_quirk {
7081 int device;
7082 int subsystem_vendor;
7083 int subsystem_device;
7084 void (*hook)(struct drm_device *dev);
7087 static struct intel_quirk intel_quirks[] = {
7088 /* HP Mini needs pipe A force quirk (LP: #322104) */
7089 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
7091 /* Thinkpad R31 needs pipe A force quirk */
7092 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7093 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7094 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7096 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7097 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
7098 /* ThinkPad X40 needs pipe A force quirk */
7100 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7101 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7103 /* 855 & before need to leave pipe A & dpll A up */
7104 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7105 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7107 /* Lenovo U160 cannot use SSC on LVDS */
7108 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
7110 /* Sony Vaio Y cannot use SSC on LVDS */
7111 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
7113 /* Acer Aspire 5734Z must invert backlight brightness */
7114 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
7117 static void intel_init_quirks(struct drm_device *dev)
7119 struct pci_dev *d = dev->pdev;
7120 int i;
7122 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7123 struct intel_quirk *q = &intel_quirks[i];
7125 if (d->device == q->device &&
7126 (d->subsystem_vendor == q->subsystem_vendor ||
7127 q->subsystem_vendor == PCI_ANY_ID) &&
7128 (d->subsystem_device == q->subsystem_device ||
7129 q->subsystem_device == PCI_ANY_ID))
7130 q->hook(dev);
7134 /* Disable the VGA plane that we never use */
7135 static void i915_disable_vga(struct drm_device *dev)
7137 struct drm_i915_private *dev_priv = dev->dev_private;
7138 u8 sr1;
7139 u32 vga_reg;
7141 if (HAS_PCH_SPLIT(dev))
7142 vga_reg = CPU_VGACNTRL;
7143 else
7144 vga_reg = VGACNTRL;
7146 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7147 outb(SR01, VGA_SR_INDEX);
7148 sr1 = inb(VGA_SR_DATA);
7149 outb(sr1 | 1<<5, VGA_SR_DATA);
7150 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7151 udelay(300);
7153 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7154 POSTING_READ(vga_reg);
7157 static void ivb_pch_pwm_override(struct drm_device *dev)
7159 struct drm_i915_private *dev_priv = dev->dev_private;
7162 * IVB has CPU eDP backlight regs too, set things up to let the
7163 * PCH regs control the backlight
7165 I915_WRITE(BLC_PWM_CPU_CTL2, BLM_PWM_ENABLE);
7166 I915_WRITE(BLC_PWM_CPU_CTL, 0);
7167 I915_WRITE(BLC_PWM_PCH_CTL1, BLM_PCH_PWM_ENABLE | BLM_PCH_OVERRIDE_ENABLE);
7170 void intel_modeset_init_hw(struct drm_device *dev)
7172 intel_prepare_ddi(dev);
7174 intel_init_clock_gating(dev);
7176 mutex_lock(&dev->struct_mutex);
7177 intel_enable_gt_powersave(dev);
7178 mutex_unlock(&dev->struct_mutex);
7180 if (IS_IVYBRIDGE(dev))
7181 ivb_pch_pwm_override(dev);
7184 void intel_modeset_init(struct drm_device *dev)
7186 struct drm_i915_private *dev_priv = dev->dev_private;
7187 int i, ret;
7189 drm_mode_config_init(dev);
7191 dev->mode_config.min_width = 0;
7192 dev->mode_config.min_height = 0;
7194 dev->mode_config.preferred_depth = 24;
7195 dev->mode_config.prefer_shadow = 1;
7197 dev->mode_config.funcs = &intel_mode_funcs;
7199 intel_init_quirks(dev);
7201 intel_init_pm(dev);
7203 intel_init_display(dev);
7205 if (IS_GEN2(dev)) {
7206 dev->mode_config.max_width = 2048;
7207 dev->mode_config.max_height = 2048;
7208 } else if (IS_GEN3(dev)) {
7209 dev->mode_config.max_width = 4096;
7210 dev->mode_config.max_height = 4096;
7211 } else {
7212 dev->mode_config.max_width = 8192;
7213 dev->mode_config.max_height = 8192;
7215 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
7217 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7218 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7220 for (i = 0; i < dev_priv->num_pipe; i++) {
7221 intel_crtc_init(dev, i);
7222 ret = intel_plane_init(dev, i);
7223 if (ret)
7224 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
7227 intel_pch_pll_init(dev);
7229 /* Just disable it once at startup */
7230 i915_disable_vga(dev);
7231 intel_setup_outputs(dev);
7233 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7234 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7235 (unsigned long)dev);
7238 void intel_modeset_gem_init(struct drm_device *dev)
7240 intel_modeset_init_hw(dev);
7242 intel_setup_overlay(dev);
7245 void intel_modeset_cleanup(struct drm_device *dev)
7247 struct drm_i915_private *dev_priv = dev->dev_private;
7248 struct drm_crtc *crtc;
7249 struct intel_crtc *intel_crtc;
7251 drm_kms_helper_poll_fini(dev);
7252 mutex_lock(&dev->struct_mutex);
7254 intel_unregister_dsm_handler();
7257 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7258 /* Skip inactive CRTCs */
7259 if (!crtc->fb)
7260 continue;
7262 intel_crtc = to_intel_crtc(crtc);
7263 intel_increase_pllclock(crtc);
7266 intel_disable_fbc(dev);
7268 intel_disable_gt_powersave(dev);
7270 ironlake_teardown_rc6(dev);
7272 if (IS_VALLEYVIEW(dev))
7273 vlv_init_dpio(dev);
7275 mutex_unlock(&dev->struct_mutex);
7277 /* Disable the irq before mode object teardown, for the irq might
7278 * enqueue unpin/hotplug work. */
7279 drm_irq_uninstall(dev);
7280 cancel_work_sync(&dev_priv->hotplug_work);
7281 cancel_work_sync(&dev_priv->rps_work);
7283 /* flush any delayed tasks or pending work */
7284 flush_scheduled_work();
7286 /* Shut off idle work before the crtcs get freed. */
7287 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7288 intel_crtc = to_intel_crtc(crtc);
7289 del_timer_sync(&intel_crtc->idle_timer);
7291 del_timer_sync(&dev_priv->idle_timer);
7292 cancel_work_sync(&dev_priv->idle_work);
7294 drm_mode_config_cleanup(dev);
7298 * Return which encoder is currently attached for connector.
7300 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7302 return &intel_attached_encoder(connector)->base;
7305 void intel_connector_attach_encoder(struct intel_connector *connector,
7306 struct intel_encoder *encoder)
7308 connector->encoder = encoder;
7309 drm_mode_connector_attach_encoder(&connector->base,
7310 &encoder->base);
7314 * set vga decode state - true == enable VGA decode
7316 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7318 struct drm_i915_private *dev_priv = dev->dev_private;
7319 u16 gmch_ctrl;
7321 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7322 if (state)
7323 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7324 else
7325 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7326 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7327 return 0;
7330 #ifdef CONFIG_DEBUG_FS
7331 #include <linux/seq_file.h>
7333 struct intel_display_error_state {
7334 struct intel_cursor_error_state {
7335 u32 control;
7336 u32 position;
7337 u32 base;
7338 u32 size;
7339 } cursor[2];
7341 struct intel_pipe_error_state {
7342 u32 conf;
7343 u32 source;
7345 u32 htotal;
7346 u32 hblank;
7347 u32 hsync;
7348 u32 vtotal;
7349 u32 vblank;
7350 u32 vsync;
7351 } pipe[2];
7353 struct intel_plane_error_state {
7354 u32 control;
7355 u32 stride;
7356 u32 size;
7357 u32 pos;
7358 u32 addr;
7359 u32 surface;
7360 u32 tile_offset;
7361 } plane[2];
7364 struct intel_display_error_state *
7365 intel_display_capture_error_state(struct drm_device *dev)
7367 drm_i915_private_t *dev_priv = dev->dev_private;
7368 struct intel_display_error_state *error;
7369 int i;
7371 error = kmalloc(sizeof(*error), GFP_ATOMIC);
7372 if (error == NULL)
7373 return NULL;
7375 for (i = 0; i < 2; i++) {
7376 error->cursor[i].control = I915_READ(CURCNTR(i));
7377 error->cursor[i].position = I915_READ(CURPOS(i));
7378 error->cursor[i].base = I915_READ(CURBASE(i));
7380 error->plane[i].control = I915_READ(DSPCNTR(i));
7381 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7382 error->plane[i].size = I915_READ(DSPSIZE(i));
7383 error->plane[i].pos = I915_READ(DSPPOS(i));
7384 error->plane[i].addr = I915_READ(DSPADDR(i));
7385 if (INTEL_INFO(dev)->gen >= 4) {
7386 error->plane[i].surface = I915_READ(DSPSURF(i));
7387 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7390 error->pipe[i].conf = I915_READ(PIPECONF(i));
7391 error->pipe[i].source = I915_READ(PIPESRC(i));
7392 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7393 error->pipe[i].hblank = I915_READ(HBLANK(i));
7394 error->pipe[i].hsync = I915_READ(HSYNC(i));
7395 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7396 error->pipe[i].vblank = I915_READ(VBLANK(i));
7397 error->pipe[i].vsync = I915_READ(VSYNC(i));
7400 return error;
7403 void
7404 intel_display_print_error_state(struct seq_file *m,
7405 struct drm_device *dev,
7406 struct intel_display_error_state *error)
7408 int i;
7410 for (i = 0; i < 2; i++) {
7411 seq_printf(m, "Pipe [%d]:\n", i);
7412 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
7413 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
7414 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
7415 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
7416 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
7417 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
7418 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
7419 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
7421 seq_printf(m, "Plane [%d]:\n", i);
7422 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
7423 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
7424 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
7425 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
7426 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
7427 if (INTEL_INFO(dev)->gen >= 4) {
7428 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
7429 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
7432 seq_printf(m, "Cursor [%d]:\n", i);
7433 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
7434 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
7435 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
7438 #endif