2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kmemcheck.h>
23 #include <linux/cpu.h>
24 #include <linux/cpuset.h>
25 #include <linux/mempolicy.h>
26 #include <linux/ctype.h>
27 #include <linux/debugobjects.h>
28 #include <linux/kallsyms.h>
29 #include <linux/memory.h>
30 #include <linux/math64.h>
31 #include <linux/fault-inject.h>
32 #include <linux/stacktrace.h>
33 #include <linux/prefetch.h>
35 #include <trace/events/kmem.h>
41 * 1. slab_mutex (Global Mutex)
43 * 3. slab_lock(page) (Only on some arches and for debugging)
47 * The role of the slab_mutex is to protect the list of all the slabs
48 * and to synchronize major metadata changes to slab cache structures.
50 * The slab_lock is only used for debugging and on arches that do not
51 * have the ability to do a cmpxchg_double. It only protects the second
52 * double word in the page struct. Meaning
53 * A. page->freelist -> List of object free in a page
54 * B. page->counters -> Counters of objects
55 * C. page->frozen -> frozen state
57 * If a slab is frozen then it is exempt from list management. It is not
58 * on any list. The processor that froze the slab is the one who can
59 * perform list operations on the page. Other processors may put objects
60 * onto the freelist but the processor that froze the slab is the only
61 * one that can retrieve the objects from the page's freelist.
63 * The list_lock protects the partial and full list on each node and
64 * the partial slab counter. If taken then no new slabs may be added or
65 * removed from the lists nor make the number of partial slabs be modified.
66 * (Note that the total number of slabs is an atomic value that may be
67 * modified without taking the list lock).
69 * The list_lock is a centralized lock and thus we avoid taking it as
70 * much as possible. As long as SLUB does not have to handle partial
71 * slabs, operations can continue without any centralized lock. F.e.
72 * allocating a long series of objects that fill up slabs does not require
74 * Interrupts are disabled during allocation and deallocation in order to
75 * make the slab allocator safe to use in the context of an irq. In addition
76 * interrupts are disabled to ensure that the processor does not change
77 * while handling per_cpu slabs, due to kernel preemption.
79 * SLUB assigns one slab for allocation to each processor.
80 * Allocations only occur from these slabs called cpu slabs.
82 * Slabs with free elements are kept on a partial list and during regular
83 * operations no list for full slabs is used. If an object in a full slab is
84 * freed then the slab will show up again on the partial lists.
85 * We track full slabs for debugging purposes though because otherwise we
86 * cannot scan all objects.
88 * Slabs are freed when they become empty. Teardown and setup is
89 * minimal so we rely on the page allocators per cpu caches for
90 * fast frees and allocs.
92 * Overloading of page flags that are otherwise used for LRU management.
94 * PageActive The slab is frozen and exempt from list processing.
95 * This means that the slab is dedicated to a purpose
96 * such as satisfying allocations for a specific
97 * processor. Objects may be freed in the slab while
98 * it is frozen but slab_free will then skip the usual
99 * list operations. It is up to the processor holding
100 * the slab to integrate the slab into the slab lists
101 * when the slab is no longer needed.
103 * One use of this flag is to mark slabs that are
104 * used for allocations. Then such a slab becomes a cpu
105 * slab. The cpu slab may be equipped with an additional
106 * freelist that allows lockless access to
107 * free objects in addition to the regular freelist
108 * that requires the slab lock.
110 * PageError Slab requires special handling due to debug
111 * options set. This moves slab handling out of
112 * the fast path and disables lockless freelists.
115 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
116 SLAB_TRACE | SLAB_DEBUG_FREE)
118 static inline int kmem_cache_debug(struct kmem_cache
*s
)
120 #ifdef CONFIG_SLUB_DEBUG
121 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
128 * Issues still to be resolved:
130 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
132 * - Variable sizing of the per node arrays
135 /* Enable to test recovery from slab corruption on boot */
136 #undef SLUB_RESILIENCY_TEST
138 /* Enable to log cmpxchg failures */
139 #undef SLUB_DEBUG_CMPXCHG
142 * Mininum number of partial slabs. These will be left on the partial
143 * lists even if they are empty. kmem_cache_shrink may reclaim them.
145 #define MIN_PARTIAL 5
148 * Maximum number of desirable partial slabs.
149 * The existence of more partial slabs makes kmem_cache_shrink
150 * sort the partial list by the number of objects in the.
152 #define MAX_PARTIAL 10
154 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_STORE_USER)
158 * Debugging flags that require metadata to be stored in the slab. These get
159 * disabled when slub_debug=O is used and a cache's min order increases with
162 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
165 * Set of flags that will prevent slab merging
167 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
168 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
171 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
172 SLAB_CACHE_DMA | SLAB_NOTRACK)
175 #define OO_MASK ((1 << OO_SHIFT) - 1)
176 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
178 /* Internal SLUB flags */
179 #define __OBJECT_POISON 0x80000000UL /* Poison object */
180 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
182 static int kmem_size
= sizeof(struct kmem_cache
);
185 static struct notifier_block slab_notifier
;
189 * Tracking user of a slab.
191 #define TRACK_ADDRS_COUNT 16
193 unsigned long addr
; /* Called from address */
194 #ifdef CONFIG_STACKTRACE
195 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
197 int cpu
; /* Was running on cpu */
198 int pid
; /* Pid context */
199 unsigned long when
; /* When did the operation occur */
202 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
205 static int sysfs_slab_add(struct kmem_cache
*);
206 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
207 static void sysfs_slab_remove(struct kmem_cache
*);
210 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
211 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
213 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
217 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
219 #ifdef CONFIG_SLUB_STATS
220 __this_cpu_inc(s
->cpu_slab
->stat
[si
]);
224 /********************************************************************
225 * Core slab cache functions
226 *******************************************************************/
228 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
230 return s
->node
[node
];
233 /* Verify that a pointer has an address that is valid within a slab page */
234 static inline int check_valid_pointer(struct kmem_cache
*s
,
235 struct page
*page
, const void *object
)
242 base
= page_address(page
);
243 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
244 (object
- base
) % s
->size
) {
251 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
253 return *(void **)(object
+ s
->offset
);
256 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
258 prefetch(object
+ s
->offset
);
261 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
265 #ifdef CONFIG_DEBUG_PAGEALLOC
266 probe_kernel_read(&p
, (void **)(object
+ s
->offset
), sizeof(p
));
268 p
= get_freepointer(s
, object
);
273 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
275 *(void **)(object
+ s
->offset
) = fp
;
278 /* Loop over all objects in a slab */
279 #define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 /* Determine object index from a given position */
284 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
286 return (p
- addr
) / s
->size
;
289 static inline size_t slab_ksize(const struct kmem_cache
*s
)
291 #ifdef CONFIG_SLUB_DEBUG
293 * Debugging requires use of the padding between object
294 * and whatever may come after it.
296 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
297 return s
->object_size
;
301 * If we have the need to store the freelist pointer
302 * back there or track user information then we can
303 * only use the space before that information.
305 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
308 * Else we can use all the padding etc for the allocation
313 static inline int order_objects(int order
, unsigned long size
, int reserved
)
315 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
318 static inline struct kmem_cache_order_objects
oo_make(int order
,
319 unsigned long size
, int reserved
)
321 struct kmem_cache_order_objects x
= {
322 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
328 static inline int oo_order(struct kmem_cache_order_objects x
)
330 return x
.x
>> OO_SHIFT
;
333 static inline int oo_objects(struct kmem_cache_order_objects x
)
335 return x
.x
& OO_MASK
;
339 * Per slab locking using the pagelock
341 static __always_inline
void slab_lock(struct page
*page
)
343 bit_spin_lock(PG_locked
, &page
->flags
);
346 static __always_inline
void slab_unlock(struct page
*page
)
348 __bit_spin_unlock(PG_locked
, &page
->flags
);
351 /* Interrupts must be disabled (for the fallback code to work right) */
352 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
353 void *freelist_old
, unsigned long counters_old
,
354 void *freelist_new
, unsigned long counters_new
,
357 VM_BUG_ON(!irqs_disabled());
358 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
359 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
360 if (s
->flags
& __CMPXCHG_DOUBLE
) {
361 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
362 freelist_old
, counters_old
,
363 freelist_new
, counters_new
))
369 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
370 page
->freelist
= freelist_new
;
371 page
->counters
= counters_new
;
379 stat(s
, CMPXCHG_DOUBLE_FAIL
);
381 #ifdef SLUB_DEBUG_CMPXCHG
382 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
388 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
389 void *freelist_old
, unsigned long counters_old
,
390 void *freelist_new
, unsigned long counters_new
,
393 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
394 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
395 if (s
->flags
& __CMPXCHG_DOUBLE
) {
396 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
397 freelist_old
, counters_old
,
398 freelist_new
, counters_new
))
405 local_irq_save(flags
);
407 if (page
->freelist
== freelist_old
&& page
->counters
== counters_old
) {
408 page
->freelist
= freelist_new
;
409 page
->counters
= counters_new
;
411 local_irq_restore(flags
);
415 local_irq_restore(flags
);
419 stat(s
, CMPXCHG_DOUBLE_FAIL
);
421 #ifdef SLUB_DEBUG_CMPXCHG
422 printk(KERN_INFO
"%s %s: cmpxchg double redo ", n
, s
->name
);
428 #ifdef CONFIG_SLUB_DEBUG
430 * Determine a map of object in use on a page.
432 * Node listlock must be held to guarantee that the page does
433 * not vanish from under us.
435 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
438 void *addr
= page_address(page
);
440 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
441 set_bit(slab_index(p
, s
, addr
), map
);
447 #ifdef CONFIG_SLUB_DEBUG_ON
448 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
450 static int slub_debug
;
453 static char *slub_debug_slabs
;
454 static int disable_higher_order_debug
;
459 static void print_section(char *text
, u8
*addr
, unsigned int length
)
461 print_hex_dump(KERN_ERR
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
465 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
466 enum track_item alloc
)
471 p
= object
+ s
->offset
+ sizeof(void *);
473 p
= object
+ s
->inuse
;
478 static void set_track(struct kmem_cache
*s
, void *object
,
479 enum track_item alloc
, unsigned long addr
)
481 struct track
*p
= get_track(s
, object
, alloc
);
484 #ifdef CONFIG_STACKTRACE
485 struct stack_trace trace
;
488 trace
.nr_entries
= 0;
489 trace
.max_entries
= TRACK_ADDRS_COUNT
;
490 trace
.entries
= p
->addrs
;
492 save_stack_trace(&trace
);
494 /* See rant in lockdep.c */
495 if (trace
.nr_entries
!= 0 &&
496 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
499 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
503 p
->cpu
= smp_processor_id();
504 p
->pid
= current
->pid
;
507 memset(p
, 0, sizeof(struct track
));
510 static void init_tracking(struct kmem_cache
*s
, void *object
)
512 if (!(s
->flags
& SLAB_STORE_USER
))
515 set_track(s
, object
, TRACK_FREE
, 0UL);
516 set_track(s
, object
, TRACK_ALLOC
, 0UL);
519 static void print_track(const char *s
, struct track
*t
)
524 printk(KERN_ERR
"INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
525 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
526 #ifdef CONFIG_STACKTRACE
529 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
531 printk(KERN_ERR
"\t%pS\n", (void *)t
->addrs
[i
]);
538 static void print_tracking(struct kmem_cache
*s
, void *object
)
540 if (!(s
->flags
& SLAB_STORE_USER
))
543 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
544 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
547 static void print_page_info(struct page
*page
)
549 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
550 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
554 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
560 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
562 printk(KERN_ERR
"========================================"
563 "=====================================\n");
564 printk(KERN_ERR
"BUG %s (%s): %s\n", s
->name
, print_tainted(), buf
);
565 printk(KERN_ERR
"----------------------------------------"
566 "-------------------------------------\n\n");
568 add_taint(TAINT_BAD_PAGE
);
571 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
577 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
579 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
582 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
584 unsigned int off
; /* Offset of last byte */
585 u8
*addr
= page_address(page
);
587 print_tracking(s
, p
);
589 print_page_info(page
);
591 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
592 p
, p
- addr
, get_freepointer(s
, p
));
595 print_section("Bytes b4 ", p
- 16, 16);
597 print_section("Object ", p
, min_t(unsigned long, s
->object_size
,
599 if (s
->flags
& SLAB_RED_ZONE
)
600 print_section("Redzone ", p
+ s
->object_size
,
601 s
->inuse
- s
->object_size
);
604 off
= s
->offset
+ sizeof(void *);
608 if (s
->flags
& SLAB_STORE_USER
)
609 off
+= 2 * sizeof(struct track
);
612 /* Beginning of the filler is the free pointer */
613 print_section("Padding ", p
+ off
, s
->size
- off
);
618 static void object_err(struct kmem_cache
*s
, struct page
*page
,
619 u8
*object
, char *reason
)
621 slab_bug(s
, "%s", reason
);
622 print_trailer(s
, page
, object
);
625 static void slab_err(struct kmem_cache
*s
, struct page
*page
, const char *fmt
, ...)
631 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
633 slab_bug(s
, "%s", buf
);
634 print_page_info(page
);
638 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
642 if (s
->flags
& __OBJECT_POISON
) {
643 memset(p
, POISON_FREE
, s
->object_size
- 1);
644 p
[s
->object_size
- 1] = POISON_END
;
647 if (s
->flags
& SLAB_RED_ZONE
)
648 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
651 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
652 void *from
, void *to
)
654 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
655 memset(from
, data
, to
- from
);
658 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
659 u8
*object
, char *what
,
660 u8
*start
, unsigned int value
, unsigned int bytes
)
665 fault
= memchr_inv(start
, value
, bytes
);
670 while (end
> fault
&& end
[-1] == value
)
673 slab_bug(s
, "%s overwritten", what
);
674 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
675 fault
, end
- 1, fault
[0], value
);
676 print_trailer(s
, page
, object
);
678 restore_bytes(s
, what
, value
, fault
, end
);
686 * Bytes of the object to be managed.
687 * If the freepointer may overlay the object then the free
688 * pointer is the first word of the object.
690 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
693 * object + s->object_size
694 * Padding to reach word boundary. This is also used for Redzoning.
695 * Padding is extended by another word if Redzoning is enabled and
696 * object_size == inuse.
698 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
699 * 0xcc (RED_ACTIVE) for objects in use.
702 * Meta data starts here.
704 * A. Free pointer (if we cannot overwrite object on free)
705 * B. Tracking data for SLAB_STORE_USER
706 * C. Padding to reach required alignment boundary or at mininum
707 * one word if debugging is on to be able to detect writes
708 * before the word boundary.
710 * Padding is done using 0x5a (POISON_INUSE)
713 * Nothing is used beyond s->size.
715 * If slabcaches are merged then the object_size and inuse boundaries are mostly
716 * ignored. And therefore no slab options that rely on these boundaries
717 * may be used with merged slabcaches.
720 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
722 unsigned long off
= s
->inuse
; /* The end of info */
725 /* Freepointer is placed after the object. */
726 off
+= sizeof(void *);
728 if (s
->flags
& SLAB_STORE_USER
)
729 /* We also have user information there */
730 off
+= 2 * sizeof(struct track
);
735 return check_bytes_and_report(s
, page
, p
, "Object padding",
736 p
+ off
, POISON_INUSE
, s
->size
- off
);
739 /* Check the pad bytes at the end of a slab page */
740 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
748 if (!(s
->flags
& SLAB_POISON
))
751 start
= page_address(page
);
752 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
753 end
= start
+ length
;
754 remainder
= length
% s
->size
;
758 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
761 while (end
> fault
&& end
[-1] == POISON_INUSE
)
764 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
765 print_section("Padding ", end
- remainder
, remainder
);
767 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
771 static int check_object(struct kmem_cache
*s
, struct page
*page
,
772 void *object
, u8 val
)
775 u8
*endobject
= object
+ s
->object_size
;
777 if (s
->flags
& SLAB_RED_ZONE
) {
778 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
779 endobject
, val
, s
->inuse
- s
->object_size
))
782 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
783 check_bytes_and_report(s
, page
, p
, "Alignment padding",
784 endobject
, POISON_INUSE
, s
->inuse
- s
->object_size
);
788 if (s
->flags
& SLAB_POISON
) {
789 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
790 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
791 POISON_FREE
, s
->object_size
- 1) ||
792 !check_bytes_and_report(s
, page
, p
, "Poison",
793 p
+ s
->object_size
- 1, POISON_END
, 1)))
796 * check_pad_bytes cleans up on its own.
798 check_pad_bytes(s
, page
, p
);
801 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
803 * Object and freepointer overlap. Cannot check
804 * freepointer while object is allocated.
808 /* Check free pointer validity */
809 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
810 object_err(s
, page
, p
, "Freepointer corrupt");
812 * No choice but to zap it and thus lose the remainder
813 * of the free objects in this slab. May cause
814 * another error because the object count is now wrong.
816 set_freepointer(s
, p
, NULL
);
822 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
826 VM_BUG_ON(!irqs_disabled());
828 if (!PageSlab(page
)) {
829 slab_err(s
, page
, "Not a valid slab page");
833 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
834 if (page
->objects
> maxobj
) {
835 slab_err(s
, page
, "objects %u > max %u",
836 s
->name
, page
->objects
, maxobj
);
839 if (page
->inuse
> page
->objects
) {
840 slab_err(s
, page
, "inuse %u > max %u",
841 s
->name
, page
->inuse
, page
->objects
);
844 /* Slab_pad_check fixes things up after itself */
845 slab_pad_check(s
, page
);
850 * Determine if a certain object on a page is on the freelist. Must hold the
851 * slab lock to guarantee that the chains are in a consistent state.
853 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
858 unsigned long max_objects
;
861 while (fp
&& nr
<= page
->objects
) {
864 if (!check_valid_pointer(s
, page
, fp
)) {
866 object_err(s
, page
, object
,
867 "Freechain corrupt");
868 set_freepointer(s
, object
, NULL
);
871 slab_err(s
, page
, "Freepointer corrupt");
872 page
->freelist
= NULL
;
873 page
->inuse
= page
->objects
;
874 slab_fix(s
, "Freelist cleared");
880 fp
= get_freepointer(s
, object
);
884 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
885 if (max_objects
> MAX_OBJS_PER_PAGE
)
886 max_objects
= MAX_OBJS_PER_PAGE
;
888 if (page
->objects
!= max_objects
) {
889 slab_err(s
, page
, "Wrong number of objects. Found %d but "
890 "should be %d", page
->objects
, max_objects
);
891 page
->objects
= max_objects
;
892 slab_fix(s
, "Number of objects adjusted.");
894 if (page
->inuse
!= page
->objects
- nr
) {
895 slab_err(s
, page
, "Wrong object count. Counter is %d but "
896 "counted were %d", page
->inuse
, page
->objects
- nr
);
897 page
->inuse
= page
->objects
- nr
;
898 slab_fix(s
, "Object count adjusted.");
900 return search
== NULL
;
903 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
906 if (s
->flags
& SLAB_TRACE
) {
907 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
909 alloc
? "alloc" : "free",
914 print_section("Object ", (void *)object
, s
->object_size
);
921 * Hooks for other subsystems that check memory allocations. In a typical
922 * production configuration these hooks all should produce no code at all.
924 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
926 flags
&= gfp_allowed_mask
;
927 lockdep_trace_alloc(flags
);
928 might_sleep_if(flags
& __GFP_WAIT
);
930 return should_failslab(s
->object_size
, flags
, s
->flags
);
933 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
, void *object
)
935 flags
&= gfp_allowed_mask
;
936 kmemcheck_slab_alloc(s
, flags
, object
, slab_ksize(s
));
937 kmemleak_alloc_recursive(object
, s
->object_size
, 1, s
->flags
, flags
);
940 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
)
942 kmemleak_free_recursive(x
, s
->flags
);
945 * Trouble is that we may no longer disable interupts in the fast path
946 * So in order to make the debug calls that expect irqs to be
947 * disabled we need to disable interrupts temporarily.
949 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
953 local_irq_save(flags
);
954 kmemcheck_slab_free(s
, x
, s
->object_size
);
955 debug_check_no_locks_freed(x
, s
->object_size
);
956 local_irq_restore(flags
);
959 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
960 debug_check_no_obj_freed(x
, s
->object_size
);
964 * Tracking of fully allocated slabs for debugging purposes.
966 * list_lock must be held.
968 static void add_full(struct kmem_cache
*s
,
969 struct kmem_cache_node
*n
, struct page
*page
)
971 if (!(s
->flags
& SLAB_STORE_USER
))
974 list_add(&page
->lru
, &n
->full
);
978 * list_lock must be held.
980 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
982 if (!(s
->flags
& SLAB_STORE_USER
))
985 list_del(&page
->lru
);
988 /* Tracking of the number of slabs for debugging purposes */
989 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
991 struct kmem_cache_node
*n
= get_node(s
, node
);
993 return atomic_long_read(&n
->nr_slabs
);
996 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
998 return atomic_long_read(&n
->nr_slabs
);
1001 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1003 struct kmem_cache_node
*n
= get_node(s
, node
);
1006 * May be called early in order to allocate a slab for the
1007 * kmem_cache_node structure. Solve the chicken-egg
1008 * dilemma by deferring the increment of the count during
1009 * bootstrap (see early_kmem_cache_node_alloc).
1012 atomic_long_inc(&n
->nr_slabs
);
1013 atomic_long_add(objects
, &n
->total_objects
);
1016 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1018 struct kmem_cache_node
*n
= get_node(s
, node
);
1020 atomic_long_dec(&n
->nr_slabs
);
1021 atomic_long_sub(objects
, &n
->total_objects
);
1024 /* Object debug checks for alloc/free paths */
1025 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1028 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1031 init_object(s
, object
, SLUB_RED_INACTIVE
);
1032 init_tracking(s
, object
);
1035 static noinline
int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
1036 void *object
, unsigned long addr
)
1038 if (!check_slab(s
, page
))
1041 if (!check_valid_pointer(s
, page
, object
)) {
1042 object_err(s
, page
, object
, "Freelist Pointer check fails");
1046 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1049 /* Success perform special debug activities for allocs */
1050 if (s
->flags
& SLAB_STORE_USER
)
1051 set_track(s
, object
, TRACK_ALLOC
, addr
);
1052 trace(s
, page
, object
, 1);
1053 init_object(s
, object
, SLUB_RED_ACTIVE
);
1057 if (PageSlab(page
)) {
1059 * If this is a slab page then lets do the best we can
1060 * to avoid issues in the future. Marking all objects
1061 * as used avoids touching the remaining objects.
1063 slab_fix(s
, "Marking all objects used");
1064 page
->inuse
= page
->objects
;
1065 page
->freelist
= NULL
;
1070 static noinline
struct kmem_cache_node
*free_debug_processing(
1071 struct kmem_cache
*s
, struct page
*page
, void *object
,
1072 unsigned long addr
, unsigned long *flags
)
1074 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1076 spin_lock_irqsave(&n
->list_lock
, *flags
);
1079 if (!check_slab(s
, page
))
1082 if (!check_valid_pointer(s
, page
, object
)) {
1083 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1087 if (on_freelist(s
, page
, object
)) {
1088 object_err(s
, page
, object
, "Object already free");
1092 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1095 if (unlikely(s
!= page
->slab
)) {
1096 if (!PageSlab(page
)) {
1097 slab_err(s
, page
, "Attempt to free object(0x%p) "
1098 "outside of slab", object
);
1099 } else if (!page
->slab
) {
1101 "SLUB <none>: no slab for object 0x%p.\n",
1105 object_err(s
, page
, object
,
1106 "page slab pointer corrupt.");
1110 if (s
->flags
& SLAB_STORE_USER
)
1111 set_track(s
, object
, TRACK_FREE
, addr
);
1112 trace(s
, page
, object
, 0);
1113 init_object(s
, object
, SLUB_RED_INACTIVE
);
1117 * Keep node_lock to preserve integrity
1118 * until the object is actually freed
1124 spin_unlock_irqrestore(&n
->list_lock
, *flags
);
1125 slab_fix(s
, "Object at 0x%p not freed", object
);
1129 static int __init
setup_slub_debug(char *str
)
1131 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1132 if (*str
++ != '=' || !*str
)
1134 * No options specified. Switch on full debugging.
1140 * No options but restriction on slabs. This means full
1141 * debugging for slabs matching a pattern.
1145 if (tolower(*str
) == 'o') {
1147 * Avoid enabling debugging on caches if its minimum order
1148 * would increase as a result.
1150 disable_higher_order_debug
= 1;
1157 * Switch off all debugging measures.
1162 * Determine which debug features should be switched on
1164 for (; *str
&& *str
!= ','; str
++) {
1165 switch (tolower(*str
)) {
1167 slub_debug
|= SLAB_DEBUG_FREE
;
1170 slub_debug
|= SLAB_RED_ZONE
;
1173 slub_debug
|= SLAB_POISON
;
1176 slub_debug
|= SLAB_STORE_USER
;
1179 slub_debug
|= SLAB_TRACE
;
1182 slub_debug
|= SLAB_FAILSLAB
;
1185 printk(KERN_ERR
"slub_debug option '%c' "
1186 "unknown. skipped\n", *str
);
1192 slub_debug_slabs
= str
+ 1;
1197 __setup("slub_debug", setup_slub_debug
);
1199 static unsigned long kmem_cache_flags(unsigned long object_size
,
1200 unsigned long flags
, const char *name
,
1201 void (*ctor
)(void *))
1204 * Enable debugging if selected on the kernel commandline.
1206 if (slub_debug
&& (!slub_debug_slabs
||
1207 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
))))
1208 flags
|= slub_debug
;
1213 static inline void setup_object_debug(struct kmem_cache
*s
,
1214 struct page
*page
, void *object
) {}
1216 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1217 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1219 static inline struct kmem_cache_node
*free_debug_processing(
1220 struct kmem_cache
*s
, struct page
*page
, void *object
,
1221 unsigned long addr
, unsigned long *flags
) { return NULL
; }
1223 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1225 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1226 void *object
, u8 val
) { return 1; }
1227 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1228 struct page
*page
) {}
1229 static inline void remove_full(struct kmem_cache
*s
, struct page
*page
) {}
1230 static inline unsigned long kmem_cache_flags(unsigned long object_size
,
1231 unsigned long flags
, const char *name
,
1232 void (*ctor
)(void *))
1236 #define slub_debug 0
1238 #define disable_higher_order_debug 0
1240 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1242 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1244 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1246 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1249 static inline int slab_pre_alloc_hook(struct kmem_cache
*s
, gfp_t flags
)
1252 static inline void slab_post_alloc_hook(struct kmem_cache
*s
, gfp_t flags
,
1255 static inline void slab_free_hook(struct kmem_cache
*s
, void *x
) {}
1257 #endif /* CONFIG_SLUB_DEBUG */
1260 * Slab allocation and freeing
1262 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1263 struct kmem_cache_order_objects oo
)
1265 int order
= oo_order(oo
);
1267 flags
|= __GFP_NOTRACK
;
1269 if (node
== NUMA_NO_NODE
)
1270 return alloc_pages(flags
, order
);
1272 return alloc_pages_exact_node(node
, flags
, order
);
1275 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1278 struct kmem_cache_order_objects oo
= s
->oo
;
1281 flags
&= gfp_allowed_mask
;
1283 if (flags
& __GFP_WAIT
)
1286 flags
|= s
->allocflags
;
1289 * Let the initial higher-order allocation fail under memory pressure
1290 * so we fall-back to the minimum order allocation.
1292 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1294 page
= alloc_slab_page(alloc_gfp
, node
, oo
);
1295 if (unlikely(!page
)) {
1298 * Allocation may have failed due to fragmentation.
1299 * Try a lower order alloc if possible
1301 page
= alloc_slab_page(flags
, node
, oo
);
1304 stat(s
, ORDER_FALLBACK
);
1307 if (kmemcheck_enabled
&& page
1308 && !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1309 int pages
= 1 << oo_order(oo
);
1311 kmemcheck_alloc_shadow(page
, oo_order(oo
), flags
, node
);
1314 * Objects from caches that have a constructor don't get
1315 * cleared when they're allocated, so we need to do it here.
1318 kmemcheck_mark_uninitialized_pages(page
, pages
);
1320 kmemcheck_mark_unallocated_pages(page
, pages
);
1323 if (flags
& __GFP_WAIT
)
1324 local_irq_disable();
1328 page
->objects
= oo_objects(oo
);
1329 mod_zone_page_state(page_zone(page
),
1330 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1331 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1337 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1340 setup_object_debug(s
, page
, object
);
1341 if (unlikely(s
->ctor
))
1345 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1352 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1354 page
= allocate_slab(s
,
1355 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1359 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1361 __SetPageSlab(page
);
1362 if (page
->pfmemalloc
)
1363 SetPageSlabPfmemalloc(page
);
1365 start
= page_address(page
);
1367 if (unlikely(s
->flags
& SLAB_POISON
))
1368 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1371 for_each_object(p
, s
, start
, page
->objects
) {
1372 setup_object(s
, page
, last
);
1373 set_freepointer(s
, last
, p
);
1376 setup_object(s
, page
, last
);
1377 set_freepointer(s
, last
, NULL
);
1379 page
->freelist
= start
;
1380 page
->inuse
= page
->objects
;
1386 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1388 int order
= compound_order(page
);
1389 int pages
= 1 << order
;
1391 if (kmem_cache_debug(s
)) {
1394 slab_pad_check(s
, page
);
1395 for_each_object(p
, s
, page_address(page
),
1397 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1400 kmemcheck_free_shadow(page
, compound_order(page
));
1402 mod_zone_page_state(page_zone(page
),
1403 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1404 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1407 __ClearPageSlabPfmemalloc(page
);
1408 __ClearPageSlab(page
);
1409 reset_page_mapcount(page
);
1410 if (current
->reclaim_state
)
1411 current
->reclaim_state
->reclaimed_slab
+= pages
;
1412 __free_pages(page
, order
);
1415 #define need_reserve_slab_rcu \
1416 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1418 static void rcu_free_slab(struct rcu_head
*h
)
1422 if (need_reserve_slab_rcu
)
1423 page
= virt_to_head_page(h
);
1425 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1427 __free_slab(page
->slab
, page
);
1430 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1432 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1433 struct rcu_head
*head
;
1435 if (need_reserve_slab_rcu
) {
1436 int order
= compound_order(page
);
1437 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1439 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1440 head
= page_address(page
) + offset
;
1443 * RCU free overloads the RCU head over the LRU
1445 head
= (void *)&page
->lru
;
1448 call_rcu(head
, rcu_free_slab
);
1450 __free_slab(s
, page
);
1453 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1455 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1460 * Management of partially allocated slabs.
1462 * list_lock must be held.
1464 static inline void add_partial(struct kmem_cache_node
*n
,
1465 struct page
*page
, int tail
)
1468 if (tail
== DEACTIVATE_TO_TAIL
)
1469 list_add_tail(&page
->lru
, &n
->partial
);
1471 list_add(&page
->lru
, &n
->partial
);
1475 * list_lock must be held.
1477 static inline void remove_partial(struct kmem_cache_node
*n
,
1480 list_del(&page
->lru
);
1485 * Remove slab from the partial list, freeze it and
1486 * return the pointer to the freelist.
1488 * Returns a list of objects or NULL if it fails.
1490 * Must hold list_lock since we modify the partial list.
1492 static inline void *acquire_slab(struct kmem_cache
*s
,
1493 struct kmem_cache_node
*n
, struct page
*page
,
1497 unsigned long counters
;
1501 * Zap the freelist and set the frozen bit.
1502 * The old freelist is the list of objects for the
1503 * per cpu allocation list.
1505 freelist
= page
->freelist
;
1506 counters
= page
->counters
;
1507 new.counters
= counters
;
1509 new.inuse
= page
->objects
;
1510 new.freelist
= NULL
;
1512 new.freelist
= freelist
;
1515 VM_BUG_ON(new.frozen
);
1518 if (!__cmpxchg_double_slab(s
, page
,
1520 new.freelist
, new.counters
,
1524 remove_partial(n
, page
);
1529 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1530 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1533 * Try to allocate a partial slab from a specific node.
1535 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1536 struct kmem_cache_cpu
*c
, gfp_t flags
)
1538 struct page
*page
, *page2
;
1539 void *object
= NULL
;
1542 * Racy check. If we mistakenly see no partial slabs then we
1543 * just allocate an empty slab. If we mistakenly try to get a
1544 * partial slab and there is none available then get_partials()
1547 if (!n
|| !n
->nr_partial
)
1550 spin_lock(&n
->list_lock
);
1551 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1555 if (!pfmemalloc_match(page
, flags
))
1558 t
= acquire_slab(s
, n
, page
, object
== NULL
);
1564 stat(s
, ALLOC_FROM_PARTIAL
);
1566 available
= page
->objects
- page
->inuse
;
1568 available
= put_cpu_partial(s
, page
, 0);
1569 stat(s
, CPU_PARTIAL_NODE
);
1571 if (kmem_cache_debug(s
) || available
> s
->cpu_partial
/ 2)
1575 spin_unlock(&n
->list_lock
);
1580 * Get a page from somewhere. Search in increasing NUMA distances.
1582 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1583 struct kmem_cache_cpu
*c
)
1586 struct zonelist
*zonelist
;
1589 enum zone_type high_zoneidx
= gfp_zone(flags
);
1591 unsigned int cpuset_mems_cookie
;
1594 * The defrag ratio allows a configuration of the tradeoffs between
1595 * inter node defragmentation and node local allocations. A lower
1596 * defrag_ratio increases the tendency to do local allocations
1597 * instead of attempting to obtain partial slabs from other nodes.
1599 * If the defrag_ratio is set to 0 then kmalloc() always
1600 * returns node local objects. If the ratio is higher then kmalloc()
1601 * may return off node objects because partial slabs are obtained
1602 * from other nodes and filled up.
1604 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1605 * defrag_ratio = 1000) then every (well almost) allocation will
1606 * first attempt to defrag slab caches on other nodes. This means
1607 * scanning over all nodes to look for partial slabs which may be
1608 * expensive if we do it every time we are trying to find a slab
1609 * with available objects.
1611 if (!s
->remote_node_defrag_ratio
||
1612 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1616 cpuset_mems_cookie
= get_mems_allowed();
1617 zonelist
= node_zonelist(slab_node(), flags
);
1618 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1619 struct kmem_cache_node
*n
;
1621 n
= get_node(s
, zone_to_nid(zone
));
1623 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1624 n
->nr_partial
> s
->min_partial
) {
1625 object
= get_partial_node(s
, n
, c
, flags
);
1628 * Return the object even if
1629 * put_mems_allowed indicated that
1630 * the cpuset mems_allowed was
1631 * updated in parallel. It's a
1632 * harmless race between the alloc
1633 * and the cpuset update.
1635 put_mems_allowed(cpuset_mems_cookie
);
1640 } while (!put_mems_allowed(cpuset_mems_cookie
));
1646 * Get a partial page, lock it and return it.
1648 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1649 struct kmem_cache_cpu
*c
)
1652 int searchnode
= (node
== NUMA_NO_NODE
) ? numa_node_id() : node
;
1654 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1655 if (object
|| node
!= NUMA_NO_NODE
)
1658 return get_any_partial(s
, flags
, c
);
1661 #ifdef CONFIG_PREEMPT
1663 * Calculate the next globally unique transaction for disambiguiation
1664 * during cmpxchg. The transactions start with the cpu number and are then
1665 * incremented by CONFIG_NR_CPUS.
1667 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1670 * No preemption supported therefore also no need to check for
1676 static inline unsigned long next_tid(unsigned long tid
)
1678 return tid
+ TID_STEP
;
1681 static inline unsigned int tid_to_cpu(unsigned long tid
)
1683 return tid
% TID_STEP
;
1686 static inline unsigned long tid_to_event(unsigned long tid
)
1688 return tid
/ TID_STEP
;
1691 static inline unsigned int init_tid(int cpu
)
1696 static inline void note_cmpxchg_failure(const char *n
,
1697 const struct kmem_cache
*s
, unsigned long tid
)
1699 #ifdef SLUB_DEBUG_CMPXCHG
1700 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1702 printk(KERN_INFO
"%s %s: cmpxchg redo ", n
, s
->name
);
1704 #ifdef CONFIG_PREEMPT
1705 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1706 printk("due to cpu change %d -> %d\n",
1707 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1710 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1711 printk("due to cpu running other code. Event %ld->%ld\n",
1712 tid_to_event(tid
), tid_to_event(actual_tid
));
1714 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1715 actual_tid
, tid
, next_tid(tid
));
1717 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1720 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
1724 for_each_possible_cpu(cpu
)
1725 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
1729 * Remove the cpu slab
1731 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
, void *freelist
)
1733 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
1734 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1736 enum slab_modes l
= M_NONE
, m
= M_NONE
;
1738 int tail
= DEACTIVATE_TO_HEAD
;
1742 if (page
->freelist
) {
1743 stat(s
, DEACTIVATE_REMOTE_FREES
);
1744 tail
= DEACTIVATE_TO_TAIL
;
1748 * Stage one: Free all available per cpu objects back
1749 * to the page freelist while it is still frozen. Leave the
1752 * There is no need to take the list->lock because the page
1755 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
1757 unsigned long counters
;
1760 prior
= page
->freelist
;
1761 counters
= page
->counters
;
1762 set_freepointer(s
, freelist
, prior
);
1763 new.counters
= counters
;
1765 VM_BUG_ON(!new.frozen
);
1767 } while (!__cmpxchg_double_slab(s
, page
,
1769 freelist
, new.counters
,
1770 "drain percpu freelist"));
1772 freelist
= nextfree
;
1776 * Stage two: Ensure that the page is unfrozen while the
1777 * list presence reflects the actual number of objects
1780 * We setup the list membership and then perform a cmpxchg
1781 * with the count. If there is a mismatch then the page
1782 * is not unfrozen but the page is on the wrong list.
1784 * Then we restart the process which may have to remove
1785 * the page from the list that we just put it on again
1786 * because the number of objects in the slab may have
1791 old
.freelist
= page
->freelist
;
1792 old
.counters
= page
->counters
;
1793 VM_BUG_ON(!old
.frozen
);
1795 /* Determine target state of the slab */
1796 new.counters
= old
.counters
;
1799 set_freepointer(s
, freelist
, old
.freelist
);
1800 new.freelist
= freelist
;
1802 new.freelist
= old
.freelist
;
1806 if (!new.inuse
&& n
->nr_partial
> s
->min_partial
)
1808 else if (new.freelist
) {
1813 * Taking the spinlock removes the possiblity
1814 * that acquire_slab() will see a slab page that
1817 spin_lock(&n
->list_lock
);
1821 if (kmem_cache_debug(s
) && !lock
) {
1824 * This also ensures that the scanning of full
1825 * slabs from diagnostic functions will not see
1828 spin_lock(&n
->list_lock
);
1836 remove_partial(n
, page
);
1838 else if (l
== M_FULL
)
1840 remove_full(s
, page
);
1842 if (m
== M_PARTIAL
) {
1844 add_partial(n
, page
, tail
);
1847 } else if (m
== M_FULL
) {
1849 stat(s
, DEACTIVATE_FULL
);
1850 add_full(s
, n
, page
);
1856 if (!__cmpxchg_double_slab(s
, page
,
1857 old
.freelist
, old
.counters
,
1858 new.freelist
, new.counters
,
1863 spin_unlock(&n
->list_lock
);
1866 stat(s
, DEACTIVATE_EMPTY
);
1867 discard_slab(s
, page
);
1873 * Unfreeze all the cpu partial slabs.
1875 * This function must be called with interrupt disabled.
1877 static void unfreeze_partials(struct kmem_cache
*s
)
1879 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
1880 struct kmem_cache_cpu
*c
= this_cpu_ptr(s
->cpu_slab
);
1881 struct page
*page
, *discard_page
= NULL
;
1883 while ((page
= c
->partial
)) {
1887 c
->partial
= page
->next
;
1889 n2
= get_node(s
, page_to_nid(page
));
1892 spin_unlock(&n
->list_lock
);
1895 spin_lock(&n
->list_lock
);
1900 old
.freelist
= page
->freelist
;
1901 old
.counters
= page
->counters
;
1902 VM_BUG_ON(!old
.frozen
);
1904 new.counters
= old
.counters
;
1905 new.freelist
= old
.freelist
;
1909 } while (!__cmpxchg_double_slab(s
, page
,
1910 old
.freelist
, old
.counters
,
1911 new.freelist
, new.counters
,
1912 "unfreezing slab"));
1914 if (unlikely(!new.inuse
&& n
->nr_partial
> s
->min_partial
)) {
1915 page
->next
= discard_page
;
1916 discard_page
= page
;
1918 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
1919 stat(s
, FREE_ADD_PARTIAL
);
1924 spin_unlock(&n
->list_lock
);
1926 while (discard_page
) {
1927 page
= discard_page
;
1928 discard_page
= discard_page
->next
;
1930 stat(s
, DEACTIVATE_EMPTY
);
1931 discard_slab(s
, page
);
1937 * Put a page that was just frozen (in __slab_free) into a partial page
1938 * slot if available. This is done without interrupts disabled and without
1939 * preemption disabled. The cmpxchg is racy and may put the partial page
1940 * onto a random cpus partial slot.
1942 * If we did not find a slot then simply move all the partials to the
1943 * per node partial list.
1945 static int put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
1947 struct page
*oldpage
;
1954 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
1957 pobjects
= oldpage
->pobjects
;
1958 pages
= oldpage
->pages
;
1959 if (drain
&& pobjects
> s
->cpu_partial
) {
1960 unsigned long flags
;
1962 * partial array is full. Move the existing
1963 * set to the per node partial list.
1965 local_irq_save(flags
);
1966 unfreeze_partials(s
);
1967 local_irq_restore(flags
);
1971 stat(s
, CPU_PARTIAL_DRAIN
);
1976 pobjects
+= page
->objects
- page
->inuse
;
1978 page
->pages
= pages
;
1979 page
->pobjects
= pobjects
;
1980 page
->next
= oldpage
;
1982 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
) != oldpage
);
1986 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1988 stat(s
, CPUSLAB_FLUSH
);
1989 deactivate_slab(s
, c
->page
, c
->freelist
);
1991 c
->tid
= next_tid(c
->tid
);
1999 * Called from IPI handler with interrupts disabled.
2001 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2003 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2009 unfreeze_partials(s
);
2013 static void flush_cpu_slab(void *d
)
2015 struct kmem_cache
*s
= d
;
2017 __flush_cpu_slab(s
, smp_processor_id());
2020 static bool has_cpu_slab(int cpu
, void *info
)
2022 struct kmem_cache
*s
= info
;
2023 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2025 return c
->page
|| c
->partial
;
2028 static void flush_all(struct kmem_cache
*s
)
2030 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2034 * Check if the objects in a per cpu structure fit numa
2035 * locality expectations.
2037 static inline int node_match(struct page
*page
, int node
)
2040 if (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
)
2046 static int count_free(struct page
*page
)
2048 return page
->objects
- page
->inuse
;
2051 static unsigned long count_partial(struct kmem_cache_node
*n
,
2052 int (*get_count
)(struct page
*))
2054 unsigned long flags
;
2055 unsigned long x
= 0;
2058 spin_lock_irqsave(&n
->list_lock
, flags
);
2059 list_for_each_entry(page
, &n
->partial
, lru
)
2060 x
+= get_count(page
);
2061 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2065 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2067 #ifdef CONFIG_SLUB_DEBUG
2068 return atomic_long_read(&n
->total_objects
);
2074 static noinline
void
2075 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2080 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
2082 printk(KERN_WARNING
" cache: %s, object size: %d, buffer size: %d, "
2083 "default order: %d, min order: %d\n", s
->name
, s
->object_size
,
2084 s
->size
, oo_order(s
->oo
), oo_order(s
->min
));
2086 if (oo_order(s
->min
) > get_order(s
->object_size
))
2087 printk(KERN_WARNING
" %s debugging increased min order, use "
2088 "slub_debug=O to disable.\n", s
->name
);
2090 for_each_online_node(node
) {
2091 struct kmem_cache_node
*n
= get_node(s
, node
);
2092 unsigned long nr_slabs
;
2093 unsigned long nr_objs
;
2094 unsigned long nr_free
;
2099 nr_free
= count_partial(n
, count_free
);
2100 nr_slabs
= node_nr_slabs(n
);
2101 nr_objs
= node_nr_objs(n
);
2104 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
2105 node
, nr_slabs
, nr_objs
, nr_free
);
2109 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2110 int node
, struct kmem_cache_cpu
**pc
)
2113 struct kmem_cache_cpu
*c
= *pc
;
2116 freelist
= get_partial(s
, flags
, node
, c
);
2121 page
= new_slab(s
, flags
, node
);
2123 c
= __this_cpu_ptr(s
->cpu_slab
);
2128 * No other reference to the page yet so we can
2129 * muck around with it freely without cmpxchg
2131 freelist
= page
->freelist
;
2132 page
->freelist
= NULL
;
2134 stat(s
, ALLOC_SLAB
);
2143 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2145 if (unlikely(PageSlabPfmemalloc(page
)))
2146 return gfp_pfmemalloc_allowed(gfpflags
);
2152 * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
2153 * or deactivate the page.
2155 * The page is still frozen if the return value is not NULL.
2157 * If this function returns NULL then the page has been unfrozen.
2159 * This function must be called with interrupt disabled.
2161 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2164 unsigned long counters
;
2168 freelist
= page
->freelist
;
2169 counters
= page
->counters
;
2171 new.counters
= counters
;
2172 VM_BUG_ON(!new.frozen
);
2174 new.inuse
= page
->objects
;
2175 new.frozen
= freelist
!= NULL
;
2177 } while (!__cmpxchg_double_slab(s
, page
,
2186 * Slow path. The lockless freelist is empty or we need to perform
2189 * Processing is still very fast if new objects have been freed to the
2190 * regular freelist. In that case we simply take over the regular freelist
2191 * as the lockless freelist and zap the regular freelist.
2193 * If that is not working then we fall back to the partial lists. We take the
2194 * first element of the freelist as the object to allocate now and move the
2195 * rest of the freelist to the lockless freelist.
2197 * And if we were unable to get a new slab from the partial slab lists then
2198 * we need to allocate a new slab. This is the slowest path since it involves
2199 * a call to the page allocator and the setup of a new slab.
2201 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2202 unsigned long addr
, struct kmem_cache_cpu
*c
)
2206 unsigned long flags
;
2208 local_irq_save(flags
);
2209 #ifdef CONFIG_PREEMPT
2211 * We may have been preempted and rescheduled on a different
2212 * cpu before disabling interrupts. Need to reload cpu area
2215 c
= this_cpu_ptr(s
->cpu_slab
);
2223 if (unlikely(!node_match(page
, node
))) {
2224 stat(s
, ALLOC_NODE_MISMATCH
);
2225 deactivate_slab(s
, page
, c
->freelist
);
2232 * By rights, we should be searching for a slab page that was
2233 * PFMEMALLOC but right now, we are losing the pfmemalloc
2234 * information when the page leaves the per-cpu allocator
2236 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2237 deactivate_slab(s
, page
, c
->freelist
);
2243 /* must check again c->freelist in case of cpu migration or IRQ */
2244 freelist
= c
->freelist
;
2248 stat(s
, ALLOC_SLOWPATH
);
2250 freelist
= get_freelist(s
, page
);
2254 stat(s
, DEACTIVATE_BYPASS
);
2258 stat(s
, ALLOC_REFILL
);
2262 * freelist is pointing to the list of objects to be used.
2263 * page is pointing to the page from which the objects are obtained.
2264 * That page must be frozen for per cpu allocations to work.
2266 VM_BUG_ON(!c
->page
->frozen
);
2267 c
->freelist
= get_freepointer(s
, freelist
);
2268 c
->tid
= next_tid(c
->tid
);
2269 local_irq_restore(flags
);
2275 page
= c
->page
= c
->partial
;
2276 c
->partial
= page
->next
;
2277 stat(s
, CPU_PARTIAL_ALLOC
);
2282 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2284 if (unlikely(!freelist
)) {
2285 if (!(gfpflags
& __GFP_NOWARN
) && printk_ratelimit())
2286 slab_out_of_memory(s
, gfpflags
, node
);
2288 local_irq_restore(flags
);
2293 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2296 /* Only entered in the debug case */
2297 if (kmem_cache_debug(s
) && !alloc_debug_processing(s
, page
, freelist
, addr
))
2298 goto new_slab
; /* Slab failed checks. Next slab needed */
2300 deactivate_slab(s
, page
, get_freepointer(s
, freelist
));
2303 local_irq_restore(flags
);
2308 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2309 * have the fastpath folded into their functions. So no function call
2310 * overhead for requests that can be satisfied on the fastpath.
2312 * The fastpath works by first checking if the lockless freelist can be used.
2313 * If not then __slab_alloc is called for slow processing.
2315 * Otherwise we can simply pick the next object from the lockless free list.
2317 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2318 gfp_t gfpflags
, int node
, unsigned long addr
)
2321 struct kmem_cache_cpu
*c
;
2325 if (slab_pre_alloc_hook(s
, gfpflags
))
2331 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2332 * enabled. We may switch back and forth between cpus while
2333 * reading from one cpu area. That does not matter as long
2334 * as we end up on the original cpu again when doing the cmpxchg.
2336 c
= __this_cpu_ptr(s
->cpu_slab
);
2339 * The transaction ids are globally unique per cpu and per operation on
2340 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2341 * occurs on the right processor and that there was no operation on the
2342 * linked list in between.
2347 object
= c
->freelist
;
2349 if (unlikely(!object
|| !node_match(page
, node
)))
2350 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2353 void *next_object
= get_freepointer_safe(s
, object
);
2356 * The cmpxchg will only match if there was no additional
2357 * operation and if we are on the right processor.
2359 * The cmpxchg does the following atomically (without lock semantics!)
2360 * 1. Relocate first pointer to the current per cpu area.
2361 * 2. Verify that tid and freelist have not been changed
2362 * 3. If they were not changed replace tid and freelist
2364 * Since this is without lock semantics the protection is only against
2365 * code executing on this cpu *not* from access by other cpus.
2367 if (unlikely(!this_cpu_cmpxchg_double(
2368 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2370 next_object
, next_tid(tid
)))) {
2372 note_cmpxchg_failure("slab_alloc", s
, tid
);
2375 prefetch_freepointer(s
, next_object
);
2376 stat(s
, ALLOC_FASTPATH
);
2379 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2380 memset(object
, 0, s
->object_size
);
2382 slab_post_alloc_hook(s
, gfpflags
, object
);
2387 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2388 gfp_t gfpflags
, unsigned long addr
)
2390 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2393 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2395 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2397 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
, s
->size
, gfpflags
);
2401 EXPORT_SYMBOL(kmem_cache_alloc
);
2403 #ifdef CONFIG_TRACING
2404 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2406 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2407 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2410 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2412 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
2414 void *ret
= kmalloc_order(size
, flags
, order
);
2415 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
2418 EXPORT_SYMBOL(kmalloc_order_trace
);
2422 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2424 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2426 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2427 s
->object_size
, s
->size
, gfpflags
, node
);
2431 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2433 #ifdef CONFIG_TRACING
2434 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2436 int node
, size_t size
)
2438 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2440 trace_kmalloc_node(_RET_IP_
, ret
,
2441 size
, s
->size
, gfpflags
, node
);
2444 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2449 * Slow patch handling. This may still be called frequently since objects
2450 * have a longer lifetime than the cpu slabs in most processing loads.
2452 * So we still attempt to reduce cache line usage. Just take the slab
2453 * lock and free the item. If there is no additional partial page
2454 * handling required then we can return immediately.
2456 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2457 void *x
, unsigned long addr
)
2460 void **object
= (void *)x
;
2464 unsigned long counters
;
2465 struct kmem_cache_node
*n
= NULL
;
2466 unsigned long uninitialized_var(flags
);
2468 stat(s
, FREE_SLOWPATH
);
2470 if (kmem_cache_debug(s
) &&
2471 !(n
= free_debug_processing(s
, page
, x
, addr
, &flags
)))
2475 prior
= page
->freelist
;
2476 counters
= page
->counters
;
2477 set_freepointer(s
, object
, prior
);
2478 new.counters
= counters
;
2479 was_frozen
= new.frozen
;
2481 if ((!new.inuse
|| !prior
) && !was_frozen
&& !n
) {
2483 if (!kmem_cache_debug(s
) && !prior
)
2486 * Slab was on no list before and will be partially empty
2487 * We can defer the list move and instead freeze it.
2491 else { /* Needs to be taken off a list */
2493 n
= get_node(s
, page_to_nid(page
));
2495 * Speculatively acquire the list_lock.
2496 * If the cmpxchg does not succeed then we may
2497 * drop the list_lock without any processing.
2499 * Otherwise the list_lock will synchronize with
2500 * other processors updating the list of slabs.
2502 spin_lock_irqsave(&n
->list_lock
, flags
);
2508 } while (!cmpxchg_double_slab(s
, page
,
2510 object
, new.counters
,
2516 * If we just froze the page then put it onto the
2517 * per cpu partial list.
2519 if (new.frozen
&& !was_frozen
) {
2520 put_cpu_partial(s
, page
, 1);
2521 stat(s
, CPU_PARTIAL_FREE
);
2524 * The list lock was not taken therefore no list
2525 * activity can be necessary.
2528 stat(s
, FREE_FROZEN
);
2533 * was_frozen may have been set after we acquired the list_lock in
2534 * an earlier loop. So we need to check it here again.
2537 stat(s
, FREE_FROZEN
);
2539 if (unlikely(!inuse
&& n
->nr_partial
> s
->min_partial
))
2543 * Objects left in the slab. If it was not on the partial list before
2546 if (unlikely(!prior
)) {
2547 remove_full(s
, page
);
2548 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2549 stat(s
, FREE_ADD_PARTIAL
);
2552 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2558 * Slab on the partial list.
2560 remove_partial(n
, page
);
2561 stat(s
, FREE_REMOVE_PARTIAL
);
2563 /* Slab must be on the full list */
2564 remove_full(s
, page
);
2566 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2568 discard_slab(s
, page
);
2572 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2573 * can perform fastpath freeing without additional function calls.
2575 * The fastpath is only possible if we are freeing to the current cpu slab
2576 * of this processor. This typically the case if we have just allocated
2579 * If fastpath is not possible then fall back to __slab_free where we deal
2580 * with all sorts of special processing.
2582 static __always_inline
void slab_free(struct kmem_cache
*s
,
2583 struct page
*page
, void *x
, unsigned long addr
)
2585 void **object
= (void *)x
;
2586 struct kmem_cache_cpu
*c
;
2589 slab_free_hook(s
, x
);
2593 * Determine the currently cpus per cpu slab.
2594 * The cpu may change afterward. However that does not matter since
2595 * data is retrieved via this pointer. If we are on the same cpu
2596 * during the cmpxchg then the free will succedd.
2598 c
= __this_cpu_ptr(s
->cpu_slab
);
2603 if (likely(page
== c
->page
)) {
2604 set_freepointer(s
, object
, c
->freelist
);
2606 if (unlikely(!this_cpu_cmpxchg_double(
2607 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2609 object
, next_tid(tid
)))) {
2611 note_cmpxchg_failure("slab_free", s
, tid
);
2614 stat(s
, FREE_FASTPATH
);
2616 __slab_free(s
, page
, x
, addr
);
2620 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2624 page
= virt_to_head_page(x
);
2626 if (kmem_cache_debug(s
) && page
->slab
!= s
) {
2627 pr_err("kmem_cache_free: Wrong slab cache. %s but object"
2628 " is from %s\n", page
->slab
->name
, s
->name
);
2633 slab_free(s
, page
, x
, _RET_IP_
);
2635 trace_kmem_cache_free(_RET_IP_
, x
);
2637 EXPORT_SYMBOL(kmem_cache_free
);
2640 * Object placement in a slab is made very easy because we always start at
2641 * offset 0. If we tune the size of the object to the alignment then we can
2642 * get the required alignment by putting one properly sized object after
2645 * Notice that the allocation order determines the sizes of the per cpu
2646 * caches. Each processor has always one slab available for allocations.
2647 * Increasing the allocation order reduces the number of times that slabs
2648 * must be moved on and off the partial lists and is therefore a factor in
2653 * Mininum / Maximum order of slab pages. This influences locking overhead
2654 * and slab fragmentation. A higher order reduces the number of partial slabs
2655 * and increases the number of allocations possible without having to
2656 * take the list_lock.
2658 static int slub_min_order
;
2659 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
2660 static int slub_min_objects
;
2663 * Merge control. If this is set then no merging of slab caches will occur.
2664 * (Could be removed. This was introduced to pacify the merge skeptics.)
2666 static int slub_nomerge
;
2669 * Calculate the order of allocation given an slab object size.
2671 * The order of allocation has significant impact on performance and other
2672 * system components. Generally order 0 allocations should be preferred since
2673 * order 0 does not cause fragmentation in the page allocator. Larger objects
2674 * be problematic to put into order 0 slabs because there may be too much
2675 * unused space left. We go to a higher order if more than 1/16th of the slab
2678 * In order to reach satisfactory performance we must ensure that a minimum
2679 * number of objects is in one slab. Otherwise we may generate too much
2680 * activity on the partial lists which requires taking the list_lock. This is
2681 * less a concern for large slabs though which are rarely used.
2683 * slub_max_order specifies the order where we begin to stop considering the
2684 * number of objects in a slab as critical. If we reach slub_max_order then
2685 * we try to keep the page order as low as possible. So we accept more waste
2686 * of space in favor of a small page order.
2688 * Higher order allocations also allow the placement of more objects in a
2689 * slab and thereby reduce object handling overhead. If the user has
2690 * requested a higher mininum order then we start with that one instead of
2691 * the smallest order which will fit the object.
2693 static inline int slab_order(int size
, int min_objects
,
2694 int max_order
, int fract_leftover
, int reserved
)
2698 int min_order
= slub_min_order
;
2700 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
2701 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
2703 for (order
= max(min_order
,
2704 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
2705 order
<= max_order
; order
++) {
2707 unsigned long slab_size
= PAGE_SIZE
<< order
;
2709 if (slab_size
< min_objects
* size
+ reserved
)
2712 rem
= (slab_size
- reserved
) % size
;
2714 if (rem
<= slab_size
/ fract_leftover
)
2722 static inline int calculate_order(int size
, int reserved
)
2730 * Attempt to find best configuration for a slab. This
2731 * works by first attempting to generate a layout with
2732 * the best configuration and backing off gradually.
2734 * First we reduce the acceptable waste in a slab. Then
2735 * we reduce the minimum objects required in a slab.
2737 min_objects
= slub_min_objects
;
2739 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
2740 max_objects
= order_objects(slub_max_order
, size
, reserved
);
2741 min_objects
= min(min_objects
, max_objects
);
2743 while (min_objects
> 1) {
2745 while (fraction
>= 4) {
2746 order
= slab_order(size
, min_objects
,
2747 slub_max_order
, fraction
, reserved
);
2748 if (order
<= slub_max_order
)
2756 * We were unable to place multiple objects in a slab. Now
2757 * lets see if we can place a single object there.
2759 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
2760 if (order
<= slub_max_order
)
2764 * Doh this slab cannot be placed using slub_max_order.
2766 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
2767 if (order
< MAX_ORDER
)
2773 * Figure out what the alignment of the objects will be.
2775 static unsigned long calculate_alignment(unsigned long flags
,
2776 unsigned long align
, unsigned long size
)
2779 * If the user wants hardware cache aligned objects then follow that
2780 * suggestion if the object is sufficiently large.
2782 * The hardware cache alignment cannot override the specified
2783 * alignment though. If that is greater then use it.
2785 if (flags
& SLAB_HWCACHE_ALIGN
) {
2786 unsigned long ralign
= cache_line_size();
2787 while (size
<= ralign
/ 2)
2789 align
= max(align
, ralign
);
2792 if (align
< ARCH_SLAB_MINALIGN
)
2793 align
= ARCH_SLAB_MINALIGN
;
2795 return ALIGN(align
, sizeof(void *));
2799 init_kmem_cache_node(struct kmem_cache_node
*n
)
2802 spin_lock_init(&n
->list_lock
);
2803 INIT_LIST_HEAD(&n
->partial
);
2804 #ifdef CONFIG_SLUB_DEBUG
2805 atomic_long_set(&n
->nr_slabs
, 0);
2806 atomic_long_set(&n
->total_objects
, 0);
2807 INIT_LIST_HEAD(&n
->full
);
2811 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
2813 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
2814 SLUB_PAGE_SHIFT
* sizeof(struct kmem_cache_cpu
));
2817 * Must align to double word boundary for the double cmpxchg
2818 * instructions to work; see __pcpu_double_call_return_bool().
2820 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
2821 2 * sizeof(void *));
2826 init_kmem_cache_cpus(s
);
2831 static struct kmem_cache
*kmem_cache_node
;
2834 * No kmalloc_node yet so do it by hand. We know that this is the first
2835 * slab on the node for this slabcache. There are no concurrent accesses
2838 * Note that this function only works on the kmalloc_node_cache
2839 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2840 * memory on a fresh node that has no slab structures yet.
2842 static void early_kmem_cache_node_alloc(int node
)
2845 struct kmem_cache_node
*n
;
2847 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
2849 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
2852 if (page_to_nid(page
) != node
) {
2853 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2855 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2856 "in order to be able to continue\n");
2861 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
2864 kmem_cache_node
->node
[node
] = n
;
2865 #ifdef CONFIG_SLUB_DEBUG
2866 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
2867 init_tracking(kmem_cache_node
, n
);
2869 init_kmem_cache_node(n
);
2870 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
2872 add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
2875 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2879 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2880 struct kmem_cache_node
*n
= s
->node
[node
];
2883 kmem_cache_free(kmem_cache_node
, n
);
2885 s
->node
[node
] = NULL
;
2889 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
2893 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2894 struct kmem_cache_node
*n
;
2896 if (slab_state
== DOWN
) {
2897 early_kmem_cache_node_alloc(node
);
2900 n
= kmem_cache_alloc_node(kmem_cache_node
,
2904 free_kmem_cache_nodes(s
);
2909 init_kmem_cache_node(n
);
2914 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
2916 if (min
< MIN_PARTIAL
)
2918 else if (min
> MAX_PARTIAL
)
2920 s
->min_partial
= min
;
2924 * calculate_sizes() determines the order and the distribution of data within
2927 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2929 unsigned long flags
= s
->flags
;
2930 unsigned long size
= s
->object_size
;
2931 unsigned long align
= s
->align
;
2935 * Round up object size to the next word boundary. We can only
2936 * place the free pointer at word boundaries and this determines
2937 * the possible location of the free pointer.
2939 size
= ALIGN(size
, sizeof(void *));
2941 #ifdef CONFIG_SLUB_DEBUG
2943 * Determine if we can poison the object itself. If the user of
2944 * the slab may touch the object after free or before allocation
2945 * then we should never poison the object itself.
2947 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2949 s
->flags
|= __OBJECT_POISON
;
2951 s
->flags
&= ~__OBJECT_POISON
;
2955 * If we are Redzoning then check if there is some space between the
2956 * end of the object and the free pointer. If not then add an
2957 * additional word to have some bytes to store Redzone information.
2959 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
2960 size
+= sizeof(void *);
2964 * With that we have determined the number of bytes in actual use
2965 * by the object. This is the potential offset to the free pointer.
2969 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2972 * Relocate free pointer after the object if it is not
2973 * permitted to overwrite the first word of the object on
2976 * This is the case if we do RCU, have a constructor or
2977 * destructor or are poisoning the objects.
2980 size
+= sizeof(void *);
2983 #ifdef CONFIG_SLUB_DEBUG
2984 if (flags
& SLAB_STORE_USER
)
2986 * Need to store information about allocs and frees after
2989 size
+= 2 * sizeof(struct track
);
2991 if (flags
& SLAB_RED_ZONE
)
2993 * Add some empty padding so that we can catch
2994 * overwrites from earlier objects rather than let
2995 * tracking information or the free pointer be
2996 * corrupted if a user writes before the start
2999 size
+= sizeof(void *);
3003 * Determine the alignment based on various parameters that the
3004 * user specified and the dynamic determination of cache line size
3007 align
= calculate_alignment(flags
, align
, s
->object_size
);
3011 * SLUB stores one object immediately after another beginning from
3012 * offset 0. In order to align the objects we have to simply size
3013 * each object to conform to the alignment.
3015 size
= ALIGN(size
, align
);
3017 if (forced_order
>= 0)
3018 order
= forced_order
;
3020 order
= calculate_order(size
, s
->reserved
);
3027 s
->allocflags
|= __GFP_COMP
;
3029 if (s
->flags
& SLAB_CACHE_DMA
)
3030 s
->allocflags
|= SLUB_DMA
;
3032 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3033 s
->allocflags
|= __GFP_RECLAIMABLE
;
3036 * Determine the number of objects per slab
3038 s
->oo
= oo_make(order
, size
, s
->reserved
);
3039 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3040 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3043 return !!oo_objects(s
->oo
);
3047 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3049 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3052 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_DESTROY_BY_RCU
))
3053 s
->reserved
= sizeof(struct rcu_head
);
3055 if (!calculate_sizes(s
, -1))
3057 if (disable_higher_order_debug
) {
3059 * Disable debugging flags that store metadata if the min slab
3062 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3063 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3065 if (!calculate_sizes(s
, -1))
3070 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3071 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3072 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_DEBUG_FLAGS
) == 0)
3073 /* Enable fast mode */
3074 s
->flags
|= __CMPXCHG_DOUBLE
;
3078 * The larger the object size is, the more pages we want on the partial
3079 * list to avoid pounding the page allocator excessively.
3081 set_min_partial(s
, ilog2(s
->size
) / 2);
3084 * cpu_partial determined the maximum number of objects kept in the
3085 * per cpu partial lists of a processor.
3087 * Per cpu partial lists mainly contain slabs that just have one
3088 * object freed. If they are used for allocation then they can be
3089 * filled up again with minimal effort. The slab will never hit the
3090 * per node partial lists and therefore no locking will be required.
3092 * This setting also determines
3094 * A) The number of objects from per cpu partial slabs dumped to the
3095 * per node list when we reach the limit.
3096 * B) The number of objects in cpu partial slabs to extract from the
3097 * per node list when we run out of per cpu objects. We only fetch 50%
3098 * to keep some capacity around for frees.
3100 if (kmem_cache_debug(s
))
3102 else if (s
->size
>= PAGE_SIZE
)
3104 else if (s
->size
>= 1024)
3106 else if (s
->size
>= 256)
3107 s
->cpu_partial
= 13;
3109 s
->cpu_partial
= 30;
3112 s
->remote_node_defrag_ratio
= 1000;
3114 if (!init_kmem_cache_nodes(s
))
3117 if (alloc_kmem_cache_cpus(s
))
3120 free_kmem_cache_nodes(s
);
3122 if (flags
& SLAB_PANIC
)
3123 panic("Cannot create slab %s size=%lu realsize=%u "
3124 "order=%u offset=%u flags=%lx\n",
3125 s
->name
, (unsigned long)s
->size
, s
->size
, oo_order(s
->oo
),
3131 * Determine the size of a slab object
3133 unsigned int kmem_cache_size(struct kmem_cache
*s
)
3135 return s
->object_size
;
3137 EXPORT_SYMBOL(kmem_cache_size
);
3139 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3142 #ifdef CONFIG_SLUB_DEBUG
3143 void *addr
= page_address(page
);
3145 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3146 sizeof(long), GFP_ATOMIC
);
3149 slab_err(s
, page
, text
, s
->name
);
3152 get_map(s
, page
, map
);
3153 for_each_object(p
, s
, addr
, page
->objects
) {
3155 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3156 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
3158 print_tracking(s
, p
);
3167 * Attempt to free all partial slabs on a node.
3168 * This is called from kmem_cache_close(). We must be the last thread
3169 * using the cache and therefore we do not need to lock anymore.
3171 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3173 struct page
*page
, *h
;
3175 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3177 remove_partial(n
, page
);
3178 discard_slab(s
, page
);
3180 list_slab_objects(s
, page
,
3181 "Objects remaining in %s on kmem_cache_close()");
3187 * Release all resources used by a slab cache.
3189 static inline int kmem_cache_close(struct kmem_cache
*s
)
3194 /* Attempt to free all objects */
3195 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3196 struct kmem_cache_node
*n
= get_node(s
, node
);
3199 if (n
->nr_partial
|| slabs_node(s
, node
))
3202 free_percpu(s
->cpu_slab
);
3203 free_kmem_cache_nodes(s
);
3207 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3209 int rc
= kmem_cache_close(s
);
3212 sysfs_slab_remove(s
);
3217 /********************************************************************
3219 *******************************************************************/
3221 struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
3222 EXPORT_SYMBOL(kmalloc_caches
);
3224 #ifdef CONFIG_ZONE_DMA
3225 static struct kmem_cache
*kmalloc_dma_caches
[SLUB_PAGE_SHIFT
];
3228 static int __init
setup_slub_min_order(char *str
)
3230 get_option(&str
, &slub_min_order
);
3235 __setup("slub_min_order=", setup_slub_min_order
);
3237 static int __init
setup_slub_max_order(char *str
)
3239 get_option(&str
, &slub_max_order
);
3240 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3245 __setup("slub_max_order=", setup_slub_max_order
);
3247 static int __init
setup_slub_min_objects(char *str
)
3249 get_option(&str
, &slub_min_objects
);
3254 __setup("slub_min_objects=", setup_slub_min_objects
);
3256 static int __init
setup_slub_nomerge(char *str
)
3262 __setup("slub_nomerge", setup_slub_nomerge
);
3264 static struct kmem_cache
*__init
create_kmalloc_cache(const char *name
,
3265 int size
, unsigned int flags
)
3267 struct kmem_cache
*s
;
3269 s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
3272 s
->size
= s
->object_size
= size
;
3273 s
->align
= ARCH_KMALLOC_MINALIGN
;
3276 * This function is called with IRQs disabled during early-boot on
3277 * single CPU so there's no need to take slab_mutex here.
3279 if (kmem_cache_open(s
, flags
))
3282 list_add(&s
->list
, &slab_caches
);
3286 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
3291 * Conversion table for small slabs sizes / 8 to the index in the
3292 * kmalloc array. This is necessary for slabs < 192 since we have non power
3293 * of two cache sizes there. The size of larger slabs can be determined using
3296 static s8 size_index
[24] = {
3323 static inline int size_index_elem(size_t bytes
)
3325 return (bytes
- 1) / 8;
3328 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
3334 return ZERO_SIZE_PTR
;
3336 index
= size_index
[size_index_elem(size
)];
3338 index
= fls(size
- 1);
3340 #ifdef CONFIG_ZONE_DMA
3341 if (unlikely((flags
& SLUB_DMA
)))
3342 return kmalloc_dma_caches
[index
];
3345 return kmalloc_caches
[index
];
3348 void *__kmalloc(size_t size
, gfp_t flags
)
3350 struct kmem_cache
*s
;
3353 if (unlikely(size
> SLUB_MAX_SIZE
))
3354 return kmalloc_large(size
, flags
);
3356 s
= get_slab(size
, flags
);
3358 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3361 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3363 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3367 EXPORT_SYMBOL(__kmalloc
);
3370 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3375 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3376 page
= alloc_pages_node(node
, flags
, get_order(size
));
3378 ptr
= page_address(page
);
3380 kmemleak_alloc(ptr
, size
, 1, flags
);
3384 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3386 struct kmem_cache
*s
;
3389 if (unlikely(size
> SLUB_MAX_SIZE
)) {
3390 ret
= kmalloc_large_node(size
, flags
, node
);
3392 trace_kmalloc_node(_RET_IP_
, ret
,
3393 size
, PAGE_SIZE
<< get_order(size
),
3399 s
= get_slab(size
, flags
);
3401 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3404 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3406 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3410 EXPORT_SYMBOL(__kmalloc_node
);
3413 size_t ksize(const void *object
)
3417 if (unlikely(object
== ZERO_SIZE_PTR
))
3420 page
= virt_to_head_page(object
);
3422 if (unlikely(!PageSlab(page
))) {
3423 WARN_ON(!PageCompound(page
));
3424 return PAGE_SIZE
<< compound_order(page
);
3427 return slab_ksize(page
->slab
);
3429 EXPORT_SYMBOL(ksize
);
3431 #ifdef CONFIG_SLUB_DEBUG
3432 bool verify_mem_not_deleted(const void *x
)
3435 void *object
= (void *)x
;
3436 unsigned long flags
;
3439 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3442 local_irq_save(flags
);
3444 page
= virt_to_head_page(x
);
3445 if (unlikely(!PageSlab(page
))) {
3446 /* maybe it was from stack? */
3452 if (on_freelist(page
->slab
, page
, object
)) {
3453 object_err(page
->slab
, page
, object
, "Object is on free-list");
3461 local_irq_restore(flags
);
3464 EXPORT_SYMBOL(verify_mem_not_deleted
);
3467 void kfree(const void *x
)
3470 void *object
= (void *)x
;
3472 trace_kfree(_RET_IP_
, x
);
3474 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3477 page
= virt_to_head_page(x
);
3478 if (unlikely(!PageSlab(page
))) {
3479 BUG_ON(!PageCompound(page
));
3481 __free_pages(page
, compound_order(page
));
3484 slab_free(page
->slab
, page
, object
, _RET_IP_
);
3486 EXPORT_SYMBOL(kfree
);
3489 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3490 * the remaining slabs by the number of items in use. The slabs with the
3491 * most items in use come first. New allocations will then fill those up
3492 * and thus they can be removed from the partial lists.
3494 * The slabs with the least items are placed last. This results in them
3495 * being allocated from last increasing the chance that the last objects
3496 * are freed in them.
3498 int kmem_cache_shrink(struct kmem_cache
*s
)
3502 struct kmem_cache_node
*n
;
3505 int objects
= oo_objects(s
->max
);
3506 struct list_head
*slabs_by_inuse
=
3507 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
3508 unsigned long flags
;
3510 if (!slabs_by_inuse
)
3514 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3515 n
= get_node(s
, node
);
3520 for (i
= 0; i
< objects
; i
++)
3521 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
3523 spin_lock_irqsave(&n
->list_lock
, flags
);
3526 * Build lists indexed by the items in use in each slab.
3528 * Note that concurrent frees may occur while we hold the
3529 * list_lock. page->inuse here is the upper limit.
3531 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3532 list_move(&page
->lru
, slabs_by_inuse
+ page
->inuse
);
3538 * Rebuild the partial list with the slabs filled up most
3539 * first and the least used slabs at the end.
3541 for (i
= objects
- 1; i
> 0; i
--)
3542 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
3544 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3546 /* Release empty slabs */
3547 list_for_each_entry_safe(page
, t
, slabs_by_inuse
, lru
)
3548 discard_slab(s
, page
);
3551 kfree(slabs_by_inuse
);
3554 EXPORT_SYMBOL(kmem_cache_shrink
);
3556 #if defined(CONFIG_MEMORY_HOTPLUG)
3557 static int slab_mem_going_offline_callback(void *arg
)
3559 struct kmem_cache
*s
;
3561 mutex_lock(&slab_mutex
);
3562 list_for_each_entry(s
, &slab_caches
, list
)
3563 kmem_cache_shrink(s
);
3564 mutex_unlock(&slab_mutex
);
3569 static void slab_mem_offline_callback(void *arg
)
3571 struct kmem_cache_node
*n
;
3572 struct kmem_cache
*s
;
3573 struct memory_notify
*marg
= arg
;
3576 offline_node
= marg
->status_change_nid
;
3579 * If the node still has available memory. we need kmem_cache_node
3582 if (offline_node
< 0)
3585 mutex_lock(&slab_mutex
);
3586 list_for_each_entry(s
, &slab_caches
, list
) {
3587 n
= get_node(s
, offline_node
);
3590 * if n->nr_slabs > 0, slabs still exist on the node
3591 * that is going down. We were unable to free them,
3592 * and offline_pages() function shouldn't call this
3593 * callback. So, we must fail.
3595 BUG_ON(slabs_node(s
, offline_node
));
3597 s
->node
[offline_node
] = NULL
;
3598 kmem_cache_free(kmem_cache_node
, n
);
3601 mutex_unlock(&slab_mutex
);
3604 static int slab_mem_going_online_callback(void *arg
)
3606 struct kmem_cache_node
*n
;
3607 struct kmem_cache
*s
;
3608 struct memory_notify
*marg
= arg
;
3609 int nid
= marg
->status_change_nid
;
3613 * If the node's memory is already available, then kmem_cache_node is
3614 * already created. Nothing to do.
3620 * We are bringing a node online. No memory is available yet. We must
3621 * allocate a kmem_cache_node structure in order to bring the node
3624 mutex_lock(&slab_mutex
);
3625 list_for_each_entry(s
, &slab_caches
, list
) {
3627 * XXX: kmem_cache_alloc_node will fallback to other nodes
3628 * since memory is not yet available from the node that
3631 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
3636 init_kmem_cache_node(n
);
3640 mutex_unlock(&slab_mutex
);
3644 static int slab_memory_callback(struct notifier_block
*self
,
3645 unsigned long action
, void *arg
)
3650 case MEM_GOING_ONLINE
:
3651 ret
= slab_mem_going_online_callback(arg
);
3653 case MEM_GOING_OFFLINE
:
3654 ret
= slab_mem_going_offline_callback(arg
);
3657 case MEM_CANCEL_ONLINE
:
3658 slab_mem_offline_callback(arg
);
3661 case MEM_CANCEL_OFFLINE
:
3665 ret
= notifier_from_errno(ret
);
3671 #endif /* CONFIG_MEMORY_HOTPLUG */
3673 /********************************************************************
3674 * Basic setup of slabs
3675 *******************************************************************/
3678 * Used for early kmem_cache structures that were allocated using
3679 * the page allocator
3682 static void __init
kmem_cache_bootstrap_fixup(struct kmem_cache
*s
)
3686 list_add(&s
->list
, &slab_caches
);
3689 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3690 struct kmem_cache_node
*n
= get_node(s
, node
);
3694 list_for_each_entry(p
, &n
->partial
, lru
)
3697 #ifdef CONFIG_SLUB_DEBUG
3698 list_for_each_entry(p
, &n
->full
, lru
)
3705 void __init
kmem_cache_init(void)
3709 struct kmem_cache
*temp_kmem_cache
;
3711 struct kmem_cache
*temp_kmem_cache_node
;
3712 unsigned long kmalloc_size
;
3714 if (debug_guardpage_minorder())
3717 kmem_size
= offsetof(struct kmem_cache
, node
) +
3718 nr_node_ids
* sizeof(struct kmem_cache_node
*);
3720 /* Allocate two kmem_caches from the page allocator */
3721 kmalloc_size
= ALIGN(kmem_size
, cache_line_size());
3722 order
= get_order(2 * kmalloc_size
);
3723 kmem_cache
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_ZERO
, order
);
3726 * Must first have the slab cache available for the allocations of the
3727 * struct kmem_cache_node's. There is special bootstrap code in
3728 * kmem_cache_open for slab_state == DOWN.
3730 kmem_cache_node
= (void *)kmem_cache
+ kmalloc_size
;
3732 kmem_cache_node
->name
= "kmem_cache_node";
3733 kmem_cache_node
->size
= kmem_cache_node
->object_size
=
3734 sizeof(struct kmem_cache_node
);
3735 kmem_cache_open(kmem_cache_node
, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);
3737 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
3739 /* Able to allocate the per node structures */
3740 slab_state
= PARTIAL
;
3742 temp_kmem_cache
= kmem_cache
;
3743 kmem_cache
->name
= "kmem_cache";
3744 kmem_cache
->size
= kmem_cache
->object_size
= kmem_size
;
3745 kmem_cache_open(kmem_cache
, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);
3747 kmem_cache
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3748 memcpy(kmem_cache
, temp_kmem_cache
, kmem_size
);
3751 * Allocate kmem_cache_node properly from the kmem_cache slab.
3752 * kmem_cache_node is separately allocated so no need to
3753 * update any list pointers.
3755 temp_kmem_cache_node
= kmem_cache_node
;
3757 kmem_cache_node
= kmem_cache_alloc(kmem_cache
, GFP_NOWAIT
);
3758 memcpy(kmem_cache_node
, temp_kmem_cache_node
, kmem_size
);
3760 kmem_cache_bootstrap_fixup(kmem_cache_node
);
3763 kmem_cache_bootstrap_fixup(kmem_cache
);
3765 /* Free temporary boot structure */
3766 free_pages((unsigned long)temp_kmem_cache
, order
);
3768 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3771 * Patch up the size_index table if we have strange large alignment
3772 * requirements for the kmalloc array. This is only the case for
3773 * MIPS it seems. The standard arches will not generate any code here.
3775 * Largest permitted alignment is 256 bytes due to the way we
3776 * handle the index determination for the smaller caches.
3778 * Make sure that nothing crazy happens if someone starts tinkering
3779 * around with ARCH_KMALLOC_MINALIGN
3781 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3782 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3784 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
3785 int elem
= size_index_elem(i
);
3786 if (elem
>= ARRAY_SIZE(size_index
))
3788 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
3791 if (KMALLOC_MIN_SIZE
== 64) {
3793 * The 96 byte size cache is not used if the alignment
3796 for (i
= 64 + 8; i
<= 96; i
+= 8)
3797 size_index
[size_index_elem(i
)] = 7;
3798 } else if (KMALLOC_MIN_SIZE
== 128) {
3800 * The 192 byte sized cache is not used if the alignment
3801 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3804 for (i
= 128 + 8; i
<= 192; i
+= 8)
3805 size_index
[size_index_elem(i
)] = 8;
3808 /* Caches that are not of the two-to-the-power-of size */
3809 if (KMALLOC_MIN_SIZE
<= 32) {
3810 kmalloc_caches
[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3814 if (KMALLOC_MIN_SIZE
<= 64) {
3815 kmalloc_caches
[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3819 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3820 kmalloc_caches
[i
] = create_kmalloc_cache("kmalloc", 1 << i
, 0);
3826 /* Provide the correct kmalloc names now that the caches are up */
3827 if (KMALLOC_MIN_SIZE
<= 32) {
3828 kmalloc_caches
[1]->name
= kstrdup(kmalloc_caches
[1]->name
, GFP_NOWAIT
);
3829 BUG_ON(!kmalloc_caches
[1]->name
);
3832 if (KMALLOC_MIN_SIZE
<= 64) {
3833 kmalloc_caches
[2]->name
= kstrdup(kmalloc_caches
[2]->name
, GFP_NOWAIT
);
3834 BUG_ON(!kmalloc_caches
[2]->name
);
3837 for (i
= KMALLOC_SHIFT_LOW
; i
< SLUB_PAGE_SHIFT
; i
++) {
3838 char *s
= kasprintf(GFP_NOWAIT
, "kmalloc-%d", 1 << i
);
3841 kmalloc_caches
[i
]->name
= s
;
3845 register_cpu_notifier(&slab_notifier
);
3848 #ifdef CONFIG_ZONE_DMA
3849 for (i
= 0; i
< SLUB_PAGE_SHIFT
; i
++) {
3850 struct kmem_cache
*s
= kmalloc_caches
[i
];
3853 char *name
= kasprintf(GFP_NOWAIT
,
3854 "dma-kmalloc-%d", s
->object_size
);
3857 kmalloc_dma_caches
[i
] = create_kmalloc_cache(name
,
3858 s
->object_size
, SLAB_CACHE_DMA
);
3863 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3864 " CPUs=%d, Nodes=%d\n",
3865 caches
, cache_line_size(),
3866 slub_min_order
, slub_max_order
, slub_min_objects
,
3867 nr_cpu_ids
, nr_node_ids
);
3870 void __init
kmem_cache_init_late(void)
3875 * Find a mergeable slab cache
3877 static int slab_unmergeable(struct kmem_cache
*s
)
3879 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3886 * We may have set a slab to be unmergeable during bootstrap.
3888 if (s
->refcount
< 0)
3894 static struct kmem_cache
*find_mergeable(size_t size
,
3895 size_t align
, unsigned long flags
, const char *name
,
3896 void (*ctor
)(void *))
3898 struct kmem_cache
*s
;
3900 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3906 size
= ALIGN(size
, sizeof(void *));
3907 align
= calculate_alignment(flags
, align
, size
);
3908 size
= ALIGN(size
, align
);
3909 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3911 list_for_each_entry(s
, &slab_caches
, list
) {
3912 if (slab_unmergeable(s
))
3918 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3921 * Check if alignment is compatible.
3922 * Courtesy of Adrian Drzewiecki
3924 if ((s
->size
& ~(align
- 1)) != s
->size
)
3927 if (s
->size
- size
>= sizeof(void *))
3935 struct kmem_cache
*__kmem_cache_alias(const char *name
, size_t size
,
3936 size_t align
, unsigned long flags
, void (*ctor
)(void *))
3938 struct kmem_cache
*s
;
3940 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3944 * Adjust the object sizes so that we clear
3945 * the complete object on kzalloc.
3947 s
->object_size
= max(s
->object_size
, (int)size
);
3948 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3950 if (sysfs_slab_alias(s
, name
)) {
3959 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
3963 err
= kmem_cache_open(s
, flags
);
3967 mutex_unlock(&slab_mutex
);
3968 err
= sysfs_slab_add(s
);
3969 mutex_lock(&slab_mutex
);
3972 kmem_cache_close(s
);
3979 * Use the cpu notifier to insure that the cpu slabs are flushed when
3982 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3983 unsigned long action
, void *hcpu
)
3985 long cpu
= (long)hcpu
;
3986 struct kmem_cache
*s
;
3987 unsigned long flags
;
3990 case CPU_UP_CANCELED
:
3991 case CPU_UP_CANCELED_FROZEN
:
3993 case CPU_DEAD_FROZEN
:
3994 mutex_lock(&slab_mutex
);
3995 list_for_each_entry(s
, &slab_caches
, list
) {
3996 local_irq_save(flags
);
3997 __flush_cpu_slab(s
, cpu
);
3998 local_irq_restore(flags
);
4000 mutex_unlock(&slab_mutex
);
4008 static struct notifier_block __cpuinitdata slab_notifier
= {
4009 .notifier_call
= slab_cpuup_callback
4014 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4016 struct kmem_cache
*s
;
4019 if (unlikely(size
> SLUB_MAX_SIZE
))
4020 return kmalloc_large(size
, gfpflags
);
4022 s
= get_slab(size
, gfpflags
);
4024 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4027 ret
= slab_alloc(s
, gfpflags
, caller
);
4029 /* Honor the call site pointer we received. */
4030 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4036 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4037 int node
, unsigned long caller
)
4039 struct kmem_cache
*s
;
4042 if (unlikely(size
> SLUB_MAX_SIZE
)) {
4043 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4045 trace_kmalloc_node(caller
, ret
,
4046 size
, PAGE_SIZE
<< get_order(size
),
4052 s
= get_slab(size
, gfpflags
);
4054 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4057 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4059 /* Honor the call site pointer we received. */
4060 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4067 static int count_inuse(struct page
*page
)
4072 static int count_total(struct page
*page
)
4074 return page
->objects
;
4078 #ifdef CONFIG_SLUB_DEBUG
4079 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4083 void *addr
= page_address(page
);
4085 if (!check_slab(s
, page
) ||
4086 !on_freelist(s
, page
, NULL
))
4089 /* Now we know that a valid freelist exists */
4090 bitmap_zero(map
, page
->objects
);
4092 get_map(s
, page
, map
);
4093 for_each_object(p
, s
, addr
, page
->objects
) {
4094 if (test_bit(slab_index(p
, s
, addr
), map
))
4095 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4099 for_each_object(p
, s
, addr
, page
->objects
)
4100 if (!test_bit(slab_index(p
, s
, addr
), map
))
4101 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4106 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4110 validate_slab(s
, page
, map
);
4114 static int validate_slab_node(struct kmem_cache
*s
,
4115 struct kmem_cache_node
*n
, unsigned long *map
)
4117 unsigned long count
= 0;
4119 unsigned long flags
;
4121 spin_lock_irqsave(&n
->list_lock
, flags
);
4123 list_for_each_entry(page
, &n
->partial
, lru
) {
4124 validate_slab_slab(s
, page
, map
);
4127 if (count
!= n
->nr_partial
)
4128 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
4129 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
4131 if (!(s
->flags
& SLAB_STORE_USER
))
4134 list_for_each_entry(page
, &n
->full
, lru
) {
4135 validate_slab_slab(s
, page
, map
);
4138 if (count
!= atomic_long_read(&n
->nr_slabs
))
4139 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
4140 "counter=%ld\n", s
->name
, count
,
4141 atomic_long_read(&n
->nr_slabs
));
4144 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4148 static long validate_slab_cache(struct kmem_cache
*s
)
4151 unsigned long count
= 0;
4152 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4153 sizeof(unsigned long), GFP_KERNEL
);
4159 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4160 struct kmem_cache_node
*n
= get_node(s
, node
);
4162 count
+= validate_slab_node(s
, n
, map
);
4168 * Generate lists of code addresses where slabcache objects are allocated
4173 unsigned long count
;
4180 DECLARE_BITMAP(cpus
, NR_CPUS
);
4186 unsigned long count
;
4187 struct location
*loc
;
4190 static void free_loc_track(struct loc_track
*t
)
4193 free_pages((unsigned long)t
->loc
,
4194 get_order(sizeof(struct location
) * t
->max
));
4197 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4202 order
= get_order(sizeof(struct location
) * max
);
4204 l
= (void *)__get_free_pages(flags
, order
);
4209 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4217 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4218 const struct track
*track
)
4220 long start
, end
, pos
;
4222 unsigned long caddr
;
4223 unsigned long age
= jiffies
- track
->when
;
4229 pos
= start
+ (end
- start
+ 1) / 2;
4232 * There is nothing at "end". If we end up there
4233 * we need to add something to before end.
4238 caddr
= t
->loc
[pos
].addr
;
4239 if (track
->addr
== caddr
) {
4245 if (age
< l
->min_time
)
4247 if (age
> l
->max_time
)
4250 if (track
->pid
< l
->min_pid
)
4251 l
->min_pid
= track
->pid
;
4252 if (track
->pid
> l
->max_pid
)
4253 l
->max_pid
= track
->pid
;
4255 cpumask_set_cpu(track
->cpu
,
4256 to_cpumask(l
->cpus
));
4258 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4262 if (track
->addr
< caddr
)
4269 * Not found. Insert new tracking element.
4271 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4277 (t
->count
- pos
) * sizeof(struct location
));
4280 l
->addr
= track
->addr
;
4284 l
->min_pid
= track
->pid
;
4285 l
->max_pid
= track
->pid
;
4286 cpumask_clear(to_cpumask(l
->cpus
));
4287 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4288 nodes_clear(l
->nodes
);
4289 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4293 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4294 struct page
*page
, enum track_item alloc
,
4297 void *addr
= page_address(page
);
4300 bitmap_zero(map
, page
->objects
);
4301 get_map(s
, page
, map
);
4303 for_each_object(p
, s
, addr
, page
->objects
)
4304 if (!test_bit(slab_index(p
, s
, addr
), map
))
4305 add_location(t
, s
, get_track(s
, p
, alloc
));
4308 static int list_locations(struct kmem_cache
*s
, char *buf
,
4309 enum track_item alloc
)
4313 struct loc_track t
= { 0, 0, NULL
};
4315 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4316 sizeof(unsigned long), GFP_KERNEL
);
4318 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4321 return sprintf(buf
, "Out of memory\n");
4323 /* Push back cpu slabs */
4326 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4327 struct kmem_cache_node
*n
= get_node(s
, node
);
4328 unsigned long flags
;
4331 if (!atomic_long_read(&n
->nr_slabs
))
4334 spin_lock_irqsave(&n
->list_lock
, flags
);
4335 list_for_each_entry(page
, &n
->partial
, lru
)
4336 process_slab(&t
, s
, page
, alloc
, map
);
4337 list_for_each_entry(page
, &n
->full
, lru
)
4338 process_slab(&t
, s
, page
, alloc
, map
);
4339 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4342 for (i
= 0; i
< t
.count
; i
++) {
4343 struct location
*l
= &t
.loc
[i
];
4345 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4347 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4350 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4352 len
+= sprintf(buf
+ len
, "<not-available>");
4354 if (l
->sum_time
!= l
->min_time
) {
4355 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4357 (long)div_u64(l
->sum_time
, l
->count
),
4360 len
+= sprintf(buf
+ len
, " age=%ld",
4363 if (l
->min_pid
!= l
->max_pid
)
4364 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4365 l
->min_pid
, l
->max_pid
);
4367 len
+= sprintf(buf
+ len
, " pid=%ld",
4370 if (num_online_cpus() > 1 &&
4371 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4372 len
< PAGE_SIZE
- 60) {
4373 len
+= sprintf(buf
+ len
, " cpus=");
4374 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4375 to_cpumask(l
->cpus
));
4378 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4379 len
< PAGE_SIZE
- 60) {
4380 len
+= sprintf(buf
+ len
, " nodes=");
4381 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4385 len
+= sprintf(buf
+ len
, "\n");
4391 len
+= sprintf(buf
, "No data\n");
4396 #ifdef SLUB_RESILIENCY_TEST
4397 static void resiliency_test(void)
4401 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || SLUB_PAGE_SHIFT
< 10);
4403 printk(KERN_ERR
"SLUB resiliency testing\n");
4404 printk(KERN_ERR
"-----------------------\n");
4405 printk(KERN_ERR
"A. Corruption after allocation\n");
4407 p
= kzalloc(16, GFP_KERNEL
);
4409 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
4410 " 0x12->0x%p\n\n", p
+ 16);
4412 validate_slab_cache(kmalloc_caches
[4]);
4414 /* Hmmm... The next two are dangerous */
4415 p
= kzalloc(32, GFP_KERNEL
);
4416 p
[32 + sizeof(void *)] = 0x34;
4417 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
4418 " 0x34 -> -0x%p\n", p
);
4420 "If allocated object is overwritten then not detectable\n\n");
4422 validate_slab_cache(kmalloc_caches
[5]);
4423 p
= kzalloc(64, GFP_KERNEL
);
4424 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4426 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4429 "If allocated object is overwritten then not detectable\n\n");
4430 validate_slab_cache(kmalloc_caches
[6]);
4432 printk(KERN_ERR
"\nB. Corruption after free\n");
4433 p
= kzalloc(128, GFP_KERNEL
);
4436 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4437 validate_slab_cache(kmalloc_caches
[7]);
4439 p
= kzalloc(256, GFP_KERNEL
);
4442 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4444 validate_slab_cache(kmalloc_caches
[8]);
4446 p
= kzalloc(512, GFP_KERNEL
);
4449 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4450 validate_slab_cache(kmalloc_caches
[9]);
4454 static void resiliency_test(void) {};
4459 enum slab_stat_type
{
4460 SL_ALL
, /* All slabs */
4461 SL_PARTIAL
, /* Only partially allocated slabs */
4462 SL_CPU
, /* Only slabs used for cpu caches */
4463 SL_OBJECTS
, /* Determine allocated objects not slabs */
4464 SL_TOTAL
/* Determine object capacity not slabs */
4467 #define SO_ALL (1 << SL_ALL)
4468 #define SO_PARTIAL (1 << SL_PARTIAL)
4469 #define SO_CPU (1 << SL_CPU)
4470 #define SO_OBJECTS (1 << SL_OBJECTS)
4471 #define SO_TOTAL (1 << SL_TOTAL)
4473 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4474 char *buf
, unsigned long flags
)
4476 unsigned long total
= 0;
4479 unsigned long *nodes
;
4480 unsigned long *per_cpu
;
4482 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4485 per_cpu
= nodes
+ nr_node_ids
;
4487 if (flags
& SO_CPU
) {
4490 for_each_possible_cpu(cpu
) {
4491 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
4495 page
= ACCESS_ONCE(c
->page
);
4499 node
= page_to_nid(page
);
4500 if (flags
& SO_TOTAL
)
4502 else if (flags
& SO_OBJECTS
)
4510 page
= ACCESS_ONCE(c
->partial
);
4521 lock_memory_hotplug();
4522 #ifdef CONFIG_SLUB_DEBUG
4523 if (flags
& SO_ALL
) {
4524 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4525 struct kmem_cache_node
*n
= get_node(s
, node
);
4527 if (flags
& SO_TOTAL
)
4528 x
= atomic_long_read(&n
->total_objects
);
4529 else if (flags
& SO_OBJECTS
)
4530 x
= atomic_long_read(&n
->total_objects
) -
4531 count_partial(n
, count_free
);
4534 x
= atomic_long_read(&n
->nr_slabs
);
4541 if (flags
& SO_PARTIAL
) {
4542 for_each_node_state(node
, N_NORMAL_MEMORY
) {
4543 struct kmem_cache_node
*n
= get_node(s
, node
);
4545 if (flags
& SO_TOTAL
)
4546 x
= count_partial(n
, count_total
);
4547 else if (flags
& SO_OBJECTS
)
4548 x
= count_partial(n
, count_inuse
);
4555 x
= sprintf(buf
, "%lu", total
);
4557 for_each_node_state(node
, N_NORMAL_MEMORY
)
4559 x
+= sprintf(buf
+ x
, " N%d=%lu",
4562 unlock_memory_hotplug();
4564 return x
+ sprintf(buf
+ x
, "\n");
4567 #ifdef CONFIG_SLUB_DEBUG
4568 static int any_slab_objects(struct kmem_cache
*s
)
4572 for_each_online_node(node
) {
4573 struct kmem_cache_node
*n
= get_node(s
, node
);
4578 if (atomic_long_read(&n
->total_objects
))
4585 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4586 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4588 struct slab_attribute
{
4589 struct attribute attr
;
4590 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4591 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4594 #define SLAB_ATTR_RO(_name) \
4595 static struct slab_attribute _name##_attr = \
4596 __ATTR(_name, 0400, _name##_show, NULL)
4598 #define SLAB_ATTR(_name) \
4599 static struct slab_attribute _name##_attr = \
4600 __ATTR(_name, 0600, _name##_show, _name##_store)
4602 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4604 return sprintf(buf
, "%d\n", s
->size
);
4606 SLAB_ATTR_RO(slab_size
);
4608 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4610 return sprintf(buf
, "%d\n", s
->align
);
4612 SLAB_ATTR_RO(align
);
4614 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4616 return sprintf(buf
, "%d\n", s
->object_size
);
4618 SLAB_ATTR_RO(object_size
);
4620 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4622 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4624 SLAB_ATTR_RO(objs_per_slab
);
4626 static ssize_t
order_store(struct kmem_cache
*s
,
4627 const char *buf
, size_t length
)
4629 unsigned long order
;
4632 err
= strict_strtoul(buf
, 10, &order
);
4636 if (order
> slub_max_order
|| order
< slub_min_order
)
4639 calculate_sizes(s
, order
);
4643 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4645 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4649 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4651 return sprintf(buf
, "%lu\n", s
->min_partial
);
4654 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4660 err
= strict_strtoul(buf
, 10, &min
);
4664 set_min_partial(s
, min
);
4667 SLAB_ATTR(min_partial
);
4669 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4671 return sprintf(buf
, "%u\n", s
->cpu_partial
);
4674 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4677 unsigned long objects
;
4680 err
= strict_strtoul(buf
, 10, &objects
);
4683 if (objects
&& kmem_cache_debug(s
))
4686 s
->cpu_partial
= objects
;
4690 SLAB_ATTR(cpu_partial
);
4692 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4696 return sprintf(buf
, "%pS\n", s
->ctor
);
4700 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4702 return sprintf(buf
, "%d\n", s
->refcount
- 1);
4704 SLAB_ATTR_RO(aliases
);
4706 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4708 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4710 SLAB_ATTR_RO(partial
);
4712 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
4714 return show_slab_objects(s
, buf
, SO_CPU
);
4716 SLAB_ATTR_RO(cpu_slabs
);
4718 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
4720 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
4722 SLAB_ATTR_RO(objects
);
4724 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
4726 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
4728 SLAB_ATTR_RO(objects_partial
);
4730 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4737 for_each_online_cpu(cpu
) {
4738 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
)->partial
;
4741 pages
+= page
->pages
;
4742 objects
+= page
->pobjects
;
4746 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
4749 for_each_online_cpu(cpu
) {
4750 struct page
*page
= per_cpu_ptr(s
->cpu_slab
, cpu
) ->partial
;
4752 if (page
&& len
< PAGE_SIZE
- 20)
4753 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
4754 page
->pobjects
, page
->pages
);
4757 return len
+ sprintf(buf
+ len
, "\n");
4759 SLAB_ATTR_RO(slabs_cpu_partial
);
4761 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
4763 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
4766 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
4767 const char *buf
, size_t length
)
4769 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
4771 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
4774 SLAB_ATTR(reclaim_account
);
4776 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
4778 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
4780 SLAB_ATTR_RO(hwcache_align
);
4782 #ifdef CONFIG_ZONE_DMA
4783 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
4785 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
4787 SLAB_ATTR_RO(cache_dma
);
4790 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
4792 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
4794 SLAB_ATTR_RO(destroy_by_rcu
);
4796 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
4798 return sprintf(buf
, "%d\n", s
->reserved
);
4800 SLAB_ATTR_RO(reserved
);
4802 #ifdef CONFIG_SLUB_DEBUG
4803 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
4805 return show_slab_objects(s
, buf
, SO_ALL
);
4807 SLAB_ATTR_RO(slabs
);
4809 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
4811 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
4813 SLAB_ATTR_RO(total_objects
);
4815 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
4817 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
4820 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
4821 const char *buf
, size_t length
)
4823 s
->flags
&= ~SLAB_DEBUG_FREE
;
4824 if (buf
[0] == '1') {
4825 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4826 s
->flags
|= SLAB_DEBUG_FREE
;
4830 SLAB_ATTR(sanity_checks
);
4832 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
4834 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
4837 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
4840 s
->flags
&= ~SLAB_TRACE
;
4841 if (buf
[0] == '1') {
4842 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4843 s
->flags
|= SLAB_TRACE
;
4849 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
4851 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
4854 static ssize_t
red_zone_store(struct kmem_cache
*s
,
4855 const char *buf
, size_t length
)
4857 if (any_slab_objects(s
))
4860 s
->flags
&= ~SLAB_RED_ZONE
;
4861 if (buf
[0] == '1') {
4862 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4863 s
->flags
|= SLAB_RED_ZONE
;
4865 calculate_sizes(s
, -1);
4868 SLAB_ATTR(red_zone
);
4870 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
4872 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
4875 static ssize_t
poison_store(struct kmem_cache
*s
,
4876 const char *buf
, size_t length
)
4878 if (any_slab_objects(s
))
4881 s
->flags
&= ~SLAB_POISON
;
4882 if (buf
[0] == '1') {
4883 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4884 s
->flags
|= SLAB_POISON
;
4886 calculate_sizes(s
, -1);
4891 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
4893 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
4896 static ssize_t
store_user_store(struct kmem_cache
*s
,
4897 const char *buf
, size_t length
)
4899 if (any_slab_objects(s
))
4902 s
->flags
&= ~SLAB_STORE_USER
;
4903 if (buf
[0] == '1') {
4904 s
->flags
&= ~__CMPXCHG_DOUBLE
;
4905 s
->flags
|= SLAB_STORE_USER
;
4907 calculate_sizes(s
, -1);
4910 SLAB_ATTR(store_user
);
4912 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4917 static ssize_t
validate_store(struct kmem_cache
*s
,
4918 const char *buf
, size_t length
)
4922 if (buf
[0] == '1') {
4923 ret
= validate_slab_cache(s
);
4929 SLAB_ATTR(validate
);
4931 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4933 if (!(s
->flags
& SLAB_STORE_USER
))
4935 return list_locations(s
, buf
, TRACK_ALLOC
);
4937 SLAB_ATTR_RO(alloc_calls
);
4939 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4941 if (!(s
->flags
& SLAB_STORE_USER
))
4943 return list_locations(s
, buf
, TRACK_FREE
);
4945 SLAB_ATTR_RO(free_calls
);
4946 #endif /* CONFIG_SLUB_DEBUG */
4948 #ifdef CONFIG_FAILSLAB
4949 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
4951 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
4954 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
4957 s
->flags
&= ~SLAB_FAILSLAB
;
4959 s
->flags
|= SLAB_FAILSLAB
;
4962 SLAB_ATTR(failslab
);
4965 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4970 static ssize_t
shrink_store(struct kmem_cache
*s
,
4971 const char *buf
, size_t length
)
4973 if (buf
[0] == '1') {
4974 int rc
= kmem_cache_shrink(s
);
4985 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4987 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4990 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4991 const char *buf
, size_t length
)
4993 unsigned long ratio
;
4996 err
= strict_strtoul(buf
, 10, &ratio
);
5001 s
->remote_node_defrag_ratio
= ratio
* 10;
5005 SLAB_ATTR(remote_node_defrag_ratio
);
5008 #ifdef CONFIG_SLUB_STATS
5009 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5011 unsigned long sum
= 0;
5014 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5019 for_each_online_cpu(cpu
) {
5020 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5026 len
= sprintf(buf
, "%lu", sum
);
5029 for_each_online_cpu(cpu
) {
5030 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5031 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5035 return len
+ sprintf(buf
+ len
, "\n");
5038 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5042 for_each_online_cpu(cpu
)
5043 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5046 #define STAT_ATTR(si, text) \
5047 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5049 return show_stat(s, buf, si); \
5051 static ssize_t text##_store(struct kmem_cache *s, \
5052 const char *buf, size_t length) \
5054 if (buf[0] != '0') \
5056 clear_stat(s, si); \
5061 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5062 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5063 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5064 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5065 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5066 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5067 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5068 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5069 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5070 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5071 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5072 STAT_ATTR(FREE_SLAB
, free_slab
);
5073 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5074 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5075 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5076 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5077 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5078 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5079 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5080 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5081 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5082 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5083 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5084 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5085 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5086 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5089 static struct attribute
*slab_attrs
[] = {
5090 &slab_size_attr
.attr
,
5091 &object_size_attr
.attr
,
5092 &objs_per_slab_attr
.attr
,
5094 &min_partial_attr
.attr
,
5095 &cpu_partial_attr
.attr
,
5097 &objects_partial_attr
.attr
,
5099 &cpu_slabs_attr
.attr
,
5103 &hwcache_align_attr
.attr
,
5104 &reclaim_account_attr
.attr
,
5105 &destroy_by_rcu_attr
.attr
,
5107 &reserved_attr
.attr
,
5108 &slabs_cpu_partial_attr
.attr
,
5109 #ifdef CONFIG_SLUB_DEBUG
5110 &total_objects_attr
.attr
,
5112 &sanity_checks_attr
.attr
,
5114 &red_zone_attr
.attr
,
5116 &store_user_attr
.attr
,
5117 &validate_attr
.attr
,
5118 &alloc_calls_attr
.attr
,
5119 &free_calls_attr
.attr
,
5121 #ifdef CONFIG_ZONE_DMA
5122 &cache_dma_attr
.attr
,
5125 &remote_node_defrag_ratio_attr
.attr
,
5127 #ifdef CONFIG_SLUB_STATS
5128 &alloc_fastpath_attr
.attr
,
5129 &alloc_slowpath_attr
.attr
,
5130 &free_fastpath_attr
.attr
,
5131 &free_slowpath_attr
.attr
,
5132 &free_frozen_attr
.attr
,
5133 &free_add_partial_attr
.attr
,
5134 &free_remove_partial_attr
.attr
,
5135 &alloc_from_partial_attr
.attr
,
5136 &alloc_slab_attr
.attr
,
5137 &alloc_refill_attr
.attr
,
5138 &alloc_node_mismatch_attr
.attr
,
5139 &free_slab_attr
.attr
,
5140 &cpuslab_flush_attr
.attr
,
5141 &deactivate_full_attr
.attr
,
5142 &deactivate_empty_attr
.attr
,
5143 &deactivate_to_head_attr
.attr
,
5144 &deactivate_to_tail_attr
.attr
,
5145 &deactivate_remote_frees_attr
.attr
,
5146 &deactivate_bypass_attr
.attr
,
5147 &order_fallback_attr
.attr
,
5148 &cmpxchg_double_fail_attr
.attr
,
5149 &cmpxchg_double_cpu_fail_attr
.attr
,
5150 &cpu_partial_alloc_attr
.attr
,
5151 &cpu_partial_free_attr
.attr
,
5152 &cpu_partial_node_attr
.attr
,
5153 &cpu_partial_drain_attr
.attr
,
5155 #ifdef CONFIG_FAILSLAB
5156 &failslab_attr
.attr
,
5162 static struct attribute_group slab_attr_group
= {
5163 .attrs
= slab_attrs
,
5166 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5167 struct attribute
*attr
,
5170 struct slab_attribute
*attribute
;
5171 struct kmem_cache
*s
;
5174 attribute
= to_slab_attr(attr
);
5177 if (!attribute
->show
)
5180 err
= attribute
->show(s
, buf
);
5185 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5186 struct attribute
*attr
,
5187 const char *buf
, size_t len
)
5189 struct slab_attribute
*attribute
;
5190 struct kmem_cache
*s
;
5193 attribute
= to_slab_attr(attr
);
5196 if (!attribute
->store
)
5199 err
= attribute
->store(s
, buf
, len
);
5204 static const struct sysfs_ops slab_sysfs_ops
= {
5205 .show
= slab_attr_show
,
5206 .store
= slab_attr_store
,
5209 static struct kobj_type slab_ktype
= {
5210 .sysfs_ops
= &slab_sysfs_ops
,
5213 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5215 struct kobj_type
*ktype
= get_ktype(kobj
);
5217 if (ktype
== &slab_ktype
)
5222 static const struct kset_uevent_ops slab_uevent_ops
= {
5223 .filter
= uevent_filter
,
5226 static struct kset
*slab_kset
;
5228 #define ID_STR_LENGTH 64
5230 /* Create a unique string id for a slab cache:
5232 * Format :[flags-]size
5234 static char *create_unique_id(struct kmem_cache
*s
)
5236 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5243 * First flags affecting slabcache operations. We will only
5244 * get here for aliasable slabs so we do not need to support
5245 * too many flags. The flags here must cover all flags that
5246 * are matched during merging to guarantee that the id is
5249 if (s
->flags
& SLAB_CACHE_DMA
)
5251 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5253 if (s
->flags
& SLAB_DEBUG_FREE
)
5255 if (!(s
->flags
& SLAB_NOTRACK
))
5259 p
+= sprintf(p
, "%07d", s
->size
);
5260 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5264 static int sysfs_slab_add(struct kmem_cache
*s
)
5270 if (slab_state
< FULL
)
5271 /* Defer until later */
5274 unmergeable
= slab_unmergeable(s
);
5277 * Slabcache can never be merged so we can use the name proper.
5278 * This is typically the case for debug situations. In that
5279 * case we can catch duplicate names easily.
5281 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5285 * Create a unique name for the slab as a target
5288 name
= create_unique_id(s
);
5291 s
->kobj
.kset
= slab_kset
;
5292 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
5294 kobject_put(&s
->kobj
);
5298 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5300 kobject_del(&s
->kobj
);
5301 kobject_put(&s
->kobj
);
5304 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5306 /* Setup first alias */
5307 sysfs_slab_alias(s
, s
->name
);
5313 static void sysfs_slab_remove(struct kmem_cache
*s
)
5315 if (slab_state
< FULL
)
5317 * Sysfs has not been setup yet so no need to remove the
5322 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5323 kobject_del(&s
->kobj
);
5324 kobject_put(&s
->kobj
);
5328 * Need to buffer aliases during bootup until sysfs becomes
5329 * available lest we lose that information.
5331 struct saved_alias
{
5332 struct kmem_cache
*s
;
5334 struct saved_alias
*next
;
5337 static struct saved_alias
*alias_list
;
5339 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5341 struct saved_alias
*al
;
5343 if (slab_state
== FULL
) {
5345 * If we have a leftover link then remove it.
5347 sysfs_remove_link(&slab_kset
->kobj
, name
);
5348 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5351 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5357 al
->next
= alias_list
;
5362 static int __init
slab_sysfs_init(void)
5364 struct kmem_cache
*s
;
5367 mutex_lock(&slab_mutex
);
5369 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5371 mutex_unlock(&slab_mutex
);
5372 printk(KERN_ERR
"Cannot register slab subsystem.\n");
5378 list_for_each_entry(s
, &slab_caches
, list
) {
5379 err
= sysfs_slab_add(s
);
5381 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
5382 " to sysfs\n", s
->name
);
5385 while (alias_list
) {
5386 struct saved_alias
*al
= alias_list
;
5388 alias_list
= alias_list
->next
;
5389 err
= sysfs_slab_alias(al
->s
, al
->name
);
5391 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
5392 " %s to sysfs\n", al
->name
);
5396 mutex_unlock(&slab_mutex
);
5401 __initcall(slab_sysfs_init
);
5402 #endif /* CONFIG_SYSFS */
5405 * The /proc/slabinfo ABI
5407 #ifdef CONFIG_SLABINFO
5408 static void print_slabinfo_header(struct seq_file
*m
)
5410 seq_puts(m
, "slabinfo - version: 2.1\n");
5411 seq_puts(m
, "# name <active_objs> <num_objs> <object_size> "
5412 "<objperslab> <pagesperslab>");
5413 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
5414 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
5418 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
5422 mutex_lock(&slab_mutex
);
5424 print_slabinfo_header(m
);
5426 return seq_list_start(&slab_caches
, *pos
);
5429 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
5431 return seq_list_next(p
, &slab_caches
, pos
);
5434 static void s_stop(struct seq_file
*m
, void *p
)
5436 mutex_unlock(&slab_mutex
);
5439 static int s_show(struct seq_file
*m
, void *p
)
5441 unsigned long nr_partials
= 0;
5442 unsigned long nr_slabs
= 0;
5443 unsigned long nr_inuse
= 0;
5444 unsigned long nr_objs
= 0;
5445 unsigned long nr_free
= 0;
5446 struct kmem_cache
*s
;
5449 s
= list_entry(p
, struct kmem_cache
, list
);
5451 for_each_online_node(node
) {
5452 struct kmem_cache_node
*n
= get_node(s
, node
);
5457 nr_partials
+= n
->nr_partial
;
5458 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
5459 nr_objs
+= atomic_long_read(&n
->total_objects
);
5460 nr_free
+= count_partial(n
, count_free
);
5463 nr_inuse
= nr_objs
- nr_free
;
5465 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
5466 nr_objs
, s
->size
, oo_objects(s
->oo
),
5467 (1 << oo_order(s
->oo
)));
5468 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
5469 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
5475 static const struct seq_operations slabinfo_op
= {
5482 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
5484 return seq_open(file
, &slabinfo_op
);
5487 static const struct file_operations proc_slabinfo_operations
= {
5488 .open
= slabinfo_open
,
5490 .llseek
= seq_lseek
,
5491 .release
= seq_release
,
5494 static int __init
slab_proc_init(void)
5496 proc_create("slabinfo", S_IRUSR
, NULL
, &proc_slabinfo_operations
);
5499 module_init(slab_proc_init
);
5500 #endif /* CONFIG_SLABINFO */