4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
56 #include <asm/uaccess.h>
57 #include <asm/unistd.h>
58 #include <asm/pgtable.h>
59 #include <asm/mmu_context.h>
61 static void exit_mm(struct task_struct
* tsk
);
63 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
66 detach_pid(p
, PIDTYPE_PID
);
68 detach_pid(p
, PIDTYPE_PGID
);
69 detach_pid(p
, PIDTYPE_SID
);
71 list_del_rcu(&p
->tasks
);
72 list_del_init(&p
->sibling
);
73 __this_cpu_dec(process_counts
);
75 list_del_rcu(&p
->thread_group
);
79 * This function expects the tasklist_lock write-locked.
81 static void __exit_signal(struct task_struct
*tsk
)
83 struct signal_struct
*sig
= tsk
->signal
;
84 bool group_dead
= thread_group_leader(tsk
);
85 struct sighand_struct
*sighand
;
86 struct tty_struct
*uninitialized_var(tty
);
88 sighand
= rcu_dereference_check(tsk
->sighand
,
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand
->siglock
);
92 posix_cpu_timers_exit(tsk
);
94 posix_cpu_timers_exit_group(tsk
);
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
103 if (unlikely(has_group_leader_pid(tsk
)))
104 posix_cpu_timers_exit_group(tsk
);
107 * If there is any task waiting for the group exit
110 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
111 wake_up_process(sig
->group_exit_task
);
113 if (tsk
== sig
->curr_target
)
114 sig
->curr_target
= next_thread(tsk
);
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
125 sig
->utime
+= tsk
->utime
;
126 sig
->stime
+= tsk
->stime
;
127 sig
->gtime
+= tsk
->gtime
;
128 sig
->min_flt
+= tsk
->min_flt
;
129 sig
->maj_flt
+= tsk
->maj_flt
;
130 sig
->nvcsw
+= tsk
->nvcsw
;
131 sig
->nivcsw
+= tsk
->nivcsw
;
132 sig
->inblock
+= task_io_get_inblock(tsk
);
133 sig
->oublock
+= task_io_get_oublock(tsk
);
134 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
135 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
139 __unhash_process(tsk
, group_dead
);
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 flush_sigqueue(&tsk
->pending
);
147 spin_unlock(&sighand
->siglock
);
149 __cleanup_sighand(sighand
);
150 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
152 flush_sigqueue(&sig
->shared_pending
);
157 static void delayed_put_task_struct(struct rcu_head
*rhp
)
159 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
161 perf_event_delayed_put(tsk
);
162 trace_sched_process_free(tsk
);
163 put_task_struct(tsk
);
167 void release_task(struct task_struct
* p
)
169 struct task_struct
*leader
;
172 /* don't need to get the RCU readlock here - the process is dead and
173 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 atomic_dec(&__task_cred(p
)->user
->processes
);
180 write_lock_irq(&tasklist_lock
);
181 ptrace_release_task(p
);
185 * If we are the last non-leader member of the thread
186 * group, and the leader is zombie, then notify the
187 * group leader's parent process. (if it wants notification.)
190 leader
= p
->group_leader
;
191 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
193 * If we were the last child thread and the leader has
194 * exited already, and the leader's parent ignores SIGCHLD,
195 * then we are the one who should release the leader.
197 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
199 leader
->exit_state
= EXIT_DEAD
;
202 write_unlock_irq(&tasklist_lock
);
204 call_rcu(&p
->rcu
, delayed_put_task_struct
);
207 if (unlikely(zap_leader
))
212 * This checks not only the pgrp, but falls back on the pid if no
213 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
216 * The caller must hold rcu lock or the tasklist lock.
218 struct pid
*session_of_pgrp(struct pid
*pgrp
)
220 struct task_struct
*p
;
221 struct pid
*sid
= NULL
;
223 p
= pid_task(pgrp
, PIDTYPE_PGID
);
225 p
= pid_task(pgrp
, PIDTYPE_PID
);
227 sid
= task_session(p
);
233 * Determine if a process group is "orphaned", according to the POSIX
234 * definition in 2.2.2.52. Orphaned process groups are not to be affected
235 * by terminal-generated stop signals. Newly orphaned process groups are
236 * to receive a SIGHUP and a SIGCONT.
238 * "I ask you, have you ever known what it is to be an orphan?"
240 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
242 struct task_struct
*p
;
244 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
245 if ((p
== ignored_task
) ||
246 (p
->exit_state
&& thread_group_empty(p
)) ||
247 is_global_init(p
->real_parent
))
250 if (task_pgrp(p
->real_parent
) != pgrp
&&
251 task_session(p
->real_parent
) == task_session(p
))
253 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
258 int is_current_pgrp_orphaned(void)
262 read_lock(&tasklist_lock
);
263 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
264 read_unlock(&tasklist_lock
);
269 static bool has_stopped_jobs(struct pid
*pgrp
)
271 struct task_struct
*p
;
273 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
274 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
276 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
282 * Check to see if any process groups have become orphaned as
283 * a result of our exiting, and if they have any stopped jobs,
284 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
287 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
289 struct pid
*pgrp
= task_pgrp(tsk
);
290 struct task_struct
*ignored_task
= tsk
;
293 /* exit: our father is in a different pgrp than
294 * we are and we were the only connection outside.
296 parent
= tsk
->real_parent
;
298 /* reparent: our child is in a different pgrp than
299 * we are, and it was the only connection outside.
303 if (task_pgrp(parent
) != pgrp
&&
304 task_session(parent
) == task_session(tsk
) &&
305 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
306 has_stopped_jobs(pgrp
)) {
307 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
308 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
313 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
315 * If a kernel thread is launched as a result of a system call, or if
316 * it ever exits, it should generally reparent itself to kthreadd so it
317 * isn't in the way of other processes and is correctly cleaned up on exit.
319 * The various task state such as scheduling policy and priority may have
320 * been inherited from a user process, so we reset them to sane values here.
322 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
324 static void reparent_to_kthreadd(void)
326 write_lock_irq(&tasklist_lock
);
328 ptrace_unlink(current
);
329 /* Reparent to init */
330 current
->real_parent
= current
->parent
= kthreadd_task
;
331 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
333 /* Set the exit signal to SIGCHLD so we signal init on exit */
334 current
->exit_signal
= SIGCHLD
;
336 if (task_nice(current
) < 0)
337 set_user_nice(current
, 0);
341 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
342 sizeof(current
->signal
->rlim
));
344 atomic_inc(&init_cred
.usage
);
345 commit_creds(&init_cred
);
346 write_unlock_irq(&tasklist_lock
);
349 void __set_special_pids(struct pid
*pid
)
351 struct task_struct
*curr
= current
->group_leader
;
353 if (task_session(curr
) != pid
)
354 change_pid(curr
, PIDTYPE_SID
, pid
);
356 if (task_pgrp(curr
) != pid
)
357 change_pid(curr
, PIDTYPE_PGID
, pid
);
360 static void set_special_pids(struct pid
*pid
)
362 write_lock_irq(&tasklist_lock
);
363 __set_special_pids(pid
);
364 write_unlock_irq(&tasklist_lock
);
368 * Let kernel threads use this to say that they allow a certain signal.
369 * Must not be used if kthread was cloned with CLONE_SIGHAND.
371 int allow_signal(int sig
)
373 if (!valid_signal(sig
) || sig
< 1)
376 spin_lock_irq(¤t
->sighand
->siglock
);
377 /* This is only needed for daemonize()'ed kthreads */
378 sigdelset(¤t
->blocked
, sig
);
380 * Kernel threads handle their own signals. Let the signal code
381 * know it'll be handled, so that they don't get converted to
382 * SIGKILL or just silently dropped.
384 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
386 spin_unlock_irq(¤t
->sighand
->siglock
);
390 EXPORT_SYMBOL(allow_signal
);
392 int disallow_signal(int sig
)
394 if (!valid_signal(sig
) || sig
< 1)
397 spin_lock_irq(¤t
->sighand
->siglock
);
398 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
400 spin_unlock_irq(¤t
->sighand
->siglock
);
404 EXPORT_SYMBOL(disallow_signal
);
407 * Put all the gunge required to become a kernel thread without
408 * attached user resources in one place where it belongs.
411 void daemonize(const char *name
, ...)
416 va_start(args
, name
);
417 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
421 * If we were started as result of loading a module, close all of the
422 * user space pages. We don't need them, and if we didn't close them
423 * they would be locked into memory.
427 * We don't want to have TIF_FREEZE set if the system-wide hibernation
428 * or suspend transition begins right now.
430 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
432 if (current
->nsproxy
!= &init_nsproxy
) {
433 get_nsproxy(&init_nsproxy
);
434 switch_task_namespaces(current
, &init_nsproxy
);
436 set_special_pids(&init_struct_pid
);
437 proc_clear_tty(current
);
439 /* Block and flush all signals */
440 sigfillset(&blocked
);
441 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
442 flush_signals(current
);
444 /* Become as one with the init task */
446 daemonize_fs_struct();
448 current
->files
= init_task
.files
;
449 atomic_inc(¤t
->files
->count
);
451 reparent_to_kthreadd();
454 EXPORT_SYMBOL(daemonize
);
456 static void close_files(struct files_struct
* files
)
464 * It is safe to dereference the fd table without RCU or
465 * ->file_lock because this is the last reference to the
466 * files structure. But use RCU to shut RCU-lockdep up.
469 fdt
= files_fdtable(files
);
474 if (i
>= fdt
->max_fds
)
476 set
= fdt
->open_fds
->fds_bits
[j
++];
479 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
481 filp_close(file
, files
);
491 struct files_struct
*get_files_struct(struct task_struct
*task
)
493 struct files_struct
*files
;
498 atomic_inc(&files
->count
);
504 void put_files_struct(struct files_struct
*files
)
508 if (atomic_dec_and_test(&files
->count
)) {
511 * Free the fd and fdset arrays if we expanded them.
512 * If the fdtable was embedded, pass files for freeing
513 * at the end of the RCU grace period. Otherwise,
514 * you can free files immediately.
517 fdt
= files_fdtable(files
);
518 if (fdt
!= &files
->fdtab
)
519 kmem_cache_free(files_cachep
, files
);
525 void reset_files_struct(struct files_struct
*files
)
527 struct task_struct
*tsk
= current
;
528 struct files_struct
*old
;
534 put_files_struct(old
);
537 void exit_files(struct task_struct
*tsk
)
539 struct files_struct
* files
= tsk
->files
;
545 put_files_struct(files
);
549 #ifdef CONFIG_MM_OWNER
551 * A task is exiting. If it owned this mm, find a new owner for the mm.
553 void mm_update_next_owner(struct mm_struct
*mm
)
555 struct task_struct
*c
, *g
, *p
= current
;
559 * If the exiting or execing task is not the owner, it's
560 * someone else's problem.
565 * The current owner is exiting/execing and there are no other
566 * candidates. Do not leave the mm pointing to a possibly
567 * freed task structure.
569 if (atomic_read(&mm
->mm_users
) <= 1) {
574 read_lock(&tasklist_lock
);
576 * Search in the children
578 list_for_each_entry(c
, &p
->children
, sibling
) {
580 goto assign_new_owner
;
584 * Search in the siblings
586 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
588 goto assign_new_owner
;
592 * Search through everything else. We should not get
595 do_each_thread(g
, c
) {
597 goto assign_new_owner
;
598 } while_each_thread(g
, c
);
600 read_unlock(&tasklist_lock
);
602 * We found no owner yet mm_users > 1: this implies that we are
603 * most likely racing with swapoff (try_to_unuse()) or /proc or
604 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
613 * The task_lock protects c->mm from changing.
614 * We always want mm->owner->mm == mm
618 * Delay read_unlock() till we have the task_lock()
619 * to ensure that c does not slip away underneath us
621 read_unlock(&tasklist_lock
);
631 #endif /* CONFIG_MM_OWNER */
634 * Turn us into a lazy TLB process if we
637 static void exit_mm(struct task_struct
* tsk
)
639 struct mm_struct
*mm
= tsk
->mm
;
640 struct core_state
*core_state
;
646 * Serialize with any possible pending coredump.
647 * We must hold mmap_sem around checking core_state
648 * and clearing tsk->mm. The core-inducing thread
649 * will increment ->nr_threads for each thread in the
650 * group with ->mm != NULL.
652 down_read(&mm
->mmap_sem
);
653 core_state
= mm
->core_state
;
655 struct core_thread self
;
656 up_read(&mm
->mmap_sem
);
659 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
661 * Implies mb(), the result of xchg() must be visible
662 * to core_state->dumper.
664 if (atomic_dec_and_test(&core_state
->nr_threads
))
665 complete(&core_state
->startup
);
668 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
669 if (!self
.task
) /* see coredump_finish() */
673 __set_task_state(tsk
, TASK_RUNNING
);
674 down_read(&mm
->mmap_sem
);
676 atomic_inc(&mm
->mm_count
);
677 BUG_ON(mm
!= tsk
->active_mm
);
678 /* more a memory barrier than a real lock */
681 up_read(&mm
->mmap_sem
);
682 enter_lazy_tlb(mm
, current
);
684 mm_update_next_owner(mm
);
689 * When we die, we re-parent all our children.
690 * Try to give them to another thread in our thread
691 * group, and if no such member exists, give it to
692 * the child reaper process (ie "init") in our pid
695 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
696 __releases(&tasklist_lock
)
697 __acquires(&tasklist_lock
)
699 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
700 struct task_struct
*thread
;
703 while_each_thread(father
, thread
) {
704 if (thread
->flags
& PF_EXITING
)
706 if (unlikely(pid_ns
->child_reaper
== father
))
707 pid_ns
->child_reaper
= thread
;
711 if (unlikely(pid_ns
->child_reaper
== father
)) {
712 write_unlock_irq(&tasklist_lock
);
713 if (unlikely(pid_ns
== &init_pid_ns
))
714 panic("Attempted to kill init!");
716 zap_pid_ns_processes(pid_ns
);
717 write_lock_irq(&tasklist_lock
);
719 * We can not clear ->child_reaper or leave it alone.
720 * There may by stealth EXIT_DEAD tasks on ->children,
721 * forget_original_parent() must move them somewhere.
723 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
726 return pid_ns
->child_reaper
;
730 * Any that need to be release_task'd are put on the @dead list.
732 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
733 struct list_head
*dead
)
735 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
737 if (p
->exit_state
== EXIT_DEAD
)
740 * If this is a threaded reparent there is no need to
741 * notify anyone anything has happened.
743 if (same_thread_group(p
->real_parent
, father
))
746 /* We don't want people slaying init. */
747 p
->exit_signal
= SIGCHLD
;
749 /* If it has exited notify the new parent about this child's death. */
751 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
752 if (do_notify_parent(p
, p
->exit_signal
)) {
753 p
->exit_state
= EXIT_DEAD
;
754 list_move_tail(&p
->sibling
, dead
);
758 kill_orphaned_pgrp(p
, father
);
761 static void forget_original_parent(struct task_struct
*father
)
763 struct task_struct
*p
, *n
, *reaper
;
764 LIST_HEAD(dead_children
);
766 write_lock_irq(&tasklist_lock
);
768 * Note that exit_ptrace() and find_new_reaper() might
769 * drop tasklist_lock and reacquire it.
772 reaper
= find_new_reaper(father
);
774 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
775 struct task_struct
*t
= p
;
777 t
->real_parent
= reaper
;
778 if (t
->parent
== father
) {
780 t
->parent
= t
->real_parent
;
782 if (t
->pdeath_signal
)
783 group_send_sig_info(t
->pdeath_signal
,
785 } while_each_thread(p
, t
);
786 reparent_leader(father
, p
, &dead_children
);
788 write_unlock_irq(&tasklist_lock
);
790 BUG_ON(!list_empty(&father
->children
));
792 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
793 list_del_init(&p
->sibling
);
799 * Send signals to all our closest relatives so that they know
800 * to properly mourn us..
802 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
807 * This does two things:
809 * A. Make init inherit all the child processes
810 * B. Check to see if any process groups have become orphaned
811 * as a result of our exiting, and if they have any stopped
812 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
814 forget_original_parent(tsk
);
815 exit_task_namespaces(tsk
);
817 write_lock_irq(&tasklist_lock
);
819 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
821 /* Let father know we died
823 * Thread signals are configurable, but you aren't going to use
824 * that to send signals to arbitrary processes.
825 * That stops right now.
827 * If the parent exec id doesn't match the exec id we saved
828 * when we started then we know the parent has changed security
831 * If our self_exec id doesn't match our parent_exec_id then
832 * we have changed execution domain as these two values started
833 * the same after a fork.
835 if (thread_group_leader(tsk
) && tsk
->exit_signal
!= SIGCHLD
&&
836 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
837 tsk
->self_exec_id
!= tsk
->parent_exec_id
))
838 tsk
->exit_signal
= SIGCHLD
;
840 if (unlikely(tsk
->ptrace
)) {
841 int sig
= thread_group_leader(tsk
) &&
842 thread_group_empty(tsk
) &&
843 !ptrace_reparented(tsk
) ?
844 tsk
->exit_signal
: SIGCHLD
;
845 autoreap
= do_notify_parent(tsk
, sig
);
846 } else if (thread_group_leader(tsk
)) {
847 autoreap
= thread_group_empty(tsk
) &&
848 do_notify_parent(tsk
, tsk
->exit_signal
);
853 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
855 /* mt-exec, de_thread() is waiting for group leader */
856 if (unlikely(tsk
->signal
->notify_count
< 0))
857 wake_up_process(tsk
->signal
->group_exit_task
);
858 write_unlock_irq(&tasklist_lock
);
860 /* If the process is dead, release it - nobody will wait for it */
865 #ifdef CONFIG_DEBUG_STACK_USAGE
866 static void check_stack_usage(void)
868 static DEFINE_SPINLOCK(low_water_lock
);
869 static int lowest_to_date
= THREAD_SIZE
;
872 free
= stack_not_used(current
);
874 if (free
>= lowest_to_date
)
877 spin_lock(&low_water_lock
);
878 if (free
< lowest_to_date
) {
879 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
881 current
->comm
, free
);
882 lowest_to_date
= free
;
884 spin_unlock(&low_water_lock
);
887 static inline void check_stack_usage(void) {}
890 void do_exit(long code
)
892 struct task_struct
*tsk
= current
;
895 profile_task_exit(tsk
);
897 WARN_ON(blk_needs_flush_plug(tsk
));
899 if (unlikely(in_interrupt()))
900 panic("Aiee, killing interrupt handler!");
901 if (unlikely(!tsk
->pid
))
902 panic("Attempted to kill the idle task!");
905 * If do_exit is called because this processes oopsed, it's possible
906 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
907 * continuing. Amongst other possible reasons, this is to prevent
908 * mm_release()->clear_child_tid() from writing to a user-controlled
913 ptrace_event(PTRACE_EVENT_EXIT
, code
);
915 validate_creds_for_do_exit(tsk
);
918 * We're taking recursive faults here in do_exit. Safest is to just
919 * leave this task alone and wait for reboot.
921 if (unlikely(tsk
->flags
& PF_EXITING
)) {
923 "Fixing recursive fault but reboot is needed!\n");
925 * We can do this unlocked here. The futex code uses
926 * this flag just to verify whether the pi state
927 * cleanup has been done or not. In the worst case it
928 * loops once more. We pretend that the cleanup was
929 * done as there is no way to return. Either the
930 * OWNER_DIED bit is set by now or we push the blocked
931 * task into the wait for ever nirwana as well.
933 tsk
->flags
|= PF_EXITPIDONE
;
934 set_current_state(TASK_UNINTERRUPTIBLE
);
940 exit_signals(tsk
); /* sets PF_EXITING */
942 * tsk->flags are checked in the futex code to protect against
943 * an exiting task cleaning up the robust pi futexes.
946 raw_spin_unlock_wait(&tsk
->pi_lock
);
948 if (unlikely(in_atomic()))
949 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
950 current
->comm
, task_pid_nr(current
),
953 acct_update_integrals(tsk
);
954 /* sync mm's RSS info before statistics gathering */
956 sync_mm_rss(tsk
, tsk
->mm
);
957 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
959 hrtimer_cancel(&tsk
->signal
->real_timer
);
960 exit_itimers(tsk
->signal
);
962 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
964 acct_collect(code
, group_dead
);
969 tsk
->exit_code
= code
;
970 taskstats_exit(tsk
, group_dead
);
976 trace_sched_process_exit(tsk
);
986 * Flush inherited counters to the parent - before the parent
987 * gets woken up by child-exit notifications.
989 * because of cgroup mode, must be called before cgroup_exit()
991 perf_event_exit_task(tsk
);
996 disassociate_ctty(1);
998 module_put(task_thread_info(tsk
)->exec_domain
->module
);
1000 proc_exit_connector(tsk
);
1003 * FIXME: do that only when needed, using sched_exit tracepoint
1005 ptrace_put_breakpoints(tsk
);
1007 exit_notify(tsk
, group_dead
);
1010 mpol_put(tsk
->mempolicy
);
1011 tsk
->mempolicy
= NULL
;
1015 if (unlikely(current
->pi_state_cache
))
1016 kfree(current
->pi_state_cache
);
1019 * Make sure we are holding no locks:
1021 debug_check_no_locks_held(tsk
);
1023 * We can do this unlocked here. The futex code uses this flag
1024 * just to verify whether the pi state cleanup has been done
1025 * or not. In the worst case it loops once more.
1027 tsk
->flags
|= PF_EXITPIDONE
;
1029 if (tsk
->io_context
)
1030 exit_io_context(tsk
);
1032 if (tsk
->splice_pipe
)
1033 __free_pipe_info(tsk
->splice_pipe
);
1035 validate_creds_for_do_exit(tsk
);
1038 if (tsk
->nr_dirtied
)
1039 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
1043 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
1044 * when the following two conditions become true.
1045 * - There is race condition of mmap_sem (It is acquired by
1047 * - SMI occurs before setting TASK_RUNINNG.
1048 * (or hypervisor of virtual machine switches to other guest)
1049 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
1051 * To avoid it, we have to wait for releasing tsk->pi_lock which
1052 * is held by try_to_wake_up()
1055 raw_spin_unlock_wait(&tsk
->pi_lock
);
1057 /* causes final put_task_struct in finish_task_switch(). */
1058 tsk
->state
= TASK_DEAD
;
1059 tsk
->flags
|= PF_NOFREEZE
; /* tell freezer to ignore us */
1062 /* Avoid "noreturn function does return". */
1064 cpu_relax(); /* For when BUG is null */
1067 EXPORT_SYMBOL_GPL(do_exit
);
1069 void complete_and_exit(struct completion
*comp
, long code
)
1077 EXPORT_SYMBOL(complete_and_exit
);
1079 SYSCALL_DEFINE1(exit
, int, error_code
)
1081 do_exit((error_code
&0xff)<<8);
1085 * Take down every thread in the group. This is called by fatal signals
1086 * as well as by sys_exit_group (below).
1089 do_group_exit(int exit_code
)
1091 struct signal_struct
*sig
= current
->signal
;
1093 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1095 if (signal_group_exit(sig
))
1096 exit_code
= sig
->group_exit_code
;
1097 else if (!thread_group_empty(current
)) {
1098 struct sighand_struct
*const sighand
= current
->sighand
;
1099 spin_lock_irq(&sighand
->siglock
);
1100 if (signal_group_exit(sig
))
1101 /* Another thread got here before we took the lock. */
1102 exit_code
= sig
->group_exit_code
;
1104 sig
->group_exit_code
= exit_code
;
1105 sig
->flags
= SIGNAL_GROUP_EXIT
;
1106 zap_other_threads(current
);
1108 spin_unlock_irq(&sighand
->siglock
);
1116 * this kills every thread in the thread group. Note that any externally
1117 * wait4()-ing process will get the correct exit code - even if this
1118 * thread is not the thread group leader.
1120 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1122 do_group_exit((error_code
& 0xff) << 8);
1128 enum pid_type wo_type
;
1132 struct siginfo __user
*wo_info
;
1133 int __user
*wo_stat
;
1134 struct rusage __user
*wo_rusage
;
1136 wait_queue_t child_wait
;
1141 struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1143 if (type
!= PIDTYPE_PID
)
1144 task
= task
->group_leader
;
1145 return task
->pids
[type
].pid
;
1148 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1150 return wo
->wo_type
== PIDTYPE_MAX
||
1151 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1154 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
1156 if (!eligible_pid(wo
, p
))
1158 /* Wait for all children (clone and not) if __WALL is set;
1159 * otherwise, wait for clone children *only* if __WCLONE is
1160 * set; otherwise, wait for non-clone children *only*. (Note:
1161 * A "clone" child here is one that reports to its parent
1162 * using a signal other than SIGCHLD.) */
1163 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1164 && !(wo
->wo_flags
& __WALL
))
1170 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
1171 pid_t pid
, uid_t uid
, int why
, int status
)
1173 struct siginfo __user
*infop
;
1174 int retval
= wo
->wo_rusage
1175 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1178 infop
= wo
->wo_info
;
1181 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1183 retval
= put_user(0, &infop
->si_errno
);
1185 retval
= put_user((short)why
, &infop
->si_code
);
1187 retval
= put_user(pid
, &infop
->si_pid
);
1189 retval
= put_user(uid
, &infop
->si_uid
);
1191 retval
= put_user(status
, &infop
->si_status
);
1199 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1200 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1201 * the lock and this task is uninteresting. If we return nonzero, we have
1202 * released the lock and the system call should return.
1204 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1206 unsigned long state
;
1207 int retval
, status
, traced
;
1208 pid_t pid
= task_pid_vnr(p
);
1209 uid_t uid
= __task_cred(p
)->uid
;
1210 struct siginfo __user
*infop
;
1212 if (!likely(wo
->wo_flags
& WEXITED
))
1215 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1216 int exit_code
= p
->exit_code
;
1220 read_unlock(&tasklist_lock
);
1221 if ((exit_code
& 0x7f) == 0) {
1223 status
= exit_code
>> 8;
1225 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1226 status
= exit_code
& 0x7f;
1228 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1232 * Try to move the task's state to DEAD
1233 * only one thread is allowed to do this:
1235 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1236 if (state
!= EXIT_ZOMBIE
) {
1237 BUG_ON(state
!= EXIT_DEAD
);
1241 traced
= ptrace_reparented(p
);
1243 * It can be ptraced but not reparented, check
1244 * thread_group_leader() to filter out sub-threads.
1246 if (likely(!traced
) && thread_group_leader(p
)) {
1247 struct signal_struct
*psig
;
1248 struct signal_struct
*sig
;
1249 unsigned long maxrss
;
1250 cputime_t tgutime
, tgstime
;
1253 * The resource counters for the group leader are in its
1254 * own task_struct. Those for dead threads in the group
1255 * are in its signal_struct, as are those for the child
1256 * processes it has previously reaped. All these
1257 * accumulate in the parent's signal_struct c* fields.
1259 * We don't bother to take a lock here to protect these
1260 * p->signal fields, because they are only touched by
1261 * __exit_signal, which runs with tasklist_lock
1262 * write-locked anyway, and so is excluded here. We do
1263 * need to protect the access to parent->signal fields,
1264 * as other threads in the parent group can be right
1265 * here reaping other children at the same time.
1267 * We use thread_group_times() to get times for the thread
1268 * group, which consolidates times for all threads in the
1269 * group including the group leader.
1271 thread_group_times(p
, &tgutime
, &tgstime
);
1272 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1273 psig
= p
->real_parent
->signal
;
1275 psig
->cutime
+= tgutime
+ sig
->cutime
;
1276 psig
->cstime
+= tgstime
+ sig
->cstime
;
1277 psig
->cgtime
+= p
->gtime
+ sig
->gtime
+ sig
->cgtime
;
1279 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1281 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1283 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1285 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1287 task_io_get_inblock(p
) +
1288 sig
->inblock
+ sig
->cinblock
;
1290 task_io_get_oublock(p
) +
1291 sig
->oublock
+ sig
->coublock
;
1292 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1293 if (psig
->cmaxrss
< maxrss
)
1294 psig
->cmaxrss
= maxrss
;
1295 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1296 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1297 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1301 * Now we are sure this task is interesting, and no other
1302 * thread can reap it because we set its state to EXIT_DEAD.
1304 read_unlock(&tasklist_lock
);
1306 retval
= wo
->wo_rusage
1307 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1308 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1309 ? p
->signal
->group_exit_code
: p
->exit_code
;
1310 if (!retval
&& wo
->wo_stat
)
1311 retval
= put_user(status
, wo
->wo_stat
);
1313 infop
= wo
->wo_info
;
1314 if (!retval
&& infop
)
1315 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1316 if (!retval
&& infop
)
1317 retval
= put_user(0, &infop
->si_errno
);
1318 if (!retval
&& infop
) {
1321 if ((status
& 0x7f) == 0) {
1325 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1328 retval
= put_user((short)why
, &infop
->si_code
);
1330 retval
= put_user(status
, &infop
->si_status
);
1332 if (!retval
&& infop
)
1333 retval
= put_user(pid
, &infop
->si_pid
);
1334 if (!retval
&& infop
)
1335 retval
= put_user(uid
, &infop
->si_uid
);
1340 write_lock_irq(&tasklist_lock
);
1341 /* We dropped tasklist, ptracer could die and untrace */
1344 * If this is not a sub-thread, notify the parent.
1345 * If parent wants a zombie, don't release it now.
1347 if (thread_group_leader(p
) &&
1348 !do_notify_parent(p
, p
->exit_signal
)) {
1349 p
->exit_state
= EXIT_ZOMBIE
;
1352 write_unlock_irq(&tasklist_lock
);
1360 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1363 if (task_is_stopped_or_traced(p
) &&
1364 !(p
->jobctl
& JOBCTL_LISTENING
))
1365 return &p
->exit_code
;
1367 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1368 return &p
->signal
->group_exit_code
;
1374 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1376 * @ptrace: is the wait for ptrace
1377 * @p: task to wait for
1379 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1382 * read_lock(&tasklist_lock), which is released if return value is
1383 * non-zero. Also, grabs and releases @p->sighand->siglock.
1386 * 0 if wait condition didn't exist and search for other wait conditions
1387 * should continue. Non-zero return, -errno on failure and @p's pid on
1388 * success, implies that tasklist_lock is released and wait condition
1389 * search should terminate.
1391 static int wait_task_stopped(struct wait_opts
*wo
,
1392 int ptrace
, struct task_struct
*p
)
1394 struct siginfo __user
*infop
;
1395 int retval
, exit_code
, *p_code
, why
;
1396 uid_t uid
= 0; /* unneeded, required by compiler */
1400 * Traditionally we see ptrace'd stopped tasks regardless of options.
1402 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1405 if (!task_stopped_code(p
, ptrace
))
1409 spin_lock_irq(&p
->sighand
->siglock
);
1411 p_code
= task_stopped_code(p
, ptrace
);
1412 if (unlikely(!p_code
))
1415 exit_code
= *p_code
;
1419 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1424 spin_unlock_irq(&p
->sighand
->siglock
);
1429 * Now we are pretty sure this task is interesting.
1430 * Make sure it doesn't get reaped out from under us while we
1431 * give up the lock and then examine it below. We don't want to
1432 * keep holding onto the tasklist_lock while we call getrusage and
1433 * possibly take page faults for user memory.
1436 pid
= task_pid_vnr(p
);
1437 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1438 read_unlock(&tasklist_lock
);
1440 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1441 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1443 retval
= wo
->wo_rusage
1444 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1445 if (!retval
&& wo
->wo_stat
)
1446 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1448 infop
= wo
->wo_info
;
1449 if (!retval
&& infop
)
1450 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1451 if (!retval
&& infop
)
1452 retval
= put_user(0, &infop
->si_errno
);
1453 if (!retval
&& infop
)
1454 retval
= put_user((short)why
, &infop
->si_code
);
1455 if (!retval
&& infop
)
1456 retval
= put_user(exit_code
, &infop
->si_status
);
1457 if (!retval
&& infop
)
1458 retval
= put_user(pid
, &infop
->si_pid
);
1459 if (!retval
&& infop
)
1460 retval
= put_user(uid
, &infop
->si_uid
);
1470 * Handle do_wait work for one task in a live, non-stopped state.
1471 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1472 * the lock and this task is uninteresting. If we return nonzero, we have
1473 * released the lock and the system call should return.
1475 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1481 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1484 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1487 spin_lock_irq(&p
->sighand
->siglock
);
1488 /* Re-check with the lock held. */
1489 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1490 spin_unlock_irq(&p
->sighand
->siglock
);
1493 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1494 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1496 spin_unlock_irq(&p
->sighand
->siglock
);
1498 pid
= task_pid_vnr(p
);
1500 read_unlock(&tasklist_lock
);
1503 retval
= wo
->wo_rusage
1504 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1506 if (!retval
&& wo
->wo_stat
)
1507 retval
= put_user(0xffff, wo
->wo_stat
);
1511 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1512 CLD_CONTINUED
, SIGCONT
);
1513 BUG_ON(retval
== 0);
1520 * Consider @p for a wait by @parent.
1522 * -ECHILD should be in ->notask_error before the first call.
1523 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1524 * Returns zero if the search for a child should continue;
1525 * then ->notask_error is 0 if @p is an eligible child,
1526 * or another error from security_task_wait(), or still -ECHILD.
1528 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1529 struct task_struct
*p
)
1531 int ret
= eligible_child(wo
, p
);
1535 ret
= security_task_wait(p
);
1536 if (unlikely(ret
< 0)) {
1538 * If we have not yet seen any eligible child,
1539 * then let this error code replace -ECHILD.
1540 * A permission error will give the user a clue
1541 * to look for security policy problems, rather
1542 * than for mysterious wait bugs.
1544 if (wo
->notask_error
)
1545 wo
->notask_error
= ret
;
1549 /* dead body doesn't have much to contribute */
1550 if (unlikely(p
->exit_state
== EXIT_DEAD
)) {
1552 * But do not ignore this task until the tracer does
1553 * wait_task_zombie()->do_notify_parent().
1555 if (likely(!ptrace
) && unlikely(ptrace_reparented(p
)))
1556 wo
->notask_error
= 0;
1561 if (p
->exit_state
== EXIT_ZOMBIE
) {
1563 * A zombie ptracee is only visible to its ptracer.
1564 * Notification and reaping will be cascaded to the real
1565 * parent when the ptracer detaches.
1567 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1568 /* it will become visible, clear notask_error */
1569 wo
->notask_error
= 0;
1573 /* we don't reap group leaders with subthreads */
1574 if (!delay_group_leader(p
))
1575 return wait_task_zombie(wo
, p
);
1578 * Allow access to stopped/continued state via zombie by
1579 * falling through. Clearing of notask_error is complex.
1583 * If WEXITED is set, notask_error should naturally be
1584 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1585 * so, if there are live subthreads, there are events to
1586 * wait for. If all subthreads are dead, it's still safe
1587 * to clear - this function will be called again in finite
1588 * amount time once all the subthreads are released and
1589 * will then return without clearing.
1593 * Stopped state is per-task and thus can't change once the
1594 * target task dies. Only continued and exited can happen.
1595 * Clear notask_error if WCONTINUED | WEXITED.
1597 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1598 wo
->notask_error
= 0;
1601 * If @p is ptraced by a task in its real parent's group,
1602 * hide group stop/continued state when looking at @p as
1603 * the real parent; otherwise, a single stop can be
1604 * reported twice as group and ptrace stops.
1606 * If a ptracer wants to distinguish the two events for its
1607 * own children, it should create a separate process which
1608 * takes the role of real parent.
1610 if (likely(!ptrace
) && p
->ptrace
&& !ptrace_reparented(p
))
1614 * @p is alive and it's gonna stop, continue or exit, so
1615 * there always is something to wait for.
1617 wo
->notask_error
= 0;
1621 * Wait for stopped. Depending on @ptrace, different stopped state
1622 * is used and the two don't interact with each other.
1624 ret
= wait_task_stopped(wo
, ptrace
, p
);
1629 * Wait for continued. There's only one continued state and the
1630 * ptracer can consume it which can confuse the real parent. Don't
1631 * use WCONTINUED from ptracer. You don't need or want it.
1633 return wait_task_continued(wo
, p
);
1637 * Do the work of do_wait() for one thread in the group, @tsk.
1639 * -ECHILD should be in ->notask_error before the first call.
1640 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1641 * Returns zero if the search for a child should continue; then
1642 * ->notask_error is 0 if there were any eligible children,
1643 * or another error from security_task_wait(), or still -ECHILD.
1645 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1647 struct task_struct
*p
;
1649 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1650 int ret
= wait_consider_task(wo
, 0, p
);
1658 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1660 struct task_struct
*p
;
1662 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1663 int ret
= wait_consider_task(wo
, 1, p
);
1671 static int child_wait_callback(wait_queue_t
*wait
, unsigned mode
,
1672 int sync
, void *key
)
1674 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1676 struct task_struct
*p
= key
;
1678 if (!eligible_pid(wo
, p
))
1681 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1684 return default_wake_function(wait
, mode
, sync
, key
);
1687 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1689 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1690 TASK_INTERRUPTIBLE
, 1, p
);
1693 static long do_wait(struct wait_opts
*wo
)
1695 struct task_struct
*tsk
;
1698 trace_sched_process_wait(wo
->wo_pid
);
1700 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1701 wo
->child_wait
.private = current
;
1702 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1705 * If there is nothing that can match our critiera just get out.
1706 * We will clear ->notask_error to zero if we see any child that
1707 * might later match our criteria, even if we are not able to reap
1710 wo
->notask_error
= -ECHILD
;
1711 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1712 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1715 set_current_state(TASK_INTERRUPTIBLE
);
1716 read_lock(&tasklist_lock
);
1719 retval
= do_wait_thread(wo
, tsk
);
1723 retval
= ptrace_do_wait(wo
, tsk
);
1727 if (wo
->wo_flags
& __WNOTHREAD
)
1729 } while_each_thread(current
, tsk
);
1730 read_unlock(&tasklist_lock
);
1733 retval
= wo
->notask_error
;
1734 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1735 retval
= -ERESTARTSYS
;
1736 if (!signal_pending(current
)) {
1742 __set_current_state(TASK_RUNNING
);
1743 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1747 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1748 infop
, int, options
, struct rusage __user
*, ru
)
1750 struct wait_opts wo
;
1751 struct pid
*pid
= NULL
;
1755 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1757 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1770 type
= PIDTYPE_PGID
;
1778 if (type
< PIDTYPE_MAX
)
1779 pid
= find_get_pid(upid
);
1783 wo
.wo_flags
= options
;
1793 * For a WNOHANG return, clear out all the fields
1794 * we would set so the user can easily tell the
1798 ret
= put_user(0, &infop
->si_signo
);
1800 ret
= put_user(0, &infop
->si_errno
);
1802 ret
= put_user(0, &infop
->si_code
);
1804 ret
= put_user(0, &infop
->si_pid
);
1806 ret
= put_user(0, &infop
->si_uid
);
1808 ret
= put_user(0, &infop
->si_status
);
1813 /* avoid REGPARM breakage on x86: */
1814 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1818 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1819 int, options
, struct rusage __user
*, ru
)
1821 struct wait_opts wo
;
1822 struct pid
*pid
= NULL
;
1826 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1827 __WNOTHREAD
|__WCLONE
|__WALL
))
1832 else if (upid
< 0) {
1833 type
= PIDTYPE_PGID
;
1834 pid
= find_get_pid(-upid
);
1835 } else if (upid
== 0) {
1836 type
= PIDTYPE_PGID
;
1837 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1838 } else /* upid > 0 */ {
1840 pid
= find_get_pid(upid
);
1845 wo
.wo_flags
= options
| WEXITED
;
1847 wo
.wo_stat
= stat_addr
;
1852 /* avoid REGPARM breakage on x86: */
1853 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1857 #ifdef __ARCH_WANT_SYS_WAITPID
1860 * sys_waitpid() remains for compatibility. waitpid() should be
1861 * implemented by calling sys_wait4() from libc.a.
1863 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1865 return sys_wait4(pid
, stat_addr
, options
, NULL
);