2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/file.h>
31 #include <linux/export.h>
32 #include <linux/swap.h>
34 static struct vfsmount
*shm_mnt
;
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
43 #include <linux/xattr.h>
44 #include <linux/exportfs.h>
45 #include <linux/posix_acl.h>
46 #include <linux/generic_acl.h>
47 #include <linux/mman.h>
48 #include <linux/string.h>
49 #include <linux/slab.h>
50 #include <linux/backing-dev.h>
51 #include <linux/shmem_fs.h>
52 #include <linux/writeback.h>
53 #include <linux/blkdev.h>
54 #include <linux/pagevec.h>
55 #include <linux/percpu_counter.h>
56 #include <linux/falloc.h>
57 #include <linux/splice.h>
58 #include <linux/security.h>
59 #include <linux/swapops.h>
60 #include <linux/mempolicy.h>
61 #include <linux/namei.h>
62 #include <linux/ctype.h>
63 #include <linux/migrate.h>
64 #include <linux/highmem.h>
65 #include <linux/seq_file.h>
66 #include <linux/magic.h>
68 #include <asm/uaccess.h>
69 #include <asm/pgtable.h>
71 #define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
72 #define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
74 /* Pretend that each entry is of this size in directory's i_size */
75 #define BOGO_DIRENT_SIZE 20
77 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78 #define SHORT_SYMLINK_LEN 128
81 struct list_head list
; /* anchored by shmem_inode_info->xattr_list */
82 char *name
; /* xattr name */
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
93 pgoff_t start
; /* start of range currently being fallocated */
94 pgoff_t next
; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
99 /* Flag allocation requirements to shmem_getpage */
101 SGP_READ
, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE
, /* don't exceed i_size, may allocate page */
103 SGP_DIRTY
, /* like SGP_CACHE, but set new page dirty */
104 SGP_WRITE
, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC
, /* like SGP_WRITE, but make existing page Uptodate */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages
/ 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
120 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
121 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
122 struct shmem_inode_info
*info
, pgoff_t index
);
123 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
);
126 static inline int shmem_getpage(struct inode
*inode
, pgoff_t index
,
127 struct page
**pagep
, enum sgp_type sgp
, int *fault_type
)
129 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
130 mapping_gfp_mask(inode
->i_mapping
), fault_type
);
133 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
135 return sb
->s_fs_info
;
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
144 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
146 return (flags
& VM_NORESERVE
) ?
147 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
150 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
152 if (!(flags
& VM_NORESERVE
))
153 vm_unacct_memory(VM_ACCT(size
));
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
162 static inline int shmem_acct_block(unsigned long flags
)
164 return (flags
& VM_NORESERVE
) ?
165 security_vm_enough_memory_mm(current
->mm
, VM_ACCT(PAGE_CACHE_SIZE
)) : 0;
168 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
170 if (flags
& VM_NORESERVE
)
171 vm_unacct_memory(pages
* VM_ACCT(PAGE_CACHE_SIZE
));
174 static const struct super_operations shmem_ops
;
175 static const struct address_space_operations shmem_aops
;
176 static const struct file_operations shmem_file_operations
;
177 static const struct inode_operations shmem_inode_operations
;
178 static const struct inode_operations shmem_dir_inode_operations
;
179 static const struct inode_operations shmem_special_inode_operations
;
180 static const struct vm_operations_struct shmem_vm_ops
;
182 static struct backing_dev_info shmem_backing_dev_info __read_mostly
= {
183 .ra_pages
= 0, /* No readahead */
184 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
| BDI_CAP_SWAP_BACKED
,
187 static LIST_HEAD(shmem_swaplist
);
188 static DEFINE_MUTEX(shmem_swaplist_mutex
);
190 static int shmem_reserve_inode(struct super_block
*sb
)
192 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
193 if (sbinfo
->max_inodes
) {
194 spin_lock(&sbinfo
->stat_lock
);
195 if (!sbinfo
->free_inodes
) {
196 spin_unlock(&sbinfo
->stat_lock
);
199 sbinfo
->free_inodes
--;
200 spin_unlock(&sbinfo
->stat_lock
);
205 static void shmem_free_inode(struct super_block
*sb
)
207 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
208 if (sbinfo
->max_inodes
) {
209 spin_lock(&sbinfo
->stat_lock
);
210 sbinfo
->free_inodes
++;
211 spin_unlock(&sbinfo
->stat_lock
);
216 * shmem_recalc_inode - recalculate the block usage of an inode
217 * @inode: inode to recalc
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
225 * It has to be called with the spinlock held.
227 static void shmem_recalc_inode(struct inode
*inode
)
229 struct shmem_inode_info
*info
= SHMEM_I(inode
);
232 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
234 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
235 if (sbinfo
->max_blocks
)
236 percpu_counter_add(&sbinfo
->used_blocks
, -freed
);
237 info
->alloced
-= freed
;
238 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
239 shmem_unacct_blocks(info
->flags
, freed
);
244 * Replace item expected in radix tree by a new item, while holding tree lock.
246 static int shmem_radix_tree_replace(struct address_space
*mapping
,
247 pgoff_t index
, void *expected
, void *replacement
)
252 VM_BUG_ON(!expected
);
253 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
255 item
= radix_tree_deref_slot_protected(pslot
,
256 &mapping
->tree_lock
);
257 if (item
!= expected
)
260 radix_tree_replace_slot(pslot
, replacement
);
262 radix_tree_delete(&mapping
->page_tree
, index
);
267 * Sometimes, before we decide whether to proceed or to fail, we must check
268 * that an entry was not already brought back from swap by a racing thread.
270 * Checking page is not enough: by the time a SwapCache page is locked, it
271 * might be reused, and again be SwapCache, using the same swap as before.
273 static bool shmem_confirm_swap(struct address_space
*mapping
,
274 pgoff_t index
, swp_entry_t swap
)
279 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
281 return item
== swp_to_radix_entry(swap
);
285 * Like add_to_page_cache_locked, but error if expected item has gone.
287 static int shmem_add_to_page_cache(struct page
*page
,
288 struct address_space
*mapping
,
289 pgoff_t index
, gfp_t gfp
, void *expected
)
293 VM_BUG_ON(!PageLocked(page
));
294 VM_BUG_ON(!PageSwapBacked(page
));
296 page_cache_get(page
);
297 page
->mapping
= mapping
;
300 spin_lock_irq(&mapping
->tree_lock
);
302 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
304 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
308 __inc_zone_page_state(page
, NR_FILE_PAGES
);
309 __inc_zone_page_state(page
, NR_SHMEM
);
310 spin_unlock_irq(&mapping
->tree_lock
);
312 page
->mapping
= NULL
;
313 spin_unlock_irq(&mapping
->tree_lock
);
314 page_cache_release(page
);
320 * Like delete_from_page_cache, but substitutes swap for page.
322 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
324 struct address_space
*mapping
= page
->mapping
;
327 spin_lock_irq(&mapping
->tree_lock
);
328 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
329 page
->mapping
= NULL
;
331 __dec_zone_page_state(page
, NR_FILE_PAGES
);
332 __dec_zone_page_state(page
, NR_SHMEM
);
333 spin_unlock_irq(&mapping
->tree_lock
);
334 page_cache_release(page
);
339 * Like find_get_pages, but collecting swap entries as well as pages.
341 static unsigned shmem_find_get_pages_and_swap(struct address_space
*mapping
,
342 pgoff_t start
, unsigned int nr_pages
,
343 struct page
**pages
, pgoff_t
*indices
)
347 unsigned int nr_found
;
351 nr_found
= radix_tree_gang_lookup_slot(&mapping
->page_tree
,
352 (void ***)pages
, indices
, start
, nr_pages
);
354 for (i
= 0; i
< nr_found
; i
++) {
357 page
= radix_tree_deref_slot((void **)pages
[i
]);
360 if (radix_tree_exception(page
)) {
361 if (radix_tree_deref_retry(page
))
364 * Otherwise, we must be storing a swap entry
365 * here as an exceptional entry: so return it
366 * without attempting to raise page count.
370 if (!page_cache_get_speculative(page
))
373 /* Has the page moved? */
374 if (unlikely(page
!= *((void **)pages
[i
]))) {
375 page_cache_release(page
);
379 indices
[ret
] = indices
[i
];
383 if (unlikely(!ret
&& nr_found
))
390 * Remove swap entry from radix tree, free the swap and its page cache.
392 static int shmem_free_swap(struct address_space
*mapping
,
393 pgoff_t index
, void *radswap
)
397 spin_lock_irq(&mapping
->tree_lock
);
398 error
= shmem_radix_tree_replace(mapping
, index
, radswap
, NULL
);
399 spin_unlock_irq(&mapping
->tree_lock
);
401 free_swap_and_cache(radix_to_swp_entry(radswap
));
406 * Pagevec may contain swap entries, so shuffle up pages before releasing.
408 static void shmem_deswap_pagevec(struct pagevec
*pvec
)
412 for (i
= 0, j
= 0; i
< pagevec_count(pvec
); i
++) {
413 struct page
*page
= pvec
->pages
[i
];
414 if (!radix_tree_exceptional_entry(page
))
415 pvec
->pages
[j
++] = page
;
421 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
423 void shmem_unlock_mapping(struct address_space
*mapping
)
426 pgoff_t indices
[PAGEVEC_SIZE
];
429 pagevec_init(&pvec
, 0);
431 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
433 while (!mapping_unevictable(mapping
)) {
435 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
436 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
438 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
439 PAGEVEC_SIZE
, pvec
.pages
, indices
);
442 index
= indices
[pvec
.nr
- 1] + 1;
443 shmem_deswap_pagevec(&pvec
);
444 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
445 pagevec_release(&pvec
);
451 * Remove range of pages and swap entries from radix tree, and free them.
452 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
454 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
457 struct address_space
*mapping
= inode
->i_mapping
;
458 struct shmem_inode_info
*info
= SHMEM_I(inode
);
459 pgoff_t start
= (lstart
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
460 pgoff_t end
= (lend
+ 1) >> PAGE_CACHE_SHIFT
;
461 unsigned int partial_start
= lstart
& (PAGE_CACHE_SIZE
- 1);
462 unsigned int partial_end
= (lend
+ 1) & (PAGE_CACHE_SIZE
- 1);
464 pgoff_t indices
[PAGEVEC_SIZE
];
465 long nr_swaps_freed
= 0;
470 end
= -1; /* unsigned, so actually very big */
472 pagevec_init(&pvec
, 0);
474 while (index
< end
) {
475 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
476 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
477 pvec
.pages
, indices
);
480 mem_cgroup_uncharge_start();
481 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
482 struct page
*page
= pvec
.pages
[i
];
488 if (radix_tree_exceptional_entry(page
)) {
491 nr_swaps_freed
+= !shmem_free_swap(mapping
,
496 if (!trylock_page(page
))
498 if (!unfalloc
|| !PageUptodate(page
)) {
499 if (page
->mapping
== mapping
) {
500 VM_BUG_ON(PageWriteback(page
));
501 truncate_inode_page(mapping
, page
);
506 shmem_deswap_pagevec(&pvec
);
507 pagevec_release(&pvec
);
508 mem_cgroup_uncharge_end();
514 struct page
*page
= NULL
;
515 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
, NULL
);
517 unsigned int top
= PAGE_CACHE_SIZE
;
522 zero_user_segment(page
, partial_start
, top
);
523 set_page_dirty(page
);
525 page_cache_release(page
);
529 struct page
*page
= NULL
;
530 shmem_getpage(inode
, end
, &page
, SGP_READ
, NULL
);
532 zero_user_segment(page
, 0, partial_end
);
533 set_page_dirty(page
);
535 page_cache_release(page
);
544 pvec
.nr
= shmem_find_get_pages_and_swap(mapping
, index
,
545 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
546 pvec
.pages
, indices
);
548 if (index
== start
|| unfalloc
)
553 if ((index
== start
|| unfalloc
) && indices
[0] >= end
) {
554 shmem_deswap_pagevec(&pvec
);
555 pagevec_release(&pvec
);
558 mem_cgroup_uncharge_start();
559 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
560 struct page
*page
= pvec
.pages
[i
];
566 if (radix_tree_exceptional_entry(page
)) {
569 nr_swaps_freed
+= !shmem_free_swap(mapping
,
575 if (!unfalloc
|| !PageUptodate(page
)) {
576 if (page
->mapping
== mapping
) {
577 VM_BUG_ON(PageWriteback(page
));
578 truncate_inode_page(mapping
, page
);
583 shmem_deswap_pagevec(&pvec
);
584 pagevec_release(&pvec
);
585 mem_cgroup_uncharge_end();
589 spin_lock(&info
->lock
);
590 info
->swapped
-= nr_swaps_freed
;
591 shmem_recalc_inode(inode
);
592 spin_unlock(&info
->lock
);
595 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
597 shmem_undo_range(inode
, lstart
, lend
, false);
598 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
600 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
602 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
604 struct inode
*inode
= dentry
->d_inode
;
607 error
= inode_change_ok(inode
, attr
);
611 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
612 loff_t oldsize
= inode
->i_size
;
613 loff_t newsize
= attr
->ia_size
;
615 if (newsize
!= oldsize
) {
616 i_size_write(inode
, newsize
);
617 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
619 if (newsize
< oldsize
) {
620 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
621 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
622 shmem_truncate_range(inode
, newsize
, (loff_t
)-1);
623 /* unmap again to remove racily COWed private pages */
624 unmap_mapping_range(inode
->i_mapping
, holebegin
, 0, 1);
628 setattr_copy(inode
, attr
);
629 #ifdef CONFIG_TMPFS_POSIX_ACL
630 if (attr
->ia_valid
& ATTR_MODE
)
631 error
= generic_acl_chmod(inode
);
636 static void shmem_evict_inode(struct inode
*inode
)
638 struct shmem_inode_info
*info
= SHMEM_I(inode
);
639 struct shmem_xattr
*xattr
, *nxattr
;
641 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
642 shmem_unacct_size(info
->flags
, inode
->i_size
);
644 shmem_truncate_range(inode
, 0, (loff_t
)-1);
645 if (!list_empty(&info
->swaplist
)) {
646 mutex_lock(&shmem_swaplist_mutex
);
647 list_del_init(&info
->swaplist
);
648 mutex_unlock(&shmem_swaplist_mutex
);
651 kfree(info
->symlink
);
653 list_for_each_entry_safe(xattr
, nxattr
, &info
->xattr_list
, list
) {
657 BUG_ON(inode
->i_blocks
);
658 shmem_free_inode(inode
->i_sb
);
663 * If swap found in inode, free it and move page from swapcache to filecache.
665 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
666 swp_entry_t swap
, struct page
**pagep
)
668 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
674 radswap
= swp_to_radix_entry(swap
);
675 index
= radix_tree_locate_item(&mapping
->page_tree
, radswap
);
680 * Move _head_ to start search for next from here.
681 * But be careful: shmem_evict_inode checks list_empty without taking
682 * mutex, and there's an instant in list_move_tail when info->swaplist
683 * would appear empty, if it were the only one on shmem_swaplist.
685 if (shmem_swaplist
.next
!= &info
->swaplist
)
686 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
688 gfp
= mapping_gfp_mask(mapping
);
689 if (shmem_should_replace_page(*pagep
, gfp
)) {
690 mutex_unlock(&shmem_swaplist_mutex
);
691 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
692 mutex_lock(&shmem_swaplist_mutex
);
694 * We needed to drop mutex to make that restrictive page
695 * allocation, but the inode might have been freed while we
696 * dropped it: although a racing shmem_evict_inode() cannot
697 * complete without emptying the radix_tree, our page lock
698 * on this swapcache page is not enough to prevent that -
699 * free_swap_and_cache() of our swap entry will only
700 * trylock_page(), removing swap from radix_tree whatever.
702 * We must not proceed to shmem_add_to_page_cache() if the
703 * inode has been freed, but of course we cannot rely on
704 * inode or mapping or info to check that. However, we can
705 * safely check if our swap entry is still in use (and here
706 * it can't have got reused for another page): if it's still
707 * in use, then the inode cannot have been freed yet, and we
708 * can safely proceed (if it's no longer in use, that tells
709 * nothing about the inode, but we don't need to unuse swap).
711 if (!page_swapcount(*pagep
))
716 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
717 * but also to hold up shmem_evict_inode(): so inode cannot be freed
718 * beneath us (pagelock doesn't help until the page is in pagecache).
721 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
722 GFP_NOWAIT
, radswap
);
723 if (error
!= -ENOMEM
) {
725 * Truncation and eviction use free_swap_and_cache(), which
726 * only does trylock page: if we raced, best clean up here.
728 delete_from_swap_cache(*pagep
);
729 set_page_dirty(*pagep
);
731 spin_lock(&info
->lock
);
733 spin_unlock(&info
->lock
);
736 error
= 1; /* not an error, but entry was found */
742 * Search through swapped inodes to find and replace swap by page.
744 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
746 struct list_head
*this, *next
;
747 struct shmem_inode_info
*info
;
752 * There's a faint possibility that swap page was replaced before
753 * caller locked it: caller will come back later with the right page.
755 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
759 * Charge page using GFP_KERNEL while we can wait, before taking
760 * the shmem_swaplist_mutex which might hold up shmem_writepage().
761 * Charged back to the user (not to caller) when swap account is used.
763 error
= mem_cgroup_cache_charge(page
, current
->mm
, GFP_KERNEL
);
766 /* No radix_tree_preload: swap entry keeps a place for page in tree */
768 mutex_lock(&shmem_swaplist_mutex
);
769 list_for_each_safe(this, next
, &shmem_swaplist
) {
770 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
772 found
= shmem_unuse_inode(info
, swap
, &page
);
774 list_del_init(&info
->swaplist
);
779 mutex_unlock(&shmem_swaplist_mutex
);
785 page_cache_release(page
);
790 * Move the page from the page cache to the swap cache.
792 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
794 struct shmem_inode_info
*info
;
795 struct address_space
*mapping
;
800 BUG_ON(!PageLocked(page
));
801 mapping
= page
->mapping
;
803 inode
= mapping
->host
;
804 info
= SHMEM_I(inode
);
805 if (info
->flags
& VM_LOCKED
)
807 if (!total_swap_pages
)
811 * shmem_backing_dev_info's capabilities prevent regular writeback or
812 * sync from ever calling shmem_writepage; but a stacking filesystem
813 * might use ->writepage of its underlying filesystem, in which case
814 * tmpfs should write out to swap only in response to memory pressure,
815 * and not for the writeback threads or sync.
817 if (!wbc
->for_reclaim
) {
818 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
823 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
824 * value into swapfile.c, the only way we can correctly account for a
825 * fallocated page arriving here is now to initialize it and write it.
827 * That's okay for a page already fallocated earlier, but if we have
828 * not yet completed the fallocation, then (a) we want to keep track
829 * of this page in case we have to undo it, and (b) it may not be a
830 * good idea to continue anyway, once we're pushing into swap. So
831 * reactivate the page, and let shmem_fallocate() quit when too many.
833 if (!PageUptodate(page
)) {
834 if (inode
->i_private
) {
835 struct shmem_falloc
*shmem_falloc
;
836 spin_lock(&inode
->i_lock
);
837 shmem_falloc
= inode
->i_private
;
839 index
>= shmem_falloc
->start
&&
840 index
< shmem_falloc
->next
)
841 shmem_falloc
->nr_unswapped
++;
844 spin_unlock(&inode
->i_lock
);
848 clear_highpage(page
);
849 flush_dcache_page(page
);
850 SetPageUptodate(page
);
853 swap
= get_swap_page();
858 * Add inode to shmem_unuse()'s list of swapped-out inodes,
859 * if it's not already there. Do it now before the page is
860 * moved to swap cache, when its pagelock no longer protects
861 * the inode from eviction. But don't unlock the mutex until
862 * we've incremented swapped, because shmem_unuse_inode() will
863 * prune a !swapped inode from the swaplist under this mutex.
865 mutex_lock(&shmem_swaplist_mutex
);
866 if (list_empty(&info
->swaplist
))
867 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
869 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
870 swap_shmem_alloc(swap
);
871 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
873 spin_lock(&info
->lock
);
875 shmem_recalc_inode(inode
);
876 spin_unlock(&info
->lock
);
878 mutex_unlock(&shmem_swaplist_mutex
);
879 BUG_ON(page_mapped(page
));
880 swap_writepage(page
, wbc
);
884 mutex_unlock(&shmem_swaplist_mutex
);
885 swapcache_free(swap
, NULL
);
887 set_page_dirty(page
);
888 if (wbc
->for_reclaim
)
889 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
896 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
900 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
901 return; /* show nothing */
903 mpol_to_str(buffer
, sizeof(buffer
), mpol
, 1);
905 seq_printf(seq
, ",mpol=%s", buffer
);
908 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
910 struct mempolicy
*mpol
= NULL
;
912 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
915 spin_unlock(&sbinfo
->stat_lock
);
919 #endif /* CONFIG_TMPFS */
921 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
922 struct shmem_inode_info
*info
, pgoff_t index
)
924 struct mempolicy mpol
, *spol
;
925 struct vm_area_struct pvma
;
927 spol
= mpol_cond_copy(&mpol
,
928 mpol_shared_policy_lookup(&info
->policy
, index
));
930 /* Create a pseudo vma that just contains the policy */
932 pvma
.vm_pgoff
= index
;
934 pvma
.vm_policy
= spol
;
935 return swapin_readahead(swap
, gfp
, &pvma
, 0);
938 static struct page
*shmem_alloc_page(gfp_t gfp
,
939 struct shmem_inode_info
*info
, pgoff_t index
)
941 struct vm_area_struct pvma
;
943 /* Create a pseudo vma that just contains the policy */
945 pvma
.vm_pgoff
= index
;
947 pvma
.vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
950 * alloc_page_vma() will drop the shared policy reference
952 return alloc_page_vma(gfp
, &pvma
, 0);
954 #else /* !CONFIG_NUMA */
956 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
959 #endif /* CONFIG_TMPFS */
961 static inline struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
962 struct shmem_inode_info
*info
, pgoff_t index
)
964 return swapin_readahead(swap
, gfp
, NULL
, 0);
967 static inline struct page
*shmem_alloc_page(gfp_t gfp
,
968 struct shmem_inode_info
*info
, pgoff_t index
)
970 return alloc_page(gfp
);
972 #endif /* CONFIG_NUMA */
974 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
975 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
982 * When a page is moved from swapcache to shmem filecache (either by the
983 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
984 * shmem_unuse_inode()), it may have been read in earlier from swap, in
985 * ignorance of the mapping it belongs to. If that mapping has special
986 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
987 * we may need to copy to a suitable page before moving to filecache.
989 * In a future release, this may well be extended to respect cpuset and
990 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
991 * but for now it is a simple matter of zone.
993 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
995 return page_zonenum(page
) > gfp_zone(gfp
);
998 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
999 struct shmem_inode_info
*info
, pgoff_t index
)
1001 struct page
*oldpage
, *newpage
;
1002 struct address_space
*swap_mapping
;
1007 swap_index
= page_private(oldpage
);
1008 swap_mapping
= page_mapping(oldpage
);
1011 * We have arrived here because our zones are constrained, so don't
1012 * limit chance of success by further cpuset and node constraints.
1014 gfp
&= ~GFP_CONSTRAINT_MASK
;
1015 newpage
= shmem_alloc_page(gfp
, info
, index
);
1019 page_cache_get(newpage
);
1020 copy_highpage(newpage
, oldpage
);
1021 flush_dcache_page(newpage
);
1023 __set_page_locked(newpage
);
1024 SetPageUptodate(newpage
);
1025 SetPageSwapBacked(newpage
);
1026 set_page_private(newpage
, swap_index
);
1027 SetPageSwapCache(newpage
);
1030 * Our caller will very soon move newpage out of swapcache, but it's
1031 * a nice clean interface for us to replace oldpage by newpage there.
1033 spin_lock_irq(&swap_mapping
->tree_lock
);
1034 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1037 __inc_zone_page_state(newpage
, NR_FILE_PAGES
);
1038 __dec_zone_page_state(oldpage
, NR_FILE_PAGES
);
1040 spin_unlock_irq(&swap_mapping
->tree_lock
);
1042 if (unlikely(error
)) {
1044 * Is this possible? I think not, now that our callers check
1045 * both PageSwapCache and page_private after getting page lock;
1046 * but be defensive. Reverse old to newpage for clear and free.
1050 mem_cgroup_replace_page_cache(oldpage
, newpage
);
1051 lru_cache_add_anon(newpage
);
1055 ClearPageSwapCache(oldpage
);
1056 set_page_private(oldpage
, 0);
1058 unlock_page(oldpage
);
1059 page_cache_release(oldpage
);
1060 page_cache_release(oldpage
);
1065 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1067 * If we allocate a new one we do not mark it dirty. That's up to the
1068 * vm. If we swap it in we mark it dirty since we also free the swap
1069 * entry since a page cannot live in both the swap and page cache
1071 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1072 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
, int *fault_type
)
1074 struct address_space
*mapping
= inode
->i_mapping
;
1075 struct shmem_inode_info
*info
;
1076 struct shmem_sb_info
*sbinfo
;
1083 if (index
> (MAX_LFS_FILESIZE
>> PAGE_CACHE_SHIFT
))
1087 page
= find_lock_page(mapping
, index
);
1088 if (radix_tree_exceptional_entry(page
)) {
1089 swap
= radix_to_swp_entry(page
);
1093 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1094 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1099 /* fallocated page? */
1100 if (page
&& !PageUptodate(page
)) {
1101 if (sgp
!= SGP_READ
)
1104 page_cache_release(page
);
1107 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1113 * Fast cache lookup did not find it:
1114 * bring it back from swap or allocate.
1116 info
= SHMEM_I(inode
);
1117 sbinfo
= SHMEM_SB(inode
->i_sb
);
1120 /* Look it up and read it in.. */
1121 page
= lookup_swap_cache(swap
);
1123 /* here we actually do the io */
1125 *fault_type
|= VM_FAULT_MAJOR
;
1126 page
= shmem_swapin(swap
, gfp
, info
, index
);
1133 /* We have to do this with page locked to prevent races */
1135 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1136 !shmem_confirm_swap(mapping
, index
, swap
)) {
1137 error
= -EEXIST
; /* try again */
1140 if (!PageUptodate(page
)) {
1144 wait_on_page_writeback(page
);
1146 if (shmem_should_replace_page(page
, gfp
)) {
1147 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1152 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1153 gfp
& GFP_RECLAIM_MASK
);
1155 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1156 gfp
, swp_to_radix_entry(swap
));
1157 /* We already confirmed swap, and make no allocation */
1163 spin_lock(&info
->lock
);
1165 shmem_recalc_inode(inode
);
1166 spin_unlock(&info
->lock
);
1168 delete_from_swap_cache(page
);
1169 set_page_dirty(page
);
1173 if (shmem_acct_block(info
->flags
)) {
1177 if (sbinfo
->max_blocks
) {
1178 if (percpu_counter_compare(&sbinfo
->used_blocks
,
1179 sbinfo
->max_blocks
) >= 0) {
1183 percpu_counter_inc(&sbinfo
->used_blocks
);
1186 page
= shmem_alloc_page(gfp
, info
, index
);
1192 SetPageSwapBacked(page
);
1193 __set_page_locked(page
);
1194 error
= mem_cgroup_cache_charge(page
, current
->mm
,
1195 gfp
& GFP_RECLAIM_MASK
);
1198 error
= radix_tree_preload(gfp
& GFP_RECLAIM_MASK
);
1200 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1202 radix_tree_preload_end();
1205 mem_cgroup_uncharge_cache_page(page
);
1208 lru_cache_add_anon(page
);
1210 spin_lock(&info
->lock
);
1212 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
1213 shmem_recalc_inode(inode
);
1214 spin_unlock(&info
->lock
);
1218 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1220 if (sgp
== SGP_FALLOC
)
1224 * Let SGP_WRITE caller clear ends if write does not fill page;
1225 * but SGP_FALLOC on a page fallocated earlier must initialize
1226 * it now, lest undo on failure cancel our earlier guarantee.
1228 if (sgp
!= SGP_WRITE
) {
1229 clear_highpage(page
);
1230 flush_dcache_page(page
);
1231 SetPageUptodate(page
);
1233 if (sgp
== SGP_DIRTY
)
1234 set_page_dirty(page
);
1237 /* Perhaps the file has been truncated since we checked */
1238 if (sgp
!= SGP_WRITE
&& sgp
!= SGP_FALLOC
&&
1239 ((loff_t
)index
<< PAGE_CACHE_SHIFT
) >= i_size_read(inode
)) {
1253 info
= SHMEM_I(inode
);
1254 ClearPageDirty(page
);
1255 delete_from_page_cache(page
);
1256 spin_lock(&info
->lock
);
1258 inode
->i_blocks
-= BLOCKS_PER_PAGE
;
1259 spin_unlock(&info
->lock
);
1261 sbinfo
= SHMEM_SB(inode
->i_sb
);
1262 if (sbinfo
->max_blocks
)
1263 percpu_counter_add(&sbinfo
->used_blocks
, -1);
1265 shmem_unacct_blocks(info
->flags
, 1);
1267 if (swap
.val
&& error
!= -EINVAL
&&
1268 !shmem_confirm_swap(mapping
, index
, swap
))
1273 page_cache_release(page
);
1275 if (error
== -ENOSPC
&& !once
++) {
1276 info
= SHMEM_I(inode
);
1277 spin_lock(&info
->lock
);
1278 shmem_recalc_inode(inode
);
1279 spin_unlock(&info
->lock
);
1282 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1287 static int shmem_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1289 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1291 int ret
= VM_FAULT_LOCKED
;
1293 error
= shmem_getpage(inode
, vmf
->pgoff
, &vmf
->page
, SGP_CACHE
, &ret
);
1295 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
1297 if (ret
& VM_FAULT_MAJOR
) {
1298 count_vm_event(PGMAJFAULT
);
1299 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1305 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
1307 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1308 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
1311 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
1314 struct inode
*inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
1317 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
1318 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
1322 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
1324 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1325 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1326 int retval
= -ENOMEM
;
1328 spin_lock(&info
->lock
);
1329 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
1330 if (!user_shm_lock(inode
->i_size
, user
))
1332 info
->flags
|= VM_LOCKED
;
1333 mapping_set_unevictable(file
->f_mapping
);
1335 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
1336 user_shm_unlock(inode
->i_size
, user
);
1337 info
->flags
&= ~VM_LOCKED
;
1338 mapping_clear_unevictable(file
->f_mapping
);
1343 spin_unlock(&info
->lock
);
1347 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1349 file_accessed(file
);
1350 vma
->vm_ops
= &shmem_vm_ops
;
1351 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1355 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
1356 umode_t mode
, dev_t dev
, unsigned long flags
)
1358 struct inode
*inode
;
1359 struct shmem_inode_info
*info
;
1360 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
1362 if (shmem_reserve_inode(sb
))
1365 inode
= new_inode(sb
);
1367 inode
->i_ino
= get_next_ino();
1368 inode_init_owner(inode
, dir
, mode
);
1369 inode
->i_blocks
= 0;
1370 inode
->i_mapping
->backing_dev_info
= &shmem_backing_dev_info
;
1371 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
1372 inode
->i_generation
= get_seconds();
1373 info
= SHMEM_I(inode
);
1374 memset(info
, 0, (char *)inode
- (char *)info
);
1375 spin_lock_init(&info
->lock
);
1376 info
->flags
= flags
& VM_NORESERVE
;
1377 INIT_LIST_HEAD(&info
->swaplist
);
1378 INIT_LIST_HEAD(&info
->xattr_list
);
1379 cache_no_acl(inode
);
1381 switch (mode
& S_IFMT
) {
1383 inode
->i_op
= &shmem_special_inode_operations
;
1384 init_special_inode(inode
, mode
, dev
);
1387 inode
->i_mapping
->a_ops
= &shmem_aops
;
1388 inode
->i_op
= &shmem_inode_operations
;
1389 inode
->i_fop
= &shmem_file_operations
;
1390 mpol_shared_policy_init(&info
->policy
,
1391 shmem_get_sbmpol(sbinfo
));
1395 /* Some things misbehave if size == 0 on a directory */
1396 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
1397 inode
->i_op
= &shmem_dir_inode_operations
;
1398 inode
->i_fop
= &simple_dir_operations
;
1402 * Must not load anything in the rbtree,
1403 * mpol_free_shared_policy will not be called.
1405 mpol_shared_policy_init(&info
->policy
, NULL
);
1409 shmem_free_inode(sb
);
1414 static const struct inode_operations shmem_symlink_inode_operations
;
1415 static const struct inode_operations shmem_short_symlink_operations
;
1417 #ifdef CONFIG_TMPFS_XATTR
1418 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
1420 #define shmem_initxattrs NULL
1424 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
1425 loff_t pos
, unsigned len
, unsigned flags
,
1426 struct page
**pagep
, void **fsdata
)
1428 struct inode
*inode
= mapping
->host
;
1429 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1430 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
, NULL
);
1434 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
1435 loff_t pos
, unsigned len
, unsigned copied
,
1436 struct page
*page
, void *fsdata
)
1438 struct inode
*inode
= mapping
->host
;
1440 if (pos
+ copied
> inode
->i_size
)
1441 i_size_write(inode
, pos
+ copied
);
1443 if (!PageUptodate(page
)) {
1444 if (copied
< PAGE_CACHE_SIZE
) {
1445 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
1446 zero_user_segments(page
, 0, from
,
1447 from
+ copied
, PAGE_CACHE_SIZE
);
1449 SetPageUptodate(page
);
1451 set_page_dirty(page
);
1453 page_cache_release(page
);
1458 static void do_shmem_file_read(struct file
*filp
, loff_t
*ppos
, read_descriptor_t
*desc
, read_actor_t actor
)
1460 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
1461 struct address_space
*mapping
= inode
->i_mapping
;
1463 unsigned long offset
;
1464 enum sgp_type sgp
= SGP_READ
;
1467 * Might this read be for a stacking filesystem? Then when reading
1468 * holes of a sparse file, we actually need to allocate those pages,
1469 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1471 if (segment_eq(get_fs(), KERNEL_DS
))
1474 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1475 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1478 struct page
*page
= NULL
;
1480 unsigned long nr
, ret
;
1481 loff_t i_size
= i_size_read(inode
);
1483 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1484 if (index
> end_index
)
1486 if (index
== end_index
) {
1487 nr
= i_size
& ~PAGE_CACHE_MASK
;
1492 desc
->error
= shmem_getpage(inode
, index
, &page
, sgp
, NULL
);
1494 if (desc
->error
== -EINVAL
)
1502 * We must evaluate after, since reads (unlike writes)
1503 * are called without i_mutex protection against truncate
1505 nr
= PAGE_CACHE_SIZE
;
1506 i_size
= i_size_read(inode
);
1507 end_index
= i_size
>> PAGE_CACHE_SHIFT
;
1508 if (index
== end_index
) {
1509 nr
= i_size
& ~PAGE_CACHE_MASK
;
1512 page_cache_release(page
);
1520 * If users can be writing to this page using arbitrary
1521 * virtual addresses, take care about potential aliasing
1522 * before reading the page on the kernel side.
1524 if (mapping_writably_mapped(mapping
))
1525 flush_dcache_page(page
);
1527 * Mark the page accessed if we read the beginning.
1530 mark_page_accessed(page
);
1532 page
= ZERO_PAGE(0);
1533 page_cache_get(page
);
1537 * Ok, we have the page, and it's up-to-date, so
1538 * now we can copy it to user space...
1540 * The actor routine returns how many bytes were actually used..
1541 * NOTE! This may not be the same as how much of a user buffer
1542 * we filled up (we may be padding etc), so we can only update
1543 * "pos" here (the actor routine has to update the user buffer
1544 * pointers and the remaining count).
1546 ret
= actor(desc
, page
, offset
, nr
);
1548 index
+= offset
>> PAGE_CACHE_SHIFT
;
1549 offset
&= ~PAGE_CACHE_MASK
;
1551 page_cache_release(page
);
1552 if (ret
!= nr
|| !desc
->count
)
1558 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
1559 file_accessed(filp
);
1562 static ssize_t
shmem_file_aio_read(struct kiocb
*iocb
,
1563 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
1565 struct file
*filp
= iocb
->ki_filp
;
1569 loff_t
*ppos
= &iocb
->ki_pos
;
1571 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1575 for (seg
= 0; seg
< nr_segs
; seg
++) {
1576 read_descriptor_t desc
;
1579 desc
.arg
.buf
= iov
[seg
].iov_base
;
1580 desc
.count
= iov
[seg
].iov_len
;
1581 if (desc
.count
== 0)
1584 do_shmem_file_read(filp
, ppos
, &desc
, file_read_actor
);
1585 retval
+= desc
.written
;
1587 retval
= retval
?: desc
.error
;
1596 static ssize_t
shmem_file_splice_read(struct file
*in
, loff_t
*ppos
,
1597 struct pipe_inode_info
*pipe
, size_t len
,
1600 struct address_space
*mapping
= in
->f_mapping
;
1601 struct inode
*inode
= mapping
->host
;
1602 unsigned int loff
, nr_pages
, req_pages
;
1603 struct page
*pages
[PIPE_DEF_BUFFERS
];
1604 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1606 pgoff_t index
, end_index
;
1609 struct splice_pipe_desc spd
= {
1612 .nr_pages_max
= PIPE_DEF_BUFFERS
,
1614 .ops
= &page_cache_pipe_buf_ops
,
1615 .spd_release
= spd_release_page
,
1618 isize
= i_size_read(inode
);
1619 if (unlikely(*ppos
>= isize
))
1622 left
= isize
- *ppos
;
1623 if (unlikely(left
< len
))
1626 if (splice_grow_spd(pipe
, &spd
))
1629 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1630 loff
= *ppos
& ~PAGE_CACHE_MASK
;
1631 req_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1632 nr_pages
= min(req_pages
, pipe
->buffers
);
1634 spd
.nr_pages
= find_get_pages_contig(mapping
, index
,
1635 nr_pages
, spd
.pages
);
1636 index
+= spd
.nr_pages
;
1639 while (spd
.nr_pages
< nr_pages
) {
1640 error
= shmem_getpage(inode
, index
, &page
, SGP_CACHE
, NULL
);
1644 spd
.pages
[spd
.nr_pages
++] = page
;
1648 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1649 nr_pages
= spd
.nr_pages
;
1652 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
1653 unsigned int this_len
;
1658 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
1659 page
= spd
.pages
[page_nr
];
1661 if (!PageUptodate(page
) || page
->mapping
!= mapping
) {
1662 error
= shmem_getpage(inode
, index
, &page
,
1667 page_cache_release(spd
.pages
[page_nr
]);
1668 spd
.pages
[page_nr
] = page
;
1671 isize
= i_size_read(inode
);
1672 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1673 if (unlikely(!isize
|| index
> end_index
))
1676 if (end_index
== index
) {
1679 plen
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1683 this_len
= min(this_len
, plen
- loff
);
1687 spd
.partial
[page_nr
].offset
= loff
;
1688 spd
.partial
[page_nr
].len
= this_len
;
1695 while (page_nr
< nr_pages
)
1696 page_cache_release(spd
.pages
[page_nr
++]);
1699 error
= splice_to_pipe(pipe
, &spd
);
1701 splice_shrink_spd(&spd
);
1710 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
1713 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1714 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1715 struct shmem_falloc shmem_falloc
;
1716 pgoff_t start
, index
, end
;
1719 mutex_lock(&inode
->i_mutex
);
1721 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
1722 struct address_space
*mapping
= file
->f_mapping
;
1723 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
1724 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
1726 if ((u64
)unmap_end
> (u64
)unmap_start
)
1727 unmap_mapping_range(mapping
, unmap_start
,
1728 1 + unmap_end
- unmap_start
, 0);
1729 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
1730 /* No need to unmap again: hole-punching leaves COWed pages */
1735 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1736 error
= inode_newsize_ok(inode
, offset
+ len
);
1740 start
= offset
>> PAGE_CACHE_SHIFT
;
1741 end
= (offset
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1742 /* Try to avoid a swapstorm if len is impossible to satisfy */
1743 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
1748 shmem_falloc
.start
= start
;
1749 shmem_falloc
.next
= start
;
1750 shmem_falloc
.nr_falloced
= 0;
1751 shmem_falloc
.nr_unswapped
= 0;
1752 spin_lock(&inode
->i_lock
);
1753 inode
->i_private
= &shmem_falloc
;
1754 spin_unlock(&inode
->i_lock
);
1756 for (index
= start
; index
< end
; index
++) {
1760 * Good, the fallocate(2) manpage permits EINTR: we may have
1761 * been interrupted because we are using up too much memory.
1763 if (signal_pending(current
))
1765 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
1768 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
,
1771 /* Remove the !PageUptodate pages we added */
1772 shmem_undo_range(inode
,
1773 (loff_t
)start
<< PAGE_CACHE_SHIFT
,
1774 (loff_t
)index
<< PAGE_CACHE_SHIFT
, true);
1779 * Inform shmem_writepage() how far we have reached.
1780 * No need for lock or barrier: we have the page lock.
1782 shmem_falloc
.next
++;
1783 if (!PageUptodate(page
))
1784 shmem_falloc
.nr_falloced
++;
1787 * If !PageUptodate, leave it that way so that freeable pages
1788 * can be recognized if we need to rollback on error later.
1789 * But set_page_dirty so that memory pressure will swap rather
1790 * than free the pages we are allocating (and SGP_CACHE pages
1791 * might still be clean: we now need to mark those dirty too).
1793 set_page_dirty(page
);
1795 page_cache_release(page
);
1799 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
1800 i_size_write(inode
, offset
+ len
);
1801 inode
->i_ctime
= CURRENT_TIME
;
1803 spin_lock(&inode
->i_lock
);
1804 inode
->i_private
= NULL
;
1805 spin_unlock(&inode
->i_lock
);
1807 mutex_unlock(&inode
->i_mutex
);
1811 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1813 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
1815 buf
->f_type
= TMPFS_MAGIC
;
1816 buf
->f_bsize
= PAGE_CACHE_SIZE
;
1817 buf
->f_namelen
= NAME_MAX
;
1818 if (sbinfo
->max_blocks
) {
1819 buf
->f_blocks
= sbinfo
->max_blocks
;
1821 buf
->f_bfree
= sbinfo
->max_blocks
-
1822 percpu_counter_sum(&sbinfo
->used_blocks
);
1824 if (sbinfo
->max_inodes
) {
1825 buf
->f_files
= sbinfo
->max_inodes
;
1826 buf
->f_ffree
= sbinfo
->free_inodes
;
1828 /* else leave those fields 0 like simple_statfs */
1833 * File creation. Allocate an inode, and we're done..
1836 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
1838 struct inode
*inode
;
1839 int error
= -ENOSPC
;
1841 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
1843 error
= security_inode_init_security(inode
, dir
,
1845 shmem_initxattrs
, NULL
);
1847 if (error
!= -EOPNOTSUPP
) {
1852 #ifdef CONFIG_TMPFS_POSIX_ACL
1853 error
= generic_acl_init(inode
, dir
);
1861 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1862 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1863 d_instantiate(dentry
, inode
);
1864 dget(dentry
); /* Extra count - pin the dentry in core */
1869 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1873 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
1879 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
1882 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
1888 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1890 struct inode
*inode
= old_dentry
->d_inode
;
1894 * No ordinary (disk based) filesystem counts links as inodes;
1895 * but each new link needs a new dentry, pinning lowmem, and
1896 * tmpfs dentries cannot be pruned until they are unlinked.
1898 ret
= shmem_reserve_inode(inode
->i_sb
);
1902 dir
->i_size
+= BOGO_DIRENT_SIZE
;
1903 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1905 ihold(inode
); /* New dentry reference */
1906 dget(dentry
); /* Extra pinning count for the created dentry */
1907 d_instantiate(dentry
, inode
);
1912 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
1914 struct inode
*inode
= dentry
->d_inode
;
1916 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
1917 shmem_free_inode(inode
->i_sb
);
1919 dir
->i_size
-= BOGO_DIRENT_SIZE
;
1920 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
1922 dput(dentry
); /* Undo the count from "create" - this does all the work */
1926 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1928 if (!simple_empty(dentry
))
1931 drop_nlink(dentry
->d_inode
);
1933 return shmem_unlink(dir
, dentry
);
1937 * The VFS layer already does all the dentry stuff for rename,
1938 * we just have to decrement the usage count for the target if
1939 * it exists so that the VFS layer correctly free's it when it
1942 static int shmem_rename(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
1944 struct inode
*inode
= old_dentry
->d_inode
;
1945 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
1947 if (!simple_empty(new_dentry
))
1950 if (new_dentry
->d_inode
) {
1951 (void) shmem_unlink(new_dir
, new_dentry
);
1953 drop_nlink(old_dir
);
1954 } else if (they_are_dirs
) {
1955 drop_nlink(old_dir
);
1959 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
1960 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
1961 old_dir
->i_ctime
= old_dir
->i_mtime
=
1962 new_dir
->i_ctime
= new_dir
->i_mtime
=
1963 inode
->i_ctime
= CURRENT_TIME
;
1967 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1971 struct inode
*inode
;
1974 struct shmem_inode_info
*info
;
1976 len
= strlen(symname
) + 1;
1977 if (len
> PAGE_CACHE_SIZE
)
1978 return -ENAMETOOLONG
;
1980 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
1984 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
1985 shmem_initxattrs
, NULL
);
1987 if (error
!= -EOPNOTSUPP
) {
1994 info
= SHMEM_I(inode
);
1995 inode
->i_size
= len
-1;
1996 if (len
<= SHORT_SYMLINK_LEN
) {
1997 info
->symlink
= kmemdup(symname
, len
, GFP_KERNEL
);
1998 if (!info
->symlink
) {
2002 inode
->i_op
= &shmem_short_symlink_operations
;
2004 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
, NULL
);
2009 inode
->i_mapping
->a_ops
= &shmem_aops
;
2010 inode
->i_op
= &shmem_symlink_inode_operations
;
2011 kaddr
= kmap_atomic(page
);
2012 memcpy(kaddr
, symname
, len
);
2013 kunmap_atomic(kaddr
);
2014 SetPageUptodate(page
);
2015 set_page_dirty(page
);
2017 page_cache_release(page
);
2019 dir
->i_size
+= BOGO_DIRENT_SIZE
;
2020 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
2021 d_instantiate(dentry
, inode
);
2026 static void *shmem_follow_short_symlink(struct dentry
*dentry
, struct nameidata
*nd
)
2028 nd_set_link(nd
, SHMEM_I(dentry
->d_inode
)->symlink
);
2032 static void *shmem_follow_link(struct dentry
*dentry
, struct nameidata
*nd
)
2034 struct page
*page
= NULL
;
2035 int error
= shmem_getpage(dentry
->d_inode
, 0, &page
, SGP_READ
, NULL
);
2036 nd_set_link(nd
, error
? ERR_PTR(error
) : kmap(page
));
2042 static void shmem_put_link(struct dentry
*dentry
, struct nameidata
*nd
, void *cookie
)
2044 if (!IS_ERR(nd_get_link(nd
))) {
2045 struct page
*page
= cookie
;
2047 mark_page_accessed(page
);
2048 page_cache_release(page
);
2052 #ifdef CONFIG_TMPFS_XATTR
2054 * Superblocks without xattr inode operations may get some security.* xattr
2055 * support from the LSM "for free". As soon as we have any other xattrs
2056 * like ACLs, we also need to implement the security.* handlers at
2057 * filesystem level, though.
2061 * Allocate new xattr and copy in the value; but leave the name to callers.
2063 static struct shmem_xattr
*shmem_xattr_alloc(const void *value
, size_t size
)
2065 struct shmem_xattr
*new_xattr
;
2069 len
= sizeof(*new_xattr
) + size
;
2070 if (len
<= sizeof(*new_xattr
))
2073 new_xattr
= kmalloc(len
, GFP_KERNEL
);
2077 new_xattr
->size
= size
;
2078 memcpy(new_xattr
->value
, value
, size
);
2083 * Callback for security_inode_init_security() for acquiring xattrs.
2085 static int shmem_initxattrs(struct inode
*inode
,
2086 const struct xattr
*xattr_array
,
2089 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2090 const struct xattr
*xattr
;
2091 struct shmem_xattr
*new_xattr
;
2094 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
2095 new_xattr
= shmem_xattr_alloc(xattr
->value
, xattr
->value_len
);
2099 len
= strlen(xattr
->name
) + 1;
2100 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
2102 if (!new_xattr
->name
) {
2107 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
2108 XATTR_SECURITY_PREFIX_LEN
);
2109 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
2112 spin_lock(&info
->lock
);
2113 list_add(&new_xattr
->list
, &info
->xattr_list
);
2114 spin_unlock(&info
->lock
);
2120 static int shmem_xattr_get(struct dentry
*dentry
, const char *name
,
2121 void *buffer
, size_t size
)
2123 struct shmem_inode_info
*info
;
2124 struct shmem_xattr
*xattr
;
2127 info
= SHMEM_I(dentry
->d_inode
);
2129 spin_lock(&info
->lock
);
2130 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2131 if (strcmp(name
, xattr
->name
))
2136 if (size
< xattr
->size
)
2139 memcpy(buffer
, xattr
->value
, xattr
->size
);
2143 spin_unlock(&info
->lock
);
2147 static int shmem_xattr_set(struct inode
*inode
, const char *name
,
2148 const void *value
, size_t size
, int flags
)
2150 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2151 struct shmem_xattr
*xattr
;
2152 struct shmem_xattr
*new_xattr
= NULL
;
2155 /* value == NULL means remove */
2157 new_xattr
= shmem_xattr_alloc(value
, size
);
2161 new_xattr
->name
= kstrdup(name
, GFP_KERNEL
);
2162 if (!new_xattr
->name
) {
2168 spin_lock(&info
->lock
);
2169 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2170 if (!strcmp(name
, xattr
->name
)) {
2171 if (flags
& XATTR_CREATE
) {
2174 } else if (new_xattr
) {
2175 list_replace(&xattr
->list
, &new_xattr
->list
);
2177 list_del(&xattr
->list
);
2182 if (flags
& XATTR_REPLACE
) {
2186 list_add(&new_xattr
->list
, &info
->xattr_list
);
2190 spin_unlock(&info
->lock
);
2197 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
2198 #ifdef CONFIG_TMPFS_POSIX_ACL
2199 &generic_acl_access_handler
,
2200 &generic_acl_default_handler
,
2205 static int shmem_xattr_validate(const char *name
)
2207 struct { const char *prefix
; size_t len
; } arr
[] = {
2208 { XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
},
2209 { XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
}
2213 for (i
= 0; i
< ARRAY_SIZE(arr
); i
++) {
2214 size_t preflen
= arr
[i
].len
;
2215 if (strncmp(name
, arr
[i
].prefix
, preflen
) == 0) {
2224 static ssize_t
shmem_getxattr(struct dentry
*dentry
, const char *name
,
2225 void *buffer
, size_t size
)
2230 * If this is a request for a synthetic attribute in the system.*
2231 * namespace use the generic infrastructure to resolve a handler
2232 * for it via sb->s_xattr.
2234 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2235 return generic_getxattr(dentry
, name
, buffer
, size
);
2237 err
= shmem_xattr_validate(name
);
2241 return shmem_xattr_get(dentry
, name
, buffer
, size
);
2244 static int shmem_setxattr(struct dentry
*dentry
, const char *name
,
2245 const void *value
, size_t size
, int flags
)
2250 * If this is a request for a synthetic attribute in the system.*
2251 * namespace use the generic infrastructure to resolve a handler
2252 * for it via sb->s_xattr.
2254 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2255 return generic_setxattr(dentry
, name
, value
, size
, flags
);
2257 err
= shmem_xattr_validate(name
);
2262 value
= ""; /* empty EA, do not remove */
2264 return shmem_xattr_set(dentry
->d_inode
, name
, value
, size
, flags
);
2268 static int shmem_removexattr(struct dentry
*dentry
, const char *name
)
2273 * If this is a request for a synthetic attribute in the system.*
2274 * namespace use the generic infrastructure to resolve a handler
2275 * for it via sb->s_xattr.
2277 if (!strncmp(name
, XATTR_SYSTEM_PREFIX
, XATTR_SYSTEM_PREFIX_LEN
))
2278 return generic_removexattr(dentry
, name
);
2280 err
= shmem_xattr_validate(name
);
2284 return shmem_xattr_set(dentry
->d_inode
, name
, NULL
, 0, XATTR_REPLACE
);
2287 static bool xattr_is_trusted(const char *name
)
2289 return !strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
);
2292 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
2294 bool trusted
= capable(CAP_SYS_ADMIN
);
2295 struct shmem_xattr
*xattr
;
2296 struct shmem_inode_info
*info
;
2299 info
= SHMEM_I(dentry
->d_inode
);
2301 spin_lock(&info
->lock
);
2302 list_for_each_entry(xattr
, &info
->xattr_list
, list
) {
2305 /* skip "trusted." attributes for unprivileged callers */
2306 if (!trusted
&& xattr_is_trusted(xattr
->name
))
2309 len
= strlen(xattr
->name
) + 1;
2316 memcpy(buffer
, xattr
->name
, len
);
2320 spin_unlock(&info
->lock
);
2324 #endif /* CONFIG_TMPFS_XATTR */
2326 static const struct inode_operations shmem_short_symlink_operations
= {
2327 .readlink
= generic_readlink
,
2328 .follow_link
= shmem_follow_short_symlink
,
2329 #ifdef CONFIG_TMPFS_XATTR
2330 .setxattr
= shmem_setxattr
,
2331 .getxattr
= shmem_getxattr
,
2332 .listxattr
= shmem_listxattr
,
2333 .removexattr
= shmem_removexattr
,
2337 static const struct inode_operations shmem_symlink_inode_operations
= {
2338 .readlink
= generic_readlink
,
2339 .follow_link
= shmem_follow_link
,
2340 .put_link
= shmem_put_link
,
2341 #ifdef CONFIG_TMPFS_XATTR
2342 .setxattr
= shmem_setxattr
,
2343 .getxattr
= shmem_getxattr
,
2344 .listxattr
= shmem_listxattr
,
2345 .removexattr
= shmem_removexattr
,
2349 static struct dentry
*shmem_get_parent(struct dentry
*child
)
2351 return ERR_PTR(-ESTALE
);
2354 static int shmem_match(struct inode
*ino
, void *vfh
)
2358 inum
= (inum
<< 32) | fh
[1];
2359 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
2362 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
2363 struct fid
*fid
, int fh_len
, int fh_type
)
2365 struct inode
*inode
;
2366 struct dentry
*dentry
= NULL
;
2367 u64 inum
= fid
->raw
[2];
2368 inum
= (inum
<< 32) | fid
->raw
[1];
2373 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
2374 shmem_match
, fid
->raw
);
2376 dentry
= d_find_alias(inode
);
2383 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
2384 struct inode
*parent
)
2391 if (inode_unhashed(inode
)) {
2392 /* Unfortunately insert_inode_hash is not idempotent,
2393 * so as we hash inodes here rather than at creation
2394 * time, we need a lock to ensure we only try
2397 static DEFINE_SPINLOCK(lock
);
2399 if (inode_unhashed(inode
))
2400 __insert_inode_hash(inode
,
2401 inode
->i_ino
+ inode
->i_generation
);
2405 fh
[0] = inode
->i_generation
;
2406 fh
[1] = inode
->i_ino
;
2407 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
2413 static const struct export_operations shmem_export_ops
= {
2414 .get_parent
= shmem_get_parent
,
2415 .encode_fh
= shmem_encode_fh
,
2416 .fh_to_dentry
= shmem_fh_to_dentry
,
2419 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
2422 char *this_char
, *value
, *rest
;
2426 while (options
!= NULL
) {
2427 this_char
= options
;
2430 * NUL-terminate this option: unfortunately,
2431 * mount options form a comma-separated list,
2432 * but mpol's nodelist may also contain commas.
2434 options
= strchr(options
, ',');
2435 if (options
== NULL
)
2438 if (!isdigit(*options
)) {
2445 if ((value
= strchr(this_char
,'=')) != NULL
) {
2449 "tmpfs: No value for mount option '%s'\n",
2454 if (!strcmp(this_char
,"size")) {
2455 unsigned long long size
;
2456 size
= memparse(value
,&rest
);
2458 size
<<= PAGE_SHIFT
;
2459 size
*= totalram_pages
;
2465 sbinfo
->max_blocks
=
2466 DIV_ROUND_UP(size
, PAGE_CACHE_SIZE
);
2467 } else if (!strcmp(this_char
,"nr_blocks")) {
2468 sbinfo
->max_blocks
= memparse(value
, &rest
);
2471 } else if (!strcmp(this_char
,"nr_inodes")) {
2472 sbinfo
->max_inodes
= memparse(value
, &rest
);
2475 } else if (!strcmp(this_char
,"mode")) {
2478 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
2481 } else if (!strcmp(this_char
,"uid")) {
2484 uid
= simple_strtoul(value
, &rest
, 0);
2487 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
2488 if (!uid_valid(sbinfo
->uid
))
2490 } else if (!strcmp(this_char
,"gid")) {
2493 gid
= simple_strtoul(value
, &rest
, 0);
2496 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
2497 if (!gid_valid(sbinfo
->gid
))
2499 } else if (!strcmp(this_char
,"mpol")) {
2500 if (mpol_parse_str(value
, &sbinfo
->mpol
, 1))
2503 printk(KERN_ERR
"tmpfs: Bad mount option %s\n",
2511 printk(KERN_ERR
"tmpfs: Bad value '%s' for mount option '%s'\n",
2517 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
2519 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2520 struct shmem_sb_info config
= *sbinfo
;
2521 unsigned long inodes
;
2522 int error
= -EINVAL
;
2524 if (shmem_parse_options(data
, &config
, true))
2527 spin_lock(&sbinfo
->stat_lock
);
2528 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
2529 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
2531 if (config
.max_inodes
< inodes
)
2534 * Those tests disallow limited->unlimited while any are in use;
2535 * but we must separately disallow unlimited->limited, because
2536 * in that case we have no record of how much is already in use.
2538 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
2540 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
2544 sbinfo
->max_blocks
= config
.max_blocks
;
2545 sbinfo
->max_inodes
= config
.max_inodes
;
2546 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
2548 mpol_put(sbinfo
->mpol
);
2549 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
2551 spin_unlock(&sbinfo
->stat_lock
);
2555 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
2557 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
2559 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
2560 seq_printf(seq
, ",size=%luk",
2561 sbinfo
->max_blocks
<< (PAGE_CACHE_SHIFT
- 10));
2562 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
2563 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
2564 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
2565 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
2566 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
2567 seq_printf(seq
, ",uid=%u",
2568 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
2569 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
2570 seq_printf(seq
, ",gid=%u",
2571 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
2572 shmem_show_mpol(seq
, sbinfo
->mpol
);
2575 #endif /* CONFIG_TMPFS */
2577 static void shmem_put_super(struct super_block
*sb
)
2579 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2581 percpu_counter_destroy(&sbinfo
->used_blocks
);
2583 sb
->s_fs_info
= NULL
;
2586 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
2588 struct inode
*inode
;
2589 struct shmem_sb_info
*sbinfo
;
2592 /* Round up to L1_CACHE_BYTES to resist false sharing */
2593 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
2594 L1_CACHE_BYTES
), GFP_KERNEL
);
2598 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
2599 sbinfo
->uid
= current_fsuid();
2600 sbinfo
->gid
= current_fsgid();
2601 sb
->s_fs_info
= sbinfo
;
2605 * Per default we only allow half of the physical ram per
2606 * tmpfs instance, limiting inodes to one per page of lowmem;
2607 * but the internal instance is left unlimited.
2609 if (!(sb
->s_flags
& MS_NOUSER
)) {
2610 sbinfo
->max_blocks
= shmem_default_max_blocks();
2611 sbinfo
->max_inodes
= shmem_default_max_inodes();
2612 if (shmem_parse_options(data
, sbinfo
, false)) {
2617 sb
->s_export_op
= &shmem_export_ops
;
2618 sb
->s_flags
|= MS_NOSEC
;
2620 sb
->s_flags
|= MS_NOUSER
;
2623 spin_lock_init(&sbinfo
->stat_lock
);
2624 if (percpu_counter_init(&sbinfo
->used_blocks
, 0))
2626 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
2628 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2629 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
2630 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
2631 sb
->s_magic
= TMPFS_MAGIC
;
2632 sb
->s_op
= &shmem_ops
;
2633 sb
->s_time_gran
= 1;
2634 #ifdef CONFIG_TMPFS_XATTR
2635 sb
->s_xattr
= shmem_xattr_handlers
;
2637 #ifdef CONFIG_TMPFS_POSIX_ACL
2638 sb
->s_flags
|= MS_POSIXACL
;
2641 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
2644 inode
->i_uid
= sbinfo
->uid
;
2645 inode
->i_gid
= sbinfo
->gid
;
2646 sb
->s_root
= d_make_root(inode
);
2652 shmem_put_super(sb
);
2656 static struct kmem_cache
*shmem_inode_cachep
;
2658 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
2660 struct shmem_inode_info
*info
;
2661 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
2664 return &info
->vfs_inode
;
2667 static void shmem_destroy_callback(struct rcu_head
*head
)
2669 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
2670 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
2673 static void shmem_destroy_inode(struct inode
*inode
)
2675 if (S_ISREG(inode
->i_mode
))
2676 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
2677 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
2680 static void shmem_init_inode(void *foo
)
2682 struct shmem_inode_info
*info
= foo
;
2683 inode_init_once(&info
->vfs_inode
);
2686 static int shmem_init_inodecache(void)
2688 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
2689 sizeof(struct shmem_inode_info
),
2690 0, SLAB_PANIC
, shmem_init_inode
);
2694 static void shmem_destroy_inodecache(void)
2696 kmem_cache_destroy(shmem_inode_cachep
);
2699 static const struct address_space_operations shmem_aops
= {
2700 .writepage
= shmem_writepage
,
2701 .set_page_dirty
= __set_page_dirty_no_writeback
,
2703 .write_begin
= shmem_write_begin
,
2704 .write_end
= shmem_write_end
,
2706 .migratepage
= migrate_page
,
2707 .error_remove_page
= generic_error_remove_page
,
2710 static const struct file_operations shmem_file_operations
= {
2713 .llseek
= generic_file_llseek
,
2714 .read
= do_sync_read
,
2715 .write
= do_sync_write
,
2716 .aio_read
= shmem_file_aio_read
,
2717 .aio_write
= generic_file_aio_write
,
2718 .fsync
= noop_fsync
,
2719 .splice_read
= shmem_file_splice_read
,
2720 .splice_write
= generic_file_splice_write
,
2721 .fallocate
= shmem_fallocate
,
2725 static const struct inode_operations shmem_inode_operations
= {
2726 .setattr
= shmem_setattr
,
2727 #ifdef CONFIG_TMPFS_XATTR
2728 .setxattr
= shmem_setxattr
,
2729 .getxattr
= shmem_getxattr
,
2730 .listxattr
= shmem_listxattr
,
2731 .removexattr
= shmem_removexattr
,
2735 static const struct inode_operations shmem_dir_inode_operations
= {
2737 .create
= shmem_create
,
2738 .lookup
= simple_lookup
,
2740 .unlink
= shmem_unlink
,
2741 .symlink
= shmem_symlink
,
2742 .mkdir
= shmem_mkdir
,
2743 .rmdir
= shmem_rmdir
,
2744 .mknod
= shmem_mknod
,
2745 .rename
= shmem_rename
,
2747 #ifdef CONFIG_TMPFS_XATTR
2748 .setxattr
= shmem_setxattr
,
2749 .getxattr
= shmem_getxattr
,
2750 .listxattr
= shmem_listxattr
,
2751 .removexattr
= shmem_removexattr
,
2753 #ifdef CONFIG_TMPFS_POSIX_ACL
2754 .setattr
= shmem_setattr
,
2758 static const struct inode_operations shmem_special_inode_operations
= {
2759 #ifdef CONFIG_TMPFS_XATTR
2760 .setxattr
= shmem_setxattr
,
2761 .getxattr
= shmem_getxattr
,
2762 .listxattr
= shmem_listxattr
,
2763 .removexattr
= shmem_removexattr
,
2765 #ifdef CONFIG_TMPFS_POSIX_ACL
2766 .setattr
= shmem_setattr
,
2770 static const struct super_operations shmem_ops
= {
2771 .alloc_inode
= shmem_alloc_inode
,
2772 .destroy_inode
= shmem_destroy_inode
,
2774 .statfs
= shmem_statfs
,
2775 .remount_fs
= shmem_remount_fs
,
2776 .show_options
= shmem_show_options
,
2778 .evict_inode
= shmem_evict_inode
,
2779 .drop_inode
= generic_delete_inode
,
2780 .put_super
= shmem_put_super
,
2783 static const struct vm_operations_struct shmem_vm_ops
= {
2784 .fault
= shmem_fault
,
2786 .set_policy
= shmem_set_policy
,
2787 .get_policy
= shmem_get_policy
,
2791 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
2792 int flags
, const char *dev_name
, void *data
)
2794 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
2797 static struct file_system_type shmem_fs_type
= {
2798 .owner
= THIS_MODULE
,
2800 .mount
= shmem_mount
,
2801 .kill_sb
= kill_litter_super
,
2804 int __init
shmem_init(void)
2808 error
= bdi_init(&shmem_backing_dev_info
);
2812 error
= shmem_init_inodecache();
2816 error
= register_filesystem(&shmem_fs_type
);
2818 printk(KERN_ERR
"Could not register tmpfs\n");
2822 shm_mnt
= vfs_kern_mount(&shmem_fs_type
, MS_NOUSER
,
2823 shmem_fs_type
.name
, NULL
);
2824 if (IS_ERR(shm_mnt
)) {
2825 error
= PTR_ERR(shm_mnt
);
2826 printk(KERN_ERR
"Could not kern_mount tmpfs\n");
2832 unregister_filesystem(&shmem_fs_type
);
2834 shmem_destroy_inodecache();
2836 bdi_destroy(&shmem_backing_dev_info
);
2838 shm_mnt
= ERR_PTR(error
);
2842 #else /* !CONFIG_SHMEM */
2845 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2847 * This is intended for small system where the benefits of the full
2848 * shmem code (swap-backed and resource-limited) are outweighed by
2849 * their complexity. On systems without swap this code should be
2850 * effectively equivalent, but much lighter weight.
2853 #include <linux/ramfs.h>
2855 static struct file_system_type shmem_fs_type
= {
2857 .mount
= ramfs_mount
,
2858 .kill_sb
= kill_litter_super
,
2861 int __init
shmem_init(void)
2863 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
2865 shm_mnt
= kern_mount(&shmem_fs_type
);
2866 BUG_ON(IS_ERR(shm_mnt
));
2871 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
2876 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2881 void shmem_unlock_mapping(struct address_space
*mapping
)
2885 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
2887 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
2889 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
2891 #define shmem_vm_ops generic_file_vm_ops
2892 #define shmem_file_operations ramfs_file_operations
2893 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
2894 #define shmem_acct_size(flags, size) 0
2895 #define shmem_unacct_size(flags, size) do {} while (0)
2897 #endif /* CONFIG_SHMEM */
2902 * shmem_file_setup - get an unlinked file living in tmpfs
2903 * @name: name for dentry (to be seen in /proc/<pid>/maps
2904 * @size: size to be set for the file
2905 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2907 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
2911 struct inode
*inode
;
2913 struct dentry
*root
;
2916 if (IS_ERR(shm_mnt
))
2917 return (void *)shm_mnt
;
2919 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
2920 return ERR_PTR(-EINVAL
);
2922 if (shmem_acct_size(flags
, size
))
2923 return ERR_PTR(-ENOMEM
);
2927 this.len
= strlen(name
);
2928 this.hash
= 0; /* will go */
2929 root
= shm_mnt
->mnt_root
;
2930 path
.dentry
= d_alloc(root
, &this);
2933 path
.mnt
= mntget(shm_mnt
);
2936 inode
= shmem_get_inode(root
->d_sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
2940 d_instantiate(path
.dentry
, inode
);
2941 inode
->i_size
= size
;
2942 clear_nlink(inode
); /* It is unlinked */
2944 error
= ramfs_nommu_expand_for_mapping(inode
, size
);
2950 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
2951 &shmem_file_operations
);
2960 shmem_unacct_size(flags
, size
);
2961 return ERR_PTR(error
);
2963 EXPORT_SYMBOL_GPL(shmem_file_setup
);
2966 * shmem_zero_setup - setup a shared anonymous mapping
2967 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2969 int shmem_zero_setup(struct vm_area_struct
*vma
)
2972 loff_t size
= vma
->vm_end
- vma
->vm_start
;
2974 file
= shmem_file_setup("dev/zero", size
, vma
->vm_flags
);
2976 return PTR_ERR(file
);
2980 vma
->vm_file
= file
;
2981 vma
->vm_ops
= &shmem_vm_ops
;
2982 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
2987 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2988 * @mapping: the page's address_space
2989 * @index: the page index
2990 * @gfp: the page allocator flags to use if allocating
2992 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2993 * with any new page allocations done using the specified allocation flags.
2994 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2995 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2996 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2998 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2999 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3001 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
3002 pgoff_t index
, gfp_t gfp
)
3005 struct inode
*inode
= mapping
->host
;
3009 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
3010 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
, gfp
, NULL
);
3012 page
= ERR_PTR(error
);
3018 * The tiny !SHMEM case uses ramfs without swap
3020 return read_cache_page_gfp(mapping
, index
, gfp
);
3023 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);