Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6/libata-dev.git] / security / selinux / ss / services.c
blobb4feecc3fe0110d10bbdc183c369a03ab8495a6c
1 /*
2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
76 static DEFINE_RWLOCK(policy_rwlock);
78 static struct sidtab sidtab;
79 struct policydb policydb;
80 int ss_initialized;
83 * The largest sequence number that has been used when
84 * providing an access decision to the access vector cache.
85 * The sequence number only changes when a policy change
86 * occurs.
88 static u32 latest_granting;
90 /* Forward declaration. */
91 static int context_struct_to_string(struct context *context, char **scontext,
92 u32 *scontext_len);
94 static void context_struct_compute_av(struct context *scontext,
95 struct context *tcontext,
96 u16 tclass,
97 struct av_decision *avd);
99 struct selinux_mapping {
100 u16 value; /* policy value */
101 unsigned num_perms;
102 u32 perms[sizeof(u32) * 8];
105 static struct selinux_mapping *current_mapping;
106 static u16 current_mapping_size;
108 static int selinux_set_mapping(struct policydb *pol,
109 struct security_class_mapping *map,
110 struct selinux_mapping **out_map_p,
111 u16 *out_map_size)
113 struct selinux_mapping *out_map = NULL;
114 size_t size = sizeof(struct selinux_mapping);
115 u16 i, j;
116 unsigned k;
117 bool print_unknown_handle = false;
119 /* Find number of classes in the input mapping */
120 if (!map)
121 return -EINVAL;
122 i = 0;
123 while (map[i].name)
124 i++;
126 /* Allocate space for the class records, plus one for class zero */
127 out_map = kcalloc(++i, size, GFP_ATOMIC);
128 if (!out_map)
129 return -ENOMEM;
131 /* Store the raw class and permission values */
132 j = 0;
133 while (map[j].name) {
134 struct security_class_mapping *p_in = map + (j++);
135 struct selinux_mapping *p_out = out_map + j;
137 /* An empty class string skips ahead */
138 if (!strcmp(p_in->name, "")) {
139 p_out->num_perms = 0;
140 continue;
143 p_out->value = string_to_security_class(pol, p_in->name);
144 if (!p_out->value) {
145 printk(KERN_INFO
146 "SELinux: Class %s not defined in policy.\n",
147 p_in->name);
148 if (pol->reject_unknown)
149 goto err;
150 p_out->num_perms = 0;
151 print_unknown_handle = true;
152 continue;
155 k = 0;
156 while (p_in->perms && p_in->perms[k]) {
157 /* An empty permission string skips ahead */
158 if (!*p_in->perms[k]) {
159 k++;
160 continue;
162 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
163 p_in->perms[k]);
164 if (!p_out->perms[k]) {
165 printk(KERN_INFO
166 "SELinux: Permission %s in class %s not defined in policy.\n",
167 p_in->perms[k], p_in->name);
168 if (pol->reject_unknown)
169 goto err;
170 print_unknown_handle = true;
173 k++;
175 p_out->num_perms = k;
178 if (print_unknown_handle)
179 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
180 pol->allow_unknown ? "allowed" : "denied");
182 *out_map_p = out_map;
183 *out_map_size = i;
184 return 0;
185 err:
186 kfree(out_map);
187 return -EINVAL;
191 * Get real, policy values from mapped values
194 static u16 unmap_class(u16 tclass)
196 if (tclass < current_mapping_size)
197 return current_mapping[tclass].value;
199 return tclass;
203 * Get kernel value for class from its policy value
205 static u16 map_class(u16 pol_value)
207 u16 i;
209 for (i = 1; i < current_mapping_size; i++) {
210 if (current_mapping[i].value == pol_value)
211 return i;
214 return SECCLASS_NULL;
217 static void map_decision(u16 tclass, struct av_decision *avd,
218 int allow_unknown)
220 if (tclass < current_mapping_size) {
221 unsigned i, n = current_mapping[tclass].num_perms;
222 u32 result;
224 for (i = 0, result = 0; i < n; i++) {
225 if (avd->allowed & current_mapping[tclass].perms[i])
226 result |= 1<<i;
227 if (allow_unknown && !current_mapping[tclass].perms[i])
228 result |= 1<<i;
230 avd->allowed = result;
232 for (i = 0, result = 0; i < n; i++)
233 if (avd->auditallow & current_mapping[tclass].perms[i])
234 result |= 1<<i;
235 avd->auditallow = result;
237 for (i = 0, result = 0; i < n; i++) {
238 if (avd->auditdeny & current_mapping[tclass].perms[i])
239 result |= 1<<i;
240 if (!allow_unknown && !current_mapping[tclass].perms[i])
241 result |= 1<<i;
244 * In case the kernel has a bug and requests a permission
245 * between num_perms and the maximum permission number, we
246 * should audit that denial
248 for (; i < (sizeof(u32)*8); i++)
249 result |= 1<<i;
250 avd->auditdeny = result;
254 int security_mls_enabled(void)
256 return policydb.mls_enabled;
260 * Return the boolean value of a constraint expression
261 * when it is applied to the specified source and target
262 * security contexts.
264 * xcontext is a special beast... It is used by the validatetrans rules
265 * only. For these rules, scontext is the context before the transition,
266 * tcontext is the context after the transition, and xcontext is the context
267 * of the process performing the transition. All other callers of
268 * constraint_expr_eval should pass in NULL for xcontext.
270 static int constraint_expr_eval(struct context *scontext,
271 struct context *tcontext,
272 struct context *xcontext,
273 struct constraint_expr *cexpr)
275 u32 val1, val2;
276 struct context *c;
277 struct role_datum *r1, *r2;
278 struct mls_level *l1, *l2;
279 struct constraint_expr *e;
280 int s[CEXPR_MAXDEPTH];
281 int sp = -1;
283 for (e = cexpr; e; e = e->next) {
284 switch (e->expr_type) {
285 case CEXPR_NOT:
286 BUG_ON(sp < 0);
287 s[sp] = !s[sp];
288 break;
289 case CEXPR_AND:
290 BUG_ON(sp < 1);
291 sp--;
292 s[sp] &= s[sp + 1];
293 break;
294 case CEXPR_OR:
295 BUG_ON(sp < 1);
296 sp--;
297 s[sp] |= s[sp + 1];
298 break;
299 case CEXPR_ATTR:
300 if (sp == (CEXPR_MAXDEPTH - 1))
301 return 0;
302 switch (e->attr) {
303 case CEXPR_USER:
304 val1 = scontext->user;
305 val2 = tcontext->user;
306 break;
307 case CEXPR_TYPE:
308 val1 = scontext->type;
309 val2 = tcontext->type;
310 break;
311 case CEXPR_ROLE:
312 val1 = scontext->role;
313 val2 = tcontext->role;
314 r1 = policydb.role_val_to_struct[val1 - 1];
315 r2 = policydb.role_val_to_struct[val2 - 1];
316 switch (e->op) {
317 case CEXPR_DOM:
318 s[++sp] = ebitmap_get_bit(&r1->dominates,
319 val2 - 1);
320 continue;
321 case CEXPR_DOMBY:
322 s[++sp] = ebitmap_get_bit(&r2->dominates,
323 val1 - 1);
324 continue;
325 case CEXPR_INCOMP:
326 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
327 val2 - 1) &&
328 !ebitmap_get_bit(&r2->dominates,
329 val1 - 1));
330 continue;
331 default:
332 break;
334 break;
335 case CEXPR_L1L2:
336 l1 = &(scontext->range.level[0]);
337 l2 = &(tcontext->range.level[0]);
338 goto mls_ops;
339 case CEXPR_L1H2:
340 l1 = &(scontext->range.level[0]);
341 l2 = &(tcontext->range.level[1]);
342 goto mls_ops;
343 case CEXPR_H1L2:
344 l1 = &(scontext->range.level[1]);
345 l2 = &(tcontext->range.level[0]);
346 goto mls_ops;
347 case CEXPR_H1H2:
348 l1 = &(scontext->range.level[1]);
349 l2 = &(tcontext->range.level[1]);
350 goto mls_ops;
351 case CEXPR_L1H1:
352 l1 = &(scontext->range.level[0]);
353 l2 = &(scontext->range.level[1]);
354 goto mls_ops;
355 case CEXPR_L2H2:
356 l1 = &(tcontext->range.level[0]);
357 l2 = &(tcontext->range.level[1]);
358 goto mls_ops;
359 mls_ops:
360 switch (e->op) {
361 case CEXPR_EQ:
362 s[++sp] = mls_level_eq(l1, l2);
363 continue;
364 case CEXPR_NEQ:
365 s[++sp] = !mls_level_eq(l1, l2);
366 continue;
367 case CEXPR_DOM:
368 s[++sp] = mls_level_dom(l1, l2);
369 continue;
370 case CEXPR_DOMBY:
371 s[++sp] = mls_level_dom(l2, l1);
372 continue;
373 case CEXPR_INCOMP:
374 s[++sp] = mls_level_incomp(l2, l1);
375 continue;
376 default:
377 BUG();
378 return 0;
380 break;
381 default:
382 BUG();
383 return 0;
386 switch (e->op) {
387 case CEXPR_EQ:
388 s[++sp] = (val1 == val2);
389 break;
390 case CEXPR_NEQ:
391 s[++sp] = (val1 != val2);
392 break;
393 default:
394 BUG();
395 return 0;
397 break;
398 case CEXPR_NAMES:
399 if (sp == (CEXPR_MAXDEPTH-1))
400 return 0;
401 c = scontext;
402 if (e->attr & CEXPR_TARGET)
403 c = tcontext;
404 else if (e->attr & CEXPR_XTARGET) {
405 c = xcontext;
406 if (!c) {
407 BUG();
408 return 0;
411 if (e->attr & CEXPR_USER)
412 val1 = c->user;
413 else if (e->attr & CEXPR_ROLE)
414 val1 = c->role;
415 else if (e->attr & CEXPR_TYPE)
416 val1 = c->type;
417 else {
418 BUG();
419 return 0;
422 switch (e->op) {
423 case CEXPR_EQ:
424 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
425 break;
426 case CEXPR_NEQ:
427 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
428 break;
429 default:
430 BUG();
431 return 0;
433 break;
434 default:
435 BUG();
436 return 0;
440 BUG_ON(sp != 0);
441 return s[0];
445 * security_dump_masked_av - dumps masked permissions during
446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
448 static int dump_masked_av_helper(void *k, void *d, void *args)
450 struct perm_datum *pdatum = d;
451 char **permission_names = args;
453 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
455 permission_names[pdatum->value - 1] = (char *)k;
457 return 0;
460 static void security_dump_masked_av(struct context *scontext,
461 struct context *tcontext,
462 u16 tclass,
463 u32 permissions,
464 const char *reason)
466 struct common_datum *common_dat;
467 struct class_datum *tclass_dat;
468 struct audit_buffer *ab;
469 char *tclass_name;
470 char *scontext_name = NULL;
471 char *tcontext_name = NULL;
472 char *permission_names[32];
473 int index;
474 u32 length;
475 bool need_comma = false;
477 if (!permissions)
478 return;
480 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
481 tclass_dat = policydb.class_val_to_struct[tclass - 1];
482 common_dat = tclass_dat->comdatum;
484 /* init permission_names */
485 if (common_dat &&
486 hashtab_map(common_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
488 goto out;
490 if (hashtab_map(tclass_dat->permissions.table,
491 dump_masked_av_helper, permission_names) < 0)
492 goto out;
494 /* get scontext/tcontext in text form */
495 if (context_struct_to_string(scontext,
496 &scontext_name, &length) < 0)
497 goto out;
499 if (context_struct_to_string(tcontext,
500 &tcontext_name, &length) < 0)
501 goto out;
503 /* audit a message */
504 ab = audit_log_start(current->audit_context,
505 GFP_ATOMIC, AUDIT_SELINUX_ERR);
506 if (!ab)
507 goto out;
509 audit_log_format(ab, "op=security_compute_av reason=%s "
510 "scontext=%s tcontext=%s tclass=%s perms=",
511 reason, scontext_name, tcontext_name, tclass_name);
513 for (index = 0; index < 32; index++) {
514 u32 mask = (1 << index);
516 if ((mask & permissions) == 0)
517 continue;
519 audit_log_format(ab, "%s%s",
520 need_comma ? "," : "",
521 permission_names[index]
522 ? permission_names[index] : "????");
523 need_comma = true;
525 audit_log_end(ab);
526 out:
527 /* release scontext/tcontext */
528 kfree(tcontext_name);
529 kfree(scontext_name);
531 return;
535 * security_boundary_permission - drops violated permissions
536 * on boundary constraint.
538 static void type_attribute_bounds_av(struct context *scontext,
539 struct context *tcontext,
540 u16 tclass,
541 struct av_decision *avd)
543 struct context lo_scontext;
544 struct context lo_tcontext;
545 struct av_decision lo_avd;
546 struct type_datum *source;
547 struct type_datum *target;
548 u32 masked = 0;
550 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
551 scontext->type - 1);
552 BUG_ON(!source);
554 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
555 tcontext->type - 1);
556 BUG_ON(!target);
558 if (source->bounds) {
559 memset(&lo_avd, 0, sizeof(lo_avd));
561 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
562 lo_scontext.type = source->bounds;
564 context_struct_compute_av(&lo_scontext,
565 tcontext,
566 tclass,
567 &lo_avd);
568 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
569 return; /* no masked permission */
570 masked = ~lo_avd.allowed & avd->allowed;
573 if (target->bounds) {
574 memset(&lo_avd, 0, sizeof(lo_avd));
576 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
577 lo_tcontext.type = target->bounds;
579 context_struct_compute_av(scontext,
580 &lo_tcontext,
581 tclass,
582 &lo_avd);
583 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
584 return; /* no masked permission */
585 masked = ~lo_avd.allowed & avd->allowed;
588 if (source->bounds && target->bounds) {
589 memset(&lo_avd, 0, sizeof(lo_avd));
591 * lo_scontext and lo_tcontext are already
592 * set up.
595 context_struct_compute_av(&lo_scontext,
596 &lo_tcontext,
597 tclass,
598 &lo_avd);
599 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
600 return; /* no masked permission */
601 masked = ~lo_avd.allowed & avd->allowed;
604 if (masked) {
605 /* mask violated permissions */
606 avd->allowed &= ~masked;
608 /* audit masked permissions */
609 security_dump_masked_av(scontext, tcontext,
610 tclass, masked, "bounds");
615 * Compute access vectors based on a context structure pair for
616 * the permissions in a particular class.
618 static void context_struct_compute_av(struct context *scontext,
619 struct context *tcontext,
620 u16 tclass,
621 struct av_decision *avd)
623 struct constraint_node *constraint;
624 struct role_allow *ra;
625 struct avtab_key avkey;
626 struct avtab_node *node;
627 struct class_datum *tclass_datum;
628 struct ebitmap *sattr, *tattr;
629 struct ebitmap_node *snode, *tnode;
630 unsigned int i, j;
632 avd->allowed = 0;
633 avd->auditallow = 0;
634 avd->auditdeny = 0xffffffff;
636 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
637 if (printk_ratelimit())
638 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
639 return;
642 tclass_datum = policydb.class_val_to_struct[tclass - 1];
645 * If a specific type enforcement rule was defined for
646 * this permission check, then use it.
648 avkey.target_class = tclass;
649 avkey.specified = AVTAB_AV;
650 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
651 BUG_ON(!sattr);
652 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
653 BUG_ON(!tattr);
654 ebitmap_for_each_positive_bit(sattr, snode, i) {
655 ebitmap_for_each_positive_bit(tattr, tnode, j) {
656 avkey.source_type = i + 1;
657 avkey.target_type = j + 1;
658 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
659 node;
660 node = avtab_search_node_next(node, avkey.specified)) {
661 if (node->key.specified == AVTAB_ALLOWED)
662 avd->allowed |= node->datum.data;
663 else if (node->key.specified == AVTAB_AUDITALLOW)
664 avd->auditallow |= node->datum.data;
665 else if (node->key.specified == AVTAB_AUDITDENY)
666 avd->auditdeny &= node->datum.data;
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
676 * Remove any permissions prohibited by a constraint (this includes
677 * the MLS policy).
679 constraint = tclass_datum->constraints;
680 while (constraint) {
681 if ((constraint->permissions & (avd->allowed)) &&
682 !constraint_expr_eval(scontext, tcontext, NULL,
683 constraint->expr)) {
684 avd->allowed &= ~(constraint->permissions);
686 constraint = constraint->next;
690 * If checking process transition permission and the
691 * role is changing, then check the (current_role, new_role)
692 * pair.
694 if (tclass == policydb.process_class &&
695 (avd->allowed & policydb.process_trans_perms) &&
696 scontext->role != tcontext->role) {
697 for (ra = policydb.role_allow; ra; ra = ra->next) {
698 if (scontext->role == ra->role &&
699 tcontext->role == ra->new_role)
700 break;
702 if (!ra)
703 avd->allowed &= ~policydb.process_trans_perms;
707 * If the given source and target types have boundary
708 * constraint, lazy checks have to mask any violated
709 * permission and notice it to userspace via audit.
711 type_attribute_bounds_av(scontext, tcontext,
712 tclass, avd);
715 static int security_validtrans_handle_fail(struct context *ocontext,
716 struct context *ncontext,
717 struct context *tcontext,
718 u16 tclass)
720 char *o = NULL, *n = NULL, *t = NULL;
721 u32 olen, nlen, tlen;
723 if (context_struct_to_string(ocontext, &o, &olen))
724 goto out;
725 if (context_struct_to_string(ncontext, &n, &nlen))
726 goto out;
727 if (context_struct_to_string(tcontext, &t, &tlen))
728 goto out;
729 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
730 "security_validate_transition: denied for"
731 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
732 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
733 out:
734 kfree(o);
735 kfree(n);
736 kfree(t);
738 if (!selinux_enforcing)
739 return 0;
740 return -EPERM;
743 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
744 u16 orig_tclass)
746 struct context *ocontext;
747 struct context *ncontext;
748 struct context *tcontext;
749 struct class_datum *tclass_datum;
750 struct constraint_node *constraint;
751 u16 tclass;
752 int rc = 0;
754 if (!ss_initialized)
755 return 0;
757 read_lock(&policy_rwlock);
759 tclass = unmap_class(orig_tclass);
761 if (!tclass || tclass > policydb.p_classes.nprim) {
762 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
763 __func__, tclass);
764 rc = -EINVAL;
765 goto out;
767 tclass_datum = policydb.class_val_to_struct[tclass - 1];
769 ocontext = sidtab_search(&sidtab, oldsid);
770 if (!ocontext) {
771 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
772 __func__, oldsid);
773 rc = -EINVAL;
774 goto out;
777 ncontext = sidtab_search(&sidtab, newsid);
778 if (!ncontext) {
779 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
780 __func__, newsid);
781 rc = -EINVAL;
782 goto out;
785 tcontext = sidtab_search(&sidtab, tasksid);
786 if (!tcontext) {
787 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
788 __func__, tasksid);
789 rc = -EINVAL;
790 goto out;
793 constraint = tclass_datum->validatetrans;
794 while (constraint) {
795 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
796 constraint->expr)) {
797 rc = security_validtrans_handle_fail(ocontext, ncontext,
798 tcontext, tclass);
799 goto out;
801 constraint = constraint->next;
804 out:
805 read_unlock(&policy_rwlock);
806 return rc;
810 * security_bounded_transition - check whether the given
811 * transition is directed to bounded, or not.
812 * It returns 0, if @newsid is bounded by @oldsid.
813 * Otherwise, it returns error code.
815 * @oldsid : current security identifier
816 * @newsid : destinated security identifier
818 int security_bounded_transition(u32 old_sid, u32 new_sid)
820 struct context *old_context, *new_context;
821 struct type_datum *type;
822 int index;
823 int rc;
825 read_lock(&policy_rwlock);
827 rc = -EINVAL;
828 old_context = sidtab_search(&sidtab, old_sid);
829 if (!old_context) {
830 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
831 __func__, old_sid);
832 goto out;
835 rc = -EINVAL;
836 new_context = sidtab_search(&sidtab, new_sid);
837 if (!new_context) {
838 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
839 __func__, new_sid);
840 goto out;
843 rc = 0;
844 /* type/domain unchanged */
845 if (old_context->type == new_context->type)
846 goto out;
848 index = new_context->type;
849 while (true) {
850 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
851 index - 1);
852 BUG_ON(!type);
854 /* not bounded anymore */
855 rc = -EPERM;
856 if (!type->bounds)
857 break;
859 /* @newsid is bounded by @oldsid */
860 rc = 0;
861 if (type->bounds == old_context->type)
862 break;
864 index = type->bounds;
867 if (rc) {
868 char *old_name = NULL;
869 char *new_name = NULL;
870 u32 length;
872 if (!context_struct_to_string(old_context,
873 &old_name, &length) &&
874 !context_struct_to_string(new_context,
875 &new_name, &length)) {
876 audit_log(current->audit_context,
877 GFP_ATOMIC, AUDIT_SELINUX_ERR,
878 "op=security_bounded_transition "
879 "result=denied "
880 "oldcontext=%s newcontext=%s",
881 old_name, new_name);
883 kfree(new_name);
884 kfree(old_name);
886 out:
887 read_unlock(&policy_rwlock);
889 return rc;
892 static void avd_init(struct av_decision *avd)
894 avd->allowed = 0;
895 avd->auditallow = 0;
896 avd->auditdeny = 0xffffffff;
897 avd->seqno = latest_granting;
898 avd->flags = 0;
903 * security_compute_av - Compute access vector decisions.
904 * @ssid: source security identifier
905 * @tsid: target security identifier
906 * @tclass: target security class
907 * @avd: access vector decisions
909 * Compute a set of access vector decisions based on the
910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
912 void security_compute_av(u32 ssid,
913 u32 tsid,
914 u16 orig_tclass,
915 struct av_decision *avd)
917 u16 tclass;
918 struct context *scontext = NULL, *tcontext = NULL;
920 read_lock(&policy_rwlock);
921 avd_init(avd);
922 if (!ss_initialized)
923 goto allow;
925 scontext = sidtab_search(&sidtab, ssid);
926 if (!scontext) {
927 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
928 __func__, ssid);
929 goto out;
932 /* permissive domain? */
933 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
934 avd->flags |= AVD_FLAGS_PERMISSIVE;
936 tcontext = sidtab_search(&sidtab, tsid);
937 if (!tcontext) {
938 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
939 __func__, tsid);
940 goto out;
943 tclass = unmap_class(orig_tclass);
944 if (unlikely(orig_tclass && !tclass)) {
945 if (policydb.allow_unknown)
946 goto allow;
947 goto out;
949 context_struct_compute_av(scontext, tcontext, tclass, avd);
950 map_decision(orig_tclass, avd, policydb.allow_unknown);
951 out:
952 read_unlock(&policy_rwlock);
953 return;
954 allow:
955 avd->allowed = 0xffffffff;
956 goto out;
959 void security_compute_av_user(u32 ssid,
960 u32 tsid,
961 u16 tclass,
962 struct av_decision *avd)
964 struct context *scontext = NULL, *tcontext = NULL;
966 read_lock(&policy_rwlock);
967 avd_init(avd);
968 if (!ss_initialized)
969 goto allow;
971 scontext = sidtab_search(&sidtab, ssid);
972 if (!scontext) {
973 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
974 __func__, ssid);
975 goto out;
978 /* permissive domain? */
979 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
980 avd->flags |= AVD_FLAGS_PERMISSIVE;
982 tcontext = sidtab_search(&sidtab, tsid);
983 if (!tcontext) {
984 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
985 __func__, tsid);
986 goto out;
989 if (unlikely(!tclass)) {
990 if (policydb.allow_unknown)
991 goto allow;
992 goto out;
995 context_struct_compute_av(scontext, tcontext, tclass, avd);
996 out:
997 read_unlock(&policy_rwlock);
998 return;
999 allow:
1000 avd->allowed = 0xffffffff;
1001 goto out;
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size. Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1011 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1013 char *scontextp;
1015 if (scontext)
1016 *scontext = NULL;
1017 *scontext_len = 0;
1019 if (context->len) {
1020 *scontext_len = context->len;
1021 if (scontext) {
1022 *scontext = kstrdup(context->str, GFP_ATOMIC);
1023 if (!(*scontext))
1024 return -ENOMEM;
1026 return 0;
1029 /* Compute the size of the context. */
1030 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033 *scontext_len += mls_compute_context_len(context);
1035 if (!scontext)
1036 return 0;
1038 /* Allocate space for the context; caller must free this space. */
1039 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040 if (!scontextp)
1041 return -ENOMEM;
1042 *scontext = scontextp;
1045 * Copy the user name, role name and type name into the context.
1047 sprintf(scontextp, "%s:%s:%s",
1048 sym_name(&policydb, SYM_USERS, context->user - 1),
1049 sym_name(&policydb, SYM_ROLES, context->role - 1),
1050 sym_name(&policydb, SYM_TYPES, context->type - 1));
1051 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1055 mls_sid_to_context(context, &scontextp);
1057 *scontextp = 0;
1059 return 0;
1062 #include "initial_sid_to_string.h"
1064 const char *security_get_initial_sid_context(u32 sid)
1066 if (unlikely(sid > SECINITSID_NUM))
1067 return NULL;
1068 return initial_sid_to_string[sid];
1071 static int security_sid_to_context_core(u32 sid, char **scontext,
1072 u32 *scontext_len, int force)
1074 struct context *context;
1075 int rc = 0;
1077 if (scontext)
1078 *scontext = NULL;
1079 *scontext_len = 0;
1081 if (!ss_initialized) {
1082 if (sid <= SECINITSID_NUM) {
1083 char *scontextp;
1085 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1086 if (!scontext)
1087 goto out;
1088 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089 if (!scontextp) {
1090 rc = -ENOMEM;
1091 goto out;
1093 strcpy(scontextp, initial_sid_to_string[sid]);
1094 *scontext = scontextp;
1095 goto out;
1097 printk(KERN_ERR "SELinux: %s: called before initial "
1098 "load_policy on unknown SID %d\n", __func__, sid);
1099 rc = -EINVAL;
1100 goto out;
1102 read_lock(&policy_rwlock);
1103 if (force)
1104 context = sidtab_search_force(&sidtab, sid);
1105 else
1106 context = sidtab_search(&sidtab, sid);
1107 if (!context) {
1108 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1109 __func__, sid);
1110 rc = -EINVAL;
1111 goto out_unlock;
1113 rc = context_struct_to_string(context, scontext, scontext_len);
1114 out_unlock:
1115 read_unlock(&policy_rwlock);
1116 out:
1117 return rc;
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size. Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1131 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1133 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1136 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1138 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1142 * Caveat: Mutates scontext.
1144 static int string_to_context_struct(struct policydb *pol,
1145 struct sidtab *sidtabp,
1146 char *scontext,
1147 u32 scontext_len,
1148 struct context *ctx,
1149 u32 def_sid)
1151 struct role_datum *role;
1152 struct type_datum *typdatum;
1153 struct user_datum *usrdatum;
1154 char *scontextp, *p, oldc;
1155 int rc = 0;
1157 context_init(ctx);
1159 /* Parse the security context. */
1161 rc = -EINVAL;
1162 scontextp = (char *) scontext;
1164 /* Extract the user. */
1165 p = scontextp;
1166 while (*p && *p != ':')
1167 p++;
1169 if (*p == 0)
1170 goto out;
1172 *p++ = 0;
1174 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175 if (!usrdatum)
1176 goto out;
1178 ctx->user = usrdatum->value;
1180 /* Extract role. */
1181 scontextp = p;
1182 while (*p && *p != ':')
1183 p++;
1185 if (*p == 0)
1186 goto out;
1188 *p++ = 0;
1190 role = hashtab_search(pol->p_roles.table, scontextp);
1191 if (!role)
1192 goto out;
1193 ctx->role = role->value;
1195 /* Extract type. */
1196 scontextp = p;
1197 while (*p && *p != ':')
1198 p++;
1199 oldc = *p;
1200 *p++ = 0;
1202 typdatum = hashtab_search(pol->p_types.table, scontextp);
1203 if (!typdatum || typdatum->attribute)
1204 goto out;
1206 ctx->type = typdatum->value;
1208 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209 if (rc)
1210 goto out;
1212 rc = -EINVAL;
1213 if ((p - scontext) < scontext_len)
1214 goto out;
1216 /* Check the validity of the new context. */
1217 if (!policydb_context_isvalid(pol, ctx))
1218 goto out;
1219 rc = 0;
1220 out:
1221 if (rc)
1222 context_destroy(ctx);
1223 return rc;
1226 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228 int force)
1230 char *scontext2, *str = NULL;
1231 struct context context;
1232 int rc = 0;
1234 if (!ss_initialized) {
1235 int i;
1237 for (i = 1; i < SECINITSID_NUM; i++) {
1238 if (!strcmp(initial_sid_to_string[i], scontext)) {
1239 *sid = i;
1240 return 0;
1243 *sid = SECINITSID_KERNEL;
1244 return 0;
1246 *sid = SECSID_NULL;
1248 /* Copy the string so that we can modify the copy as we parse it. */
1249 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250 if (!scontext2)
1251 return -ENOMEM;
1252 memcpy(scontext2, scontext, scontext_len);
1253 scontext2[scontext_len] = 0;
1255 if (force) {
1256 /* Save another copy for storing in uninterpreted form */
1257 rc = -ENOMEM;
1258 str = kstrdup(scontext2, gfp_flags);
1259 if (!str)
1260 goto out;
1263 read_lock(&policy_rwlock);
1264 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265 scontext_len, &context, def_sid);
1266 if (rc == -EINVAL && force) {
1267 context.str = str;
1268 context.len = scontext_len;
1269 str = NULL;
1270 } else if (rc)
1271 goto out_unlock;
1272 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273 context_destroy(&context);
1274 out_unlock:
1275 read_unlock(&policy_rwlock);
1276 out:
1277 kfree(scontext2);
1278 kfree(str);
1279 return rc;
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1293 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
1295 return security_context_to_sid_core(scontext, scontext_len,
1296 sid, SECSID_NULL, GFP_KERNEL, 0);
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1317 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1320 return security_context_to_sid_core(scontext, scontext_len,
1321 sid, def_sid, gfp_flags, 1);
1324 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325 u32 *sid)
1327 return security_context_to_sid_core(scontext, scontext_len,
1328 sid, SECSID_NULL, GFP_KERNEL, 1);
1331 static int compute_sid_handle_invalid_context(
1332 struct context *scontext,
1333 struct context *tcontext,
1334 u16 tclass,
1335 struct context *newcontext)
1337 char *s = NULL, *t = NULL, *n = NULL;
1338 u32 slen, tlen, nlen;
1340 if (context_struct_to_string(scontext, &s, &slen))
1341 goto out;
1342 if (context_struct_to_string(tcontext, &t, &tlen))
1343 goto out;
1344 if (context_struct_to_string(newcontext, &n, &nlen))
1345 goto out;
1346 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347 "security_compute_sid: invalid context %s"
1348 " for scontext=%s"
1349 " tcontext=%s"
1350 " tclass=%s",
1351 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1352 out:
1353 kfree(s);
1354 kfree(t);
1355 kfree(n);
1356 if (!selinux_enforcing)
1357 return 0;
1358 return -EACCES;
1361 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1362 u32 stype, u32 ttype, u16 tclass,
1363 const char *objname)
1365 struct filename_trans ft;
1366 struct filename_trans_datum *otype;
1369 * Most filename trans rules are going to live in specific directories
1370 * like /dev or /var/run. This bitmap will quickly skip rule searches
1371 * if the ttype does not contain any rules.
1373 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374 return;
1376 ft.stype = stype;
1377 ft.ttype = ttype;
1378 ft.tclass = tclass;
1379 ft.name = objname;
1381 otype = hashtab_search(p->filename_trans, &ft);
1382 if (otype)
1383 newcontext->type = otype->otype;
1386 static int security_compute_sid(u32 ssid,
1387 u32 tsid,
1388 u16 orig_tclass,
1389 u32 specified,
1390 const char *objname,
1391 u32 *out_sid,
1392 bool kern)
1394 struct class_datum *cladatum = NULL;
1395 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396 struct role_trans *roletr = NULL;
1397 struct avtab_key avkey;
1398 struct avtab_datum *avdatum;
1399 struct avtab_node *node;
1400 u16 tclass;
1401 int rc = 0;
1402 bool sock;
1404 if (!ss_initialized) {
1405 switch (orig_tclass) {
1406 case SECCLASS_PROCESS: /* kernel value */
1407 *out_sid = ssid;
1408 break;
1409 default:
1410 *out_sid = tsid;
1411 break;
1413 goto out;
1416 context_init(&newcontext);
1418 read_lock(&policy_rwlock);
1420 if (kern) {
1421 tclass = unmap_class(orig_tclass);
1422 sock = security_is_socket_class(orig_tclass);
1423 } else {
1424 tclass = orig_tclass;
1425 sock = security_is_socket_class(map_class(tclass));
1428 scontext = sidtab_search(&sidtab, ssid);
1429 if (!scontext) {
1430 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1431 __func__, ssid);
1432 rc = -EINVAL;
1433 goto out_unlock;
1435 tcontext = sidtab_search(&sidtab, tsid);
1436 if (!tcontext) {
1437 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1438 __func__, tsid);
1439 rc = -EINVAL;
1440 goto out_unlock;
1443 if (tclass && tclass <= policydb.p_classes.nprim)
1444 cladatum = policydb.class_val_to_struct[tclass - 1];
1446 /* Set the user identity. */
1447 switch (specified) {
1448 case AVTAB_TRANSITION:
1449 case AVTAB_CHANGE:
1450 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451 newcontext.user = tcontext->user;
1452 } else {
1453 /* notice this gets both DEFAULT_SOURCE and unset */
1454 /* Use the process user identity. */
1455 newcontext.user = scontext->user;
1457 break;
1458 case AVTAB_MEMBER:
1459 /* Use the related object owner. */
1460 newcontext.user = tcontext->user;
1461 break;
1464 /* Set the role to default values. */
1465 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466 newcontext.role = scontext->role;
1467 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468 newcontext.role = tcontext->role;
1469 } else {
1470 if ((tclass == policydb.process_class) || (sock == true))
1471 newcontext.role = scontext->role;
1472 else
1473 newcontext.role = OBJECT_R_VAL;
1476 /* Set the type to default values. */
1477 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478 newcontext.type = scontext->type;
1479 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480 newcontext.type = tcontext->type;
1481 } else {
1482 if ((tclass == policydb.process_class) || (sock == true)) {
1483 /* Use the type of process. */
1484 newcontext.type = scontext->type;
1485 } else {
1486 /* Use the type of the related object. */
1487 newcontext.type = tcontext->type;
1491 /* Look for a type transition/member/change rule. */
1492 avkey.source_type = scontext->type;
1493 avkey.target_type = tcontext->type;
1494 avkey.target_class = tclass;
1495 avkey.specified = specified;
1496 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1498 /* If no permanent rule, also check for enabled conditional rules */
1499 if (!avdatum) {
1500 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501 for (; node; node = avtab_search_node_next(node, specified)) {
1502 if (node->key.specified & AVTAB_ENABLED) {
1503 avdatum = &node->datum;
1504 break;
1509 if (avdatum) {
1510 /* Use the type from the type transition/member/change rule. */
1511 newcontext.type = avdatum->data;
1514 /* if we have a objname this is a file trans check so check those rules */
1515 if (objname)
1516 filename_compute_type(&policydb, &newcontext, scontext->type,
1517 tcontext->type, tclass, objname);
1519 /* Check for class-specific changes. */
1520 if (specified & AVTAB_TRANSITION) {
1521 /* Look for a role transition rule. */
1522 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523 if ((roletr->role == scontext->role) &&
1524 (roletr->type == tcontext->type) &&
1525 (roletr->tclass == tclass)) {
1526 /* Use the role transition rule. */
1527 newcontext.role = roletr->new_role;
1528 break;
1533 /* Set the MLS attributes.
1534 This is done last because it may allocate memory. */
1535 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536 &newcontext, sock);
1537 if (rc)
1538 goto out_unlock;
1540 /* Check the validity of the context. */
1541 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542 rc = compute_sid_handle_invalid_context(scontext,
1543 tcontext,
1544 tclass,
1545 &newcontext);
1546 if (rc)
1547 goto out_unlock;
1549 /* Obtain the sid for the context. */
1550 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1551 out_unlock:
1552 read_unlock(&policy_rwlock);
1553 context_destroy(&newcontext);
1554 out:
1555 return rc;
1559 * security_transition_sid - Compute the SID for a new subject/object.
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
1563 * @out_sid: security identifier for new subject/object
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1571 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1572 const struct qstr *qstr, u32 *out_sid)
1574 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1575 qstr ? qstr->name : NULL, out_sid, true);
1578 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1579 const char *objname, u32 *out_sid)
1581 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1582 objname, out_sid, false);
1586 * security_member_sid - Compute the SID for member selection.
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1598 int security_member_sid(u32 ssid,
1599 u32 tsid,
1600 u16 tclass,
1601 u32 *out_sid)
1603 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1604 out_sid, false);
1608 * security_change_sid - Compute the SID for object relabeling.
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1620 int security_change_sid(u32 ssid,
1621 u32 tsid,
1622 u16 tclass,
1623 u32 *out_sid)
1625 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1626 out_sid, false);
1629 /* Clone the SID into the new SID table. */
1630 static int clone_sid(u32 sid,
1631 struct context *context,
1632 void *arg)
1634 struct sidtab *s = arg;
1636 if (sid > SECINITSID_NUM)
1637 return sidtab_insert(s, sid, context);
1638 else
1639 return 0;
1642 static inline int convert_context_handle_invalid_context(struct context *context)
1644 char *s;
1645 u32 len;
1647 if (selinux_enforcing)
1648 return -EINVAL;
1650 if (!context_struct_to_string(context, &s, &len)) {
1651 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1652 kfree(s);
1654 return 0;
1657 struct convert_context_args {
1658 struct policydb *oldp;
1659 struct policydb *newp;
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'. Verify that the
1667 * context is valid under the new policy.
1669 static int convert_context(u32 key,
1670 struct context *c,
1671 void *p)
1673 struct convert_context_args *args;
1674 struct context oldc;
1675 struct ocontext *oc;
1676 struct mls_range *range;
1677 struct role_datum *role;
1678 struct type_datum *typdatum;
1679 struct user_datum *usrdatum;
1680 char *s;
1681 u32 len;
1682 int rc = 0;
1684 if (key <= SECINITSID_NUM)
1685 goto out;
1687 args = p;
1689 if (c->str) {
1690 struct context ctx;
1692 rc = -ENOMEM;
1693 s = kstrdup(c->str, GFP_KERNEL);
1694 if (!s)
1695 goto out;
1697 rc = string_to_context_struct(args->newp, NULL, s,
1698 c->len, &ctx, SECSID_NULL);
1699 kfree(s);
1700 if (!rc) {
1701 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1702 c->str);
1703 /* Replace string with mapped representation. */
1704 kfree(c->str);
1705 memcpy(c, &ctx, sizeof(*c));
1706 goto out;
1707 } else if (rc == -EINVAL) {
1708 /* Retain string representation for later mapping. */
1709 rc = 0;
1710 goto out;
1711 } else {
1712 /* Other error condition, e.g. ENOMEM. */
1713 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1714 c->str, -rc);
1715 goto out;
1719 rc = context_cpy(&oldc, c);
1720 if (rc)
1721 goto out;
1723 /* Convert the user. */
1724 rc = -EINVAL;
1725 usrdatum = hashtab_search(args->newp->p_users.table,
1726 sym_name(args->oldp, SYM_USERS, c->user - 1));
1727 if (!usrdatum)
1728 goto bad;
1729 c->user = usrdatum->value;
1731 /* Convert the role. */
1732 rc = -EINVAL;
1733 role = hashtab_search(args->newp->p_roles.table,
1734 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735 if (!role)
1736 goto bad;
1737 c->role = role->value;
1739 /* Convert the type. */
1740 rc = -EINVAL;
1741 typdatum = hashtab_search(args->newp->p_types.table,
1742 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743 if (!typdatum)
1744 goto bad;
1745 c->type = typdatum->value;
1747 /* Convert the MLS fields if dealing with MLS policies */
1748 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749 rc = mls_convert_context(args->oldp, args->newp, c);
1750 if (rc)
1751 goto bad;
1752 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1754 * Switching between MLS and non-MLS policy:
1755 * free any storage used by the MLS fields in the
1756 * context for all existing entries in the sidtab.
1758 mls_context_destroy(c);
1759 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1761 * Switching between non-MLS and MLS policy:
1762 * ensure that the MLS fields of the context for all
1763 * existing entries in the sidtab are filled in with a
1764 * suitable default value, likely taken from one of the
1765 * initial SIDs.
1767 oc = args->newp->ocontexts[OCON_ISID];
1768 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769 oc = oc->next;
1770 rc = -EINVAL;
1771 if (!oc) {
1772 printk(KERN_ERR "SELinux: unable to look up"
1773 " the initial SIDs list\n");
1774 goto bad;
1776 range = &oc->context[0].range;
1777 rc = mls_range_set(c, range);
1778 if (rc)
1779 goto bad;
1782 /* Check the validity of the new context. */
1783 if (!policydb_context_isvalid(args->newp, c)) {
1784 rc = convert_context_handle_invalid_context(&oldc);
1785 if (rc)
1786 goto bad;
1789 context_destroy(&oldc);
1791 rc = 0;
1792 out:
1793 return rc;
1794 bad:
1795 /* Map old representation to string and save it. */
1796 rc = context_struct_to_string(&oldc, &s, &len);
1797 if (rc)
1798 return rc;
1799 context_destroy(&oldc);
1800 context_destroy(c);
1801 c->str = s;
1802 c->len = len;
1803 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1804 c->str);
1805 rc = 0;
1806 goto out;
1809 static void security_load_policycaps(void)
1811 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812 POLICYDB_CAPABILITY_NETPEER);
1813 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814 POLICYDB_CAPABILITY_OPENPERM);
1817 static int security_preserve_bools(struct policydb *p);
1820 * security_load_policy - Load a security policy configuration.
1821 * @data: binary policy data
1822 * @len: length of data in bytes
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1829 int security_load_policy(void *data, size_t len)
1831 struct policydb oldpolicydb, newpolicydb;
1832 struct sidtab oldsidtab, newsidtab;
1833 struct selinux_mapping *oldmap, *map = NULL;
1834 struct convert_context_args args;
1835 u32 seqno;
1836 u16 map_size;
1837 int rc = 0;
1838 struct policy_file file = { data, len }, *fp = &file;
1840 if (!ss_initialized) {
1841 avtab_cache_init();
1842 rc = policydb_read(&policydb, fp);
1843 if (rc) {
1844 avtab_cache_destroy();
1845 return rc;
1848 policydb.len = len;
1849 rc = selinux_set_mapping(&policydb, secclass_map,
1850 &current_mapping,
1851 &current_mapping_size);
1852 if (rc) {
1853 policydb_destroy(&policydb);
1854 avtab_cache_destroy();
1855 return rc;
1858 rc = policydb_load_isids(&policydb, &sidtab);
1859 if (rc) {
1860 policydb_destroy(&policydb);
1861 avtab_cache_destroy();
1862 return rc;
1865 security_load_policycaps();
1866 ss_initialized = 1;
1867 seqno = ++latest_granting;
1868 selinux_complete_init();
1869 avc_ss_reset(seqno);
1870 selnl_notify_policyload(seqno);
1871 selinux_status_update_policyload(seqno);
1872 selinux_netlbl_cache_invalidate();
1873 selinux_xfrm_notify_policyload();
1874 return 0;
1877 #if 0
1878 sidtab_hash_eval(&sidtab, "sids");
1879 #endif
1881 rc = policydb_read(&newpolicydb, fp);
1882 if (rc)
1883 return rc;
1885 newpolicydb.len = len;
1886 /* If switching between different policy types, log MLS status */
1887 if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889 else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1892 rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893 if (rc) {
1894 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
1895 policydb_destroy(&newpolicydb);
1896 return rc;
1899 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900 if (rc)
1901 goto err;
1903 rc = security_preserve_bools(&newpolicydb);
1904 if (rc) {
1905 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
1906 goto err;
1909 /* Clone the SID table. */
1910 sidtab_shutdown(&sidtab);
1912 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913 if (rc)
1914 goto err;
1917 * Convert the internal representations of contexts
1918 * in the new SID table.
1920 args.oldp = &policydb;
1921 args.newp = &newpolicydb;
1922 rc = sidtab_map(&newsidtab, convert_context, &args);
1923 if (rc) {
1924 printk(KERN_ERR "SELinux: unable to convert the internal"
1925 " representation of contexts in the new SID"
1926 " table\n");
1927 goto err;
1930 /* Save the old policydb and SID table to free later. */
1931 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932 sidtab_set(&oldsidtab, &sidtab);
1934 /* Install the new policydb and SID table. */
1935 write_lock_irq(&policy_rwlock);
1936 memcpy(&policydb, &newpolicydb, sizeof policydb);
1937 sidtab_set(&sidtab, &newsidtab);
1938 security_load_policycaps();
1939 oldmap = current_mapping;
1940 current_mapping = map;
1941 current_mapping_size = map_size;
1942 seqno = ++latest_granting;
1943 write_unlock_irq(&policy_rwlock);
1945 /* Free the old policydb and SID table. */
1946 policydb_destroy(&oldpolicydb);
1947 sidtab_destroy(&oldsidtab);
1948 kfree(oldmap);
1950 avc_ss_reset(seqno);
1951 selnl_notify_policyload(seqno);
1952 selinux_status_update_policyload(seqno);
1953 selinux_netlbl_cache_invalidate();
1954 selinux_xfrm_notify_policyload();
1956 return 0;
1958 err:
1959 kfree(map);
1960 sidtab_destroy(&newsidtab);
1961 policydb_destroy(&newpolicydb);
1962 return rc;
1966 size_t security_policydb_len(void)
1968 size_t len;
1970 read_lock(&policy_rwlock);
1971 len = policydb.len;
1972 read_unlock(&policy_rwlock);
1974 return len;
1978 * security_port_sid - Obtain the SID for a port.
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1983 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1985 struct ocontext *c;
1986 int rc = 0;
1988 read_lock(&policy_rwlock);
1990 c = policydb.ocontexts[OCON_PORT];
1991 while (c) {
1992 if (c->u.port.protocol == protocol &&
1993 c->u.port.low_port <= port &&
1994 c->u.port.high_port >= port)
1995 break;
1996 c = c->next;
1999 if (c) {
2000 if (!c->sid[0]) {
2001 rc = sidtab_context_to_sid(&sidtab,
2002 &c->context[0],
2003 &c->sid[0]);
2004 if (rc)
2005 goto out;
2007 *out_sid = c->sid[0];
2008 } else {
2009 *out_sid = SECINITSID_PORT;
2012 out:
2013 read_unlock(&policy_rwlock);
2014 return rc;
2018 * security_netif_sid - Obtain the SID for a network interface.
2019 * @name: interface name
2020 * @if_sid: interface SID
2022 int security_netif_sid(char *name, u32 *if_sid)
2024 int rc = 0;
2025 struct ocontext *c;
2027 read_lock(&policy_rwlock);
2029 c = policydb.ocontexts[OCON_NETIF];
2030 while (c) {
2031 if (strcmp(name, c->u.name) == 0)
2032 break;
2033 c = c->next;
2036 if (c) {
2037 if (!c->sid[0] || !c->sid[1]) {
2038 rc = sidtab_context_to_sid(&sidtab,
2039 &c->context[0],
2040 &c->sid[0]);
2041 if (rc)
2042 goto out;
2043 rc = sidtab_context_to_sid(&sidtab,
2044 &c->context[1],
2045 &c->sid[1]);
2046 if (rc)
2047 goto out;
2049 *if_sid = c->sid[0];
2050 } else
2051 *if_sid = SECINITSID_NETIF;
2053 out:
2054 read_unlock(&policy_rwlock);
2055 return rc;
2058 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2060 int i, fail = 0;
2062 for (i = 0; i < 4; i++)
2063 if (addr[i] != (input[i] & mask[i])) {
2064 fail = 1;
2065 break;
2068 return !fail;
2072 * security_node_sid - Obtain the SID for a node (host).
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2078 int security_node_sid(u16 domain,
2079 void *addrp,
2080 u32 addrlen,
2081 u32 *out_sid)
2083 int rc;
2084 struct ocontext *c;
2086 read_lock(&policy_rwlock);
2088 switch (domain) {
2089 case AF_INET: {
2090 u32 addr;
2092 rc = -EINVAL;
2093 if (addrlen != sizeof(u32))
2094 goto out;
2096 addr = *((u32 *)addrp);
2098 c = policydb.ocontexts[OCON_NODE];
2099 while (c) {
2100 if (c->u.node.addr == (addr & c->u.node.mask))
2101 break;
2102 c = c->next;
2104 break;
2107 case AF_INET6:
2108 rc = -EINVAL;
2109 if (addrlen != sizeof(u64) * 2)
2110 goto out;
2111 c = policydb.ocontexts[OCON_NODE6];
2112 while (c) {
2113 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114 c->u.node6.mask))
2115 break;
2116 c = c->next;
2118 break;
2120 default:
2121 rc = 0;
2122 *out_sid = SECINITSID_NODE;
2123 goto out;
2126 if (c) {
2127 if (!c->sid[0]) {
2128 rc = sidtab_context_to_sid(&sidtab,
2129 &c->context[0],
2130 &c->sid[0]);
2131 if (rc)
2132 goto out;
2134 *out_sid = c->sid[0];
2135 } else {
2136 *out_sid = SECINITSID_NODE;
2139 rc = 0;
2140 out:
2141 read_unlock(&policy_rwlock);
2142 return rc;
2145 #define SIDS_NEL 25
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs. Set *@nel to the
2158 * number of elements in the array.
2161 int security_get_user_sids(u32 fromsid,
2162 char *username,
2163 u32 **sids,
2164 u32 *nel)
2166 struct context *fromcon, usercon;
2167 u32 *mysids = NULL, *mysids2, sid;
2168 u32 mynel = 0, maxnel = SIDS_NEL;
2169 struct user_datum *user;
2170 struct role_datum *role;
2171 struct ebitmap_node *rnode, *tnode;
2172 int rc = 0, i, j;
2174 *sids = NULL;
2175 *nel = 0;
2177 if (!ss_initialized)
2178 goto out;
2180 read_lock(&policy_rwlock);
2182 context_init(&usercon);
2184 rc = -EINVAL;
2185 fromcon = sidtab_search(&sidtab, fromsid);
2186 if (!fromcon)
2187 goto out_unlock;
2189 rc = -EINVAL;
2190 user = hashtab_search(policydb.p_users.table, username);
2191 if (!user)
2192 goto out_unlock;
2194 usercon.user = user->value;
2196 rc = -ENOMEM;
2197 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198 if (!mysids)
2199 goto out_unlock;
2201 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202 role = policydb.role_val_to_struct[i];
2203 usercon.role = i + 1;
2204 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205 usercon.type = j + 1;
2207 if (mls_setup_user_range(fromcon, user, &usercon))
2208 continue;
2210 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2211 if (rc)
2212 goto out_unlock;
2213 if (mynel < maxnel) {
2214 mysids[mynel++] = sid;
2215 } else {
2216 rc = -ENOMEM;
2217 maxnel += SIDS_NEL;
2218 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219 if (!mysids2)
2220 goto out_unlock;
2221 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222 kfree(mysids);
2223 mysids = mysids2;
2224 mysids[mynel++] = sid;
2228 rc = 0;
2229 out_unlock:
2230 read_unlock(&policy_rwlock);
2231 if (rc || !mynel) {
2232 kfree(mysids);
2233 goto out;
2236 rc = -ENOMEM;
2237 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238 if (!mysids2) {
2239 kfree(mysids);
2240 goto out;
2242 for (i = 0, j = 0; i < mynel; i++) {
2243 struct av_decision dummy_avd;
2244 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2245 SECCLASS_PROCESS, /* kernel value */
2246 PROCESS__TRANSITION, AVC_STRICT,
2247 &dummy_avd);
2248 if (!rc)
2249 mysids2[j++] = mysids[i];
2250 cond_resched();
2252 rc = 0;
2253 kfree(mysids);
2254 *sids = mysids2;
2255 *nel = j;
2256 out:
2257 return rc;
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
2271 int security_genfs_sid(const char *fstype,
2272 char *path,
2273 u16 orig_sclass,
2274 u32 *sid)
2276 int len;
2277 u16 sclass;
2278 struct genfs *genfs;
2279 struct ocontext *c;
2280 int rc, cmp = 0;
2282 while (path[0] == '/' && path[1] == '/')
2283 path++;
2285 read_lock(&policy_rwlock);
2287 sclass = unmap_class(orig_sclass);
2288 *sid = SECINITSID_UNLABELED;
2290 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291 cmp = strcmp(fstype, genfs->fstype);
2292 if (cmp <= 0)
2293 break;
2296 rc = -ENOENT;
2297 if (!genfs || cmp)
2298 goto out;
2300 for (c = genfs->head; c; c = c->next) {
2301 len = strlen(c->u.name);
2302 if ((!c->v.sclass || sclass == c->v.sclass) &&
2303 (strncmp(c->u.name, path, len) == 0))
2304 break;
2307 rc = -ENOENT;
2308 if (!c)
2309 goto out;
2311 if (!c->sid[0]) {
2312 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313 if (rc)
2314 goto out;
2317 *sid = c->sid[0];
2318 rc = 0;
2319 out:
2320 read_unlock(&policy_rwlock);
2321 return rc;
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
2330 int security_fs_use(
2331 const char *fstype,
2332 unsigned int *behavior,
2333 u32 *sid)
2335 int rc = 0;
2336 struct ocontext *c;
2338 read_lock(&policy_rwlock);
2340 c = policydb.ocontexts[OCON_FSUSE];
2341 while (c) {
2342 if (strcmp(fstype, c->u.name) == 0)
2343 break;
2344 c = c->next;
2347 if (c) {
2348 *behavior = c->v.behavior;
2349 if (!c->sid[0]) {
2350 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351 &c->sid[0]);
2352 if (rc)
2353 goto out;
2355 *sid = c->sid[0];
2356 } else {
2357 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2358 if (rc) {
2359 *behavior = SECURITY_FS_USE_NONE;
2360 rc = 0;
2361 } else {
2362 *behavior = SECURITY_FS_USE_GENFS;
2366 out:
2367 read_unlock(&policy_rwlock);
2368 return rc;
2371 int security_get_bools(int *len, char ***names, int **values)
2373 int i, rc;
2375 read_lock(&policy_rwlock);
2376 *names = NULL;
2377 *values = NULL;
2379 rc = 0;
2380 *len = policydb.p_bools.nprim;
2381 if (!*len)
2382 goto out;
2384 rc = -ENOMEM;
2385 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386 if (!*names)
2387 goto err;
2389 rc = -ENOMEM;
2390 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391 if (!*values)
2392 goto err;
2394 for (i = 0; i < *len; i++) {
2395 size_t name_len;
2397 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2398 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2400 rc = -ENOMEM;
2401 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2402 if (!(*names)[i])
2403 goto err;
2405 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406 (*names)[i][name_len - 1] = 0;
2408 rc = 0;
2409 out:
2410 read_unlock(&policy_rwlock);
2411 return rc;
2412 err:
2413 if (*names) {
2414 for (i = 0; i < *len; i++)
2415 kfree((*names)[i]);
2417 kfree(*values);
2418 goto out;
2422 int security_set_bools(int len, int *values)
2424 int i, rc;
2425 int lenp, seqno = 0;
2426 struct cond_node *cur;
2428 write_lock_irq(&policy_rwlock);
2430 rc = -EFAULT;
2431 lenp = policydb.p_bools.nprim;
2432 if (len != lenp)
2433 goto out;
2435 for (i = 0; i < len; i++) {
2436 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437 audit_log(current->audit_context, GFP_ATOMIC,
2438 AUDIT_MAC_CONFIG_CHANGE,
2439 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2440 sym_name(&policydb, SYM_BOOLS, i),
2441 !!values[i],
2442 policydb.bool_val_to_struct[i]->state,
2443 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2444 audit_get_sessionid(current));
2446 if (values[i])
2447 policydb.bool_val_to_struct[i]->state = 1;
2448 else
2449 policydb.bool_val_to_struct[i]->state = 0;
2452 for (cur = policydb.cond_list; cur; cur = cur->next) {
2453 rc = evaluate_cond_node(&policydb, cur);
2454 if (rc)
2455 goto out;
2458 seqno = ++latest_granting;
2459 rc = 0;
2460 out:
2461 write_unlock_irq(&policy_rwlock);
2462 if (!rc) {
2463 avc_ss_reset(seqno);
2464 selnl_notify_policyload(seqno);
2465 selinux_status_update_policyload(seqno);
2466 selinux_xfrm_notify_policyload();
2468 return rc;
2471 int security_get_bool_value(int bool)
2473 int rc;
2474 int len;
2476 read_lock(&policy_rwlock);
2478 rc = -EFAULT;
2479 len = policydb.p_bools.nprim;
2480 if (bool >= len)
2481 goto out;
2483 rc = policydb.bool_val_to_struct[bool]->state;
2484 out:
2485 read_unlock(&policy_rwlock);
2486 return rc;
2489 static int security_preserve_bools(struct policydb *p)
2491 int rc, nbools = 0, *bvalues = NULL, i;
2492 char **bnames = NULL;
2493 struct cond_bool_datum *booldatum;
2494 struct cond_node *cur;
2496 rc = security_get_bools(&nbools, &bnames, &bvalues);
2497 if (rc)
2498 goto out;
2499 for (i = 0; i < nbools; i++) {
2500 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2501 if (booldatum)
2502 booldatum->state = bvalues[i];
2504 for (cur = p->cond_list; cur; cur = cur->next) {
2505 rc = evaluate_cond_node(p, cur);
2506 if (rc)
2507 goto out;
2510 out:
2511 if (bnames) {
2512 for (i = 0; i < nbools; i++)
2513 kfree(bnames[i]);
2515 kfree(bnames);
2516 kfree(bvalues);
2517 return rc;
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2524 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2526 struct context *context1;
2527 struct context *context2;
2528 struct context newcon;
2529 char *s;
2530 u32 len;
2531 int rc;
2533 rc = 0;
2534 if (!ss_initialized || !policydb.mls_enabled) {
2535 *new_sid = sid;
2536 goto out;
2539 context_init(&newcon);
2541 read_lock(&policy_rwlock);
2543 rc = -EINVAL;
2544 context1 = sidtab_search(&sidtab, sid);
2545 if (!context1) {
2546 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2547 __func__, sid);
2548 goto out_unlock;
2551 rc = -EINVAL;
2552 context2 = sidtab_search(&sidtab, mls_sid);
2553 if (!context2) {
2554 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2555 __func__, mls_sid);
2556 goto out_unlock;
2559 newcon.user = context1->user;
2560 newcon.role = context1->role;
2561 newcon.type = context1->type;
2562 rc = mls_context_cpy(&newcon, context2);
2563 if (rc)
2564 goto out_unlock;
2566 /* Check the validity of the new context. */
2567 if (!policydb_context_isvalid(&policydb, &newcon)) {
2568 rc = convert_context_handle_invalid_context(&newcon);
2569 if (rc) {
2570 if (!context_struct_to_string(&newcon, &s, &len)) {
2571 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572 "security_sid_mls_copy: invalid context %s", s);
2573 kfree(s);
2575 goto out_unlock;
2579 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2580 out_unlock:
2581 read_unlock(&policy_rwlock);
2582 context_destroy(&newcon);
2583 out:
2584 return rc;
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value. A table summarizing the behavior is below:
2599 * | function return | @sid
2600 * ------------------------------+-----------------+-----------------
2601 * no peer labels | 0 | SECSID_NULL
2602 * single peer label | 0 | <peer_label>
2603 * multiple, consistent labels | 0 | <peer_label>
2604 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2607 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2608 u32 xfrm_sid,
2609 u32 *peer_sid)
2611 int rc;
2612 struct context *nlbl_ctx;
2613 struct context *xfrm_ctx;
2615 *peer_sid = SECSID_NULL;
2617 /* handle the common (which also happens to be the set of easy) cases
2618 * right away, these two if statements catch everything involving a
2619 * single or absent peer SID/label */
2620 if (xfrm_sid == SECSID_NULL) {
2621 *peer_sid = nlbl_sid;
2622 return 0;
2624 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626 * is present */
2627 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628 *peer_sid = xfrm_sid;
2629 return 0;
2632 /* we don't need to check ss_initialized here since the only way both
2633 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634 * security server was initialized and ss_initialized was true */
2635 if (!policydb.mls_enabled)
2636 return 0;
2638 read_lock(&policy_rwlock);
2640 rc = -EINVAL;
2641 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642 if (!nlbl_ctx) {
2643 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2644 __func__, nlbl_sid);
2645 goto out;
2647 rc = -EINVAL;
2648 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649 if (!xfrm_ctx) {
2650 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2651 __func__, xfrm_sid);
2652 goto out;
2654 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655 if (rc)
2656 goto out;
2658 /* at present NetLabel SIDs/labels really only carry MLS
2659 * information so if the MLS portion of the NetLabel SID
2660 * matches the MLS portion of the labeled XFRM SID/label
2661 * then pass along the XFRM SID as it is the most
2662 * expressive */
2663 *peer_sid = xfrm_sid;
2664 out:
2665 read_unlock(&policy_rwlock);
2666 return rc;
2669 static int get_classes_callback(void *k, void *d, void *args)
2671 struct class_datum *datum = d;
2672 char *name = k, **classes = args;
2673 int value = datum->value - 1;
2675 classes[value] = kstrdup(name, GFP_ATOMIC);
2676 if (!classes[value])
2677 return -ENOMEM;
2679 return 0;
2682 int security_get_classes(char ***classes, int *nclasses)
2684 int rc;
2686 read_lock(&policy_rwlock);
2688 rc = -ENOMEM;
2689 *nclasses = policydb.p_classes.nprim;
2690 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691 if (!*classes)
2692 goto out;
2694 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695 *classes);
2696 if (rc) {
2697 int i;
2698 for (i = 0; i < *nclasses; i++)
2699 kfree((*classes)[i]);
2700 kfree(*classes);
2703 out:
2704 read_unlock(&policy_rwlock);
2705 return rc;
2708 static int get_permissions_callback(void *k, void *d, void *args)
2710 struct perm_datum *datum = d;
2711 char *name = k, **perms = args;
2712 int value = datum->value - 1;
2714 perms[value] = kstrdup(name, GFP_ATOMIC);
2715 if (!perms[value])
2716 return -ENOMEM;
2718 return 0;
2721 int security_get_permissions(char *class, char ***perms, int *nperms)
2723 int rc, i;
2724 struct class_datum *match;
2726 read_lock(&policy_rwlock);
2728 rc = -EINVAL;
2729 match = hashtab_search(policydb.p_classes.table, class);
2730 if (!match) {
2731 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2732 __func__, class);
2733 goto out;
2736 rc = -ENOMEM;
2737 *nperms = match->permissions.nprim;
2738 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739 if (!*perms)
2740 goto out;
2742 if (match->comdatum) {
2743 rc = hashtab_map(match->comdatum->permissions.table,
2744 get_permissions_callback, *perms);
2745 if (rc)
2746 goto err;
2749 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750 *perms);
2751 if (rc)
2752 goto err;
2754 out:
2755 read_unlock(&policy_rwlock);
2756 return rc;
2758 err:
2759 read_unlock(&policy_rwlock);
2760 for (i = 0; i < *nperms; i++)
2761 kfree((*perms)[i]);
2762 kfree(*perms);
2763 return rc;
2766 int security_get_reject_unknown(void)
2768 return policydb.reject_unknown;
2771 int security_get_allow_unknown(void)
2773 return policydb.allow_unknown;
2777 * security_policycap_supported - Check for a specific policy capability
2778 * @req_cap: capability
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap. Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2786 int security_policycap_supported(unsigned int req_cap)
2788 int rc;
2790 read_lock(&policy_rwlock);
2791 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792 read_unlock(&policy_rwlock);
2794 return rc;
2797 struct selinux_audit_rule {
2798 u32 au_seqno;
2799 struct context au_ctxt;
2802 void selinux_audit_rule_free(void *vrule)
2804 struct selinux_audit_rule *rule = vrule;
2806 if (rule) {
2807 context_destroy(&rule->au_ctxt);
2808 kfree(rule);
2812 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2814 struct selinux_audit_rule *tmprule;
2815 struct role_datum *roledatum;
2816 struct type_datum *typedatum;
2817 struct user_datum *userdatum;
2818 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819 int rc = 0;
2821 *rule = NULL;
2823 if (!ss_initialized)
2824 return -EOPNOTSUPP;
2826 switch (field) {
2827 case AUDIT_SUBJ_USER:
2828 case AUDIT_SUBJ_ROLE:
2829 case AUDIT_SUBJ_TYPE:
2830 case AUDIT_OBJ_USER:
2831 case AUDIT_OBJ_ROLE:
2832 case AUDIT_OBJ_TYPE:
2833 /* only 'equals' and 'not equals' fit user, role, and type */
2834 if (op != Audit_equal && op != Audit_not_equal)
2835 return -EINVAL;
2836 break;
2837 case AUDIT_SUBJ_SEN:
2838 case AUDIT_SUBJ_CLR:
2839 case AUDIT_OBJ_LEV_LOW:
2840 case AUDIT_OBJ_LEV_HIGH:
2841 /* we do not allow a range, indicated by the presence of '-' */
2842 if (strchr(rulestr, '-'))
2843 return -EINVAL;
2844 break;
2845 default:
2846 /* only the above fields are valid */
2847 return -EINVAL;
2850 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851 if (!tmprule)
2852 return -ENOMEM;
2854 context_init(&tmprule->au_ctxt);
2856 read_lock(&policy_rwlock);
2858 tmprule->au_seqno = latest_granting;
2860 switch (field) {
2861 case AUDIT_SUBJ_USER:
2862 case AUDIT_OBJ_USER:
2863 rc = -EINVAL;
2864 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865 if (!userdatum)
2866 goto out;
2867 tmprule->au_ctxt.user = userdatum->value;
2868 break;
2869 case AUDIT_SUBJ_ROLE:
2870 case AUDIT_OBJ_ROLE:
2871 rc = -EINVAL;
2872 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873 if (!roledatum)
2874 goto out;
2875 tmprule->au_ctxt.role = roledatum->value;
2876 break;
2877 case AUDIT_SUBJ_TYPE:
2878 case AUDIT_OBJ_TYPE:
2879 rc = -EINVAL;
2880 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881 if (!typedatum)
2882 goto out;
2883 tmprule->au_ctxt.type = typedatum->value;
2884 break;
2885 case AUDIT_SUBJ_SEN:
2886 case AUDIT_SUBJ_CLR:
2887 case AUDIT_OBJ_LEV_LOW:
2888 case AUDIT_OBJ_LEV_HIGH:
2889 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2890 if (rc)
2891 goto out;
2892 break;
2894 rc = 0;
2895 out:
2896 read_unlock(&policy_rwlock);
2898 if (rc) {
2899 selinux_audit_rule_free(tmprule);
2900 tmprule = NULL;
2903 *rule = tmprule;
2905 return rc;
2908 /* Check to see if the rule contains any selinux fields */
2909 int selinux_audit_rule_known(struct audit_krule *rule)
2911 int i;
2913 for (i = 0; i < rule->field_count; i++) {
2914 struct audit_field *f = &rule->fields[i];
2915 switch (f->type) {
2916 case AUDIT_SUBJ_USER:
2917 case AUDIT_SUBJ_ROLE:
2918 case AUDIT_SUBJ_TYPE:
2919 case AUDIT_SUBJ_SEN:
2920 case AUDIT_SUBJ_CLR:
2921 case AUDIT_OBJ_USER:
2922 case AUDIT_OBJ_ROLE:
2923 case AUDIT_OBJ_TYPE:
2924 case AUDIT_OBJ_LEV_LOW:
2925 case AUDIT_OBJ_LEV_HIGH:
2926 return 1;
2930 return 0;
2933 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934 struct audit_context *actx)
2936 struct context *ctxt;
2937 struct mls_level *level;
2938 struct selinux_audit_rule *rule = vrule;
2939 int match = 0;
2941 if (!rule) {
2942 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943 "selinux_audit_rule_match: missing rule\n");
2944 return -ENOENT;
2947 read_lock(&policy_rwlock);
2949 if (rule->au_seqno < latest_granting) {
2950 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951 "selinux_audit_rule_match: stale rule\n");
2952 match = -ESTALE;
2953 goto out;
2956 ctxt = sidtab_search(&sidtab, sid);
2957 if (!ctxt) {
2958 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959 "selinux_audit_rule_match: unrecognized SID %d\n",
2960 sid);
2961 match = -ENOENT;
2962 goto out;
2965 /* a field/op pair that is not caught here will simply fall through
2966 without a match */
2967 switch (field) {
2968 case AUDIT_SUBJ_USER:
2969 case AUDIT_OBJ_USER:
2970 switch (op) {
2971 case Audit_equal:
2972 match = (ctxt->user == rule->au_ctxt.user);
2973 break;
2974 case Audit_not_equal:
2975 match = (ctxt->user != rule->au_ctxt.user);
2976 break;
2978 break;
2979 case AUDIT_SUBJ_ROLE:
2980 case AUDIT_OBJ_ROLE:
2981 switch (op) {
2982 case Audit_equal:
2983 match = (ctxt->role == rule->au_ctxt.role);
2984 break;
2985 case Audit_not_equal:
2986 match = (ctxt->role != rule->au_ctxt.role);
2987 break;
2989 break;
2990 case AUDIT_SUBJ_TYPE:
2991 case AUDIT_OBJ_TYPE:
2992 switch (op) {
2993 case Audit_equal:
2994 match = (ctxt->type == rule->au_ctxt.type);
2995 break;
2996 case Audit_not_equal:
2997 match = (ctxt->type != rule->au_ctxt.type);
2998 break;
3000 break;
3001 case AUDIT_SUBJ_SEN:
3002 case AUDIT_SUBJ_CLR:
3003 case AUDIT_OBJ_LEV_LOW:
3004 case AUDIT_OBJ_LEV_HIGH:
3005 level = ((field == AUDIT_SUBJ_SEN ||
3006 field == AUDIT_OBJ_LEV_LOW) ?
3007 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008 switch (op) {
3009 case Audit_equal:
3010 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011 level);
3012 break;
3013 case Audit_not_equal:
3014 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015 level);
3016 break;
3017 case Audit_lt:
3018 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019 level) &&
3020 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021 level));
3022 break;
3023 case Audit_le:
3024 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025 level);
3026 break;
3027 case Audit_gt:
3028 match = (mls_level_dom(level,
3029 &rule->au_ctxt.range.level[0]) &&
3030 !mls_level_eq(level,
3031 &rule->au_ctxt.range.level[0]));
3032 break;
3033 case Audit_ge:
3034 match = mls_level_dom(level,
3035 &rule->au_ctxt.range.level[0]);
3036 break;
3040 out:
3041 read_unlock(&policy_rwlock);
3042 return match;
3045 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3047 static int aurule_avc_callback(u32 event)
3049 int err = 0;
3051 if (event == AVC_CALLBACK_RESET && aurule_callback)
3052 err = aurule_callback();
3053 return err;
3056 static int __init aurule_init(void)
3058 int err;
3060 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061 if (err)
3062 panic("avc_add_callback() failed, error %d\n", err);
3064 return err;
3066 __initcall(aurule_init);
3068 #ifdef CONFIG_NETLABEL
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3077 * already been initialized.
3080 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081 u32 sid)
3083 u32 *sid_cache;
3085 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086 if (sid_cache == NULL)
3087 return;
3088 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089 if (secattr->cache == NULL) {
3090 kfree(sid_cache);
3091 return;
3094 *sid_cache = sid;
3095 secattr->cache->free = kfree;
3096 secattr->cache->data = sid_cache;
3097 secattr->flags |= NETLBL_SECATTR_CACHE;
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID. If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups. Returns zero on success, negative values on
3112 * failure.
3115 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3116 u32 *sid)
3118 int rc;
3119 struct context *ctx;
3120 struct context ctx_new;
3122 if (!ss_initialized) {
3123 *sid = SECSID_NULL;
3124 return 0;
3127 read_lock(&policy_rwlock);
3129 if (secattr->flags & NETLBL_SECATTR_CACHE)
3130 *sid = *(u32 *)secattr->cache->data;
3131 else if (secattr->flags & NETLBL_SECATTR_SECID)
3132 *sid = secattr->attr.secid;
3133 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134 rc = -EIDRM;
3135 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136 if (ctx == NULL)
3137 goto out;
3139 context_init(&ctx_new);
3140 ctx_new.user = ctx->user;
3141 ctx_new.role = ctx->role;
3142 ctx_new.type = ctx->type;
3143 mls_import_netlbl_lvl(&ctx_new, secattr);
3144 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146 secattr->attr.mls.cat);
3147 if (rc)
3148 goto out;
3149 memcpy(&ctx_new.range.level[1].cat,
3150 &ctx_new.range.level[0].cat,
3151 sizeof(ctx_new.range.level[0].cat));
3153 rc = -EIDRM;
3154 if (!mls_context_isvalid(&policydb, &ctx_new))
3155 goto out_free;
3157 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3158 if (rc)
3159 goto out_free;
3161 security_netlbl_cache_add(secattr, *sid);
3163 ebitmap_destroy(&ctx_new.range.level[0].cat);
3164 } else
3165 *sid = SECSID_NULL;
3167 read_unlock(&policy_rwlock);
3168 return 0;
3169 out_free:
3170 ebitmap_destroy(&ctx_new.range.level[0].cat);
3171 out:
3172 read_unlock(&policy_rwlock);
3173 return rc;
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3186 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3188 int rc;
3189 struct context *ctx;
3191 if (!ss_initialized)
3192 return 0;
3194 read_lock(&policy_rwlock);
3196 rc = -ENOENT;
3197 ctx = sidtab_search(&sidtab, sid);
3198 if (ctx == NULL)
3199 goto out;
3201 rc = -ENOMEM;
3202 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203 GFP_ATOMIC);
3204 if (secattr->domain == NULL)
3205 goto out;
3207 secattr->attr.secid = sid;
3208 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209 mls_export_netlbl_lvl(ctx, secattr);
3210 rc = mls_export_netlbl_cat(ctx, secattr);
3211 out:
3212 read_unlock(&policy_rwlock);
3213 return rc;
3215 #endif /* CONFIG_NETLABEL */
3218 * security_read_policy - read the policy.
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3223 int security_read_policy(void **data, size_t *len)
3225 int rc;
3226 struct policy_file fp;
3228 if (!ss_initialized)
3229 return -EINVAL;
3231 *len = security_policydb_len();
3233 *data = vmalloc_user(*len);
3234 if (!*data)
3235 return -ENOMEM;
3237 fp.data = *data;
3238 fp.len = *len;
3240 read_lock(&policy_rwlock);
3241 rc = policydb_write(&policydb, &fp);
3242 read_unlock(&policy_rwlock);
3244 if (rc)
3245 return rc;
3247 *len = (unsigned long)fp.data - (unsigned long)*data;
3248 return 0;