2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
9 #include <linux/capability.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
30 #include <linux/cpu.h>
31 #include <linux/console.h>
32 #include <linux/vmalloc.h>
33 #include <linux/swap.h>
34 #include <linux/syscore_ops.h>
37 #include <asm/uaccess.h>
39 #include <asm/sections.h>
41 /* Per cpu memory for storing cpu states in case of system crash. */
42 note_buf_t __percpu
*crash_notes
;
44 /* vmcoreinfo stuff */
45 static unsigned char vmcoreinfo_data
[VMCOREINFO_BYTES
];
46 u32 vmcoreinfo_note
[VMCOREINFO_NOTE_SIZE
/4];
47 size_t vmcoreinfo_size
;
48 size_t vmcoreinfo_max_size
= sizeof(vmcoreinfo_data
);
50 /* Location of the reserved area for the crash kernel */
51 struct resource crashk_res
= {
52 .name
= "Crash kernel",
55 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
58 int kexec_should_crash(struct task_struct
*p
)
60 if (in_interrupt() || !p
->pid
|| is_global_init(p
) || panic_on_oops
)
66 * When kexec transitions to the new kernel there is a one-to-one
67 * mapping between physical and virtual addresses. On processors
68 * where you can disable the MMU this is trivial, and easy. For
69 * others it is still a simple predictable page table to setup.
71 * In that environment kexec copies the new kernel to its final
72 * resting place. This means I can only support memory whose
73 * physical address can fit in an unsigned long. In particular
74 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
75 * If the assembly stub has more restrictive requirements
76 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
77 * defined more restrictively in <asm/kexec.h>.
79 * The code for the transition from the current kernel to the
80 * the new kernel is placed in the control_code_buffer, whose size
81 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
82 * page of memory is necessary, but some architectures require more.
83 * Because this memory must be identity mapped in the transition from
84 * virtual to physical addresses it must live in the range
85 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
88 * The assembly stub in the control code buffer is passed a linked list
89 * of descriptor pages detailing the source pages of the new kernel,
90 * and the destination addresses of those source pages. As this data
91 * structure is not used in the context of the current OS, it must
94 * The code has been made to work with highmem pages and will use a
95 * destination page in its final resting place (if it happens
96 * to allocate it). The end product of this is that most of the
97 * physical address space, and most of RAM can be used.
99 * Future directions include:
100 * - allocating a page table with the control code buffer identity
101 * mapped, to simplify machine_kexec and make kexec_on_panic more
106 * KIMAGE_NO_DEST is an impossible destination address..., for
107 * allocating pages whose destination address we do not care about.
109 #define KIMAGE_NO_DEST (-1UL)
111 static int kimage_is_destination_range(struct kimage
*image
,
112 unsigned long start
, unsigned long end
);
113 static struct page
*kimage_alloc_page(struct kimage
*image
,
117 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
118 unsigned long nr_segments
,
119 struct kexec_segment __user
*segments
)
121 size_t segment_bytes
;
122 struct kimage
*image
;
126 /* Allocate a controlling structure */
128 image
= kzalloc(sizeof(*image
), GFP_KERNEL
);
133 image
->entry
= &image
->head
;
134 image
->last_entry
= &image
->head
;
135 image
->control_page
= ~0; /* By default this does not apply */
136 image
->start
= entry
;
137 image
->type
= KEXEC_TYPE_DEFAULT
;
139 /* Initialize the list of control pages */
140 INIT_LIST_HEAD(&image
->control_pages
);
142 /* Initialize the list of destination pages */
143 INIT_LIST_HEAD(&image
->dest_pages
);
145 /* Initialize the list of unusable pages */
146 INIT_LIST_HEAD(&image
->unuseable_pages
);
148 /* Read in the segments */
149 image
->nr_segments
= nr_segments
;
150 segment_bytes
= nr_segments
* sizeof(*segments
);
151 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
158 * Verify we have good destination addresses. The caller is
159 * responsible for making certain we don't attempt to load
160 * the new image into invalid or reserved areas of RAM. This
161 * just verifies it is an address we can use.
163 * Since the kernel does everything in page size chunks ensure
164 * the destination addresses are page aligned. Too many
165 * special cases crop of when we don't do this. The most
166 * insidious is getting overlapping destination addresses
167 * simply because addresses are changed to page size
170 result
= -EADDRNOTAVAIL
;
171 for (i
= 0; i
< nr_segments
; i
++) {
172 unsigned long mstart
, mend
;
174 mstart
= image
->segment
[i
].mem
;
175 mend
= mstart
+ image
->segment
[i
].memsz
;
176 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
178 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
182 /* Verify our destination addresses do not overlap.
183 * If we alloed overlapping destination addresses
184 * through very weird things can happen with no
185 * easy explanation as one segment stops on another.
188 for (i
= 0; i
< nr_segments
; i
++) {
189 unsigned long mstart
, mend
;
192 mstart
= image
->segment
[i
].mem
;
193 mend
= mstart
+ image
->segment
[i
].memsz
;
194 for (j
= 0; j
< i
; j
++) {
195 unsigned long pstart
, pend
;
196 pstart
= image
->segment
[j
].mem
;
197 pend
= pstart
+ image
->segment
[j
].memsz
;
198 /* Do the segments overlap ? */
199 if ((mend
> pstart
) && (mstart
< pend
))
204 /* Ensure our buffer sizes are strictly less than
205 * our memory sizes. This should always be the case,
206 * and it is easier to check up front than to be surprised
210 for (i
= 0; i
< nr_segments
; i
++) {
211 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
226 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
227 unsigned long nr_segments
,
228 struct kexec_segment __user
*segments
)
231 struct kimage
*image
;
233 /* Allocate and initialize a controlling structure */
235 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
242 * Find a location for the control code buffer, and add it
243 * the vector of segments so that it's pages will also be
244 * counted as destination pages.
247 image
->control_code_page
= kimage_alloc_control_pages(image
,
248 get_order(KEXEC_CONTROL_PAGE_SIZE
));
249 if (!image
->control_code_page
) {
250 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
254 image
->swap_page
= kimage_alloc_control_pages(image
, 0);
255 if (!image
->swap_page
) {
256 printk(KERN_ERR
"Could not allocate swap buffer\n");
270 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
271 unsigned long nr_segments
,
272 struct kexec_segment __user
*segments
)
275 struct kimage
*image
;
279 /* Verify we have a valid entry point */
280 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
281 result
= -EADDRNOTAVAIL
;
285 /* Allocate and initialize a controlling structure */
286 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
290 /* Enable the special crash kernel control page
293 image
->control_page
= crashk_res
.start
;
294 image
->type
= KEXEC_TYPE_CRASH
;
297 * Verify we have good destination addresses. Normally
298 * the caller is responsible for making certain we don't
299 * attempt to load the new image into invalid or reserved
300 * areas of RAM. But crash kernels are preloaded into a
301 * reserved area of ram. We must ensure the addresses
302 * are in the reserved area otherwise preloading the
303 * kernel could corrupt things.
305 result
= -EADDRNOTAVAIL
;
306 for (i
= 0; i
< nr_segments
; i
++) {
307 unsigned long mstart
, mend
;
309 mstart
= image
->segment
[i
].mem
;
310 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
311 /* Ensure we are within the crash kernel limits */
312 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
317 * Find a location for the control code buffer, and add
318 * the vector of segments so that it's pages will also be
319 * counted as destination pages.
322 image
->control_code_page
= kimage_alloc_control_pages(image
,
323 get_order(KEXEC_CONTROL_PAGE_SIZE
));
324 if (!image
->control_code_page
) {
325 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
339 static int kimage_is_destination_range(struct kimage
*image
,
345 for (i
= 0; i
< image
->nr_segments
; i
++) {
346 unsigned long mstart
, mend
;
348 mstart
= image
->segment
[i
].mem
;
349 mend
= mstart
+ image
->segment
[i
].memsz
;
350 if ((end
> mstart
) && (start
< mend
))
357 static struct page
*kimage_alloc_pages(gfp_t gfp_mask
, unsigned int order
)
361 pages
= alloc_pages(gfp_mask
, order
);
363 unsigned int count
, i
;
364 pages
->mapping
= NULL
;
365 set_page_private(pages
, order
);
367 for (i
= 0; i
< count
; i
++)
368 SetPageReserved(pages
+ i
);
374 static void kimage_free_pages(struct page
*page
)
376 unsigned int order
, count
, i
;
378 order
= page_private(page
);
380 for (i
= 0; i
< count
; i
++)
381 ClearPageReserved(page
+ i
);
382 __free_pages(page
, order
);
385 static void kimage_free_page_list(struct list_head
*list
)
387 struct list_head
*pos
, *next
;
389 list_for_each_safe(pos
, next
, list
) {
392 page
= list_entry(pos
, struct page
, lru
);
393 list_del(&page
->lru
);
394 kimage_free_pages(page
);
398 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
401 /* Control pages are special, they are the intermediaries
402 * that are needed while we copy the rest of the pages
403 * to their final resting place. As such they must
404 * not conflict with either the destination addresses
405 * or memory the kernel is already using.
407 * The only case where we really need more than one of
408 * these are for architectures where we cannot disable
409 * the MMU and must instead generate an identity mapped
410 * page table for all of the memory.
412 * At worst this runs in O(N) of the image size.
414 struct list_head extra_pages
;
419 INIT_LIST_HEAD(&extra_pages
);
421 /* Loop while I can allocate a page and the page allocated
422 * is a destination page.
425 unsigned long pfn
, epfn
, addr
, eaddr
;
427 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
430 pfn
= page_to_pfn(pages
);
432 addr
= pfn
<< PAGE_SHIFT
;
433 eaddr
= epfn
<< PAGE_SHIFT
;
434 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
435 kimage_is_destination_range(image
, addr
, eaddr
)) {
436 list_add(&pages
->lru
, &extra_pages
);
442 /* Remember the allocated page... */
443 list_add(&pages
->lru
, &image
->control_pages
);
445 /* Because the page is already in it's destination
446 * location we will never allocate another page at
447 * that address. Therefore kimage_alloc_pages
448 * will not return it (again) and we don't need
449 * to give it an entry in image->segment[].
452 /* Deal with the destination pages I have inadvertently allocated.
454 * Ideally I would convert multi-page allocations into single
455 * page allocations, and add everything to image->dest_pages.
457 * For now it is simpler to just free the pages.
459 kimage_free_page_list(&extra_pages
);
464 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
467 /* Control pages are special, they are the intermediaries
468 * that are needed while we copy the rest of the pages
469 * to their final resting place. As such they must
470 * not conflict with either the destination addresses
471 * or memory the kernel is already using.
473 * Control pages are also the only pags we must allocate
474 * when loading a crash kernel. All of the other pages
475 * are specified by the segments and we just memcpy
476 * into them directly.
478 * The only case where we really need more than one of
479 * these are for architectures where we cannot disable
480 * the MMU and must instead generate an identity mapped
481 * page table for all of the memory.
483 * Given the low demand this implements a very simple
484 * allocator that finds the first hole of the appropriate
485 * size in the reserved memory region, and allocates all
486 * of the memory up to and including the hole.
488 unsigned long hole_start
, hole_end
, size
;
492 size
= (1 << order
) << PAGE_SHIFT
;
493 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
494 hole_end
= hole_start
+ size
- 1;
495 while (hole_end
<= crashk_res
.end
) {
498 if (hole_end
> KEXEC_CRASH_CONTROL_MEMORY_LIMIT
)
500 if (hole_end
> crashk_res
.end
)
502 /* See if I overlap any of the segments */
503 for (i
= 0; i
< image
->nr_segments
; i
++) {
504 unsigned long mstart
, mend
;
506 mstart
= image
->segment
[i
].mem
;
507 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
508 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
509 /* Advance the hole to the end of the segment */
510 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
511 hole_end
= hole_start
+ size
- 1;
515 /* If I don't overlap any segments I have found my hole! */
516 if (i
== image
->nr_segments
) {
517 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
522 image
->control_page
= hole_end
;
528 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
531 struct page
*pages
= NULL
;
533 switch (image
->type
) {
534 case KEXEC_TYPE_DEFAULT
:
535 pages
= kimage_alloc_normal_control_pages(image
, order
);
537 case KEXEC_TYPE_CRASH
:
538 pages
= kimage_alloc_crash_control_pages(image
, order
);
545 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
547 if (*image
->entry
!= 0)
550 if (image
->entry
== image
->last_entry
) {
551 kimage_entry_t
*ind_page
;
554 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
558 ind_page
= page_address(page
);
559 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
560 image
->entry
= ind_page
;
561 image
->last_entry
= ind_page
+
562 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
564 *image
->entry
= entry
;
571 static int kimage_set_destination(struct kimage
*image
,
572 unsigned long destination
)
576 destination
&= PAGE_MASK
;
577 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
579 image
->destination
= destination
;
585 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
590 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
592 image
->destination
+= PAGE_SIZE
;
598 static void kimage_free_extra_pages(struct kimage
*image
)
600 /* Walk through and free any extra destination pages I may have */
601 kimage_free_page_list(&image
->dest_pages
);
603 /* Walk through and free any unusable pages I have cached */
604 kimage_free_page_list(&image
->unuseable_pages
);
607 static void kimage_terminate(struct kimage
*image
)
609 if (*image
->entry
!= 0)
612 *image
->entry
= IND_DONE
;
615 #define for_each_kimage_entry(image, ptr, entry) \
616 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
617 ptr = (entry & IND_INDIRECTION)? \
618 phys_to_virt((entry & PAGE_MASK)): ptr +1)
620 static void kimage_free_entry(kimage_entry_t entry
)
624 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
625 kimage_free_pages(page
);
628 static void kimage_free(struct kimage
*image
)
630 kimage_entry_t
*ptr
, entry
;
631 kimage_entry_t ind
= 0;
636 kimage_free_extra_pages(image
);
637 for_each_kimage_entry(image
, ptr
, entry
) {
638 if (entry
& IND_INDIRECTION
) {
639 /* Free the previous indirection page */
640 if (ind
& IND_INDIRECTION
)
641 kimage_free_entry(ind
);
642 /* Save this indirection page until we are
647 else if (entry
& IND_SOURCE
)
648 kimage_free_entry(entry
);
650 /* Free the final indirection page */
651 if (ind
& IND_INDIRECTION
)
652 kimage_free_entry(ind
);
654 /* Handle any machine specific cleanup */
655 machine_kexec_cleanup(image
);
657 /* Free the kexec control pages... */
658 kimage_free_page_list(&image
->control_pages
);
662 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
665 kimage_entry_t
*ptr
, entry
;
666 unsigned long destination
= 0;
668 for_each_kimage_entry(image
, ptr
, entry
) {
669 if (entry
& IND_DESTINATION
)
670 destination
= entry
& PAGE_MASK
;
671 else if (entry
& IND_SOURCE
) {
672 if (page
== destination
)
674 destination
+= PAGE_SIZE
;
681 static struct page
*kimage_alloc_page(struct kimage
*image
,
683 unsigned long destination
)
686 * Here we implement safeguards to ensure that a source page
687 * is not copied to its destination page before the data on
688 * the destination page is no longer useful.
690 * To do this we maintain the invariant that a source page is
691 * either its own destination page, or it is not a
692 * destination page at all.
694 * That is slightly stronger than required, but the proof
695 * that no problems will not occur is trivial, and the
696 * implementation is simply to verify.
698 * When allocating all pages normally this algorithm will run
699 * in O(N) time, but in the worst case it will run in O(N^2)
700 * time. If the runtime is a problem the data structures can
707 * Walk through the list of destination pages, and see if I
710 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
711 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
712 if (addr
== destination
) {
713 list_del(&page
->lru
);
721 /* Allocate a page, if we run out of memory give up */
722 page
= kimage_alloc_pages(gfp_mask
, 0);
725 /* If the page cannot be used file it away */
726 if (page_to_pfn(page
) >
727 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
728 list_add(&page
->lru
, &image
->unuseable_pages
);
731 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
733 /* If it is the destination page we want use it */
734 if (addr
== destination
)
737 /* If the page is not a destination page use it */
738 if (!kimage_is_destination_range(image
, addr
,
743 * I know that the page is someones destination page.
744 * See if there is already a source page for this
745 * destination page. And if so swap the source pages.
747 old
= kimage_dst_used(image
, addr
);
750 unsigned long old_addr
;
751 struct page
*old_page
;
753 old_addr
= *old
& PAGE_MASK
;
754 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
755 copy_highpage(page
, old_page
);
756 *old
= addr
| (*old
& ~PAGE_MASK
);
758 /* The old page I have found cannot be a
759 * destination page, so return it if it's
760 * gfp_flags honor the ones passed in.
762 if (!(gfp_mask
& __GFP_HIGHMEM
) &&
763 PageHighMem(old_page
)) {
764 kimage_free_pages(old_page
);
772 /* Place the page on the destination list I
775 list_add(&page
->lru
, &image
->dest_pages
);
782 static int kimage_load_normal_segment(struct kimage
*image
,
783 struct kexec_segment
*segment
)
786 unsigned long ubytes
, mbytes
;
788 unsigned char __user
*buf
;
792 ubytes
= segment
->bufsz
;
793 mbytes
= segment
->memsz
;
794 maddr
= segment
->mem
;
796 result
= kimage_set_destination(image
, maddr
);
803 size_t uchunk
, mchunk
;
805 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
810 result
= kimage_add_page(image
, page_to_pfn(page
)
816 /* Start with a clear page */
818 ptr
+= maddr
& ~PAGE_MASK
;
819 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
827 result
= copy_from_user(ptr
, buf
, uchunk
);
842 static int kimage_load_crash_segment(struct kimage
*image
,
843 struct kexec_segment
*segment
)
845 /* For crash dumps kernels we simply copy the data from
846 * user space to it's destination.
847 * We do things a page at a time for the sake of kmap.
850 unsigned long ubytes
, mbytes
;
852 unsigned char __user
*buf
;
856 ubytes
= segment
->bufsz
;
857 mbytes
= segment
->memsz
;
858 maddr
= segment
->mem
;
862 size_t uchunk
, mchunk
;
864 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
870 ptr
+= maddr
& ~PAGE_MASK
;
871 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
876 if (uchunk
> ubytes
) {
878 /* Zero the trailing part of the page */
879 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
881 result
= copy_from_user(ptr
, buf
, uchunk
);
882 kexec_flush_icache_page(page
);
897 static int kimage_load_segment(struct kimage
*image
,
898 struct kexec_segment
*segment
)
900 int result
= -ENOMEM
;
902 switch (image
->type
) {
903 case KEXEC_TYPE_DEFAULT
:
904 result
= kimage_load_normal_segment(image
, segment
);
906 case KEXEC_TYPE_CRASH
:
907 result
= kimage_load_crash_segment(image
, segment
);
915 * Exec Kernel system call: for obvious reasons only root may call it.
917 * This call breaks up into three pieces.
918 * - A generic part which loads the new kernel from the current
919 * address space, and very carefully places the data in the
922 * - A generic part that interacts with the kernel and tells all of
923 * the devices to shut down. Preventing on-going dmas, and placing
924 * the devices in a consistent state so a later kernel can
927 * - A machine specific part that includes the syscall number
928 * and the copies the image to it's final destination. And
929 * jumps into the image at entry.
931 * kexec does not sync, or unmount filesystems so if you need
932 * that to happen you need to do that yourself.
934 struct kimage
*kexec_image
;
935 struct kimage
*kexec_crash_image
;
937 static DEFINE_MUTEX(kexec_mutex
);
939 SYSCALL_DEFINE4(kexec_load
, unsigned long, entry
, unsigned long, nr_segments
,
940 struct kexec_segment __user
*, segments
, unsigned long, flags
)
942 struct kimage
**dest_image
, *image
;
945 /* We only trust the superuser with rebooting the system. */
946 if (!capable(CAP_SYS_BOOT
))
950 * Verify we have a legal set of flags
951 * This leaves us room for future extensions.
953 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
956 /* Verify we are on the appropriate architecture */
957 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
958 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
961 /* Put an artificial cap on the number
962 * of segments passed to kexec_load.
964 if (nr_segments
> KEXEC_SEGMENT_MAX
)
970 /* Because we write directly to the reserved memory
971 * region when loading crash kernels we need a mutex here to
972 * prevent multiple crash kernels from attempting to load
973 * simultaneously, and to prevent a crash kernel from loading
974 * over the top of a in use crash kernel.
976 * KISS: always take the mutex.
978 if (!mutex_trylock(&kexec_mutex
))
981 dest_image
= &kexec_image
;
982 if (flags
& KEXEC_ON_CRASH
)
983 dest_image
= &kexec_crash_image
;
984 if (nr_segments
> 0) {
987 /* Loading another kernel to reboot into */
988 if ((flags
& KEXEC_ON_CRASH
) == 0)
989 result
= kimage_normal_alloc(&image
, entry
,
990 nr_segments
, segments
);
991 /* Loading another kernel to switch to if this one crashes */
992 else if (flags
& KEXEC_ON_CRASH
) {
993 /* Free any current crash dump kernel before
996 kimage_free(xchg(&kexec_crash_image
, NULL
));
997 result
= kimage_crash_alloc(&image
, entry
,
998 nr_segments
, segments
);
999 crash_map_reserved_pages();
1004 if (flags
& KEXEC_PRESERVE_CONTEXT
)
1005 image
->preserve_context
= 1;
1006 result
= machine_kexec_prepare(image
);
1010 for (i
= 0; i
< nr_segments
; i
++) {
1011 result
= kimage_load_segment(image
, &image
->segment
[i
]);
1015 kimage_terminate(image
);
1016 if (flags
& KEXEC_ON_CRASH
)
1017 crash_unmap_reserved_pages();
1019 /* Install the new kernel, and Uninstall the old */
1020 image
= xchg(dest_image
, image
);
1023 mutex_unlock(&kexec_mutex
);
1030 * Add and remove page tables for crashkernel memory
1032 * Provide an empty default implementation here -- architecture
1033 * code may override this
1035 void __weak
crash_map_reserved_pages(void)
1038 void __weak
crash_unmap_reserved_pages(void)
1041 #ifdef CONFIG_COMPAT
1042 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1043 unsigned long nr_segments
,
1044 struct compat_kexec_segment __user
*segments
,
1045 unsigned long flags
)
1047 struct compat_kexec_segment in
;
1048 struct kexec_segment out
, __user
*ksegments
;
1049 unsigned long i
, result
;
1051 /* Don't allow clients that don't understand the native
1052 * architecture to do anything.
1054 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1057 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1060 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1061 for (i
=0; i
< nr_segments
; i
++) {
1062 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1066 out
.buf
= compat_ptr(in
.buf
);
1067 out
.bufsz
= in
.bufsz
;
1069 out
.memsz
= in
.memsz
;
1071 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1076 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1080 void crash_kexec(struct pt_regs
*regs
)
1082 /* Take the kexec_mutex here to prevent sys_kexec_load
1083 * running on one cpu from replacing the crash kernel
1084 * we are using after a panic on a different cpu.
1086 * If the crash kernel was not located in a fixed area
1087 * of memory the xchg(&kexec_crash_image) would be
1088 * sufficient. But since I reuse the memory...
1090 if (mutex_trylock(&kexec_mutex
)) {
1091 if (kexec_crash_image
) {
1092 struct pt_regs fixed_regs
;
1094 crash_setup_regs(&fixed_regs
, regs
);
1095 crash_save_vmcoreinfo();
1096 machine_crash_shutdown(&fixed_regs
);
1097 machine_kexec(kexec_crash_image
);
1099 mutex_unlock(&kexec_mutex
);
1103 size_t crash_get_memory_size(void)
1106 mutex_lock(&kexec_mutex
);
1107 if (crashk_res
.end
!= crashk_res
.start
)
1108 size
= resource_size(&crashk_res
);
1109 mutex_unlock(&kexec_mutex
);
1113 void __weak
crash_free_reserved_phys_range(unsigned long begin
,
1118 for (addr
= begin
; addr
< end
; addr
+= PAGE_SIZE
) {
1119 ClearPageReserved(pfn_to_page(addr
>> PAGE_SHIFT
));
1120 init_page_count(pfn_to_page(addr
>> PAGE_SHIFT
));
1121 free_page((unsigned long)__va(addr
));
1126 int crash_shrink_memory(unsigned long new_size
)
1129 unsigned long start
, end
;
1130 unsigned long old_size
;
1131 struct resource
*ram_res
;
1133 mutex_lock(&kexec_mutex
);
1135 if (kexec_crash_image
) {
1139 start
= crashk_res
.start
;
1140 end
= crashk_res
.end
;
1141 old_size
= (end
== 0) ? 0 : end
- start
+ 1;
1142 if (new_size
>= old_size
) {
1143 ret
= (new_size
== old_size
) ? 0 : -EINVAL
;
1147 ram_res
= kzalloc(sizeof(*ram_res
), GFP_KERNEL
);
1153 start
= roundup(start
, KEXEC_CRASH_MEM_ALIGN
);
1154 end
= roundup(start
+ new_size
, KEXEC_CRASH_MEM_ALIGN
);
1156 crash_map_reserved_pages();
1157 crash_free_reserved_phys_range(end
, crashk_res
.end
);
1159 if ((start
== end
) && (crashk_res
.parent
!= NULL
))
1160 release_resource(&crashk_res
);
1162 ram_res
->start
= end
;
1163 ram_res
->end
= crashk_res
.end
;
1164 ram_res
->flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
;
1165 ram_res
->name
= "System RAM";
1167 crashk_res
.end
= end
- 1;
1169 insert_resource(&iomem_resource
, ram_res
);
1170 crash_unmap_reserved_pages();
1173 mutex_unlock(&kexec_mutex
);
1177 static u32
*append_elf_note(u32
*buf
, char *name
, unsigned type
, void *data
,
1180 struct elf_note note
;
1182 note
.n_namesz
= strlen(name
) + 1;
1183 note
.n_descsz
= data_len
;
1185 memcpy(buf
, ¬e
, sizeof(note
));
1186 buf
+= (sizeof(note
) + 3)/4;
1187 memcpy(buf
, name
, note
.n_namesz
);
1188 buf
+= (note
.n_namesz
+ 3)/4;
1189 memcpy(buf
, data
, note
.n_descsz
);
1190 buf
+= (note
.n_descsz
+ 3)/4;
1195 static void final_note(u32
*buf
)
1197 struct elf_note note
;
1202 memcpy(buf
, ¬e
, sizeof(note
));
1205 void crash_save_cpu(struct pt_regs
*regs
, int cpu
)
1207 struct elf_prstatus prstatus
;
1210 if ((cpu
< 0) || (cpu
>= nr_cpu_ids
))
1213 /* Using ELF notes here is opportunistic.
1214 * I need a well defined structure format
1215 * for the data I pass, and I need tags
1216 * on the data to indicate what information I have
1217 * squirrelled away. ELF notes happen to provide
1218 * all of that, so there is no need to invent something new.
1220 buf
= (u32
*)per_cpu_ptr(crash_notes
, cpu
);
1223 memset(&prstatus
, 0, sizeof(prstatus
));
1224 prstatus
.pr_pid
= current
->pid
;
1225 elf_core_copy_kernel_regs(&prstatus
.pr_reg
, regs
);
1226 buf
= append_elf_note(buf
, KEXEC_CORE_NOTE_NAME
, NT_PRSTATUS
,
1227 &prstatus
, sizeof(prstatus
));
1231 static int __init
crash_notes_memory_init(void)
1233 /* Allocate memory for saving cpu registers. */
1234 crash_notes
= alloc_percpu(note_buf_t
);
1236 printk("Kexec: Memory allocation for saving cpu register"
1237 " states failed\n");
1242 module_init(crash_notes_memory_init
)
1246 * parsing the "crashkernel" commandline
1248 * this code is intended to be called from architecture specific code
1253 * This function parses command lines in the format
1255 * crashkernel=ramsize-range:size[,...][@offset]
1257 * The function returns 0 on success and -EINVAL on failure.
1259 static int __init
parse_crashkernel_mem(char *cmdline
,
1260 unsigned long long system_ram
,
1261 unsigned long long *crash_size
,
1262 unsigned long long *crash_base
)
1264 char *cur
= cmdline
, *tmp
;
1266 /* for each entry of the comma-separated list */
1268 unsigned long long start
, end
= ULLONG_MAX
, size
;
1270 /* get the start of the range */
1271 start
= memparse(cur
, &tmp
);
1273 pr_warning("crashkernel: Memory value expected\n");
1278 pr_warning("crashkernel: '-' expected\n");
1283 /* if no ':' is here, than we read the end */
1285 end
= memparse(cur
, &tmp
);
1287 pr_warning("crashkernel: Memory "
1288 "value expected\n");
1293 pr_warning("crashkernel: end <= start\n");
1299 pr_warning("crashkernel: ':' expected\n");
1304 size
= memparse(cur
, &tmp
);
1306 pr_warning("Memory value expected\n");
1310 if (size
>= system_ram
) {
1311 pr_warning("crashkernel: invalid size\n");
1316 if (system_ram
>= start
&& system_ram
< end
) {
1320 } while (*cur
++ == ',');
1322 if (*crash_size
> 0) {
1323 while (*cur
&& *cur
!= ' ' && *cur
!= '@')
1327 *crash_base
= memparse(cur
, &tmp
);
1329 pr_warning("Memory value expected "
1340 * That function parses "simple" (old) crashkernel command lines like
1342 * crashkernel=size[@offset]
1344 * It returns 0 on success and -EINVAL on failure.
1346 static int __init
parse_crashkernel_simple(char *cmdline
,
1347 unsigned long long *crash_size
,
1348 unsigned long long *crash_base
)
1350 char *cur
= cmdline
;
1352 *crash_size
= memparse(cmdline
, &cur
);
1353 if (cmdline
== cur
) {
1354 pr_warning("crashkernel: memory value expected\n");
1359 *crash_base
= memparse(cur
+1, &cur
);
1360 else if (*cur
!= ' ' && *cur
!= '\0') {
1361 pr_warning("crashkernel: unrecognized char\n");
1369 * That function is the entry point for command line parsing and should be
1370 * called from the arch-specific code.
1372 int __init
parse_crashkernel(char *cmdline
,
1373 unsigned long long system_ram
,
1374 unsigned long long *crash_size
,
1375 unsigned long long *crash_base
)
1377 char *p
= cmdline
, *ck_cmdline
= NULL
;
1378 char *first_colon
, *first_space
;
1380 BUG_ON(!crash_size
|| !crash_base
);
1384 /* find crashkernel and use the last one if there are more */
1385 p
= strstr(p
, "crashkernel=");
1388 p
= strstr(p
+1, "crashkernel=");
1394 ck_cmdline
+= 12; /* strlen("crashkernel=") */
1397 * if the commandline contains a ':', then that's the extended
1398 * syntax -- if not, it must be the classic syntax
1400 first_colon
= strchr(ck_cmdline
, ':');
1401 first_space
= strchr(ck_cmdline
, ' ');
1402 if (first_colon
&& (!first_space
|| first_colon
< first_space
))
1403 return parse_crashkernel_mem(ck_cmdline
, system_ram
,
1404 crash_size
, crash_base
);
1406 return parse_crashkernel_simple(ck_cmdline
, crash_size
,
1413 static void update_vmcoreinfo_note(void)
1415 u32
*buf
= vmcoreinfo_note
;
1417 if (!vmcoreinfo_size
)
1419 buf
= append_elf_note(buf
, VMCOREINFO_NOTE_NAME
, 0, vmcoreinfo_data
,
1424 void crash_save_vmcoreinfo(void)
1426 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1427 update_vmcoreinfo_note();
1430 void vmcoreinfo_append_str(const char *fmt
, ...)
1436 va_start(args
, fmt
);
1437 r
= vsnprintf(buf
, sizeof(buf
), fmt
, args
);
1440 if (r
+ vmcoreinfo_size
> vmcoreinfo_max_size
)
1441 r
= vmcoreinfo_max_size
- vmcoreinfo_size
;
1443 memcpy(&vmcoreinfo_data
[vmcoreinfo_size
], buf
, r
);
1445 vmcoreinfo_size
+= r
;
1449 * provide an empty default implementation here -- architecture
1450 * code may override this
1452 void __attribute__ ((weak
)) arch_crash_save_vmcoreinfo(void)
1455 unsigned long __attribute__ ((weak
)) paddr_vmcoreinfo_note(void)
1457 return __pa((unsigned long)(char *)&vmcoreinfo_note
);
1460 static int __init
crash_save_vmcoreinfo_init(void)
1462 VMCOREINFO_OSRELEASE(init_uts_ns
.name
.release
);
1463 VMCOREINFO_PAGESIZE(PAGE_SIZE
);
1465 VMCOREINFO_SYMBOL(init_uts_ns
);
1466 VMCOREINFO_SYMBOL(node_online_map
);
1468 VMCOREINFO_SYMBOL(swapper_pg_dir
);
1470 VMCOREINFO_SYMBOL(_stext
);
1471 VMCOREINFO_SYMBOL(vmlist
);
1473 #ifndef CONFIG_NEED_MULTIPLE_NODES
1474 VMCOREINFO_SYMBOL(mem_map
);
1475 VMCOREINFO_SYMBOL(contig_page_data
);
1477 #ifdef CONFIG_SPARSEMEM
1478 VMCOREINFO_SYMBOL(mem_section
);
1479 VMCOREINFO_LENGTH(mem_section
, NR_SECTION_ROOTS
);
1480 VMCOREINFO_STRUCT_SIZE(mem_section
);
1481 VMCOREINFO_OFFSET(mem_section
, section_mem_map
);
1483 VMCOREINFO_STRUCT_SIZE(page
);
1484 VMCOREINFO_STRUCT_SIZE(pglist_data
);
1485 VMCOREINFO_STRUCT_SIZE(zone
);
1486 VMCOREINFO_STRUCT_SIZE(free_area
);
1487 VMCOREINFO_STRUCT_SIZE(list_head
);
1488 VMCOREINFO_SIZE(nodemask_t
);
1489 VMCOREINFO_OFFSET(page
, flags
);
1490 VMCOREINFO_OFFSET(page
, _count
);
1491 VMCOREINFO_OFFSET(page
, mapping
);
1492 VMCOREINFO_OFFSET(page
, lru
);
1493 VMCOREINFO_OFFSET(pglist_data
, node_zones
);
1494 VMCOREINFO_OFFSET(pglist_data
, nr_zones
);
1495 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1496 VMCOREINFO_OFFSET(pglist_data
, node_mem_map
);
1498 VMCOREINFO_OFFSET(pglist_data
, node_start_pfn
);
1499 VMCOREINFO_OFFSET(pglist_data
, node_spanned_pages
);
1500 VMCOREINFO_OFFSET(pglist_data
, node_id
);
1501 VMCOREINFO_OFFSET(zone
, free_area
);
1502 VMCOREINFO_OFFSET(zone
, vm_stat
);
1503 VMCOREINFO_OFFSET(zone
, spanned_pages
);
1504 VMCOREINFO_OFFSET(free_area
, free_list
);
1505 VMCOREINFO_OFFSET(list_head
, next
);
1506 VMCOREINFO_OFFSET(list_head
, prev
);
1507 VMCOREINFO_OFFSET(vm_struct
, addr
);
1508 VMCOREINFO_LENGTH(zone
.free_area
, MAX_ORDER
);
1509 log_buf_kexec_setup();
1510 VMCOREINFO_LENGTH(free_area
.free_list
, MIGRATE_TYPES
);
1511 VMCOREINFO_NUMBER(NR_FREE_PAGES
);
1512 VMCOREINFO_NUMBER(PG_lru
);
1513 VMCOREINFO_NUMBER(PG_private
);
1514 VMCOREINFO_NUMBER(PG_swapcache
);
1516 arch_crash_save_vmcoreinfo();
1517 update_vmcoreinfo_note();
1522 module_init(crash_save_vmcoreinfo_init
)
1525 * Move into place and start executing a preloaded standalone
1526 * executable. If nothing was preloaded return an error.
1528 int kernel_kexec(void)
1532 if (!mutex_trylock(&kexec_mutex
))
1539 #ifdef CONFIG_KEXEC_JUMP
1540 if (kexec_image
->preserve_context
) {
1541 lock_system_sleep();
1542 pm_prepare_console();
1543 error
= freeze_processes();
1546 goto Restore_console
;
1549 error
= dpm_suspend_start(PMSG_FREEZE
);
1551 goto Resume_console
;
1552 /* At this point, dpm_suspend_start() has been called,
1553 * but *not* dpm_suspend_end(). We *must* call
1554 * dpm_suspend_end() now. Otherwise, drivers for
1555 * some devices (e.g. interrupt controllers) become
1556 * desynchronized with the actual state of the
1557 * hardware at resume time, and evil weirdness ensues.
1559 error
= dpm_suspend_end(PMSG_FREEZE
);
1561 goto Resume_devices
;
1562 error
= disable_nonboot_cpus();
1565 local_irq_disable();
1566 error
= syscore_suspend();
1572 kernel_restart_prepare(NULL
);
1573 printk(KERN_EMERG
"Starting new kernel\n");
1577 machine_kexec(kexec_image
);
1579 #ifdef CONFIG_KEXEC_JUMP
1580 if (kexec_image
->preserve_context
) {
1585 enable_nonboot_cpus();
1586 dpm_resume_start(PMSG_RESTORE
);
1588 dpm_resume_end(PMSG_RESTORE
);
1593 pm_restore_console();
1594 unlock_system_sleep();
1599 mutex_unlock(&kexec_mutex
);