2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 * page_lock_anon_vma() VS put_anon_vma()
99 * mutex_trylock() atomic_dec_and_test()
101 * atomic_read() mutex_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 if (mutex_is_locked(&anon_vma
->root
->mutex
)) {
107 anon_vma_lock(anon_vma
);
108 anon_vma_unlock(anon_vma
);
111 kmem_cache_free(anon_vma_cachep
, anon_vma
);
114 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
116 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
119 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
121 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
124 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
125 struct anon_vma_chain
*avc
,
126 struct anon_vma
*anon_vma
)
129 avc
->anon_vma
= anon_vma
;
130 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
131 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
159 * This must be called with the mmap_sem held for reading.
161 int anon_vma_prepare(struct vm_area_struct
*vma
)
163 struct anon_vma
*anon_vma
= vma
->anon_vma
;
164 struct anon_vma_chain
*avc
;
167 if (unlikely(!anon_vma
)) {
168 struct mm_struct
*mm
= vma
->vm_mm
;
169 struct anon_vma
*allocated
;
171 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
175 anon_vma
= find_mergeable_anon_vma(vma
);
178 anon_vma
= anon_vma_alloc();
179 if (unlikely(!anon_vma
))
180 goto out_enomem_free_avc
;
181 allocated
= anon_vma
;
184 anon_vma_lock(anon_vma
);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm
->page_table_lock
);
187 if (likely(!vma
->anon_vma
)) {
188 vma
->anon_vma
= anon_vma
;
189 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 spin_unlock(&mm
->page_table_lock
);
194 anon_vma_unlock(anon_vma
);
196 if (unlikely(allocated
))
197 put_anon_vma(allocated
);
199 anon_vma_chain_free(avc
);
204 anon_vma_chain_free(avc
);
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
217 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
219 struct anon_vma
*new_root
= anon_vma
->root
;
220 if (new_root
!= root
) {
221 if (WARN_ON_ONCE(root
))
222 mutex_unlock(&root
->mutex
);
224 mutex_lock(&root
->mutex
);
229 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
232 mutex_unlock(&root
->mutex
);
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
239 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
241 struct anon_vma_chain
*avc
, *pavc
;
242 struct anon_vma
*root
= NULL
;
244 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
245 struct anon_vma
*anon_vma
;
247 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
248 if (unlikely(!avc
)) {
249 unlock_anon_vma_root(root
);
251 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
255 anon_vma
= pavc
->anon_vma
;
256 root
= lock_anon_vma_root(root
, anon_vma
);
257 anon_vma_chain_link(dst
, avc
, anon_vma
);
259 unlock_anon_vma_root(root
);
263 unlink_anon_vmas(dst
);
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
272 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
274 struct anon_vma_chain
*avc
;
275 struct anon_vma
*anon_vma
;
277 /* Don't bother if the parent process has no anon_vma here. */
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
285 if (anon_vma_clone(vma
, pvma
))
288 /* Then add our own anon_vma. */
289 anon_vma
= anon_vma_alloc();
292 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
294 goto out_error_free_anon_vma
;
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
300 anon_vma
->root
= pvma
->anon_vma
->root
;
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
306 get_anon_vma(anon_vma
->root
);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma
->anon_vma
= anon_vma
;
309 anon_vma_lock(anon_vma
);
310 anon_vma_chain_link(vma
, avc
, anon_vma
);
311 anon_vma_unlock(anon_vma
);
315 out_error_free_anon_vma
:
316 put_anon_vma(anon_vma
);
318 unlink_anon_vmas(vma
);
322 void unlink_anon_vmas(struct vm_area_struct
*vma
)
324 struct anon_vma_chain
*avc
, *next
;
325 struct anon_vma
*root
= NULL
;
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
332 struct anon_vma
*anon_vma
= avc
->anon_vma
;
334 root
= lock_anon_vma_root(root
, anon_vma
);
335 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
341 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
344 list_del(&avc
->same_vma
);
345 anon_vma_chain_free(avc
);
347 unlock_anon_vma_root(root
);
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to acquire the anon_vma->root->mutex.
354 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
355 struct anon_vma
*anon_vma
= avc
->anon_vma
;
357 put_anon_vma(anon_vma
);
359 list_del(&avc
->same_vma
);
360 anon_vma_chain_free(avc
);
364 static void anon_vma_ctor(void *data
)
366 struct anon_vma
*anon_vma
= data
;
368 mutex_init(&anon_vma
->mutex
);
369 atomic_set(&anon_vma
->refcount
, 0);
370 anon_vma
->rb_root
= RB_ROOT
;
373 void __init
anon_vma_init(void)
375 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
376 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
377 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
403 struct anon_vma
*page_get_anon_vma(struct page
*page
)
405 struct anon_vma
*anon_vma
= NULL
;
406 unsigned long anon_mapping
;
409 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
410 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
412 if (!page_mapped(page
))
415 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
416 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
428 if (!page_mapped(page
)) {
429 put_anon_vma(anon_vma
);
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
445 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
447 struct anon_vma
*anon_vma
= NULL
;
448 struct anon_vma
*root_anon_vma
;
449 unsigned long anon_mapping
;
452 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
453 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
455 if (!page_mapped(page
))
458 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
459 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
460 if (mutex_trylock(&root_anon_vma
->mutex
)) {
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
466 if (!page_mapped(page
)) {
467 mutex_unlock(&root_anon_vma
->mutex
);
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
479 if (!page_mapped(page
)) {
480 put_anon_vma(anon_vma
);
485 /* we pinned the anon_vma, its safe to sleep */
487 anon_vma_lock(anon_vma
);
489 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock() recursion.
495 anon_vma_unlock(anon_vma
);
496 __put_anon_vma(anon_vma
);
507 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
509 anon_vma_unlock(anon_vma
);
513 * At what user virtual address is page expected in @vma?
515 static inline unsigned long
516 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
518 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
520 if (unlikely(is_vm_hugetlb_page(vma
)))
521 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
523 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
527 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
529 unsigned long address
= __vma_address(page
, vma
);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
543 unsigned long address
;
544 if (PageAnon(page
)) {
545 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma
->anon_vma
|| !page__anon_vma
||
551 vma
->anon_vma
->root
!= page__anon_vma
->root
)
553 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
555 vma
->vm_file
->f_mapping
!= page
->mapping
)
559 address
= __vma_address(page
, vma
);
560 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
566 * Check that @page is mapped at @address into @mm.
568 * If @sync is false, page_check_address may perform a racy check to avoid
569 * the page table lock when the pte is not present (helpful when reclaiming
570 * highly shared pages).
572 * On success returns with pte mapped and locked.
574 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
575 unsigned long address
, spinlock_t
**ptlp
, int sync
)
583 if (unlikely(PageHuge(page
))) {
584 pte
= huge_pte_offset(mm
, address
);
585 ptl
= &mm
->page_table_lock
;
589 pgd
= pgd_offset(mm
, address
);
590 if (!pgd_present(*pgd
))
593 pud
= pud_offset(pgd
, address
);
594 if (!pud_present(*pud
))
597 pmd
= pmd_offset(pud
, address
);
598 if (!pmd_present(*pmd
))
600 if (pmd_trans_huge(*pmd
))
603 pte
= pte_offset_map(pmd
, address
);
604 /* Make a quick check before getting the lock */
605 if (!sync
&& !pte_present(*pte
)) {
610 ptl
= pte_lockptr(mm
, pmd
);
613 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
617 pte_unmap_unlock(pte
, ptl
);
622 * page_mapped_in_vma - check whether a page is really mapped in a VMA
623 * @page: the page to test
624 * @vma: the VMA to test
626 * Returns 1 if the page is mapped into the page tables of the VMA, 0
627 * if the page is not mapped into the page tables of this VMA. Only
628 * valid for normal file or anonymous VMAs.
630 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
632 unsigned long address
;
636 address
= __vma_address(page
, vma
);
637 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
639 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
640 if (!pte
) /* the page is not in this mm */
642 pte_unmap_unlock(pte
, ptl
);
648 * Subfunctions of page_referenced: page_referenced_one called
649 * repeatedly from either page_referenced_anon or page_referenced_file.
651 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
652 unsigned long address
, unsigned int *mapcount
,
653 unsigned long *vm_flags
)
655 struct mm_struct
*mm
= vma
->vm_mm
;
658 if (unlikely(PageTransHuge(page
))) {
661 spin_lock(&mm
->page_table_lock
);
663 * rmap might return false positives; we must filter
664 * these out using page_check_address_pmd().
666 pmd
= page_check_address_pmd(page
, mm
, address
,
667 PAGE_CHECK_ADDRESS_PMD_FLAG
);
669 spin_unlock(&mm
->page_table_lock
);
673 if (vma
->vm_flags
& VM_LOCKED
) {
674 spin_unlock(&mm
->page_table_lock
);
675 *mapcount
= 0; /* break early from loop */
676 *vm_flags
|= VM_LOCKED
;
680 /* go ahead even if the pmd is pmd_trans_splitting() */
681 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
683 spin_unlock(&mm
->page_table_lock
);
689 * rmap might return false positives; we must filter
690 * these out using page_check_address().
692 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
696 if (vma
->vm_flags
& VM_LOCKED
) {
697 pte_unmap_unlock(pte
, ptl
);
698 *mapcount
= 0; /* break early from loop */
699 *vm_flags
|= VM_LOCKED
;
703 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
705 * Don't treat a reference through a sequentially read
706 * mapping as such. If the page has been used in
707 * another mapping, we will catch it; if this other
708 * mapping is already gone, the unmap path will have
709 * set PG_referenced or activated the page.
711 if (likely(!VM_SequentialReadHint(vma
)))
714 pte_unmap_unlock(pte
, ptl
);
720 *vm_flags
|= vma
->vm_flags
;
725 static int page_referenced_anon(struct page
*page
,
726 struct mem_cgroup
*memcg
,
727 unsigned long *vm_flags
)
729 unsigned int mapcount
;
730 struct anon_vma
*anon_vma
;
732 struct anon_vma_chain
*avc
;
735 anon_vma
= page_lock_anon_vma(page
);
739 mapcount
= page_mapcount(page
);
740 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
741 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
742 struct vm_area_struct
*vma
= avc
->vma
;
743 unsigned long address
= vma_address(page
, vma
);
745 * If we are reclaiming on behalf of a cgroup, skip
746 * counting on behalf of references from different
749 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
751 referenced
+= page_referenced_one(page
, vma
, address
,
752 &mapcount
, vm_flags
);
757 page_unlock_anon_vma(anon_vma
);
762 * page_referenced_file - referenced check for object-based rmap
763 * @page: the page we're checking references on.
764 * @memcg: target memory control group
765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
767 * For an object-based mapped page, find all the places it is mapped and
768 * check/clear the referenced flag. This is done by following the page->mapping
769 * pointer, then walking the chain of vmas it holds. It returns the number
770 * of references it found.
772 * This function is only called from page_referenced for object-based pages.
774 static int page_referenced_file(struct page
*page
,
775 struct mem_cgroup
*memcg
,
776 unsigned long *vm_flags
)
778 unsigned int mapcount
;
779 struct address_space
*mapping
= page
->mapping
;
780 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
781 struct vm_area_struct
*vma
;
785 * The caller's checks on page->mapping and !PageAnon have made
786 * sure that this is a file page: the check for page->mapping
787 * excludes the case just before it gets set on an anon page.
789 BUG_ON(PageAnon(page
));
792 * The page lock not only makes sure that page->mapping cannot
793 * suddenly be NULLified by truncation, it makes sure that the
794 * structure at mapping cannot be freed and reused yet,
795 * so we can safely take mapping->i_mmap_mutex.
797 BUG_ON(!PageLocked(page
));
799 mutex_lock(&mapping
->i_mmap_mutex
);
802 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
803 * is more likely to be accurate if we note it after spinning.
805 mapcount
= page_mapcount(page
);
807 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
808 unsigned long address
= vma_address(page
, vma
);
810 * If we are reclaiming on behalf of a cgroup, skip
811 * counting on behalf of references from different
814 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
816 referenced
+= page_referenced_one(page
, vma
, address
,
817 &mapcount
, vm_flags
);
822 mutex_unlock(&mapping
->i_mmap_mutex
);
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
830 * @memcg: target memory cgroup
831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
836 int page_referenced(struct page
*page
,
838 struct mem_cgroup
*memcg
,
839 unsigned long *vm_flags
)
845 if (page_mapped(page
) && page_rmapping(page
)) {
846 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
847 we_locked
= trylock_page(page
);
853 if (unlikely(PageKsm(page
)))
854 referenced
+= page_referenced_ksm(page
, memcg
,
856 else if (PageAnon(page
))
857 referenced
+= page_referenced_anon(page
, memcg
,
859 else if (page
->mapping
)
860 referenced
+= page_referenced_file(page
, memcg
,
865 if (page_test_and_clear_young(page_to_pfn(page
)))
872 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
873 unsigned long address
)
875 struct mm_struct
*mm
= vma
->vm_mm
;
880 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
884 if (pte_dirty(*pte
) || pte_write(*pte
)) {
887 flush_cache_page(vma
, address
, pte_pfn(*pte
));
888 entry
= ptep_clear_flush(vma
, address
, pte
);
889 entry
= pte_wrprotect(entry
);
890 entry
= pte_mkclean(entry
);
891 set_pte_at(mm
, address
, pte
, entry
);
895 pte_unmap_unlock(pte
, ptl
);
898 mmu_notifier_invalidate_page(mm
, address
);
903 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
905 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
906 struct vm_area_struct
*vma
;
909 BUG_ON(PageAnon(page
));
911 mutex_lock(&mapping
->i_mmap_mutex
);
912 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
913 if (vma
->vm_flags
& VM_SHARED
) {
914 unsigned long address
= vma_address(page
, vma
);
915 ret
+= page_mkclean_one(page
, vma
, address
);
918 mutex_unlock(&mapping
->i_mmap_mutex
);
922 int page_mkclean(struct page
*page
)
926 BUG_ON(!PageLocked(page
));
928 if (page_mapped(page
)) {
929 struct address_space
*mapping
= page_mapping(page
);
931 ret
= page_mkclean_file(mapping
, page
);
936 EXPORT_SYMBOL_GPL(page_mkclean
);
939 * page_move_anon_rmap - move a page to our anon_vma
940 * @page: the page to move to our anon_vma
941 * @vma: the vma the page belongs to
942 * @address: the user virtual address mapped
944 * When a page belongs exclusively to one process after a COW event,
945 * that page can be moved into the anon_vma that belongs to just that
946 * process, so the rmap code will not search the parent or sibling
949 void page_move_anon_rmap(struct page
*page
,
950 struct vm_area_struct
*vma
, unsigned long address
)
952 struct anon_vma
*anon_vma
= vma
->anon_vma
;
954 VM_BUG_ON(!PageLocked(page
));
955 VM_BUG_ON(!anon_vma
);
956 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
958 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
959 page
->mapping
= (struct address_space
*) anon_vma
;
963 * __page_set_anon_rmap - set up new anonymous rmap
964 * @page: Page to add to rmap
965 * @vma: VM area to add page to.
966 * @address: User virtual address of the mapping
967 * @exclusive: the page is exclusively owned by the current process
969 static void __page_set_anon_rmap(struct page
*page
,
970 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
972 struct anon_vma
*anon_vma
= vma
->anon_vma
;
980 * If the page isn't exclusively mapped into this vma,
981 * we must use the _oldest_ possible anon_vma for the
985 anon_vma
= anon_vma
->root
;
987 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
988 page
->mapping
= (struct address_space
*) anon_vma
;
989 page
->index
= linear_page_index(vma
, address
);
993 * __page_check_anon_rmap - sanity check anonymous rmap addition
994 * @page: the page to add the mapping to
995 * @vma: the vm area in which the mapping is added
996 * @address: the user virtual address mapped
998 static void __page_check_anon_rmap(struct page
*page
,
999 struct vm_area_struct
*vma
, unsigned long address
)
1001 #ifdef CONFIG_DEBUG_VM
1003 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 * be set up correctly at this point.
1006 * We have exclusion against page_add_anon_rmap because the caller
1007 * always holds the page locked, except if called from page_dup_rmap,
1008 * in which case the page is already known to be setup.
1010 * We have exclusion against page_add_new_anon_rmap because those pages
1011 * are initially only visible via the pagetables, and the pte is locked
1012 * over the call to page_add_new_anon_rmap.
1014 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1015 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1020 * page_add_anon_rmap - add pte mapping to an anonymous page
1021 * @page: the page to add the mapping to
1022 * @vma: the vm area in which the mapping is added
1023 * @address: the user virtual address mapped
1025 * The caller needs to hold the pte lock, and the page must be locked in
1026 * the anon_vma case: to serialize mapping,index checking after setting,
1027 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1028 * (but PageKsm is never downgraded to PageAnon).
1030 void page_add_anon_rmap(struct page
*page
,
1031 struct vm_area_struct
*vma
, unsigned long address
)
1033 do_page_add_anon_rmap(page
, vma
, address
, 0);
1037 * Special version of the above for do_swap_page, which often runs
1038 * into pages that are exclusively owned by the current process.
1039 * Everybody else should continue to use page_add_anon_rmap above.
1041 void do_page_add_anon_rmap(struct page
*page
,
1042 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1044 int first
= atomic_inc_and_test(&page
->_mapcount
);
1046 if (!PageTransHuge(page
))
1047 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1049 __inc_zone_page_state(page
,
1050 NR_ANON_TRANSPARENT_HUGEPAGES
);
1052 if (unlikely(PageKsm(page
)))
1055 VM_BUG_ON(!PageLocked(page
));
1056 /* address might be in next vma when migration races vma_adjust */
1058 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1060 __page_check_anon_rmap(page
, vma
, address
);
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page: the page to add the mapping to
1066 * @vma: the vm area in which the mapping is added
1067 * @address: the user virtual address mapped
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
1071 * Page does not have to be locked.
1073 void page_add_new_anon_rmap(struct page
*page
,
1074 struct vm_area_struct
*vma
, unsigned long address
)
1076 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1077 SetPageSwapBacked(page
);
1078 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1079 if (!PageTransHuge(page
))
1080 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1082 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1083 __page_set_anon_rmap(page
, vma
, address
, 1);
1084 if (!mlocked_vma_newpage(vma
, page
))
1085 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
1087 add_page_to_unevictable_list(page
);
1091 * page_add_file_rmap - add pte mapping to a file page
1092 * @page: the page to add the mapping to
1094 * The caller needs to hold the pte lock.
1096 void page_add_file_rmap(struct page
*page
)
1099 unsigned long flags
;
1101 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1102 if (atomic_inc_and_test(&page
->_mapcount
)) {
1103 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1104 mem_cgroup_inc_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1106 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1110 * page_remove_rmap - take down pte mapping from a page
1111 * @page: page to remove mapping from
1113 * The caller needs to hold the pte lock.
1115 void page_remove_rmap(struct page
*page
)
1117 struct address_space
*mapping
= page_mapping(page
);
1118 bool anon
= PageAnon(page
);
1120 unsigned long flags
;
1123 * The anon case has no mem_cgroup page_stat to update; but may
1124 * uncharge_page() below, where the lock ordering can deadlock if
1125 * we hold the lock against page_stat move: so avoid it on anon.
1128 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1130 /* page still mapped by someone else? */
1131 if (!atomic_add_negative(-1, &page
->_mapcount
))
1135 * Now that the last pte has gone, s390 must transfer dirty
1136 * flag from storage key to struct page. We can usually skip
1137 * this if the page is anon, so about to be freed; but perhaps
1138 * not if it's in swapcache - there might be another pte slot
1139 * containing the swap entry, but page not yet written to swap.
1141 * And we can skip it on file pages, so long as the filesystem
1142 * participates in dirty tracking; but need to catch shm and tmpfs
1143 * and ramfs pages which have been modified since creation by read
1146 * Note that mapping must be decided above, before decrementing
1147 * mapcount (which luckily provides a barrier): once page is unmapped,
1148 * it could be truncated and page->mapping reset to NULL at any moment.
1149 * Note also that we are relying on page_mapping(page) to set mapping
1150 * to &swapper_space when PageSwapCache(page).
1152 if (mapping
&& !mapping_cap_account_dirty(mapping
) &&
1153 page_test_and_clear_dirty(page_to_pfn(page
), 1))
1154 set_page_dirty(page
);
1156 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1157 * and not charged by memcg for now.
1159 if (unlikely(PageHuge(page
)))
1162 mem_cgroup_uncharge_page(page
);
1163 if (!PageTransHuge(page
))
1164 __dec_zone_page_state(page
, NR_ANON_PAGES
);
1166 __dec_zone_page_state(page
,
1167 NR_ANON_TRANSPARENT_HUGEPAGES
);
1169 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1170 mem_cgroup_dec_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1171 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1173 if (unlikely(PageMlocked(page
)))
1174 clear_page_mlock(page
);
1176 * It would be tidy to reset the PageAnon mapping here,
1177 * but that might overwrite a racing page_add_anon_rmap
1178 * which increments mapcount after us but sets mapping
1179 * before us: so leave the reset to free_hot_cold_page,
1180 * and remember that it's only reliable while mapped.
1181 * Leaving it set also helps swapoff to reinstate ptes
1182 * faster for those pages still in swapcache.
1187 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1191 * Subfunctions of try_to_unmap: try_to_unmap_one called
1192 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1194 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1195 unsigned long address
, enum ttu_flags flags
)
1197 struct mm_struct
*mm
= vma
->vm_mm
;
1201 int ret
= SWAP_AGAIN
;
1203 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1208 * If the page is mlock()d, we cannot swap it out.
1209 * If it's recently referenced (perhaps page_referenced
1210 * skipped over this mm) then we should reactivate it.
1212 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1213 if (vma
->vm_flags
& VM_LOCKED
)
1216 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1219 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1220 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1226 /* Nuke the page table entry. */
1227 flush_cache_page(vma
, address
, page_to_pfn(page
));
1228 pteval
= ptep_clear_flush(vma
, address
, pte
);
1230 /* Move the dirty bit to the physical page now the pte is gone. */
1231 if (pte_dirty(pteval
))
1232 set_page_dirty(page
);
1234 /* Update high watermark before we lower rss */
1235 update_hiwater_rss(mm
);
1237 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1239 dec_mm_counter(mm
, MM_ANONPAGES
);
1241 dec_mm_counter(mm
, MM_FILEPAGES
);
1242 set_pte_at(mm
, address
, pte
,
1243 swp_entry_to_pte(make_hwpoison_entry(page
)));
1244 } else if (PageAnon(page
)) {
1245 swp_entry_t entry
= { .val
= page_private(page
) };
1247 if (PageSwapCache(page
)) {
1249 * Store the swap location in the pte.
1250 * See handle_pte_fault() ...
1252 if (swap_duplicate(entry
) < 0) {
1253 set_pte_at(mm
, address
, pte
, pteval
);
1257 if (list_empty(&mm
->mmlist
)) {
1258 spin_lock(&mmlist_lock
);
1259 if (list_empty(&mm
->mmlist
))
1260 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1261 spin_unlock(&mmlist_lock
);
1263 dec_mm_counter(mm
, MM_ANONPAGES
);
1264 inc_mm_counter(mm
, MM_SWAPENTS
);
1265 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1267 * Store the pfn of the page in a special migration
1268 * pte. do_swap_page() will wait until the migration
1269 * pte is removed and then restart fault handling.
1271 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1272 entry
= make_migration_entry(page
, pte_write(pteval
));
1274 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1275 BUG_ON(pte_file(*pte
));
1276 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1277 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1278 /* Establish migration entry for a file page */
1280 entry
= make_migration_entry(page
, pte_write(pteval
));
1281 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1283 dec_mm_counter(mm
, MM_FILEPAGES
);
1285 page_remove_rmap(page
);
1286 page_cache_release(page
);
1289 pte_unmap_unlock(pte
, ptl
);
1290 if (ret
!= SWAP_FAIL
)
1291 mmu_notifier_invalidate_page(mm
, address
);
1296 pte_unmap_unlock(pte
, ptl
);
1300 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1301 * unstable result and race. Plus, We can't wait here because
1302 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1303 * if trylock failed, the page remain in evictable lru and later
1304 * vmscan could retry to move the page to unevictable lru if the
1305 * page is actually mlocked.
1307 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1308 if (vma
->vm_flags
& VM_LOCKED
) {
1309 mlock_vma_page(page
);
1312 up_read(&vma
->vm_mm
->mmap_sem
);
1318 * objrmap doesn't work for nonlinear VMAs because the assumption that
1319 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1320 * Consequently, given a particular page and its ->index, we cannot locate the
1321 * ptes which are mapping that page without an exhaustive linear search.
1323 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1324 * maps the file to which the target page belongs. The ->vm_private_data field
1325 * holds the current cursor into that scan. Successive searches will circulate
1326 * around the vma's virtual address space.
1328 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1329 * more scanning pressure is placed against them as well. Eventually pages
1330 * will become fully unmapped and are eligible for eviction.
1332 * For very sparsely populated VMAs this is a little inefficient - chances are
1333 * there there won't be many ptes located within the scan cluster. In this case
1334 * maybe we could scan further - to the end of the pte page, perhaps.
1336 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1337 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1338 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1339 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1341 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1342 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1344 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1345 struct vm_area_struct
*vma
, struct page
*check_page
)
1347 struct mm_struct
*mm
= vma
->vm_mm
;
1355 unsigned long address
;
1356 unsigned long mmun_start
; /* For mmu_notifiers */
1357 unsigned long mmun_end
; /* For mmu_notifiers */
1359 int ret
= SWAP_AGAIN
;
1362 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1363 end
= address
+ CLUSTER_SIZE
;
1364 if (address
< vma
->vm_start
)
1365 address
= vma
->vm_start
;
1366 if (end
> vma
->vm_end
)
1369 pgd
= pgd_offset(mm
, address
);
1370 if (!pgd_present(*pgd
))
1373 pud
= pud_offset(pgd
, address
);
1374 if (!pud_present(*pud
))
1377 pmd
= pmd_offset(pud
, address
);
1378 if (!pmd_present(*pmd
))
1381 mmun_start
= address
;
1383 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1386 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1387 * keep the sem while scanning the cluster for mlocking pages.
1389 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1390 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1392 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1395 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1397 /* Update high watermark before we lower rss */
1398 update_hiwater_rss(mm
);
1400 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1401 if (!pte_present(*pte
))
1403 page
= vm_normal_page(vma
, address
, *pte
);
1404 BUG_ON(!page
|| PageAnon(page
));
1407 mlock_vma_page(page
); /* no-op if already mlocked */
1408 if (page
== check_page
)
1410 continue; /* don't unmap */
1413 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1416 /* Nuke the page table entry. */
1417 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1418 pteval
= ptep_clear_flush(vma
, address
, pte
);
1420 /* If nonlinear, store the file page offset in the pte. */
1421 if (page
->index
!= linear_page_index(vma
, address
))
1422 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1424 /* Move the dirty bit to the physical page now the pte is gone. */
1425 if (pte_dirty(pteval
))
1426 set_page_dirty(page
);
1428 page_remove_rmap(page
);
1429 page_cache_release(page
);
1430 dec_mm_counter(mm
, MM_FILEPAGES
);
1433 pte_unmap_unlock(pte
- 1, ptl
);
1434 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1436 up_read(&vma
->vm_mm
->mmap_sem
);
1440 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1442 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1447 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1448 VM_STACK_INCOMPLETE_SETUP
)
1455 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1457 * @page: the page to unmap/unlock
1458 * @flags: action and flags
1460 * Find all the mappings of a page using the mapping pointer and the vma chains
1461 * contained in the anon_vma struct it points to.
1463 * This function is only called from try_to_unmap/try_to_munlock for
1465 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1466 * where the page was found will be held for write. So, we won't recheck
1467 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1470 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1472 struct anon_vma
*anon_vma
;
1474 struct anon_vma_chain
*avc
;
1475 int ret
= SWAP_AGAIN
;
1477 anon_vma
= page_lock_anon_vma(page
);
1481 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1482 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1483 struct vm_area_struct
*vma
= avc
->vma
;
1484 unsigned long address
;
1487 * During exec, a temporary VMA is setup and later moved.
1488 * The VMA is moved under the anon_vma lock but not the
1489 * page tables leading to a race where migration cannot
1490 * find the migration ptes. Rather than increasing the
1491 * locking requirements of exec(), migration skips
1492 * temporary VMAs until after exec() completes.
1494 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1495 is_vma_temporary_stack(vma
))
1498 address
= vma_address(page
, vma
);
1499 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1500 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1504 page_unlock_anon_vma(anon_vma
);
1509 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1510 * @page: the page to unmap/unlock
1511 * @flags: action and flags
1513 * Find all the mappings of a page using the mapping pointer and the vma chains
1514 * contained in the address_space struct it points to.
1516 * This function is only called from try_to_unmap/try_to_munlock for
1517 * object-based pages.
1518 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1519 * where the page was found will be held for write. So, we won't recheck
1520 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1523 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1525 struct address_space
*mapping
= page
->mapping
;
1526 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1527 struct vm_area_struct
*vma
;
1528 int ret
= SWAP_AGAIN
;
1529 unsigned long cursor
;
1530 unsigned long max_nl_cursor
= 0;
1531 unsigned long max_nl_size
= 0;
1532 unsigned int mapcount
;
1534 mutex_lock(&mapping
->i_mmap_mutex
);
1535 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1536 unsigned long address
= vma_address(page
, vma
);
1537 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1538 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1542 if (list_empty(&mapping
->i_mmap_nonlinear
))
1546 * We don't bother to try to find the munlocked page in nonlinears.
1547 * It's costly. Instead, later, page reclaim logic may call
1548 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1550 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1553 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1555 cursor
= (unsigned long) vma
->vm_private_data
;
1556 if (cursor
> max_nl_cursor
)
1557 max_nl_cursor
= cursor
;
1558 cursor
= vma
->vm_end
- vma
->vm_start
;
1559 if (cursor
> max_nl_size
)
1560 max_nl_size
= cursor
;
1563 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1569 * We don't try to search for this page in the nonlinear vmas,
1570 * and page_referenced wouldn't have found it anyway. Instead
1571 * just walk the nonlinear vmas trying to age and unmap some.
1572 * The mapcount of the page we came in with is irrelevant,
1573 * but even so use it as a guide to how hard we should try?
1575 mapcount
= page_mapcount(page
);
1580 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1581 if (max_nl_cursor
== 0)
1582 max_nl_cursor
= CLUSTER_SIZE
;
1585 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1587 cursor
= (unsigned long) vma
->vm_private_data
;
1588 while ( cursor
< max_nl_cursor
&&
1589 cursor
< vma
->vm_end
- vma
->vm_start
) {
1590 if (try_to_unmap_cluster(cursor
, &mapcount
,
1591 vma
, page
) == SWAP_MLOCK
)
1593 cursor
+= CLUSTER_SIZE
;
1594 vma
->vm_private_data
= (void *) cursor
;
1595 if ((int)mapcount
<= 0)
1598 vma
->vm_private_data
= (void *) max_nl_cursor
;
1601 max_nl_cursor
+= CLUSTER_SIZE
;
1602 } while (max_nl_cursor
<= max_nl_size
);
1605 * Don't loop forever (perhaps all the remaining pages are
1606 * in locked vmas). Reset cursor on all unreserved nonlinear
1607 * vmas, now forgetting on which ones it had fallen behind.
1609 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1610 vma
->vm_private_data
= NULL
;
1612 mutex_unlock(&mapping
->i_mmap_mutex
);
1617 * try_to_unmap - try to remove all page table mappings to a page
1618 * @page: the page to get unmapped
1619 * @flags: action and flags
1621 * Tries to remove all the page table entries which are mapping this
1622 * page, used in the pageout path. Caller must hold the page lock.
1623 * Return values are:
1625 * SWAP_SUCCESS - we succeeded in removing all mappings
1626 * SWAP_AGAIN - we missed a mapping, try again later
1627 * SWAP_FAIL - the page is unswappable
1628 * SWAP_MLOCK - page is mlocked.
1630 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1634 BUG_ON(!PageLocked(page
));
1635 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1637 if (unlikely(PageKsm(page
)))
1638 ret
= try_to_unmap_ksm(page
, flags
);
1639 else if (PageAnon(page
))
1640 ret
= try_to_unmap_anon(page
, flags
);
1642 ret
= try_to_unmap_file(page
, flags
);
1643 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1649 * try_to_munlock - try to munlock a page
1650 * @page: the page to be munlocked
1652 * Called from munlock code. Checks all of the VMAs mapping the page
1653 * to make sure nobody else has this page mlocked. The page will be
1654 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1656 * Return values are:
1658 * SWAP_AGAIN - no vma is holding page mlocked, or,
1659 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1660 * SWAP_FAIL - page cannot be located at present
1661 * SWAP_MLOCK - page is now mlocked.
1663 int try_to_munlock(struct page
*page
)
1665 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1667 if (unlikely(PageKsm(page
)))
1668 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1669 else if (PageAnon(page
))
1670 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1672 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1675 void __put_anon_vma(struct anon_vma
*anon_vma
)
1677 struct anon_vma
*root
= anon_vma
->root
;
1679 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1680 anon_vma_free(root
);
1682 anon_vma_free(anon_vma
);
1685 #ifdef CONFIG_MIGRATION
1687 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688 * Called by migrate.c to remove migration ptes, but might be used more later.
1690 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1691 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1693 struct anon_vma
*anon_vma
;
1694 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1695 struct anon_vma_chain
*avc
;
1696 int ret
= SWAP_AGAIN
;
1699 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1700 * because that depends on page_mapped(); but not all its usages
1701 * are holding mmap_sem. Users without mmap_sem are required to
1702 * take a reference count to prevent the anon_vma disappearing
1704 anon_vma
= page_anon_vma(page
);
1707 anon_vma_lock(anon_vma
);
1708 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1709 struct vm_area_struct
*vma
= avc
->vma
;
1710 unsigned long address
= vma_address(page
, vma
);
1711 ret
= rmap_one(page
, vma
, address
, arg
);
1712 if (ret
!= SWAP_AGAIN
)
1715 anon_vma_unlock(anon_vma
);
1719 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1720 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1722 struct address_space
*mapping
= page
->mapping
;
1723 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1724 struct vm_area_struct
*vma
;
1725 int ret
= SWAP_AGAIN
;
1729 mutex_lock(&mapping
->i_mmap_mutex
);
1730 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1731 unsigned long address
= vma_address(page
, vma
);
1732 ret
= rmap_one(page
, vma
, address
, arg
);
1733 if (ret
!= SWAP_AGAIN
)
1737 * No nonlinear handling: being always shared, nonlinear vmas
1738 * never contain migration ptes. Decide what to do about this
1739 * limitation to linear when we need rmap_walk() on nonlinear.
1741 mutex_unlock(&mapping
->i_mmap_mutex
);
1745 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1746 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1748 VM_BUG_ON(!PageLocked(page
));
1750 if (unlikely(PageKsm(page
)))
1751 return rmap_walk_ksm(page
, rmap_one
, arg
);
1752 else if (PageAnon(page
))
1753 return rmap_walk_anon(page
, rmap_one
, arg
);
1755 return rmap_walk_file(page
, rmap_one
, arg
);
1757 #endif /* CONFIG_MIGRATION */
1759 #ifdef CONFIG_HUGETLB_PAGE
1761 * The following three functions are for anonymous (private mapped) hugepages.
1762 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763 * and no lru code, because we handle hugepages differently from common pages.
1765 static void __hugepage_set_anon_rmap(struct page
*page
,
1766 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1768 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1775 anon_vma
= anon_vma
->root
;
1777 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1778 page
->mapping
= (struct address_space
*) anon_vma
;
1779 page
->index
= linear_page_index(vma
, address
);
1782 void hugepage_add_anon_rmap(struct page
*page
,
1783 struct vm_area_struct
*vma
, unsigned long address
)
1785 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1788 BUG_ON(!PageLocked(page
));
1790 /* address might be in next vma when migration races vma_adjust */
1791 first
= atomic_inc_and_test(&page
->_mapcount
);
1793 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1796 void hugepage_add_new_anon_rmap(struct page
*page
,
1797 struct vm_area_struct
*vma
, unsigned long address
)
1799 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1800 atomic_set(&page
->_mapcount
, 0);
1801 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1803 #endif /* CONFIG_HUGETLB_PAGE */