2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
23 /* Quick Fair Queueing Plus
24 ========================
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
38 http://retis.sssup.it/~fabio/linux/qfq/
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
57 Virtual time computations.
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
66 The layout of the bits is as below:
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
73 where MIN_SLOT_SHIFT is derived by difference from the others.
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
94 * Maximum number of consecutive slots occupied by backlogged classes
97 #define QFQ_MAX_SLOTS 32
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116 #define IWSUM (ONE_FP/QFQ_MAX_WSUM)
118 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
119 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
121 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
124 * Possible group states. These values are used as indexes for the bitmaps
125 * array of struct qfq_queue.
127 enum qfq_state
{ ER
, IR
, EB
, IB
, QFQ_MAX_STATE
};
131 struct qfq_aggregate
;
134 struct Qdisc_class_common common
;
137 unsigned int filter_cnt
;
139 struct gnet_stats_basic_packed bstats
;
140 struct gnet_stats_queue qstats
;
141 struct gnet_stats_rate_est rate_est
;
143 struct list_head alist
; /* Link for active-classes list. */
144 struct qfq_aggregate
*agg
; /* Parent aggregate. */
145 int deficit
; /* DRR deficit counter. */
148 struct qfq_aggregate
{
149 struct hlist_node next
; /* Link for the slot list. */
150 u64 S
, F
; /* flow timestamps (exact) */
152 /* group we belong to. In principle we would need the index,
153 * which is log_2(lmax/weight), but we never reference it
154 * directly, only the group.
156 struct qfq_group
*grp
;
158 /* these are copied from the flowset. */
159 u32 class_weight
; /* Weight of each class in this aggregate. */
160 /* Max pkt size for the classes in this aggregate, DRR quantum. */
163 u32 inv_w
; /* ONE_FP/(sum of weights of classes in aggr.). */
164 u32 budgetmax
; /* Max budget for this aggregate. */
165 u32 initial_budget
, budget
; /* Initial and current budget. */
167 int num_classes
; /* Number of classes in this aggr. */
168 struct list_head active
; /* DRR queue of active classes. */
170 struct hlist_node nonfull_next
; /* See nonfull_aggs in qfq_sched. */
174 u64 S
, F
; /* group timestamps (approx). */
175 unsigned int slot_shift
; /* Slot shift. */
176 unsigned int index
; /* Group index. */
177 unsigned int front
; /* Index of the front slot. */
178 unsigned long full_slots
; /* non-empty slots */
180 /* Array of RR lists of active aggregates. */
181 struct hlist_head slots
[QFQ_MAX_SLOTS
];
185 struct tcf_proto
*filter_list
;
186 struct Qdisc_class_hash clhash
;
188 u64 oldV
, V
; /* Precise virtual times. */
189 struct qfq_aggregate
*in_serv_agg
; /* Aggregate being served. */
190 u32 num_active_agg
; /* Num. of active aggregates */
191 u32 wsum
; /* weight sum */
193 unsigned long bitmaps
[QFQ_MAX_STATE
]; /* Group bitmaps. */
194 struct qfq_group groups
[QFQ_MAX_INDEX
+ 1]; /* The groups. */
195 u32 min_slot_shift
; /* Index of the group-0 bit in the bitmaps. */
197 u32 max_agg_classes
; /* Max number of classes per aggr. */
198 struct hlist_head nonfull_aggs
; /* Aggs with room for more classes. */
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 * must be rescheduled for service
208 enum update_reason
{enqueue
, requeue
};
210 static struct qfq_class
*qfq_find_class(struct Qdisc
*sch
, u32 classid
)
212 struct qfq_sched
*q
= qdisc_priv(sch
);
213 struct Qdisc_class_common
*clc
;
215 clc
= qdisc_class_find(&q
->clhash
, classid
);
218 return container_of(clc
, struct qfq_class
, common
);
221 static void qfq_purge_queue(struct qfq_class
*cl
)
223 unsigned int len
= cl
->qdisc
->q
.qlen
;
225 qdisc_reset(cl
->qdisc
);
226 qdisc_tree_decrease_qlen(cl
->qdisc
, len
);
229 static const struct nla_policy qfq_policy
[TCA_QFQ_MAX
+ 1] = {
230 [TCA_QFQ_WEIGHT
] = { .type
= NLA_U32
},
231 [TCA_QFQ_LMAX
] = { .type
= NLA_U32
},
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
239 static int qfq_calc_index(u32 inv_w
, unsigned int maxlen
, u32 min_slot_shift
)
241 u64 slot_size
= (u64
)maxlen
* inv_w
;
242 unsigned long size_map
;
245 size_map
= slot_size
>> min_slot_shift
;
249 index
= __fls(size_map
) + 1; /* basically a log_2 */
250 index
-= !(slot_size
- (1ULL << (index
+ min_slot_shift
- 1)));
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP
/inv_w
, maxlen
, index
);
261 static void qfq_deactivate_agg(struct qfq_sched
*, struct qfq_aggregate
*);
262 static void qfq_activate_agg(struct qfq_sched
*, struct qfq_aggregate
*,
265 static void qfq_init_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
266 u32 lmax
, u32 weight
)
268 INIT_LIST_HEAD(&agg
->active
);
269 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
272 agg
->class_weight
= weight
;
275 static struct qfq_aggregate
*qfq_find_agg(struct qfq_sched
*q
,
276 u32 lmax
, u32 weight
)
278 struct qfq_aggregate
*agg
;
280 hlist_for_each_entry(agg
, &q
->nonfull_aggs
, nonfull_next
)
281 if (agg
->lmax
== lmax
&& agg
->class_weight
== weight
)
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
294 if (new_num_classes
== q
->max_agg_classes
)
295 hlist_del_init(&agg
->nonfull_next
);
297 if (agg
->num_classes
> new_num_classes
&&
298 new_num_classes
== q
->max_agg_classes
- 1) /* agg no more full */
299 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
305 agg
->budgetmax
= new_num_classes
* agg
->lmax
;
306 new_agg_weight
= agg
->class_weight
* new_num_classes
;
307 agg
->inv_w
= ONE_FP
/new_agg_weight
;
309 if (agg
->grp
== NULL
) {
310 int i
= qfq_calc_index(agg
->inv_w
, agg
->budgetmax
,
312 agg
->grp
= &q
->groups
[i
];
316 (int) agg
->class_weight
* (new_num_classes
- agg
->num_classes
);
318 agg
->num_classes
= new_num_classes
;
321 /* Add class to aggregate. */
322 static void qfq_add_to_agg(struct qfq_sched
*q
,
323 struct qfq_aggregate
*agg
,
324 struct qfq_class
*cl
)
328 qfq_update_agg(q
, agg
, agg
->num_classes
+1);
329 if (cl
->qdisc
->q
.qlen
> 0) { /* adding an active class */
330 list_add_tail(&cl
->alist
, &agg
->active
);
331 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) ==
332 cl
&& q
->in_serv_agg
!= agg
) /* agg was inactive */
333 qfq_activate_agg(q
, agg
, enqueue
); /* schedule agg */
337 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*);
339 static void qfq_destroy_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
341 if (!hlist_unhashed(&agg
->nonfull_next
))
342 hlist_del_init(&agg
->nonfull_next
);
343 if (q
->in_serv_agg
== agg
)
344 q
->in_serv_agg
= qfq_choose_next_agg(q
);
348 /* Deschedule class from within its parent aggregate. */
349 static void qfq_deactivate_class(struct qfq_sched
*q
, struct qfq_class
*cl
)
351 struct qfq_aggregate
*agg
= cl
->agg
;
354 list_del(&cl
->alist
); /* remove from RR queue of the aggregate */
355 if (list_empty(&agg
->active
)) /* agg is now inactive */
356 qfq_deactivate_agg(q
, agg
);
359 /* Remove class from its parent aggregate. */
360 static void qfq_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
362 struct qfq_aggregate
*agg
= cl
->agg
;
365 if (agg
->num_classes
== 1) { /* agg being emptied, destroy it */
366 qfq_destroy_agg(q
, agg
);
369 qfq_update_agg(q
, agg
, agg
->num_classes
-1);
372 /* Deschedule class and remove it from its parent aggregate. */
373 static void qfq_deact_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
375 if (cl
->qdisc
->q
.qlen
> 0) /* class is active */
376 qfq_deactivate_class(q
, cl
);
378 qfq_rm_from_agg(q
, cl
);
381 /* Move class to a new aggregate, matching the new class weight and/or lmax */
382 static int qfq_change_agg(struct Qdisc
*sch
, struct qfq_class
*cl
, u32 weight
,
385 struct qfq_sched
*q
= qdisc_priv(sch
);
386 struct qfq_aggregate
*new_agg
= qfq_find_agg(q
, lmax
, weight
);
388 if (new_agg
== NULL
) { /* create new aggregate */
389 new_agg
= kzalloc(sizeof(*new_agg
), GFP_ATOMIC
);
392 qfq_init_agg(q
, new_agg
, lmax
, weight
);
394 qfq_deact_rm_from_agg(q
, cl
);
395 qfq_add_to_agg(q
, new_agg
, cl
);
400 static int qfq_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
401 struct nlattr
**tca
, unsigned long *arg
)
403 struct qfq_sched
*q
= qdisc_priv(sch
);
404 struct qfq_class
*cl
= (struct qfq_class
*)*arg
;
405 bool existing
= false;
406 struct nlattr
*tb
[TCA_QFQ_MAX
+ 1];
407 struct qfq_aggregate
*new_agg
= NULL
;
408 u32 weight
, lmax
, inv_w
;
412 if (tca
[TCA_OPTIONS
] == NULL
) {
413 pr_notice("qfq: no options\n");
417 err
= nla_parse_nested(tb
, TCA_QFQ_MAX
, tca
[TCA_OPTIONS
], qfq_policy
);
421 if (tb
[TCA_QFQ_WEIGHT
]) {
422 weight
= nla_get_u32(tb
[TCA_QFQ_WEIGHT
]);
423 if (!weight
|| weight
> (1UL << QFQ_MAX_WSHIFT
)) {
424 pr_notice("qfq: invalid weight %u\n", weight
);
430 if (tb
[TCA_QFQ_LMAX
]) {
431 lmax
= nla_get_u32(tb
[TCA_QFQ_LMAX
]);
432 if (lmax
< QFQ_MIN_LMAX
|| lmax
> (1UL << QFQ_MTU_SHIFT
)) {
433 pr_notice("qfq: invalid max length %u\n", lmax
);
437 lmax
= psched_mtu(qdisc_dev(sch
));
439 inv_w
= ONE_FP
/ weight
;
440 weight
= ONE_FP
/ inv_w
;
443 lmax
== cl
->agg
->lmax
&&
444 weight
== cl
->agg
->class_weight
)
445 return 0; /* nothing to change */
447 delta_w
= weight
- (cl
? cl
->agg
->class_weight
: 0);
449 if (q
->wsum
+ delta_w
> QFQ_MAX_WSUM
) {
450 pr_notice("qfq: total weight out of range (%d + %u)\n",
455 if (cl
!= NULL
) { /* modify existing class */
457 err
= gen_replace_estimator(&cl
->bstats
, &cl
->rate_est
,
458 qdisc_root_sleeping_lock(sch
),
467 /* create and init new class */
468 cl
= kzalloc(sizeof(struct qfq_class
), GFP_KERNEL
);
473 cl
->common
.classid
= classid
;
476 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
,
477 &pfifo_qdisc_ops
, classid
);
478 if (cl
->qdisc
== NULL
)
479 cl
->qdisc
= &noop_qdisc
;
482 err
= gen_new_estimator(&cl
->bstats
, &cl
->rate_est
,
483 qdisc_root_sleeping_lock(sch
),
490 qdisc_class_hash_insert(&q
->clhash
, &cl
->common
);
491 sch_tree_unlock(sch
);
493 qdisc_class_hash_grow(sch
, &q
->clhash
);
497 new_agg
= qfq_find_agg(q
, lmax
, weight
);
498 if (new_agg
== NULL
) { /* create new aggregate */
499 sch_tree_unlock(sch
);
500 new_agg
= kzalloc(sizeof(*new_agg
), GFP_KERNEL
);
501 if (new_agg
== NULL
) {
503 gen_kill_estimator(&cl
->bstats
, &cl
->rate_est
);
507 qfq_init_agg(q
, new_agg
, lmax
, weight
);
510 qfq_deact_rm_from_agg(q
, cl
);
511 qfq_add_to_agg(q
, new_agg
, cl
);
512 sch_tree_unlock(sch
);
514 *arg
= (unsigned long)cl
;
518 qdisc_destroy(cl
->qdisc
);
523 static void qfq_destroy_class(struct Qdisc
*sch
, struct qfq_class
*cl
)
525 struct qfq_sched
*q
= qdisc_priv(sch
);
527 qfq_rm_from_agg(q
, cl
);
528 gen_kill_estimator(&cl
->bstats
, &cl
->rate_est
);
529 qdisc_destroy(cl
->qdisc
);
533 static int qfq_delete_class(struct Qdisc
*sch
, unsigned long arg
)
535 struct qfq_sched
*q
= qdisc_priv(sch
);
536 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
538 if (cl
->filter_cnt
> 0)
544 qdisc_class_hash_remove(&q
->clhash
, &cl
->common
);
546 BUG_ON(--cl
->refcnt
== 0);
548 * This shouldn't happen: we "hold" one cops->get() when called
549 * from tc_ctl_tclass; the destroy method is done from cops->put().
552 sch_tree_unlock(sch
);
556 static unsigned long qfq_get_class(struct Qdisc
*sch
, u32 classid
)
558 struct qfq_class
*cl
= qfq_find_class(sch
, classid
);
563 return (unsigned long)cl
;
566 static void qfq_put_class(struct Qdisc
*sch
, unsigned long arg
)
568 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
570 if (--cl
->refcnt
== 0)
571 qfq_destroy_class(sch
, cl
);
574 static struct tcf_proto
**qfq_tcf_chain(struct Qdisc
*sch
, unsigned long cl
)
576 struct qfq_sched
*q
= qdisc_priv(sch
);
581 return &q
->filter_list
;
584 static unsigned long qfq_bind_tcf(struct Qdisc
*sch
, unsigned long parent
,
587 struct qfq_class
*cl
= qfq_find_class(sch
, classid
);
592 return (unsigned long)cl
;
595 static void qfq_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
597 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
602 static int qfq_graft_class(struct Qdisc
*sch
, unsigned long arg
,
603 struct Qdisc
*new, struct Qdisc
**old
)
605 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
608 new = qdisc_create_dflt(sch
->dev_queue
,
609 &pfifo_qdisc_ops
, cl
->common
.classid
);
618 sch_tree_unlock(sch
);
622 static struct Qdisc
*qfq_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
624 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
629 static int qfq_dump_class(struct Qdisc
*sch
, unsigned long arg
,
630 struct sk_buff
*skb
, struct tcmsg
*tcm
)
632 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
635 tcm
->tcm_parent
= TC_H_ROOT
;
636 tcm
->tcm_handle
= cl
->common
.classid
;
637 tcm
->tcm_info
= cl
->qdisc
->handle
;
639 nest
= nla_nest_start(skb
, TCA_OPTIONS
);
641 goto nla_put_failure
;
642 if (nla_put_u32(skb
, TCA_QFQ_WEIGHT
, cl
->agg
->class_weight
) ||
643 nla_put_u32(skb
, TCA_QFQ_LMAX
, cl
->agg
->lmax
))
644 goto nla_put_failure
;
645 return nla_nest_end(skb
, nest
);
648 nla_nest_cancel(skb
, nest
);
652 static int qfq_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
655 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
656 struct tc_qfq_stats xstats
;
658 memset(&xstats
, 0, sizeof(xstats
));
659 cl
->qdisc
->qstats
.qlen
= cl
->qdisc
->q
.qlen
;
661 xstats
.weight
= cl
->agg
->class_weight
;
662 xstats
.lmax
= cl
->agg
->lmax
;
664 if (gnet_stats_copy_basic(d
, &cl
->bstats
) < 0 ||
665 gnet_stats_copy_rate_est(d
, &cl
->bstats
, &cl
->rate_est
) < 0 ||
666 gnet_stats_copy_queue(d
, &cl
->qdisc
->qstats
) < 0)
669 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
672 static void qfq_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
674 struct qfq_sched
*q
= qdisc_priv(sch
);
675 struct qfq_class
*cl
;
681 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
682 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
683 if (arg
->count
< arg
->skip
) {
687 if (arg
->fn(sch
, (unsigned long)cl
, arg
) < 0) {
696 static struct qfq_class
*qfq_classify(struct sk_buff
*skb
, struct Qdisc
*sch
,
699 struct qfq_sched
*q
= qdisc_priv(sch
);
700 struct qfq_class
*cl
;
701 struct tcf_result res
;
704 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0) {
705 pr_debug("qfq_classify: found %d\n", skb
->priority
);
706 cl
= qfq_find_class(sch
, skb
->priority
);
711 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
712 result
= tc_classify(skb
, q
->filter_list
, &res
);
714 #ifdef CONFIG_NET_CLS_ACT
718 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
723 cl
= (struct qfq_class
*)res
.class;
725 cl
= qfq_find_class(sch
, res
.classid
);
732 /* Generic comparison function, handling wraparound. */
733 static inline int qfq_gt(u64 a
, u64 b
)
735 return (s64
)(a
- b
) > 0;
738 /* Round a precise timestamp to its slotted value. */
739 static inline u64
qfq_round_down(u64 ts
, unsigned int shift
)
741 return ts
& ~((1ULL << shift
) - 1);
744 /* return the pointer to the group with lowest index in the bitmap */
745 static inline struct qfq_group
*qfq_ffs(struct qfq_sched
*q
,
746 unsigned long bitmap
)
748 int index
= __ffs(bitmap
);
749 return &q
->groups
[index
];
751 /* Calculate a mask to mimic what would be ffs_from(). */
752 static inline unsigned long mask_from(unsigned long bitmap
, int from
)
754 return bitmap
& ~((1UL << from
) - 1);
758 * The state computation relies on ER=0, IR=1, EB=2, IB=3
759 * First compute eligibility comparing grp->S, q->V,
760 * then check if someone is blocking us and possibly add EB
762 static int qfq_calc_state(struct qfq_sched
*q
, const struct qfq_group
*grp
)
764 /* if S > V we are not eligible */
765 unsigned int state
= qfq_gt(grp
->S
, q
->V
);
766 unsigned long mask
= mask_from(q
->bitmaps
[ER
], grp
->index
);
767 struct qfq_group
*next
;
770 next
= qfq_ffs(q
, mask
);
771 if (qfq_gt(grp
->F
, next
->F
))
781 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
782 * q->bitmaps[src] &= ~mask;
783 * but we should make sure that src != dst
785 static inline void qfq_move_groups(struct qfq_sched
*q
, unsigned long mask
,
788 q
->bitmaps
[dst
] |= q
->bitmaps
[src
] & mask
;
789 q
->bitmaps
[src
] &= ~mask
;
792 static void qfq_unblock_groups(struct qfq_sched
*q
, int index
, u64 old_F
)
794 unsigned long mask
= mask_from(q
->bitmaps
[ER
], index
+ 1);
795 struct qfq_group
*next
;
798 next
= qfq_ffs(q
, mask
);
799 if (!qfq_gt(next
->F
, old_F
))
803 mask
= (1UL << index
) - 1;
804 qfq_move_groups(q
, mask
, EB
, ER
);
805 qfq_move_groups(q
, mask
, IB
, IR
);
812 old_V >>= q->min_slot_shift;
818 static void qfq_make_eligible(struct qfq_sched
*q
)
820 unsigned long vslot
= q
->V
>> q
->min_slot_shift
;
821 unsigned long old_vslot
= q
->oldV
>> q
->min_slot_shift
;
823 if (vslot
!= old_vslot
) {
824 unsigned long mask
= (1ULL << fls(vslot
^ old_vslot
)) - 1;
825 qfq_move_groups(q
, mask
, IR
, ER
);
826 qfq_move_groups(q
, mask
, IB
, EB
);
832 * The index of the slot in which the aggregate is to be inserted must
833 * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
834 * because the start time of the group may be moved backward by one
835 * slot after the aggregate has been inserted, and this would cause
836 * non-empty slots to be right-shifted by one position.
838 * If the weight and lmax (max_pkt_size) of the classes do not change,
839 * then QFQ+ does meet the above contraint according to the current
840 * values of its parameters. In fact, if the weight and lmax of the
841 * classes do not change, then, from the theory, QFQ+ guarantees that
842 * the slot index is never higher than
843 * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844 * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
846 * When the weight of a class is increased or the lmax of the class is
847 * decreased, a new aggregate with smaller slot size than the original
848 * parent aggregate of the class may happen to be activated. The
849 * activation of this aggregate should be properly delayed to when the
850 * service of the class has finished in the ideal system tracked by
851 * QFQ+. If the activation of the aggregate is not delayed to this
852 * reference time instant, then this aggregate may be unjustly served
853 * before other aggregates waiting for service. This may cause the
854 * above bound to the slot index to be violated for some of these
855 * unlucky aggregates.
857 * Instead of delaying the activation of the new aggregate, which is
858 * quite complex, the following inaccurate but simple solution is used:
859 * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
860 * timestamps of the aggregate are shifted backward so as to let the
861 * slot index become equal to QFQ_MAX_SLOTS-2.
863 static void qfq_slot_insert(struct qfq_group
*grp
, struct qfq_aggregate
*agg
,
866 u64 slot
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
867 unsigned int i
; /* slot index in the bucket list */
869 if (unlikely(slot
> QFQ_MAX_SLOTS
- 2)) {
870 u64 deltaS
= roundedS
- grp
->S
-
871 ((u64
)(QFQ_MAX_SLOTS
- 2)<<grp
->slot_shift
);
874 slot
= QFQ_MAX_SLOTS
- 2;
877 i
= (grp
->front
+ slot
) % QFQ_MAX_SLOTS
;
879 hlist_add_head(&agg
->next
, &grp
->slots
[i
]);
880 __set_bit(slot
, &grp
->full_slots
);
883 /* Maybe introduce hlist_first_entry?? */
884 static struct qfq_aggregate
*qfq_slot_head(struct qfq_group
*grp
)
886 return hlist_entry(grp
->slots
[grp
->front
].first
,
887 struct qfq_aggregate
, next
);
891 * remove the entry from the slot
893 static void qfq_front_slot_remove(struct qfq_group
*grp
)
895 struct qfq_aggregate
*agg
= qfq_slot_head(grp
);
898 hlist_del(&agg
->next
);
899 if (hlist_empty(&grp
->slots
[grp
->front
]))
900 __clear_bit(0, &grp
->full_slots
);
904 * Returns the first aggregate in the first non-empty bucket of the
905 * group. As a side effect, adjusts the bucket list so the first
906 * non-empty bucket is at position 0 in full_slots.
908 static struct qfq_aggregate
*qfq_slot_scan(struct qfq_group
*grp
)
912 pr_debug("qfq slot_scan: grp %u full %#lx\n",
913 grp
->index
, grp
->full_slots
);
915 if (grp
->full_slots
== 0)
918 i
= __ffs(grp
->full_slots
); /* zero based */
920 grp
->front
= (grp
->front
+ i
) % QFQ_MAX_SLOTS
;
921 grp
->full_slots
>>= i
;
924 return qfq_slot_head(grp
);
928 * adjust the bucket list. When the start time of a group decreases,
929 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
930 * move the objects. The mask of occupied slots must be shifted
931 * because we use ffs() to find the first non-empty slot.
932 * This covers decreases in the group's start time, but what about
933 * increases of the start time ?
934 * Here too we should make sure that i is less than 32
936 static void qfq_slot_rotate(struct qfq_group
*grp
, u64 roundedS
)
938 unsigned int i
= (grp
->S
- roundedS
) >> grp
->slot_shift
;
940 grp
->full_slots
<<= i
;
941 grp
->front
= (grp
->front
- i
) % QFQ_MAX_SLOTS
;
944 static void qfq_update_eligible(struct qfq_sched
*q
)
946 struct qfq_group
*grp
;
947 unsigned long ineligible
;
949 ineligible
= q
->bitmaps
[IR
] | q
->bitmaps
[IB
];
951 if (!q
->bitmaps
[ER
]) {
952 grp
= qfq_ffs(q
, ineligible
);
953 if (qfq_gt(grp
->S
, q
->V
))
956 qfq_make_eligible(q
);
960 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
961 static void agg_dequeue(struct qfq_aggregate
*agg
,
962 struct qfq_class
*cl
, unsigned int len
)
964 qdisc_dequeue_peeked(cl
->qdisc
);
966 cl
->deficit
-= (int) len
;
968 if (cl
->qdisc
->q
.qlen
== 0) /* no more packets, remove from list */
969 list_del(&cl
->alist
);
970 else if (cl
->deficit
< qdisc_pkt_len(cl
->qdisc
->ops
->peek(cl
->qdisc
))) {
971 cl
->deficit
+= agg
->lmax
;
972 list_move_tail(&cl
->alist
, &agg
->active
);
976 static inline struct sk_buff
*qfq_peek_skb(struct qfq_aggregate
*agg
,
977 struct qfq_class
**cl
,
982 *cl
= list_first_entry(&agg
->active
, struct qfq_class
, alist
);
983 skb
= (*cl
)->qdisc
->ops
->peek((*cl
)->qdisc
);
985 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
987 *len
= qdisc_pkt_len(skb
);
992 /* Update F according to the actual service received by the aggregate. */
993 static inline void charge_actual_service(struct qfq_aggregate
*agg
)
995 /* Compute the service received by the aggregate, taking into
996 * account that, after decreasing the number of classes in
997 * agg, it may happen that
998 * agg->initial_budget - agg->budget > agg->bugdetmax
1000 u32 service_received
= min(agg
->budgetmax
,
1001 agg
->initial_budget
- agg
->budget
);
1003 agg
->F
= agg
->S
+ (u64
)service_received
* agg
->inv_w
;
1006 static inline void qfq_update_agg_ts(struct qfq_sched
*q
,
1007 struct qfq_aggregate
*agg
,
1008 enum update_reason reason
);
1010 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
);
1012 static struct sk_buff
*qfq_dequeue(struct Qdisc
*sch
)
1014 struct qfq_sched
*q
= qdisc_priv(sch
);
1015 struct qfq_aggregate
*in_serv_agg
= q
->in_serv_agg
;
1016 struct qfq_class
*cl
;
1017 struct sk_buff
*skb
= NULL
;
1018 /* next-packet len, 0 means no more active classes in in-service agg */
1019 unsigned int len
= 0;
1021 if (in_serv_agg
== NULL
)
1024 if (!list_empty(&in_serv_agg
->active
))
1025 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1028 * If there are no active classes in the in-service aggregate,
1029 * or if the aggregate has not enough budget to serve its next
1030 * class, then choose the next aggregate to serve.
1032 if (len
== 0 || in_serv_agg
->budget
< len
) {
1033 charge_actual_service(in_serv_agg
);
1035 /* recharge the budget of the aggregate */
1036 in_serv_agg
->initial_budget
= in_serv_agg
->budget
=
1037 in_serv_agg
->budgetmax
;
1039 if (!list_empty(&in_serv_agg
->active
)) {
1041 * Still active: reschedule for
1042 * service. Possible optimization: if no other
1043 * aggregate is active, then there is no point
1044 * in rescheduling this aggregate, and we can
1045 * just keep it as the in-service one. This
1046 * should be however a corner case, and to
1047 * handle it, we would need to maintain an
1048 * extra num_active_aggs field.
1050 qfq_update_agg_ts(q
, in_serv_agg
, requeue
);
1051 qfq_schedule_agg(q
, in_serv_agg
);
1052 } else if (sch
->q
.qlen
== 0) { /* no aggregate to serve */
1053 q
->in_serv_agg
= NULL
;
1058 * If we get here, there are other aggregates queued:
1059 * choose the new aggregate to serve.
1061 in_serv_agg
= q
->in_serv_agg
= qfq_choose_next_agg(q
);
1062 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1068 qdisc_bstats_update(sch
, skb
);
1070 agg_dequeue(in_serv_agg
, cl
, len
);
1071 /* If lmax is lowered, through qfq_change_class, for a class
1072 * owning pending packets with larger size than the new value
1073 * of lmax, then the following condition may hold.
1075 if (unlikely(in_serv_agg
->budget
< len
))
1076 in_serv_agg
->budget
= 0;
1078 in_serv_agg
->budget
-= len
;
1080 q
->V
+= (u64
)len
* IWSUM
;
1081 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1082 len
, (unsigned long long) in_serv_agg
->F
,
1083 (unsigned long long) q
->V
);
1088 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*q
)
1090 struct qfq_group
*grp
;
1091 struct qfq_aggregate
*agg
, *new_front_agg
;
1094 qfq_update_eligible(q
);
1097 if (!q
->bitmaps
[ER
])
1100 grp
= qfq_ffs(q
, q
->bitmaps
[ER
]);
1103 agg
= qfq_slot_head(grp
);
1105 /* agg starts to be served, remove it from schedule */
1106 qfq_front_slot_remove(grp
);
1108 new_front_agg
= qfq_slot_scan(grp
);
1110 if (new_front_agg
== NULL
) /* group is now inactive, remove from ER */
1111 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1113 u64 roundedS
= qfq_round_down(new_front_agg
->S
,
1117 if (grp
->S
== roundedS
)
1120 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1121 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1122 s
= qfq_calc_state(q
, grp
);
1123 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1126 qfq_unblock_groups(q
, grp
->index
, old_F
);
1132 * Assign a reasonable start time for a new aggregate in group i.
1133 * Admissible values for \hat(F) are multiples of \sigma_i
1134 * no greater than V+\sigma_i . Larger values mean that
1135 * we had a wraparound so we consider the timestamp to be stale.
1137 * If F is not stale and F >= V then we set S = F.
1138 * Otherwise we should assign S = V, but this may violate
1139 * the ordering in EB (see [2]). So, if we have groups in ER,
1140 * set S to the F_j of the first group j which would be blocking us.
1141 * We are guaranteed not to move S backward because
1142 * otherwise our group i would still be blocked.
1144 static void qfq_update_start(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1147 u64 limit
, roundedF
;
1148 int slot_shift
= agg
->grp
->slot_shift
;
1150 roundedF
= qfq_round_down(agg
->F
, slot_shift
);
1151 limit
= qfq_round_down(q
->V
, slot_shift
) + (1ULL << slot_shift
);
1153 if (!qfq_gt(agg
->F
, q
->V
) || qfq_gt(roundedF
, limit
)) {
1154 /* timestamp was stale */
1155 mask
= mask_from(q
->bitmaps
[ER
], agg
->grp
->index
);
1157 struct qfq_group
*next
= qfq_ffs(q
, mask
);
1158 if (qfq_gt(roundedF
, next
->F
)) {
1159 if (qfq_gt(limit
, next
->F
))
1161 else /* preserve timestamp correctness */
1167 } else /* timestamp is not stale */
1172 * Update the timestamps of agg before scheduling/rescheduling it for
1173 * service. In particular, assign to agg->F its maximum possible
1174 * value, i.e., the virtual finish time with which the aggregate
1175 * should be labeled if it used all its budget once in service.
1178 qfq_update_agg_ts(struct qfq_sched
*q
,
1179 struct qfq_aggregate
*agg
, enum update_reason reason
)
1181 if (reason
!= requeue
)
1182 qfq_update_start(q
, agg
);
1183 else /* just charge agg for the service received */
1186 agg
->F
= agg
->S
+ (u64
)agg
->budgetmax
* agg
->inv_w
;
1189 static void qfq_schedule_agg(struct qfq_sched
*, struct qfq_aggregate
*);
1191 static int qfq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
)
1193 struct qfq_sched
*q
= qdisc_priv(sch
);
1194 struct qfq_class
*cl
;
1195 struct qfq_aggregate
*agg
;
1198 cl
= qfq_classify(skb
, sch
, &err
);
1200 if (err
& __NET_XMIT_BYPASS
)
1201 sch
->qstats
.drops
++;
1205 pr_debug("qfq_enqueue: cl = %x\n", cl
->common
.classid
);
1207 if (unlikely(cl
->agg
->lmax
< qdisc_pkt_len(skb
))) {
1208 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1209 cl
->agg
->lmax
, qdisc_pkt_len(skb
), cl
->common
.classid
);
1210 err
= qfq_change_agg(sch
, cl
, cl
->agg
->class_weight
,
1211 qdisc_pkt_len(skb
));
1216 err
= qdisc_enqueue(skb
, cl
->qdisc
);
1217 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1218 pr_debug("qfq_enqueue: enqueue failed %d\n", err
);
1219 if (net_xmit_drop_count(err
)) {
1221 sch
->qstats
.drops
++;
1226 bstats_update(&cl
->bstats
, skb
);
1230 /* if the queue was not empty, then done here */
1231 if (cl
->qdisc
->q
.qlen
!= 1) {
1232 if (unlikely(skb
== cl
->qdisc
->ops
->peek(cl
->qdisc
)) &&
1233 list_first_entry(&agg
->active
, struct qfq_class
, alist
)
1234 == cl
&& cl
->deficit
< qdisc_pkt_len(skb
))
1235 list_move_tail(&cl
->alist
, &agg
->active
);
1240 /* schedule class for service within the aggregate */
1241 cl
->deficit
= agg
->lmax
;
1242 list_add_tail(&cl
->alist
, &agg
->active
);
1244 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) != cl
||
1245 q
->in_serv_agg
== agg
)
1246 return err
; /* non-empty or in service, nothing else to do */
1248 qfq_activate_agg(q
, agg
, enqueue
);
1254 * Schedule aggregate according to its timestamps.
1256 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1258 struct qfq_group
*grp
= agg
->grp
;
1262 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1265 * Insert agg in the correct bucket.
1266 * If agg->S >= grp->S we don't need to adjust the
1267 * bucket list and simply go to the insertion phase.
1268 * Otherwise grp->S is decreasing, we must make room
1269 * in the bucket list, and also recompute the group state.
1270 * Finally, if there were no flows in this group and nobody
1271 * was in ER make sure to adjust V.
1273 if (grp
->full_slots
) {
1274 if (!qfq_gt(grp
->S
, agg
->S
))
1277 /* create a slot for this agg->S */
1278 qfq_slot_rotate(grp
, roundedS
);
1279 /* group was surely ineligible, remove */
1280 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1281 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1282 } else if (!q
->bitmaps
[ER
] && qfq_gt(roundedS
, q
->V
) &&
1283 q
->in_serv_agg
== NULL
)
1287 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1288 s
= qfq_calc_state(q
, grp
);
1289 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1291 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1293 (unsigned long long) agg
->S
,
1294 (unsigned long long) agg
->F
,
1295 (unsigned long long) q
->V
);
1298 qfq_slot_insert(grp
, agg
, roundedS
);
1302 /* Update agg ts and schedule agg for service */
1303 static void qfq_activate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
1304 enum update_reason reason
)
1306 agg
->initial_budget
= agg
->budget
= agg
->budgetmax
; /* recharge budg. */
1308 qfq_update_agg_ts(q
, agg
, reason
);
1309 if (q
->in_serv_agg
== NULL
) { /* no aggr. in service or scheduled */
1310 q
->in_serv_agg
= agg
; /* start serving this aggregate */
1311 /* update V: to be in service, agg must be eligible */
1312 q
->oldV
= q
->V
= agg
->S
;
1313 } else if (agg
!= q
->in_serv_agg
)
1314 qfq_schedule_agg(q
, agg
);
1317 static void qfq_slot_remove(struct qfq_sched
*q
, struct qfq_group
*grp
,
1318 struct qfq_aggregate
*agg
)
1320 unsigned int i
, offset
;
1323 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1324 offset
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
1326 i
= (grp
->front
+ offset
) % QFQ_MAX_SLOTS
;
1328 hlist_del(&agg
->next
);
1329 if (hlist_empty(&grp
->slots
[i
]))
1330 __clear_bit(offset
, &grp
->full_slots
);
1334 * Called to forcibly deschedule an aggregate. If the aggregate is
1335 * not in the front bucket, or if the latter has other aggregates in
1336 * the front bucket, we can simply remove the aggregate with no other
1338 * Otherwise we must propagate the event up.
1340 static void qfq_deactivate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1342 struct qfq_group
*grp
= agg
->grp
;
1347 if (agg
== q
->in_serv_agg
) {
1348 charge_actual_service(agg
);
1349 q
->in_serv_agg
= qfq_choose_next_agg(q
);
1354 qfq_slot_remove(q
, grp
, agg
);
1356 if (!grp
->full_slots
) {
1357 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1358 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1359 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1361 if (test_bit(grp
->index
, &q
->bitmaps
[ER
]) &&
1362 !(q
->bitmaps
[ER
] & ~((1UL << grp
->index
) - 1))) {
1363 mask
= q
->bitmaps
[ER
] & ((1UL << grp
->index
) - 1);
1365 mask
= ~((1UL << __fls(mask
)) - 1);
1368 qfq_move_groups(q
, mask
, EB
, ER
);
1369 qfq_move_groups(q
, mask
, IB
, IR
);
1371 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1372 } else if (hlist_empty(&grp
->slots
[grp
->front
])) {
1373 agg
= qfq_slot_scan(grp
);
1374 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1375 if (grp
->S
!= roundedS
) {
1376 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1377 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1378 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1379 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1381 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1382 s
= qfq_calc_state(q
, grp
);
1383 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1388 static void qfq_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1390 struct qfq_sched
*q
= qdisc_priv(sch
);
1391 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
1393 if (cl
->qdisc
->q
.qlen
== 0)
1394 qfq_deactivate_class(q
, cl
);
1397 static unsigned int qfq_drop_from_slot(struct qfq_sched
*q
,
1398 struct hlist_head
*slot
)
1400 struct qfq_aggregate
*agg
;
1401 struct qfq_class
*cl
;
1404 hlist_for_each_entry(agg
, slot
, next
) {
1405 list_for_each_entry(cl
, &agg
->active
, alist
) {
1407 if (!cl
->qdisc
->ops
->drop
)
1410 len
= cl
->qdisc
->ops
->drop(cl
->qdisc
);
1412 if (cl
->qdisc
->q
.qlen
== 0)
1413 qfq_deactivate_class(q
, cl
);
1422 static unsigned int qfq_drop(struct Qdisc
*sch
)
1424 struct qfq_sched
*q
= qdisc_priv(sch
);
1425 struct qfq_group
*grp
;
1426 unsigned int i
, j
, len
;
1428 for (i
= 0; i
<= QFQ_MAX_INDEX
; i
++) {
1429 grp
= &q
->groups
[i
];
1430 for (j
= 0; j
< QFQ_MAX_SLOTS
; j
++) {
1431 len
= qfq_drop_from_slot(q
, &grp
->slots
[j
]);
1443 static int qfq_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
)
1445 struct qfq_sched
*q
= qdisc_priv(sch
);
1446 struct qfq_group
*grp
;
1448 u32 max_cl_shift
, maxbudg_shift
, max_classes
;
1450 err
= qdisc_class_hash_init(&q
->clhash
);
1454 if (qdisc_dev(sch
)->tx_queue_len
+ 1 > QFQ_MAX_AGG_CLASSES
)
1455 max_classes
= QFQ_MAX_AGG_CLASSES
;
1457 max_classes
= qdisc_dev(sch
)->tx_queue_len
+ 1;
1458 /* max_cl_shift = floor(log_2(max_classes)) */
1459 max_cl_shift
= __fls(max_classes
);
1460 q
->max_agg_classes
= 1<<max_cl_shift
;
1462 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1463 maxbudg_shift
= QFQ_MTU_SHIFT
+ max_cl_shift
;
1464 q
->min_slot_shift
= FRAC_BITS
+ maxbudg_shift
- QFQ_MAX_INDEX
;
1466 for (i
= 0; i
<= QFQ_MAX_INDEX
; i
++) {
1467 grp
= &q
->groups
[i
];
1469 grp
->slot_shift
= q
->min_slot_shift
+ i
;
1470 for (j
= 0; j
< QFQ_MAX_SLOTS
; j
++)
1471 INIT_HLIST_HEAD(&grp
->slots
[j
]);
1474 INIT_HLIST_HEAD(&q
->nonfull_aggs
);
1479 static void qfq_reset_qdisc(struct Qdisc
*sch
)
1481 struct qfq_sched
*q
= qdisc_priv(sch
);
1482 struct qfq_class
*cl
;
1485 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1486 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
1487 if (cl
->qdisc
->q
.qlen
> 0)
1488 qfq_deactivate_class(q
, cl
);
1490 qdisc_reset(cl
->qdisc
);
1496 static void qfq_destroy_qdisc(struct Qdisc
*sch
)
1498 struct qfq_sched
*q
= qdisc_priv(sch
);
1499 struct qfq_class
*cl
;
1500 struct hlist_node
*next
;
1503 tcf_destroy_chain(&q
->filter_list
);
1505 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1506 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1508 qfq_destroy_class(sch
, cl
);
1511 qdisc_class_hash_destroy(&q
->clhash
);
1514 static const struct Qdisc_class_ops qfq_class_ops
= {
1515 .change
= qfq_change_class
,
1516 .delete = qfq_delete_class
,
1517 .get
= qfq_get_class
,
1518 .put
= qfq_put_class
,
1519 .tcf_chain
= qfq_tcf_chain
,
1520 .bind_tcf
= qfq_bind_tcf
,
1521 .unbind_tcf
= qfq_unbind_tcf
,
1522 .graft
= qfq_graft_class
,
1523 .leaf
= qfq_class_leaf
,
1524 .qlen_notify
= qfq_qlen_notify
,
1525 .dump
= qfq_dump_class
,
1526 .dump_stats
= qfq_dump_class_stats
,
1530 static struct Qdisc_ops qfq_qdisc_ops __read_mostly
= {
1531 .cl_ops
= &qfq_class_ops
,
1533 .priv_size
= sizeof(struct qfq_sched
),
1534 .enqueue
= qfq_enqueue
,
1535 .dequeue
= qfq_dequeue
,
1536 .peek
= qdisc_peek_dequeued
,
1538 .init
= qfq_init_qdisc
,
1539 .reset
= qfq_reset_qdisc
,
1540 .destroy
= qfq_destroy_qdisc
,
1541 .owner
= THIS_MODULE
,
1544 static int __init
qfq_init(void)
1546 return register_qdisc(&qfq_qdisc_ops
);
1549 static void __exit
qfq_exit(void)
1551 unregister_qdisc(&qfq_qdisc_ops
);
1554 module_init(qfq_init
);
1555 module_exit(qfq_exit
);
1556 MODULE_LICENSE("GPL");