ixgbevf: fix possible use of uninitialized variable
[linux-2.6/libata-dev.git] / mm / rmap.c
blob2ee1ef0f317b7487bfb21b7a6717b1e12d1f7ef4
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma->root = anon_vma;
82 return anon_vma;
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 * Synchronize against page_lock_anon_vma() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 * page_lock_anon_vma() VS put_anon_vma()
99 * mutex_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() mutex_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 if (mutex_is_locked(&anon_vma->root->mutex)) {
107 anon_vma_lock(anon_vma);
108 anon_vma_unlock(anon_vma);
111 kmem_cache_free(anon_vma_cachep, anon_vma);
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
116 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125 struct anon_vma_chain *avc,
126 struct anon_vma *anon_vma)
128 avc->vma = vma;
129 avc->anon_vma = anon_vma;
130 list_add(&avc->same_vma, &vma->anon_vma_chain);
131 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
157 * an anon_vma.
159 * This must be called with the mmap_sem held for reading.
161 int anon_vma_prepare(struct vm_area_struct *vma)
163 struct anon_vma *anon_vma = vma->anon_vma;
164 struct anon_vma_chain *avc;
166 might_sleep();
167 if (unlikely(!anon_vma)) {
168 struct mm_struct *mm = vma->vm_mm;
169 struct anon_vma *allocated;
171 avc = anon_vma_chain_alloc(GFP_KERNEL);
172 if (!avc)
173 goto out_enomem;
175 anon_vma = find_mergeable_anon_vma(vma);
176 allocated = NULL;
177 if (!anon_vma) {
178 anon_vma = anon_vma_alloc();
179 if (unlikely(!anon_vma))
180 goto out_enomem_free_avc;
181 allocated = anon_vma;
184 anon_vma_lock(anon_vma);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm->page_table_lock);
187 if (likely(!vma->anon_vma)) {
188 vma->anon_vma = anon_vma;
189 anon_vma_chain_link(vma, avc, anon_vma);
190 allocated = NULL;
191 avc = NULL;
193 spin_unlock(&mm->page_table_lock);
194 anon_vma_unlock(anon_vma);
196 if (unlikely(allocated))
197 put_anon_vma(allocated);
198 if (unlikely(avc))
199 anon_vma_chain_free(avc);
201 return 0;
203 out_enomem_free_avc:
204 anon_vma_chain_free(avc);
205 out_enomem:
206 return -ENOMEM;
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212 * have the same vma.
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
219 struct anon_vma *new_root = anon_vma->root;
220 if (new_root != root) {
221 if (WARN_ON_ONCE(root))
222 mutex_unlock(&root->mutex);
223 root = new_root;
224 mutex_lock(&root->mutex);
226 return root;
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
231 if (root)
232 mutex_unlock(&root->mutex);
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
239 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
241 struct anon_vma_chain *avc, *pavc;
242 struct anon_vma *root = NULL;
244 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245 struct anon_vma *anon_vma;
247 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248 if (unlikely(!avc)) {
249 unlock_anon_vma_root(root);
250 root = NULL;
251 avc = anon_vma_chain_alloc(GFP_KERNEL);
252 if (!avc)
253 goto enomem_failure;
255 anon_vma = pavc->anon_vma;
256 root = lock_anon_vma_root(root, anon_vma);
257 anon_vma_chain_link(dst, avc, anon_vma);
259 unlock_anon_vma_root(root);
260 return 0;
262 enomem_failure:
263 unlink_anon_vmas(dst);
264 return -ENOMEM;
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
274 struct anon_vma_chain *avc;
275 struct anon_vma *anon_vma;
277 /* Don't bother if the parent process has no anon_vma here. */
278 if (!pvma->anon_vma)
279 return 0;
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
285 if (anon_vma_clone(vma, pvma))
286 return -ENOMEM;
288 /* Then add our own anon_vma. */
289 anon_vma = anon_vma_alloc();
290 if (!anon_vma)
291 goto out_error;
292 avc = anon_vma_chain_alloc(GFP_KERNEL);
293 if (!avc)
294 goto out_error_free_anon_vma;
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
300 anon_vma->root = pvma->anon_vma->root;
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
306 get_anon_vma(anon_vma->root);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma->anon_vma = anon_vma;
309 anon_vma_lock(anon_vma);
310 anon_vma_chain_link(vma, avc, anon_vma);
311 anon_vma_unlock(anon_vma);
313 return 0;
315 out_error_free_anon_vma:
316 put_anon_vma(anon_vma);
317 out_error:
318 unlink_anon_vmas(vma);
319 return -ENOMEM;
322 void unlink_anon_vmas(struct vm_area_struct *vma)
324 struct anon_vma_chain *avc, *next;
325 struct anon_vma *root = NULL;
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332 struct anon_vma *anon_vma = avc->anon_vma;
334 root = lock_anon_vma_root(root, anon_vma);
335 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
341 if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342 continue;
344 list_del(&avc->same_vma);
345 anon_vma_chain_free(avc);
347 unlock_anon_vma_root(root);
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to acquire the anon_vma->root->mutex.
354 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355 struct anon_vma *anon_vma = avc->anon_vma;
357 put_anon_vma(anon_vma);
359 list_del(&avc->same_vma);
360 anon_vma_chain_free(avc);
364 static void anon_vma_ctor(void *data)
366 struct anon_vma *anon_vma = data;
368 mutex_init(&anon_vma->mutex);
369 atomic_set(&anon_vma->refcount, 0);
370 anon_vma->rb_root = RB_ROOT;
373 void __init anon_vma_init(void)
375 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
403 struct anon_vma *page_get_anon_vma(struct page *page)
405 struct anon_vma *anon_vma = NULL;
406 unsigned long anon_mapping;
408 rcu_read_lock();
409 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411 goto out;
412 if (!page_mapped(page))
413 goto out;
415 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417 anon_vma = NULL;
418 goto out;
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
428 if (!page_mapped(page)) {
429 put_anon_vma(anon_vma);
430 anon_vma = NULL;
432 out:
433 rcu_read_unlock();
435 return anon_vma;
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
445 struct anon_vma *page_lock_anon_vma(struct page *page)
447 struct anon_vma *anon_vma = NULL;
448 struct anon_vma *root_anon_vma;
449 unsigned long anon_mapping;
451 rcu_read_lock();
452 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454 goto out;
455 if (!page_mapped(page))
456 goto out;
458 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459 root_anon_vma = ACCESS_ONCE(anon_vma->root);
460 if (mutex_trylock(&root_anon_vma->mutex)) {
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
466 if (!page_mapped(page)) {
467 mutex_unlock(&root_anon_vma->mutex);
468 anon_vma = NULL;
470 goto out;
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 anon_vma = NULL;
476 goto out;
479 if (!page_mapped(page)) {
480 put_anon_vma(anon_vma);
481 anon_vma = NULL;
482 goto out;
485 /* we pinned the anon_vma, its safe to sleep */
486 rcu_read_unlock();
487 anon_vma_lock(anon_vma);
489 if (atomic_dec_and_test(&anon_vma->refcount)) {
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock() recursion.
495 anon_vma_unlock(anon_vma);
496 __put_anon_vma(anon_vma);
497 anon_vma = NULL;
500 return anon_vma;
502 out:
503 rcu_read_unlock();
504 return anon_vma;
507 void page_unlock_anon_vma(struct anon_vma *anon_vma)
509 anon_vma_unlock(anon_vma);
513 * At what user virtual address is page expected in @vma?
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
520 if (unlikely(is_vm_hugetlb_page(vma)))
521 pgoff = page->index << huge_page_order(page_hstate(page));
523 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
529 unsigned long address = __vma_address(page, vma);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
534 return address;
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
543 unsigned long address;
544 if (PageAnon(page)) {
545 struct anon_vma *page__anon_vma = page_anon_vma(page);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma->anon_vma || !page__anon_vma ||
551 vma->anon_vma->root != page__anon_vma->root)
552 return -EFAULT;
553 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554 if (!vma->vm_file ||
555 vma->vm_file->f_mapping != page->mapping)
556 return -EFAULT;
557 } else
558 return -EFAULT;
559 address = __vma_address(page, vma);
560 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561 return -EFAULT;
562 return address;
566 * Check that @page is mapped at @address into @mm.
568 * If @sync is false, page_check_address may perform a racy check to avoid
569 * the page table lock when the pte is not present (helpful when reclaiming
570 * highly shared pages).
572 * On success returns with pte mapped and locked.
574 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
575 unsigned long address, spinlock_t **ptlp, int sync)
577 pgd_t *pgd;
578 pud_t *pud;
579 pmd_t *pmd;
580 pte_t *pte;
581 spinlock_t *ptl;
583 if (unlikely(PageHuge(page))) {
584 pte = huge_pte_offset(mm, address);
585 ptl = &mm->page_table_lock;
586 goto check;
589 pgd = pgd_offset(mm, address);
590 if (!pgd_present(*pgd))
591 return NULL;
593 pud = pud_offset(pgd, address);
594 if (!pud_present(*pud))
595 return NULL;
597 pmd = pmd_offset(pud, address);
598 if (!pmd_present(*pmd))
599 return NULL;
600 if (pmd_trans_huge(*pmd))
601 return NULL;
603 pte = pte_offset_map(pmd, address);
604 /* Make a quick check before getting the lock */
605 if (!sync && !pte_present(*pte)) {
606 pte_unmap(pte);
607 return NULL;
610 ptl = pte_lockptr(mm, pmd);
611 check:
612 spin_lock(ptl);
613 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
614 *ptlp = ptl;
615 return pte;
617 pte_unmap_unlock(pte, ptl);
618 return NULL;
622 * page_mapped_in_vma - check whether a page is really mapped in a VMA
623 * @page: the page to test
624 * @vma: the VMA to test
626 * Returns 1 if the page is mapped into the page tables of the VMA, 0
627 * if the page is not mapped into the page tables of this VMA. Only
628 * valid for normal file or anonymous VMAs.
630 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
632 unsigned long address;
633 pte_t *pte;
634 spinlock_t *ptl;
636 address = __vma_address(page, vma);
637 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
638 return 0;
639 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
640 if (!pte) /* the page is not in this mm */
641 return 0;
642 pte_unmap_unlock(pte, ptl);
644 return 1;
648 * Subfunctions of page_referenced: page_referenced_one called
649 * repeatedly from either page_referenced_anon or page_referenced_file.
651 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
652 unsigned long address, unsigned int *mapcount,
653 unsigned long *vm_flags)
655 struct mm_struct *mm = vma->vm_mm;
656 int referenced = 0;
658 if (unlikely(PageTransHuge(page))) {
659 pmd_t *pmd;
661 spin_lock(&mm->page_table_lock);
663 * rmap might return false positives; we must filter
664 * these out using page_check_address_pmd().
666 pmd = page_check_address_pmd(page, mm, address,
667 PAGE_CHECK_ADDRESS_PMD_FLAG);
668 if (!pmd) {
669 spin_unlock(&mm->page_table_lock);
670 goto out;
673 if (vma->vm_flags & VM_LOCKED) {
674 spin_unlock(&mm->page_table_lock);
675 *mapcount = 0; /* break early from loop */
676 *vm_flags |= VM_LOCKED;
677 goto out;
680 /* go ahead even if the pmd is pmd_trans_splitting() */
681 if (pmdp_clear_flush_young_notify(vma, address, pmd))
682 referenced++;
683 spin_unlock(&mm->page_table_lock);
684 } else {
685 pte_t *pte;
686 spinlock_t *ptl;
689 * rmap might return false positives; we must filter
690 * these out using page_check_address().
692 pte = page_check_address(page, mm, address, &ptl, 0);
693 if (!pte)
694 goto out;
696 if (vma->vm_flags & VM_LOCKED) {
697 pte_unmap_unlock(pte, ptl);
698 *mapcount = 0; /* break early from loop */
699 *vm_flags |= VM_LOCKED;
700 goto out;
703 if (ptep_clear_flush_young_notify(vma, address, pte)) {
705 * Don't treat a reference through a sequentially read
706 * mapping as such. If the page has been used in
707 * another mapping, we will catch it; if this other
708 * mapping is already gone, the unmap path will have
709 * set PG_referenced or activated the page.
711 if (likely(!VM_SequentialReadHint(vma)))
712 referenced++;
714 pte_unmap_unlock(pte, ptl);
717 (*mapcount)--;
719 if (referenced)
720 *vm_flags |= vma->vm_flags;
721 out:
722 return referenced;
725 static int page_referenced_anon(struct page *page,
726 struct mem_cgroup *memcg,
727 unsigned long *vm_flags)
729 unsigned int mapcount;
730 struct anon_vma *anon_vma;
731 pgoff_t pgoff;
732 struct anon_vma_chain *avc;
733 int referenced = 0;
735 anon_vma = page_lock_anon_vma(page);
736 if (!anon_vma)
737 return referenced;
739 mapcount = page_mapcount(page);
740 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
741 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
742 struct vm_area_struct *vma = avc->vma;
743 unsigned long address = vma_address(page, vma);
745 * If we are reclaiming on behalf of a cgroup, skip
746 * counting on behalf of references from different
747 * cgroups
749 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
750 continue;
751 referenced += page_referenced_one(page, vma, address,
752 &mapcount, vm_flags);
753 if (!mapcount)
754 break;
757 page_unlock_anon_vma(anon_vma);
758 return referenced;
762 * page_referenced_file - referenced check for object-based rmap
763 * @page: the page we're checking references on.
764 * @memcg: target memory control group
765 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
767 * For an object-based mapped page, find all the places it is mapped and
768 * check/clear the referenced flag. This is done by following the page->mapping
769 * pointer, then walking the chain of vmas it holds. It returns the number
770 * of references it found.
772 * This function is only called from page_referenced for object-based pages.
774 static int page_referenced_file(struct page *page,
775 struct mem_cgroup *memcg,
776 unsigned long *vm_flags)
778 unsigned int mapcount;
779 struct address_space *mapping = page->mapping;
780 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
781 struct vm_area_struct *vma;
782 int referenced = 0;
785 * The caller's checks on page->mapping and !PageAnon have made
786 * sure that this is a file page: the check for page->mapping
787 * excludes the case just before it gets set on an anon page.
789 BUG_ON(PageAnon(page));
792 * The page lock not only makes sure that page->mapping cannot
793 * suddenly be NULLified by truncation, it makes sure that the
794 * structure at mapping cannot be freed and reused yet,
795 * so we can safely take mapping->i_mmap_mutex.
797 BUG_ON(!PageLocked(page));
799 mutex_lock(&mapping->i_mmap_mutex);
802 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
803 * is more likely to be accurate if we note it after spinning.
805 mapcount = page_mapcount(page);
807 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
808 unsigned long address = vma_address(page, vma);
810 * If we are reclaiming on behalf of a cgroup, skip
811 * counting on behalf of references from different
812 * cgroups
814 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
815 continue;
816 referenced += page_referenced_one(page, vma, address,
817 &mapcount, vm_flags);
818 if (!mapcount)
819 break;
822 mutex_unlock(&mapping->i_mmap_mutex);
823 return referenced;
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
830 * @memcg: target memory cgroup
831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
836 int page_referenced(struct page *page,
837 int is_locked,
838 struct mem_cgroup *memcg,
839 unsigned long *vm_flags)
841 int referenced = 0;
842 int we_locked = 0;
844 *vm_flags = 0;
845 if (page_mapped(page) && page_rmapping(page)) {
846 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
847 we_locked = trylock_page(page);
848 if (!we_locked) {
849 referenced++;
850 goto out;
853 if (unlikely(PageKsm(page)))
854 referenced += page_referenced_ksm(page, memcg,
855 vm_flags);
856 else if (PageAnon(page))
857 referenced += page_referenced_anon(page, memcg,
858 vm_flags);
859 else if (page->mapping)
860 referenced += page_referenced_file(page, memcg,
861 vm_flags);
862 if (we_locked)
863 unlock_page(page);
865 if (page_test_and_clear_young(page_to_pfn(page)))
866 referenced++;
868 out:
869 return referenced;
872 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
873 unsigned long address)
875 struct mm_struct *mm = vma->vm_mm;
876 pte_t *pte;
877 spinlock_t *ptl;
878 int ret = 0;
880 pte = page_check_address(page, mm, address, &ptl, 1);
881 if (!pte)
882 goto out;
884 if (pte_dirty(*pte) || pte_write(*pte)) {
885 pte_t entry;
887 flush_cache_page(vma, address, pte_pfn(*pte));
888 entry = ptep_clear_flush(vma, address, pte);
889 entry = pte_wrprotect(entry);
890 entry = pte_mkclean(entry);
891 set_pte_at(mm, address, pte, entry);
892 ret = 1;
895 pte_unmap_unlock(pte, ptl);
897 if (ret)
898 mmu_notifier_invalidate_page(mm, address);
899 out:
900 return ret;
903 static int page_mkclean_file(struct address_space *mapping, struct page *page)
905 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
906 struct vm_area_struct *vma;
907 int ret = 0;
909 BUG_ON(PageAnon(page));
911 mutex_lock(&mapping->i_mmap_mutex);
912 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
913 if (vma->vm_flags & VM_SHARED) {
914 unsigned long address = vma_address(page, vma);
915 ret += page_mkclean_one(page, vma, address);
918 mutex_unlock(&mapping->i_mmap_mutex);
919 return ret;
922 int page_mkclean(struct page *page)
924 int ret = 0;
926 BUG_ON(!PageLocked(page));
928 if (page_mapped(page)) {
929 struct address_space *mapping = page_mapping(page);
930 if (mapping)
931 ret = page_mkclean_file(mapping, page);
934 return ret;
936 EXPORT_SYMBOL_GPL(page_mkclean);
939 * page_move_anon_rmap - move a page to our anon_vma
940 * @page: the page to move to our anon_vma
941 * @vma: the vma the page belongs to
942 * @address: the user virtual address mapped
944 * When a page belongs exclusively to one process after a COW event,
945 * that page can be moved into the anon_vma that belongs to just that
946 * process, so the rmap code will not search the parent or sibling
947 * processes.
949 void page_move_anon_rmap(struct page *page,
950 struct vm_area_struct *vma, unsigned long address)
952 struct anon_vma *anon_vma = vma->anon_vma;
954 VM_BUG_ON(!PageLocked(page));
955 VM_BUG_ON(!anon_vma);
956 VM_BUG_ON(page->index != linear_page_index(vma, address));
958 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
959 page->mapping = (struct address_space *) anon_vma;
963 * __page_set_anon_rmap - set up new anonymous rmap
964 * @page: Page to add to rmap
965 * @vma: VM area to add page to.
966 * @address: User virtual address of the mapping
967 * @exclusive: the page is exclusively owned by the current process
969 static void __page_set_anon_rmap(struct page *page,
970 struct vm_area_struct *vma, unsigned long address, int exclusive)
972 struct anon_vma *anon_vma = vma->anon_vma;
974 BUG_ON(!anon_vma);
976 if (PageAnon(page))
977 return;
980 * If the page isn't exclusively mapped into this vma,
981 * we must use the _oldest_ possible anon_vma for the
982 * page mapping!
984 if (!exclusive)
985 anon_vma = anon_vma->root;
987 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988 page->mapping = (struct address_space *) anon_vma;
989 page->index = linear_page_index(vma, address);
993 * __page_check_anon_rmap - sanity check anonymous rmap addition
994 * @page: the page to add the mapping to
995 * @vma: the vm area in which the mapping is added
996 * @address: the user virtual address mapped
998 static void __page_check_anon_rmap(struct page *page,
999 struct vm_area_struct *vma, unsigned long address)
1001 #ifdef CONFIG_DEBUG_VM
1003 * The page's anon-rmap details (mapping and index) are guaranteed to
1004 * be set up correctly at this point.
1006 * We have exclusion against page_add_anon_rmap because the caller
1007 * always holds the page locked, except if called from page_dup_rmap,
1008 * in which case the page is already known to be setup.
1010 * We have exclusion against page_add_new_anon_rmap because those pages
1011 * are initially only visible via the pagetables, and the pte is locked
1012 * over the call to page_add_new_anon_rmap.
1014 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1015 BUG_ON(page->index != linear_page_index(vma, address));
1016 #endif
1020 * page_add_anon_rmap - add pte mapping to an anonymous page
1021 * @page: the page to add the mapping to
1022 * @vma: the vm area in which the mapping is added
1023 * @address: the user virtual address mapped
1025 * The caller needs to hold the pte lock, and the page must be locked in
1026 * the anon_vma case: to serialize mapping,index checking after setting,
1027 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1028 * (but PageKsm is never downgraded to PageAnon).
1030 void page_add_anon_rmap(struct page *page,
1031 struct vm_area_struct *vma, unsigned long address)
1033 do_page_add_anon_rmap(page, vma, address, 0);
1037 * Special version of the above for do_swap_page, which often runs
1038 * into pages that are exclusively owned by the current process.
1039 * Everybody else should continue to use page_add_anon_rmap above.
1041 void do_page_add_anon_rmap(struct page *page,
1042 struct vm_area_struct *vma, unsigned long address, int exclusive)
1044 int first = atomic_inc_and_test(&page->_mapcount);
1045 if (first) {
1046 if (!PageTransHuge(page))
1047 __inc_zone_page_state(page, NR_ANON_PAGES);
1048 else
1049 __inc_zone_page_state(page,
1050 NR_ANON_TRANSPARENT_HUGEPAGES);
1052 if (unlikely(PageKsm(page)))
1053 return;
1055 VM_BUG_ON(!PageLocked(page));
1056 /* address might be in next vma when migration races vma_adjust */
1057 if (first)
1058 __page_set_anon_rmap(page, vma, address, exclusive);
1059 else
1060 __page_check_anon_rmap(page, vma, address);
1064 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1065 * @page: the page to add the mapping to
1066 * @vma: the vm area in which the mapping is added
1067 * @address: the user virtual address mapped
1069 * Same as page_add_anon_rmap but must only be called on *new* pages.
1070 * This means the inc-and-test can be bypassed.
1071 * Page does not have to be locked.
1073 void page_add_new_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address)
1076 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1077 SetPageSwapBacked(page);
1078 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079 if (!PageTransHuge(page))
1080 __inc_zone_page_state(page, NR_ANON_PAGES);
1081 else
1082 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1083 __page_set_anon_rmap(page, vma, address, 1);
1084 if (!mlocked_vma_newpage(vma, page))
1085 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1086 else
1087 add_page_to_unevictable_list(page);
1091 * page_add_file_rmap - add pte mapping to a file page
1092 * @page: the page to add the mapping to
1094 * The caller needs to hold the pte lock.
1096 void page_add_file_rmap(struct page *page)
1098 bool locked;
1099 unsigned long flags;
1101 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1102 if (atomic_inc_and_test(&page->_mapcount)) {
1103 __inc_zone_page_state(page, NR_FILE_MAPPED);
1104 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1106 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1110 * page_remove_rmap - take down pte mapping from a page
1111 * @page: page to remove mapping from
1113 * The caller needs to hold the pte lock.
1115 void page_remove_rmap(struct page *page)
1117 struct address_space *mapping = page_mapping(page);
1118 bool anon = PageAnon(page);
1119 bool locked;
1120 unsigned long flags;
1123 * The anon case has no mem_cgroup page_stat to update; but may
1124 * uncharge_page() below, where the lock ordering can deadlock if
1125 * we hold the lock against page_stat move: so avoid it on anon.
1127 if (!anon)
1128 mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1130 /* page still mapped by someone else? */
1131 if (!atomic_add_negative(-1, &page->_mapcount))
1132 goto out;
1135 * Now that the last pte has gone, s390 must transfer dirty
1136 * flag from storage key to struct page. We can usually skip
1137 * this if the page is anon, so about to be freed; but perhaps
1138 * not if it's in swapcache - there might be another pte slot
1139 * containing the swap entry, but page not yet written to swap.
1141 * And we can skip it on file pages, so long as the filesystem
1142 * participates in dirty tracking; but need to catch shm and tmpfs
1143 * and ramfs pages which have been modified since creation by read
1144 * fault.
1146 * Note that mapping must be decided above, before decrementing
1147 * mapcount (which luckily provides a barrier): once page is unmapped,
1148 * it could be truncated and page->mapping reset to NULL at any moment.
1149 * Note also that we are relying on page_mapping(page) to set mapping
1150 * to &swapper_space when PageSwapCache(page).
1152 if (mapping && !mapping_cap_account_dirty(mapping) &&
1153 page_test_and_clear_dirty(page_to_pfn(page), 1))
1154 set_page_dirty(page);
1156 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1157 * and not charged by memcg for now.
1159 if (unlikely(PageHuge(page)))
1160 goto out;
1161 if (anon) {
1162 mem_cgroup_uncharge_page(page);
1163 if (!PageTransHuge(page))
1164 __dec_zone_page_state(page, NR_ANON_PAGES);
1165 else
1166 __dec_zone_page_state(page,
1167 NR_ANON_TRANSPARENT_HUGEPAGES);
1168 } else {
1169 __dec_zone_page_state(page, NR_FILE_MAPPED);
1170 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1171 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1173 if (unlikely(PageMlocked(page)))
1174 clear_page_mlock(page);
1176 * It would be tidy to reset the PageAnon mapping here,
1177 * but that might overwrite a racing page_add_anon_rmap
1178 * which increments mapcount after us but sets mapping
1179 * before us: so leave the reset to free_hot_cold_page,
1180 * and remember that it's only reliable while mapped.
1181 * Leaving it set also helps swapoff to reinstate ptes
1182 * faster for those pages still in swapcache.
1184 return;
1185 out:
1186 if (!anon)
1187 mem_cgroup_end_update_page_stat(page, &locked, &flags);
1191 * Subfunctions of try_to_unmap: try_to_unmap_one called
1192 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1194 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1195 unsigned long address, enum ttu_flags flags)
1197 struct mm_struct *mm = vma->vm_mm;
1198 pte_t *pte;
1199 pte_t pteval;
1200 spinlock_t *ptl;
1201 int ret = SWAP_AGAIN;
1203 pte = page_check_address(page, mm, address, &ptl, 0);
1204 if (!pte)
1205 goto out;
1208 * If the page is mlock()d, we cannot swap it out.
1209 * If it's recently referenced (perhaps page_referenced
1210 * skipped over this mm) then we should reactivate it.
1212 if (!(flags & TTU_IGNORE_MLOCK)) {
1213 if (vma->vm_flags & VM_LOCKED)
1214 goto out_mlock;
1216 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1217 goto out_unmap;
1219 if (!(flags & TTU_IGNORE_ACCESS)) {
1220 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1221 ret = SWAP_FAIL;
1222 goto out_unmap;
1226 /* Nuke the page table entry. */
1227 flush_cache_page(vma, address, page_to_pfn(page));
1228 pteval = ptep_clear_flush(vma, address, pte);
1230 /* Move the dirty bit to the physical page now the pte is gone. */
1231 if (pte_dirty(pteval))
1232 set_page_dirty(page);
1234 /* Update high watermark before we lower rss */
1235 update_hiwater_rss(mm);
1237 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1238 if (PageAnon(page))
1239 dec_mm_counter(mm, MM_ANONPAGES);
1240 else
1241 dec_mm_counter(mm, MM_FILEPAGES);
1242 set_pte_at(mm, address, pte,
1243 swp_entry_to_pte(make_hwpoison_entry(page)));
1244 } else if (PageAnon(page)) {
1245 swp_entry_t entry = { .val = page_private(page) };
1247 if (PageSwapCache(page)) {
1249 * Store the swap location in the pte.
1250 * See handle_pte_fault() ...
1252 if (swap_duplicate(entry) < 0) {
1253 set_pte_at(mm, address, pte, pteval);
1254 ret = SWAP_FAIL;
1255 goto out_unmap;
1257 if (list_empty(&mm->mmlist)) {
1258 spin_lock(&mmlist_lock);
1259 if (list_empty(&mm->mmlist))
1260 list_add(&mm->mmlist, &init_mm.mmlist);
1261 spin_unlock(&mmlist_lock);
1263 dec_mm_counter(mm, MM_ANONPAGES);
1264 inc_mm_counter(mm, MM_SWAPENTS);
1265 } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1267 * Store the pfn of the page in a special migration
1268 * pte. do_swap_page() will wait until the migration
1269 * pte is removed and then restart fault handling.
1271 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1272 entry = make_migration_entry(page, pte_write(pteval));
1274 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1275 BUG_ON(pte_file(*pte));
1276 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1277 (TTU_ACTION(flags) == TTU_MIGRATION)) {
1278 /* Establish migration entry for a file page */
1279 swp_entry_t entry;
1280 entry = make_migration_entry(page, pte_write(pteval));
1281 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1282 } else
1283 dec_mm_counter(mm, MM_FILEPAGES);
1285 page_remove_rmap(page);
1286 page_cache_release(page);
1288 out_unmap:
1289 pte_unmap_unlock(pte, ptl);
1290 if (ret != SWAP_FAIL)
1291 mmu_notifier_invalidate_page(mm, address);
1292 out:
1293 return ret;
1295 out_mlock:
1296 pte_unmap_unlock(pte, ptl);
1300 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1301 * unstable result and race. Plus, We can't wait here because
1302 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1303 * if trylock failed, the page remain in evictable lru and later
1304 * vmscan could retry to move the page to unevictable lru if the
1305 * page is actually mlocked.
1307 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1308 if (vma->vm_flags & VM_LOCKED) {
1309 mlock_vma_page(page);
1310 ret = SWAP_MLOCK;
1312 up_read(&vma->vm_mm->mmap_sem);
1314 return ret;
1318 * objrmap doesn't work for nonlinear VMAs because the assumption that
1319 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1320 * Consequently, given a particular page and its ->index, we cannot locate the
1321 * ptes which are mapping that page without an exhaustive linear search.
1323 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1324 * maps the file to which the target page belongs. The ->vm_private_data field
1325 * holds the current cursor into that scan. Successive searches will circulate
1326 * around the vma's virtual address space.
1328 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1329 * more scanning pressure is placed against them as well. Eventually pages
1330 * will become fully unmapped and are eligible for eviction.
1332 * For very sparsely populated VMAs this is a little inefficient - chances are
1333 * there there won't be many ptes located within the scan cluster. In this case
1334 * maybe we could scan further - to the end of the pte page, perhaps.
1336 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1337 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1338 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1339 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1341 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1342 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1344 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1345 struct vm_area_struct *vma, struct page *check_page)
1347 struct mm_struct *mm = vma->vm_mm;
1348 pgd_t *pgd;
1349 pud_t *pud;
1350 pmd_t *pmd;
1351 pte_t *pte;
1352 pte_t pteval;
1353 spinlock_t *ptl;
1354 struct page *page;
1355 unsigned long address;
1356 unsigned long mmun_start; /* For mmu_notifiers */
1357 unsigned long mmun_end; /* For mmu_notifiers */
1358 unsigned long end;
1359 int ret = SWAP_AGAIN;
1360 int locked_vma = 0;
1362 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363 end = address + CLUSTER_SIZE;
1364 if (address < vma->vm_start)
1365 address = vma->vm_start;
1366 if (end > vma->vm_end)
1367 end = vma->vm_end;
1369 pgd = pgd_offset(mm, address);
1370 if (!pgd_present(*pgd))
1371 return ret;
1373 pud = pud_offset(pgd, address);
1374 if (!pud_present(*pud))
1375 return ret;
1377 pmd = pmd_offset(pud, address);
1378 if (!pmd_present(*pmd))
1379 return ret;
1381 mmun_start = address;
1382 mmun_end = end;
1383 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1386 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1387 * keep the sem while scanning the cluster for mlocking pages.
1389 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1390 locked_vma = (vma->vm_flags & VM_LOCKED);
1391 if (!locked_vma)
1392 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1395 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1397 /* Update high watermark before we lower rss */
1398 update_hiwater_rss(mm);
1400 for (; address < end; pte++, address += PAGE_SIZE) {
1401 if (!pte_present(*pte))
1402 continue;
1403 page = vm_normal_page(vma, address, *pte);
1404 BUG_ON(!page || PageAnon(page));
1406 if (locked_vma) {
1407 mlock_vma_page(page); /* no-op if already mlocked */
1408 if (page == check_page)
1409 ret = SWAP_MLOCK;
1410 continue; /* don't unmap */
1413 if (ptep_clear_flush_young_notify(vma, address, pte))
1414 continue;
1416 /* Nuke the page table entry. */
1417 flush_cache_page(vma, address, pte_pfn(*pte));
1418 pteval = ptep_clear_flush(vma, address, pte);
1420 /* If nonlinear, store the file page offset in the pte. */
1421 if (page->index != linear_page_index(vma, address))
1422 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1424 /* Move the dirty bit to the physical page now the pte is gone. */
1425 if (pte_dirty(pteval))
1426 set_page_dirty(page);
1428 page_remove_rmap(page);
1429 page_cache_release(page);
1430 dec_mm_counter(mm, MM_FILEPAGES);
1431 (*mapcount)--;
1433 pte_unmap_unlock(pte - 1, ptl);
1434 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1435 if (locked_vma)
1436 up_read(&vma->vm_mm->mmap_sem);
1437 return ret;
1440 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1442 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1444 if (!maybe_stack)
1445 return false;
1447 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1448 VM_STACK_INCOMPLETE_SETUP)
1449 return true;
1451 return false;
1455 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1456 * rmap method
1457 * @page: the page to unmap/unlock
1458 * @flags: action and flags
1460 * Find all the mappings of a page using the mapping pointer and the vma chains
1461 * contained in the anon_vma struct it points to.
1463 * This function is only called from try_to_unmap/try_to_munlock for
1464 * anonymous pages.
1465 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1466 * where the page was found will be held for write. So, we won't recheck
1467 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1468 * 'LOCKED.
1470 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1472 struct anon_vma *anon_vma;
1473 pgoff_t pgoff;
1474 struct anon_vma_chain *avc;
1475 int ret = SWAP_AGAIN;
1477 anon_vma = page_lock_anon_vma(page);
1478 if (!anon_vma)
1479 return ret;
1481 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1482 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1483 struct vm_area_struct *vma = avc->vma;
1484 unsigned long address;
1487 * During exec, a temporary VMA is setup and later moved.
1488 * The VMA is moved under the anon_vma lock but not the
1489 * page tables leading to a race where migration cannot
1490 * find the migration ptes. Rather than increasing the
1491 * locking requirements of exec(), migration skips
1492 * temporary VMAs until after exec() completes.
1494 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1495 is_vma_temporary_stack(vma))
1496 continue;
1498 address = vma_address(page, vma);
1499 ret = try_to_unmap_one(page, vma, address, flags);
1500 if (ret != SWAP_AGAIN || !page_mapped(page))
1501 break;
1504 page_unlock_anon_vma(anon_vma);
1505 return ret;
1509 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1510 * @page: the page to unmap/unlock
1511 * @flags: action and flags
1513 * Find all the mappings of a page using the mapping pointer and the vma chains
1514 * contained in the address_space struct it points to.
1516 * This function is only called from try_to_unmap/try_to_munlock for
1517 * object-based pages.
1518 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1519 * where the page was found will be held for write. So, we won't recheck
1520 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1521 * 'LOCKED.
1523 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1525 struct address_space *mapping = page->mapping;
1526 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1527 struct vm_area_struct *vma;
1528 int ret = SWAP_AGAIN;
1529 unsigned long cursor;
1530 unsigned long max_nl_cursor = 0;
1531 unsigned long max_nl_size = 0;
1532 unsigned int mapcount;
1534 mutex_lock(&mapping->i_mmap_mutex);
1535 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1536 unsigned long address = vma_address(page, vma);
1537 ret = try_to_unmap_one(page, vma, address, flags);
1538 if (ret != SWAP_AGAIN || !page_mapped(page))
1539 goto out;
1542 if (list_empty(&mapping->i_mmap_nonlinear))
1543 goto out;
1546 * We don't bother to try to find the munlocked page in nonlinears.
1547 * It's costly. Instead, later, page reclaim logic may call
1548 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1550 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1551 goto out;
1553 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554 shared.nonlinear) {
1555 cursor = (unsigned long) vma->vm_private_data;
1556 if (cursor > max_nl_cursor)
1557 max_nl_cursor = cursor;
1558 cursor = vma->vm_end - vma->vm_start;
1559 if (cursor > max_nl_size)
1560 max_nl_size = cursor;
1563 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1564 ret = SWAP_FAIL;
1565 goto out;
1569 * We don't try to search for this page in the nonlinear vmas,
1570 * and page_referenced wouldn't have found it anyway. Instead
1571 * just walk the nonlinear vmas trying to age and unmap some.
1572 * The mapcount of the page we came in with is irrelevant,
1573 * but even so use it as a guide to how hard we should try?
1575 mapcount = page_mapcount(page);
1576 if (!mapcount)
1577 goto out;
1578 cond_resched();
1580 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1581 if (max_nl_cursor == 0)
1582 max_nl_cursor = CLUSTER_SIZE;
1584 do {
1585 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1586 shared.nonlinear) {
1587 cursor = (unsigned long) vma->vm_private_data;
1588 while ( cursor < max_nl_cursor &&
1589 cursor < vma->vm_end - vma->vm_start) {
1590 if (try_to_unmap_cluster(cursor, &mapcount,
1591 vma, page) == SWAP_MLOCK)
1592 ret = SWAP_MLOCK;
1593 cursor += CLUSTER_SIZE;
1594 vma->vm_private_data = (void *) cursor;
1595 if ((int)mapcount <= 0)
1596 goto out;
1598 vma->vm_private_data = (void *) max_nl_cursor;
1600 cond_resched();
1601 max_nl_cursor += CLUSTER_SIZE;
1602 } while (max_nl_cursor <= max_nl_size);
1605 * Don't loop forever (perhaps all the remaining pages are
1606 * in locked vmas). Reset cursor on all unreserved nonlinear
1607 * vmas, now forgetting on which ones it had fallen behind.
1609 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1610 vma->vm_private_data = NULL;
1611 out:
1612 mutex_unlock(&mapping->i_mmap_mutex);
1613 return ret;
1617 * try_to_unmap - try to remove all page table mappings to a page
1618 * @page: the page to get unmapped
1619 * @flags: action and flags
1621 * Tries to remove all the page table entries which are mapping this
1622 * page, used in the pageout path. Caller must hold the page lock.
1623 * Return values are:
1625 * SWAP_SUCCESS - we succeeded in removing all mappings
1626 * SWAP_AGAIN - we missed a mapping, try again later
1627 * SWAP_FAIL - the page is unswappable
1628 * SWAP_MLOCK - page is mlocked.
1630 int try_to_unmap(struct page *page, enum ttu_flags flags)
1632 int ret;
1634 BUG_ON(!PageLocked(page));
1635 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1637 if (unlikely(PageKsm(page)))
1638 ret = try_to_unmap_ksm(page, flags);
1639 else if (PageAnon(page))
1640 ret = try_to_unmap_anon(page, flags);
1641 else
1642 ret = try_to_unmap_file(page, flags);
1643 if (ret != SWAP_MLOCK && !page_mapped(page))
1644 ret = SWAP_SUCCESS;
1645 return ret;
1649 * try_to_munlock - try to munlock a page
1650 * @page: the page to be munlocked
1652 * Called from munlock code. Checks all of the VMAs mapping the page
1653 * to make sure nobody else has this page mlocked. The page will be
1654 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1656 * Return values are:
1658 * SWAP_AGAIN - no vma is holding page mlocked, or,
1659 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1660 * SWAP_FAIL - page cannot be located at present
1661 * SWAP_MLOCK - page is now mlocked.
1663 int try_to_munlock(struct page *page)
1665 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1667 if (unlikely(PageKsm(page)))
1668 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1669 else if (PageAnon(page))
1670 return try_to_unmap_anon(page, TTU_MUNLOCK);
1671 else
1672 return try_to_unmap_file(page, TTU_MUNLOCK);
1675 void __put_anon_vma(struct anon_vma *anon_vma)
1677 struct anon_vma *root = anon_vma->root;
1679 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1680 anon_vma_free(root);
1682 anon_vma_free(anon_vma);
1685 #ifdef CONFIG_MIGRATION
1687 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688 * Called by migrate.c to remove migration ptes, but might be used more later.
1690 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1691 struct vm_area_struct *, unsigned long, void *), void *arg)
1693 struct anon_vma *anon_vma;
1694 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1695 struct anon_vma_chain *avc;
1696 int ret = SWAP_AGAIN;
1699 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1700 * because that depends on page_mapped(); but not all its usages
1701 * are holding mmap_sem. Users without mmap_sem are required to
1702 * take a reference count to prevent the anon_vma disappearing
1704 anon_vma = page_anon_vma(page);
1705 if (!anon_vma)
1706 return ret;
1707 anon_vma_lock(anon_vma);
1708 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1709 struct vm_area_struct *vma = avc->vma;
1710 unsigned long address = vma_address(page, vma);
1711 ret = rmap_one(page, vma, address, arg);
1712 if (ret != SWAP_AGAIN)
1713 break;
1715 anon_vma_unlock(anon_vma);
1716 return ret;
1719 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1720 struct vm_area_struct *, unsigned long, void *), void *arg)
1722 struct address_space *mapping = page->mapping;
1723 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1724 struct vm_area_struct *vma;
1725 int ret = SWAP_AGAIN;
1727 if (!mapping)
1728 return ret;
1729 mutex_lock(&mapping->i_mmap_mutex);
1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1731 unsigned long address = vma_address(page, vma);
1732 ret = rmap_one(page, vma, address, arg);
1733 if (ret != SWAP_AGAIN)
1734 break;
1737 * No nonlinear handling: being always shared, nonlinear vmas
1738 * never contain migration ptes. Decide what to do about this
1739 * limitation to linear when we need rmap_walk() on nonlinear.
1741 mutex_unlock(&mapping->i_mmap_mutex);
1742 return ret;
1745 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1746 struct vm_area_struct *, unsigned long, void *), void *arg)
1748 VM_BUG_ON(!PageLocked(page));
1750 if (unlikely(PageKsm(page)))
1751 return rmap_walk_ksm(page, rmap_one, arg);
1752 else if (PageAnon(page))
1753 return rmap_walk_anon(page, rmap_one, arg);
1754 else
1755 return rmap_walk_file(page, rmap_one, arg);
1757 #endif /* CONFIG_MIGRATION */
1759 #ifdef CONFIG_HUGETLB_PAGE
1761 * The following three functions are for anonymous (private mapped) hugepages.
1762 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763 * and no lru code, because we handle hugepages differently from common pages.
1765 static void __hugepage_set_anon_rmap(struct page *page,
1766 struct vm_area_struct *vma, unsigned long address, int exclusive)
1768 struct anon_vma *anon_vma = vma->anon_vma;
1770 BUG_ON(!anon_vma);
1772 if (PageAnon(page))
1773 return;
1774 if (!exclusive)
1775 anon_vma = anon_vma->root;
1777 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1778 page->mapping = (struct address_space *) anon_vma;
1779 page->index = linear_page_index(vma, address);
1782 void hugepage_add_anon_rmap(struct page *page,
1783 struct vm_area_struct *vma, unsigned long address)
1785 struct anon_vma *anon_vma = vma->anon_vma;
1786 int first;
1788 BUG_ON(!PageLocked(page));
1789 BUG_ON(!anon_vma);
1790 /* address might be in next vma when migration races vma_adjust */
1791 first = atomic_inc_and_test(&page->_mapcount);
1792 if (first)
1793 __hugepage_set_anon_rmap(page, vma, address, 0);
1796 void hugepage_add_new_anon_rmap(struct page *page,
1797 struct vm_area_struct *vma, unsigned long address)
1799 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1800 atomic_set(&page->_mapcount, 0);
1801 __hugepage_set_anon_rmap(page, vma, address, 1);
1803 #endif /* CONFIG_HUGETLB_PAGE */