untangling do_lookup() - merge d_alloc_and_lookup() callers
[linux-2.6/libata-dev.git] / net / sunrpc / svc_xprt.c
blob4bda09d7e1a4cc6e5c5eaf24eec5b171ae922613
1 /*
2 * linux/net/sunrpc/svc_xprt.c
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
19 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
21 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
22 static int svc_deferred_recv(struct svc_rqst *rqstp);
23 static struct cache_deferred_req *svc_defer(struct cache_req *req);
24 static void svc_age_temp_xprts(unsigned long closure);
25 static void svc_delete_xprt(struct svc_xprt *xprt);
27 /* apparently the "standard" is that clients close
28 * idle connections after 5 minutes, servers after
29 * 6 minutes
30 * http://www.connectathon.org/talks96/nfstcp.pdf
32 static int svc_conn_age_period = 6*60;
34 /* List of registered transport classes */
35 static DEFINE_SPINLOCK(svc_xprt_class_lock);
36 static LIST_HEAD(svc_xprt_class_list);
38 /* SMP locking strategy:
40 * svc_pool->sp_lock protects most of the fields of that pool.
41 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
42 * when both need to be taken (rare), svc_serv->sv_lock is first.
43 * BKL protects svc_serv->sv_nrthread.
44 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
45 * and the ->sk_info_authunix cache.
47 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
48 * enqueued multiply. During normal transport processing this bit
49 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
50 * Providers should not manipulate this bit directly.
52 * Some flags can be set to certain values at any time
53 * providing that certain rules are followed:
55 * XPT_CONN, XPT_DATA:
56 * - Can be set or cleared at any time.
57 * - After a set, svc_xprt_enqueue must be called to enqueue
58 * the transport for processing.
59 * - After a clear, the transport must be read/accepted.
60 * If this succeeds, it must be set again.
61 * XPT_CLOSE:
62 * - Can set at any time. It is never cleared.
63 * XPT_DEAD:
64 * - Can only be set while XPT_BUSY is held which ensures
65 * that no other thread will be using the transport or will
66 * try to set XPT_DEAD.
69 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
71 struct svc_xprt_class *cl;
72 int res = -EEXIST;
74 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
76 INIT_LIST_HEAD(&xcl->xcl_list);
77 spin_lock(&svc_xprt_class_lock);
78 /* Make sure there isn't already a class with the same name */
79 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
80 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
81 goto out;
83 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
84 res = 0;
85 out:
86 spin_unlock(&svc_xprt_class_lock);
87 return res;
89 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
91 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
93 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
94 spin_lock(&svc_xprt_class_lock);
95 list_del_init(&xcl->xcl_list);
96 spin_unlock(&svc_xprt_class_lock);
98 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 * Format the transport list for printing
103 int svc_print_xprts(char *buf, int maxlen)
105 struct svc_xprt_class *xcl;
106 char tmpstr[80];
107 int len = 0;
108 buf[0] = '\0';
110 spin_lock(&svc_xprt_class_lock);
111 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
112 int slen;
114 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
115 slen = strlen(tmpstr);
116 if (len + slen > maxlen)
117 break;
118 len += slen;
119 strcat(buf, tmpstr);
121 spin_unlock(&svc_xprt_class_lock);
123 return len;
126 static void svc_xprt_free(struct kref *kref)
128 struct svc_xprt *xprt =
129 container_of(kref, struct svc_xprt, xpt_ref);
130 struct module *owner = xprt->xpt_class->xcl_owner;
131 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
132 svcauth_unix_info_release(xprt);
133 put_net(xprt->xpt_net);
134 /* See comment on corresponding get in xs_setup_bc_tcp(): */
135 if (xprt->xpt_bc_xprt)
136 xprt_put(xprt->xpt_bc_xprt);
137 xprt->xpt_ops->xpo_free(xprt);
138 module_put(owner);
141 void svc_xprt_put(struct svc_xprt *xprt)
143 kref_put(&xprt->xpt_ref, svc_xprt_free);
145 EXPORT_SYMBOL_GPL(svc_xprt_put);
148 * Called by transport drivers to initialize the transport independent
149 * portion of the transport instance.
151 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
152 struct svc_xprt *xprt, struct svc_serv *serv)
154 memset(xprt, 0, sizeof(*xprt));
155 xprt->xpt_class = xcl;
156 xprt->xpt_ops = xcl->xcl_ops;
157 kref_init(&xprt->xpt_ref);
158 xprt->xpt_server = serv;
159 INIT_LIST_HEAD(&xprt->xpt_list);
160 INIT_LIST_HEAD(&xprt->xpt_ready);
161 INIT_LIST_HEAD(&xprt->xpt_deferred);
162 INIT_LIST_HEAD(&xprt->xpt_users);
163 mutex_init(&xprt->xpt_mutex);
164 spin_lock_init(&xprt->xpt_lock);
165 set_bit(XPT_BUSY, &xprt->xpt_flags);
166 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
167 xprt->xpt_net = get_net(net);
169 EXPORT_SYMBOL_GPL(svc_xprt_init);
171 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
172 struct svc_serv *serv,
173 struct net *net,
174 const int family,
175 const unsigned short port,
176 int flags)
178 struct sockaddr_in sin = {
179 .sin_family = AF_INET,
180 .sin_addr.s_addr = htonl(INADDR_ANY),
181 .sin_port = htons(port),
183 #if IS_ENABLED(CONFIG_IPV6)
184 struct sockaddr_in6 sin6 = {
185 .sin6_family = AF_INET6,
186 .sin6_addr = IN6ADDR_ANY_INIT,
187 .sin6_port = htons(port),
189 #endif
190 struct sockaddr *sap;
191 size_t len;
193 switch (family) {
194 case PF_INET:
195 sap = (struct sockaddr *)&sin;
196 len = sizeof(sin);
197 break;
198 #if IS_ENABLED(CONFIG_IPV6)
199 case PF_INET6:
200 sap = (struct sockaddr *)&sin6;
201 len = sizeof(sin6);
202 break;
203 #endif
204 default:
205 return ERR_PTR(-EAFNOSUPPORT);
208 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
212 struct net *net, const int family,
213 const unsigned short port, int flags)
215 struct svc_xprt_class *xcl;
217 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
218 spin_lock(&svc_xprt_class_lock);
219 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
220 struct svc_xprt *newxprt;
221 unsigned short newport;
223 if (strcmp(xprt_name, xcl->xcl_name))
224 continue;
226 if (!try_module_get(xcl->xcl_owner))
227 goto err;
229 spin_unlock(&svc_xprt_class_lock);
230 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
231 if (IS_ERR(newxprt)) {
232 module_put(xcl->xcl_owner);
233 return PTR_ERR(newxprt);
236 clear_bit(XPT_TEMP, &newxprt->xpt_flags);
237 spin_lock_bh(&serv->sv_lock);
238 list_add(&newxprt->xpt_list, &serv->sv_permsocks);
239 spin_unlock_bh(&serv->sv_lock);
240 newport = svc_xprt_local_port(newxprt);
241 clear_bit(XPT_BUSY, &newxprt->xpt_flags);
242 return newport;
244 err:
245 spin_unlock(&svc_xprt_class_lock);
246 dprintk("svc: transport %s not found\n", xprt_name);
248 /* This errno is exposed to user space. Provide a reasonable
249 * perror msg for a bad transport. */
250 return -EPROTONOSUPPORT;
252 EXPORT_SYMBOL_GPL(svc_create_xprt);
255 * Copy the local and remote xprt addresses to the rqstp structure
257 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
259 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
260 rqstp->rq_addrlen = xprt->xpt_remotelen;
263 * Destination address in request is needed for binding the
264 * source address in RPC replies/callbacks later.
266 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
267 rqstp->rq_daddrlen = xprt->xpt_locallen;
269 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
272 * svc_print_addr - Format rq_addr field for printing
273 * @rqstp: svc_rqst struct containing address to print
274 * @buf: target buffer for formatted address
275 * @len: length of target buffer
278 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
280 return __svc_print_addr(svc_addr(rqstp), buf, len);
282 EXPORT_SYMBOL_GPL(svc_print_addr);
285 * Queue up an idle server thread. Must have pool->sp_lock held.
286 * Note: this is really a stack rather than a queue, so that we only
287 * use as many different threads as we need, and the rest don't pollute
288 * the cache.
290 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
292 list_add(&rqstp->rq_list, &pool->sp_threads);
296 * Dequeue an nfsd thread. Must have pool->sp_lock held.
298 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
300 list_del(&rqstp->rq_list);
303 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
305 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
306 return true;
307 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
308 return xprt->xpt_ops->xpo_has_wspace(xprt);
309 return false;
313 * Queue up a transport with data pending. If there are idle nfsd
314 * processes, wake 'em up.
317 void svc_xprt_enqueue(struct svc_xprt *xprt)
319 struct svc_serv *serv = xprt->xpt_server;
320 struct svc_pool *pool;
321 struct svc_rqst *rqstp;
322 int cpu;
324 if (!svc_xprt_has_something_to_do(xprt))
325 return;
327 cpu = get_cpu();
328 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
329 put_cpu();
331 spin_lock_bh(&pool->sp_lock);
333 if (!list_empty(&pool->sp_threads) &&
334 !list_empty(&pool->sp_sockets))
335 printk(KERN_ERR
336 "svc_xprt_enqueue: "
337 "threads and transports both waiting??\n");
339 pool->sp_stats.packets++;
341 /* Mark transport as busy. It will remain in this state until
342 * the provider calls svc_xprt_received. We update XPT_BUSY
343 * atomically because it also guards against trying to enqueue
344 * the transport twice.
346 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
347 /* Don't enqueue transport while already enqueued */
348 dprintk("svc: transport %p busy, not enqueued\n", xprt);
349 goto out_unlock;
352 if (!list_empty(&pool->sp_threads)) {
353 rqstp = list_entry(pool->sp_threads.next,
354 struct svc_rqst,
355 rq_list);
356 dprintk("svc: transport %p served by daemon %p\n",
357 xprt, rqstp);
358 svc_thread_dequeue(pool, rqstp);
359 if (rqstp->rq_xprt)
360 printk(KERN_ERR
361 "svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
362 rqstp, rqstp->rq_xprt);
363 rqstp->rq_xprt = xprt;
364 svc_xprt_get(xprt);
365 rqstp->rq_reserved = serv->sv_max_mesg;
366 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
367 pool->sp_stats.threads_woken++;
368 wake_up(&rqstp->rq_wait);
369 } else {
370 dprintk("svc: transport %p put into queue\n", xprt);
371 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
372 pool->sp_stats.sockets_queued++;
375 out_unlock:
376 spin_unlock_bh(&pool->sp_lock);
378 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
381 * Dequeue the first transport. Must be called with the pool->sp_lock held.
383 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
385 struct svc_xprt *xprt;
387 if (list_empty(&pool->sp_sockets))
388 return NULL;
390 xprt = list_entry(pool->sp_sockets.next,
391 struct svc_xprt, xpt_ready);
392 list_del_init(&xprt->xpt_ready);
394 dprintk("svc: transport %p dequeued, inuse=%d\n",
395 xprt, atomic_read(&xprt->xpt_ref.refcount));
397 return xprt;
401 * svc_xprt_received conditionally queues the transport for processing
402 * by another thread. The caller must hold the XPT_BUSY bit and must
403 * not thereafter touch transport data.
405 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
406 * insufficient) data.
408 void svc_xprt_received(struct svc_xprt *xprt)
410 BUG_ON(!test_bit(XPT_BUSY, &xprt->xpt_flags));
411 /* As soon as we clear busy, the xprt could be closed and
412 * 'put', so we need a reference to call svc_xprt_enqueue with:
414 svc_xprt_get(xprt);
415 clear_bit(XPT_BUSY, &xprt->xpt_flags);
416 svc_xprt_enqueue(xprt);
417 svc_xprt_put(xprt);
419 EXPORT_SYMBOL_GPL(svc_xprt_received);
422 * svc_reserve - change the space reserved for the reply to a request.
423 * @rqstp: The request in question
424 * @space: new max space to reserve
426 * Each request reserves some space on the output queue of the transport
427 * to make sure the reply fits. This function reduces that reserved
428 * space to be the amount of space used already, plus @space.
431 void svc_reserve(struct svc_rqst *rqstp, int space)
433 space += rqstp->rq_res.head[0].iov_len;
435 if (space < rqstp->rq_reserved) {
436 struct svc_xprt *xprt = rqstp->rq_xprt;
437 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
438 rqstp->rq_reserved = space;
440 svc_xprt_enqueue(xprt);
443 EXPORT_SYMBOL_GPL(svc_reserve);
445 static void svc_xprt_release(struct svc_rqst *rqstp)
447 struct svc_xprt *xprt = rqstp->rq_xprt;
449 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
451 kfree(rqstp->rq_deferred);
452 rqstp->rq_deferred = NULL;
454 svc_free_res_pages(rqstp);
455 rqstp->rq_res.page_len = 0;
456 rqstp->rq_res.page_base = 0;
458 /* Reset response buffer and release
459 * the reservation.
460 * But first, check that enough space was reserved
461 * for the reply, otherwise we have a bug!
463 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
464 printk(KERN_ERR "RPC request reserved %d but used %d\n",
465 rqstp->rq_reserved,
466 rqstp->rq_res.len);
468 rqstp->rq_res.head[0].iov_len = 0;
469 svc_reserve(rqstp, 0);
470 rqstp->rq_xprt = NULL;
472 svc_xprt_put(xprt);
476 * External function to wake up a server waiting for data
477 * This really only makes sense for services like lockd
478 * which have exactly one thread anyway.
480 void svc_wake_up(struct svc_serv *serv)
482 struct svc_rqst *rqstp;
483 unsigned int i;
484 struct svc_pool *pool;
486 for (i = 0; i < serv->sv_nrpools; i++) {
487 pool = &serv->sv_pools[i];
489 spin_lock_bh(&pool->sp_lock);
490 if (!list_empty(&pool->sp_threads)) {
491 rqstp = list_entry(pool->sp_threads.next,
492 struct svc_rqst,
493 rq_list);
494 dprintk("svc: daemon %p woken up.\n", rqstp);
496 svc_thread_dequeue(pool, rqstp);
497 rqstp->rq_xprt = NULL;
499 wake_up(&rqstp->rq_wait);
501 spin_unlock_bh(&pool->sp_lock);
504 EXPORT_SYMBOL_GPL(svc_wake_up);
506 int svc_port_is_privileged(struct sockaddr *sin)
508 switch (sin->sa_family) {
509 case AF_INET:
510 return ntohs(((struct sockaddr_in *)sin)->sin_port)
511 < PROT_SOCK;
512 case AF_INET6:
513 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
514 < PROT_SOCK;
515 default:
516 return 0;
521 * Make sure that we don't have too many active connections. If we have,
522 * something must be dropped. It's not clear what will happen if we allow
523 * "too many" connections, but when dealing with network-facing software,
524 * we have to code defensively. Here we do that by imposing hard limits.
526 * There's no point in trying to do random drop here for DoS
527 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
528 * attacker can easily beat that.
530 * The only somewhat efficient mechanism would be if drop old
531 * connections from the same IP first. But right now we don't even
532 * record the client IP in svc_sock.
534 * single-threaded services that expect a lot of clients will probably
535 * need to set sv_maxconn to override the default value which is based
536 * on the number of threads
538 static void svc_check_conn_limits(struct svc_serv *serv)
540 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
541 (serv->sv_nrthreads+3) * 20;
543 if (serv->sv_tmpcnt > limit) {
544 struct svc_xprt *xprt = NULL;
545 spin_lock_bh(&serv->sv_lock);
546 if (!list_empty(&serv->sv_tempsocks)) {
547 if (net_ratelimit()) {
548 /* Try to help the admin */
549 printk(KERN_NOTICE "%s: too many open "
550 "connections, consider increasing %s\n",
551 serv->sv_name, serv->sv_maxconn ?
552 "the max number of connections." :
553 "the number of threads.");
556 * Always select the oldest connection. It's not fair,
557 * but so is life
559 xprt = list_entry(serv->sv_tempsocks.prev,
560 struct svc_xprt,
561 xpt_list);
562 set_bit(XPT_CLOSE, &xprt->xpt_flags);
563 svc_xprt_get(xprt);
565 spin_unlock_bh(&serv->sv_lock);
567 if (xprt) {
568 svc_xprt_enqueue(xprt);
569 svc_xprt_put(xprt);
575 * Receive the next request on any transport. This code is carefully
576 * organised not to touch any cachelines in the shared svc_serv
577 * structure, only cachelines in the local svc_pool.
579 int svc_recv(struct svc_rqst *rqstp, long timeout)
581 struct svc_xprt *xprt = NULL;
582 struct svc_serv *serv = rqstp->rq_server;
583 struct svc_pool *pool = rqstp->rq_pool;
584 int len, i;
585 int pages;
586 struct xdr_buf *arg;
587 DECLARE_WAITQUEUE(wait, current);
588 long time_left;
590 dprintk("svc: server %p waiting for data (to = %ld)\n",
591 rqstp, timeout);
593 if (rqstp->rq_xprt)
594 printk(KERN_ERR
595 "svc_recv: service %p, transport not NULL!\n",
596 rqstp);
597 if (waitqueue_active(&rqstp->rq_wait))
598 printk(KERN_ERR
599 "svc_recv: service %p, wait queue active!\n",
600 rqstp);
602 /* now allocate needed pages. If we get a failure, sleep briefly */
603 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
604 for (i = 0; i < pages ; i++)
605 while (rqstp->rq_pages[i] == NULL) {
606 struct page *p = alloc_page(GFP_KERNEL);
607 if (!p) {
608 set_current_state(TASK_INTERRUPTIBLE);
609 if (signalled() || kthread_should_stop()) {
610 set_current_state(TASK_RUNNING);
611 return -EINTR;
613 schedule_timeout(msecs_to_jiffies(500));
615 rqstp->rq_pages[i] = p;
617 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
618 BUG_ON(pages >= RPCSVC_MAXPAGES);
620 /* Make arg->head point to first page and arg->pages point to rest */
621 arg = &rqstp->rq_arg;
622 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
623 arg->head[0].iov_len = PAGE_SIZE;
624 arg->pages = rqstp->rq_pages + 1;
625 arg->page_base = 0;
626 /* save at least one page for response */
627 arg->page_len = (pages-2)*PAGE_SIZE;
628 arg->len = (pages-1)*PAGE_SIZE;
629 arg->tail[0].iov_len = 0;
631 try_to_freeze();
632 cond_resched();
633 if (signalled() || kthread_should_stop())
634 return -EINTR;
636 /* Normally we will wait up to 5 seconds for any required
637 * cache information to be provided.
639 rqstp->rq_chandle.thread_wait = 5*HZ;
641 spin_lock_bh(&pool->sp_lock);
642 xprt = svc_xprt_dequeue(pool);
643 if (xprt) {
644 rqstp->rq_xprt = xprt;
645 svc_xprt_get(xprt);
646 rqstp->rq_reserved = serv->sv_max_mesg;
647 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
649 /* As there is a shortage of threads and this request
650 * had to be queued, don't allow the thread to wait so
651 * long for cache updates.
653 rqstp->rq_chandle.thread_wait = 1*HZ;
654 } else {
655 /* No data pending. Go to sleep */
656 svc_thread_enqueue(pool, rqstp);
659 * We have to be able to interrupt this wait
660 * to bring down the daemons ...
662 set_current_state(TASK_INTERRUPTIBLE);
665 * checking kthread_should_stop() here allows us to avoid
666 * locking and signalling when stopping kthreads that call
667 * svc_recv. If the thread has already been woken up, then
668 * we can exit here without sleeping. If not, then it
669 * it'll be woken up quickly during the schedule_timeout
671 if (kthread_should_stop()) {
672 set_current_state(TASK_RUNNING);
673 spin_unlock_bh(&pool->sp_lock);
674 return -EINTR;
677 add_wait_queue(&rqstp->rq_wait, &wait);
678 spin_unlock_bh(&pool->sp_lock);
680 time_left = schedule_timeout(timeout);
682 try_to_freeze();
684 spin_lock_bh(&pool->sp_lock);
685 remove_wait_queue(&rqstp->rq_wait, &wait);
686 if (!time_left)
687 pool->sp_stats.threads_timedout++;
689 xprt = rqstp->rq_xprt;
690 if (!xprt) {
691 svc_thread_dequeue(pool, rqstp);
692 spin_unlock_bh(&pool->sp_lock);
693 dprintk("svc: server %p, no data yet\n", rqstp);
694 if (signalled() || kthread_should_stop())
695 return -EINTR;
696 else
697 return -EAGAIN;
700 spin_unlock_bh(&pool->sp_lock);
702 len = 0;
703 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
704 dprintk("svc_recv: found XPT_CLOSE\n");
705 svc_delete_xprt(xprt);
706 /* Leave XPT_BUSY set on the dead xprt: */
707 goto out;
709 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
710 struct svc_xprt *newxpt;
711 newxpt = xprt->xpt_ops->xpo_accept(xprt);
712 if (newxpt) {
714 * We know this module_get will succeed because the
715 * listener holds a reference too
717 __module_get(newxpt->xpt_class->xcl_owner);
718 svc_check_conn_limits(xprt->xpt_server);
719 spin_lock_bh(&serv->sv_lock);
720 set_bit(XPT_TEMP, &newxpt->xpt_flags);
721 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
722 serv->sv_tmpcnt++;
723 if (serv->sv_temptimer.function == NULL) {
724 /* setup timer to age temp transports */
725 setup_timer(&serv->sv_temptimer,
726 svc_age_temp_xprts,
727 (unsigned long)serv);
728 mod_timer(&serv->sv_temptimer,
729 jiffies + svc_conn_age_period * HZ);
731 spin_unlock_bh(&serv->sv_lock);
732 svc_xprt_received(newxpt);
734 } else if (xprt->xpt_ops->xpo_has_wspace(xprt)) {
735 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
736 rqstp, pool->sp_id, xprt,
737 atomic_read(&xprt->xpt_ref.refcount));
738 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
739 if (rqstp->rq_deferred)
740 len = svc_deferred_recv(rqstp);
741 else
742 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
743 dprintk("svc: got len=%d\n", len);
745 svc_xprt_received(xprt);
747 /* No data, incomplete (TCP) read, or accept() */
748 if (len == 0 || len == -EAGAIN)
749 goto out;
751 clear_bit(XPT_OLD, &xprt->xpt_flags);
753 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
754 rqstp->rq_chandle.defer = svc_defer;
756 if (serv->sv_stats)
757 serv->sv_stats->netcnt++;
758 return len;
759 out:
760 rqstp->rq_res.len = 0;
761 svc_xprt_release(rqstp);
762 return -EAGAIN;
764 EXPORT_SYMBOL_GPL(svc_recv);
767 * Drop request
769 void svc_drop(struct svc_rqst *rqstp)
771 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
772 svc_xprt_release(rqstp);
774 EXPORT_SYMBOL_GPL(svc_drop);
777 * Return reply to client.
779 int svc_send(struct svc_rqst *rqstp)
781 struct svc_xprt *xprt;
782 int len;
783 struct xdr_buf *xb;
785 xprt = rqstp->rq_xprt;
786 if (!xprt)
787 return -EFAULT;
789 /* release the receive skb before sending the reply */
790 rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
792 /* calculate over-all length */
793 xb = &rqstp->rq_res;
794 xb->len = xb->head[0].iov_len +
795 xb->page_len +
796 xb->tail[0].iov_len;
798 /* Grab mutex to serialize outgoing data. */
799 mutex_lock(&xprt->xpt_mutex);
800 if (test_bit(XPT_DEAD, &xprt->xpt_flags))
801 len = -ENOTCONN;
802 else
803 len = xprt->xpt_ops->xpo_sendto(rqstp);
804 mutex_unlock(&xprt->xpt_mutex);
805 rpc_wake_up(&xprt->xpt_bc_pending);
806 svc_xprt_release(rqstp);
808 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
809 return 0;
810 return len;
814 * Timer function to close old temporary transports, using
815 * a mark-and-sweep algorithm.
817 static void svc_age_temp_xprts(unsigned long closure)
819 struct svc_serv *serv = (struct svc_serv *)closure;
820 struct svc_xprt *xprt;
821 struct list_head *le, *next;
822 LIST_HEAD(to_be_aged);
824 dprintk("svc_age_temp_xprts\n");
826 if (!spin_trylock_bh(&serv->sv_lock)) {
827 /* busy, try again 1 sec later */
828 dprintk("svc_age_temp_xprts: busy\n");
829 mod_timer(&serv->sv_temptimer, jiffies + HZ);
830 return;
833 list_for_each_safe(le, next, &serv->sv_tempsocks) {
834 xprt = list_entry(le, struct svc_xprt, xpt_list);
836 /* First time through, just mark it OLD. Second time
837 * through, close it. */
838 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
839 continue;
840 if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
841 test_bit(XPT_BUSY, &xprt->xpt_flags))
842 continue;
843 svc_xprt_get(xprt);
844 list_move(le, &to_be_aged);
845 set_bit(XPT_CLOSE, &xprt->xpt_flags);
846 set_bit(XPT_DETACHED, &xprt->xpt_flags);
848 spin_unlock_bh(&serv->sv_lock);
850 while (!list_empty(&to_be_aged)) {
851 le = to_be_aged.next;
852 /* fiddling the xpt_list node is safe 'cos we're XPT_DETACHED */
853 list_del_init(le);
854 xprt = list_entry(le, struct svc_xprt, xpt_list);
856 dprintk("queuing xprt %p for closing\n", xprt);
858 /* a thread will dequeue and close it soon */
859 svc_xprt_enqueue(xprt);
860 svc_xprt_put(xprt);
863 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
866 static void call_xpt_users(struct svc_xprt *xprt)
868 struct svc_xpt_user *u;
870 spin_lock(&xprt->xpt_lock);
871 while (!list_empty(&xprt->xpt_users)) {
872 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
873 list_del(&u->list);
874 u->callback(u);
876 spin_unlock(&xprt->xpt_lock);
880 * Remove a dead transport
882 static void svc_delete_xprt(struct svc_xprt *xprt)
884 struct svc_serv *serv = xprt->xpt_server;
885 struct svc_deferred_req *dr;
887 /* Only do this once */
888 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
889 BUG();
891 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
892 xprt->xpt_ops->xpo_detach(xprt);
894 spin_lock_bh(&serv->sv_lock);
895 if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
896 list_del_init(&xprt->xpt_list);
897 BUG_ON(!list_empty(&xprt->xpt_ready));
898 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
899 serv->sv_tmpcnt--;
900 spin_unlock_bh(&serv->sv_lock);
902 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
903 kfree(dr);
905 call_xpt_users(xprt);
906 svc_xprt_put(xprt);
909 void svc_close_xprt(struct svc_xprt *xprt)
911 set_bit(XPT_CLOSE, &xprt->xpt_flags);
912 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
913 /* someone else will have to effect the close */
914 return;
916 * We expect svc_close_xprt() to work even when no threads are
917 * running (e.g., while configuring the server before starting
918 * any threads), so if the transport isn't busy, we delete
919 * it ourself:
921 svc_delete_xprt(xprt);
923 EXPORT_SYMBOL_GPL(svc_close_xprt);
925 static void svc_close_list(struct list_head *xprt_list, struct net *net)
927 struct svc_xprt *xprt;
929 list_for_each_entry(xprt, xprt_list, xpt_list) {
930 if (xprt->xpt_net != net)
931 continue;
932 set_bit(XPT_CLOSE, &xprt->xpt_flags);
933 set_bit(XPT_BUSY, &xprt->xpt_flags);
937 static void svc_clear_pools(struct svc_serv *serv, struct net *net)
939 struct svc_pool *pool;
940 struct svc_xprt *xprt;
941 struct svc_xprt *tmp;
942 int i;
944 for (i = 0; i < serv->sv_nrpools; i++) {
945 pool = &serv->sv_pools[i];
947 spin_lock_bh(&pool->sp_lock);
948 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
949 if (xprt->xpt_net != net)
950 continue;
951 list_del_init(&xprt->xpt_ready);
953 spin_unlock_bh(&pool->sp_lock);
957 static void svc_clear_list(struct list_head *xprt_list, struct net *net)
959 struct svc_xprt *xprt;
960 struct svc_xprt *tmp;
962 list_for_each_entry_safe(xprt, tmp, xprt_list, xpt_list) {
963 if (xprt->xpt_net != net)
964 continue;
965 svc_delete_xprt(xprt);
967 list_for_each_entry(xprt, xprt_list, xpt_list)
968 BUG_ON(xprt->xpt_net == net);
971 void svc_close_net(struct svc_serv *serv, struct net *net)
973 svc_close_list(&serv->sv_tempsocks, net);
974 svc_close_list(&serv->sv_permsocks, net);
976 svc_clear_pools(serv, net);
978 * At this point the sp_sockets lists will stay empty, since
979 * svc_enqueue will not add new entries without taking the
980 * sp_lock and checking XPT_BUSY.
982 svc_clear_list(&serv->sv_tempsocks, net);
983 svc_clear_list(&serv->sv_permsocks, net);
987 * Handle defer and revisit of requests
990 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
992 struct svc_deferred_req *dr =
993 container_of(dreq, struct svc_deferred_req, handle);
994 struct svc_xprt *xprt = dr->xprt;
996 spin_lock(&xprt->xpt_lock);
997 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
998 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
999 spin_unlock(&xprt->xpt_lock);
1000 dprintk("revisit canceled\n");
1001 svc_xprt_put(xprt);
1002 kfree(dr);
1003 return;
1005 dprintk("revisit queued\n");
1006 dr->xprt = NULL;
1007 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1008 spin_unlock(&xprt->xpt_lock);
1009 svc_xprt_enqueue(xprt);
1010 svc_xprt_put(xprt);
1014 * Save the request off for later processing. The request buffer looks
1015 * like this:
1017 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1019 * This code can only handle requests that consist of an xprt-header
1020 * and rpc-header.
1022 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1024 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1025 struct svc_deferred_req *dr;
1027 if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1028 return NULL; /* if more than a page, give up FIXME */
1029 if (rqstp->rq_deferred) {
1030 dr = rqstp->rq_deferred;
1031 rqstp->rq_deferred = NULL;
1032 } else {
1033 size_t skip;
1034 size_t size;
1035 /* FIXME maybe discard if size too large */
1036 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1037 dr = kmalloc(size, GFP_KERNEL);
1038 if (dr == NULL)
1039 return NULL;
1041 dr->handle.owner = rqstp->rq_server;
1042 dr->prot = rqstp->rq_prot;
1043 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1044 dr->addrlen = rqstp->rq_addrlen;
1045 dr->daddr = rqstp->rq_daddr;
1046 dr->argslen = rqstp->rq_arg.len >> 2;
1047 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1049 /* back up head to the start of the buffer and copy */
1050 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1051 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1052 dr->argslen << 2);
1054 svc_xprt_get(rqstp->rq_xprt);
1055 dr->xprt = rqstp->rq_xprt;
1056 rqstp->rq_dropme = true;
1058 dr->handle.revisit = svc_revisit;
1059 return &dr->handle;
1063 * recv data from a deferred request into an active one
1065 static int svc_deferred_recv(struct svc_rqst *rqstp)
1067 struct svc_deferred_req *dr = rqstp->rq_deferred;
1069 /* setup iov_base past transport header */
1070 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1071 /* The iov_len does not include the transport header bytes */
1072 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1073 rqstp->rq_arg.page_len = 0;
1074 /* The rq_arg.len includes the transport header bytes */
1075 rqstp->rq_arg.len = dr->argslen<<2;
1076 rqstp->rq_prot = dr->prot;
1077 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1078 rqstp->rq_addrlen = dr->addrlen;
1079 /* Save off transport header len in case we get deferred again */
1080 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1081 rqstp->rq_daddr = dr->daddr;
1082 rqstp->rq_respages = rqstp->rq_pages;
1083 return (dr->argslen<<2) - dr->xprt_hlen;
1087 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1089 struct svc_deferred_req *dr = NULL;
1091 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1092 return NULL;
1093 spin_lock(&xprt->xpt_lock);
1094 if (!list_empty(&xprt->xpt_deferred)) {
1095 dr = list_entry(xprt->xpt_deferred.next,
1096 struct svc_deferred_req,
1097 handle.recent);
1098 list_del_init(&dr->handle.recent);
1099 } else
1100 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1101 spin_unlock(&xprt->xpt_lock);
1102 return dr;
1106 * svc_find_xprt - find an RPC transport instance
1107 * @serv: pointer to svc_serv to search
1108 * @xcl_name: C string containing transport's class name
1109 * @net: owner net pointer
1110 * @af: Address family of transport's local address
1111 * @port: transport's IP port number
1113 * Return the transport instance pointer for the endpoint accepting
1114 * connections/peer traffic from the specified transport class,
1115 * address family and port.
1117 * Specifying 0 for the address family or port is effectively a
1118 * wild-card, and will result in matching the first transport in the
1119 * service's list that has a matching class name.
1121 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1122 struct net *net, const sa_family_t af,
1123 const unsigned short port)
1125 struct svc_xprt *xprt;
1126 struct svc_xprt *found = NULL;
1128 /* Sanity check the args */
1129 if (serv == NULL || xcl_name == NULL)
1130 return found;
1132 spin_lock_bh(&serv->sv_lock);
1133 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1134 if (xprt->xpt_net != net)
1135 continue;
1136 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1137 continue;
1138 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1139 continue;
1140 if (port != 0 && port != svc_xprt_local_port(xprt))
1141 continue;
1142 found = xprt;
1143 svc_xprt_get(xprt);
1144 break;
1146 spin_unlock_bh(&serv->sv_lock);
1147 return found;
1149 EXPORT_SYMBOL_GPL(svc_find_xprt);
1151 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1152 char *pos, int remaining)
1154 int len;
1156 len = snprintf(pos, remaining, "%s %u\n",
1157 xprt->xpt_class->xcl_name,
1158 svc_xprt_local_port(xprt));
1159 if (len >= remaining)
1160 return -ENAMETOOLONG;
1161 return len;
1165 * svc_xprt_names - format a buffer with a list of transport names
1166 * @serv: pointer to an RPC service
1167 * @buf: pointer to a buffer to be filled in
1168 * @buflen: length of buffer to be filled in
1170 * Fills in @buf with a string containing a list of transport names,
1171 * each name terminated with '\n'.
1173 * Returns positive length of the filled-in string on success; otherwise
1174 * a negative errno value is returned if an error occurs.
1176 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1178 struct svc_xprt *xprt;
1179 int len, totlen;
1180 char *pos;
1182 /* Sanity check args */
1183 if (!serv)
1184 return 0;
1186 spin_lock_bh(&serv->sv_lock);
1188 pos = buf;
1189 totlen = 0;
1190 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1191 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1192 if (len < 0) {
1193 *buf = '\0';
1194 totlen = len;
1196 if (len <= 0)
1197 break;
1199 pos += len;
1200 totlen += len;
1203 spin_unlock_bh(&serv->sv_lock);
1204 return totlen;
1206 EXPORT_SYMBOL_GPL(svc_xprt_names);
1209 /*----------------------------------------------------------------------------*/
1211 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1213 unsigned int pidx = (unsigned int)*pos;
1214 struct svc_serv *serv = m->private;
1216 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1218 if (!pidx)
1219 return SEQ_START_TOKEN;
1220 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1223 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1225 struct svc_pool *pool = p;
1226 struct svc_serv *serv = m->private;
1228 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1230 if (p == SEQ_START_TOKEN) {
1231 pool = &serv->sv_pools[0];
1232 } else {
1233 unsigned int pidx = (pool - &serv->sv_pools[0]);
1234 if (pidx < serv->sv_nrpools-1)
1235 pool = &serv->sv_pools[pidx+1];
1236 else
1237 pool = NULL;
1239 ++*pos;
1240 return pool;
1243 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1247 static int svc_pool_stats_show(struct seq_file *m, void *p)
1249 struct svc_pool *pool = p;
1251 if (p == SEQ_START_TOKEN) {
1252 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1253 return 0;
1256 seq_printf(m, "%u %lu %lu %lu %lu\n",
1257 pool->sp_id,
1258 pool->sp_stats.packets,
1259 pool->sp_stats.sockets_queued,
1260 pool->sp_stats.threads_woken,
1261 pool->sp_stats.threads_timedout);
1263 return 0;
1266 static const struct seq_operations svc_pool_stats_seq_ops = {
1267 .start = svc_pool_stats_start,
1268 .next = svc_pool_stats_next,
1269 .stop = svc_pool_stats_stop,
1270 .show = svc_pool_stats_show,
1273 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1275 int err;
1277 err = seq_open(file, &svc_pool_stats_seq_ops);
1278 if (!err)
1279 ((struct seq_file *) file->private_data)->private = serv;
1280 return err;
1282 EXPORT_SYMBOL(svc_pool_stats_open);
1284 /*----------------------------------------------------------------------------*/