Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6/libata-dev.git] / drivers / md / raid5.c
blob24909eb13fec1b0bf22e40caa4ff7a76967f80e4
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
64 * Stripe cache
67 #define NR_STRIPES 256
68 #define STRIPE_SIZE PAGE_SIZE
69 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD 1
72 #define BYPASS_THRESHOLD 1
73 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK (NR_HASH - 1)
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83 * order without overlap. There may be several bio's per stripe+device, and
84 * a bio could span several devices.
85 * When walking this list for a particular stripe+device, we must never proceed
86 * beyond a bio that extends past this device, as the next bio might no longer
87 * be valid.
88 * This function is used to determine the 'next' bio in the list, given the sector
89 * of the current stripe+device
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
93 int sectors = bio->bi_size >> 9;
94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 return bio->bi_next;
96 else
97 return NULL;
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 return (atomic_read(segments) >> 16) & 0xffff;
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 return atomic_sub_return(1, segments) & 0xffff;
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 atomic_inc(segments);
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 unsigned int cnt)
125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 int old, new;
128 do {
129 old = atomic_read(segments);
130 new = (old & 0xffff) | (cnt << 16);
131 } while (atomic_cmpxchg(segments, old, new) != old);
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 atomic_set(segments, cnt);
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
143 if (sh->ddf_layout)
144 /* ddf always start from first device */
145 return 0;
146 /* md starts just after Q block */
147 if (sh->qd_idx == sh->disks - 1)
148 return 0;
149 else
150 return sh->qd_idx + 1;
152 static inline int raid6_next_disk(int disk, int raid_disks)
154 disk++;
155 return (disk < raid_disks) ? disk : 0;
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159 * We need to map each disk to a 'slot', where the data disks are slot
160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161 * is raid_disks-1. This help does that mapping.
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 int *count, int syndrome_disks)
166 int slot = *count;
168 if (sh->ddf_layout)
169 (*count)++;
170 if (idx == sh->pd_idx)
171 return syndrome_disks;
172 if (idx == sh->qd_idx)
173 return syndrome_disks + 1;
174 if (!sh->ddf_layout)
175 (*count)++;
176 return slot;
179 static void return_io(struct bio *return_bi)
181 struct bio *bi = return_bi;
182 while (bi) {
184 return_bi = bi->bi_next;
185 bi->bi_next = NULL;
186 bi->bi_size = 0;
187 bio_endio(bi, 0);
188 bi = return_bi;
192 static void print_raid5_conf (struct r5conf *conf);
194 static int stripe_operations_active(struct stripe_head *sh)
196 return sh->check_state || sh->reconstruct_state ||
197 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
198 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
203 BUG_ON(!list_empty(&sh->lru));
204 BUG_ON(atomic_read(&conf->active_stripes)==0);
205 if (test_bit(STRIPE_HANDLE, &sh->state)) {
206 if (test_bit(STRIPE_DELAYED, &sh->state) &&
207 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
208 list_add_tail(&sh->lru, &conf->delayed_list);
209 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
210 sh->bm_seq - conf->seq_write > 0)
211 list_add_tail(&sh->lru, &conf->bitmap_list);
212 else {
213 clear_bit(STRIPE_DELAYED, &sh->state);
214 clear_bit(STRIPE_BIT_DELAY, &sh->state);
215 list_add_tail(&sh->lru, &conf->handle_list);
217 md_wakeup_thread(conf->mddev->thread);
218 } else {
219 BUG_ON(stripe_operations_active(sh));
220 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
221 if (atomic_dec_return(&conf->preread_active_stripes)
222 < IO_THRESHOLD)
223 md_wakeup_thread(conf->mddev->thread);
224 atomic_dec(&conf->active_stripes);
225 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
226 list_add_tail(&sh->lru, &conf->inactive_list);
227 wake_up(&conf->wait_for_stripe);
228 if (conf->retry_read_aligned)
229 md_wakeup_thread(conf->mddev->thread);
234 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
236 if (atomic_dec_and_test(&sh->count))
237 do_release_stripe(conf, sh);
240 static void release_stripe(struct stripe_head *sh)
242 struct r5conf *conf = sh->raid_conf;
243 unsigned long flags;
245 local_irq_save(flags);
246 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
247 do_release_stripe(conf, sh);
248 spin_unlock(&conf->device_lock);
250 local_irq_restore(flags);
253 static inline void remove_hash(struct stripe_head *sh)
255 pr_debug("remove_hash(), stripe %llu\n",
256 (unsigned long long)sh->sector);
258 hlist_del_init(&sh->hash);
261 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
263 struct hlist_head *hp = stripe_hash(conf, sh->sector);
265 pr_debug("insert_hash(), stripe %llu\n",
266 (unsigned long long)sh->sector);
268 hlist_add_head(&sh->hash, hp);
272 /* find an idle stripe, make sure it is unhashed, and return it. */
273 static struct stripe_head *get_free_stripe(struct r5conf *conf)
275 struct stripe_head *sh = NULL;
276 struct list_head *first;
278 if (list_empty(&conf->inactive_list))
279 goto out;
280 first = conf->inactive_list.next;
281 sh = list_entry(first, struct stripe_head, lru);
282 list_del_init(first);
283 remove_hash(sh);
284 atomic_inc(&conf->active_stripes);
285 out:
286 return sh;
289 static void shrink_buffers(struct stripe_head *sh)
291 struct page *p;
292 int i;
293 int num = sh->raid_conf->pool_size;
295 for (i = 0; i < num ; i++) {
296 p = sh->dev[i].page;
297 if (!p)
298 continue;
299 sh->dev[i].page = NULL;
300 put_page(p);
304 static int grow_buffers(struct stripe_head *sh)
306 int i;
307 int num = sh->raid_conf->pool_size;
309 for (i = 0; i < num; i++) {
310 struct page *page;
312 if (!(page = alloc_page(GFP_KERNEL))) {
313 return 1;
315 sh->dev[i].page = page;
317 return 0;
320 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
322 struct stripe_head *sh);
324 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
326 struct r5conf *conf = sh->raid_conf;
327 int i;
329 BUG_ON(atomic_read(&sh->count) != 0);
330 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
331 BUG_ON(stripe_operations_active(sh));
333 pr_debug("init_stripe called, stripe %llu\n",
334 (unsigned long long)sh->sector);
336 remove_hash(sh);
338 sh->generation = conf->generation - previous;
339 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
340 sh->sector = sector;
341 stripe_set_idx(sector, conf, previous, sh);
342 sh->state = 0;
345 for (i = sh->disks; i--; ) {
346 struct r5dev *dev = &sh->dev[i];
348 if (dev->toread || dev->read || dev->towrite || dev->written ||
349 test_bit(R5_LOCKED, &dev->flags)) {
350 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
351 (unsigned long long)sh->sector, i, dev->toread,
352 dev->read, dev->towrite, dev->written,
353 test_bit(R5_LOCKED, &dev->flags));
354 WARN_ON(1);
356 dev->flags = 0;
357 raid5_build_block(sh, i, previous);
359 insert_hash(conf, sh);
362 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
363 short generation)
365 struct stripe_head *sh;
367 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
368 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
369 if (sh->sector == sector && sh->generation == generation)
370 return sh;
371 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
372 return NULL;
376 * Need to check if array has failed when deciding whether to:
377 * - start an array
378 * - remove non-faulty devices
379 * - add a spare
380 * - allow a reshape
381 * This determination is simple when no reshape is happening.
382 * However if there is a reshape, we need to carefully check
383 * both the before and after sections.
384 * This is because some failed devices may only affect one
385 * of the two sections, and some non-in_sync devices may
386 * be insync in the section most affected by failed devices.
388 static int calc_degraded(struct r5conf *conf)
390 int degraded, degraded2;
391 int i;
393 rcu_read_lock();
394 degraded = 0;
395 for (i = 0; i < conf->previous_raid_disks; i++) {
396 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
397 if (rdev && test_bit(Faulty, &rdev->flags))
398 rdev = rcu_dereference(conf->disks[i].replacement);
399 if (!rdev || test_bit(Faulty, &rdev->flags))
400 degraded++;
401 else if (test_bit(In_sync, &rdev->flags))
403 else
404 /* not in-sync or faulty.
405 * If the reshape increases the number of devices,
406 * this is being recovered by the reshape, so
407 * this 'previous' section is not in_sync.
408 * If the number of devices is being reduced however,
409 * the device can only be part of the array if
410 * we are reverting a reshape, so this section will
411 * be in-sync.
413 if (conf->raid_disks >= conf->previous_raid_disks)
414 degraded++;
416 rcu_read_unlock();
417 if (conf->raid_disks == conf->previous_raid_disks)
418 return degraded;
419 rcu_read_lock();
420 degraded2 = 0;
421 for (i = 0; i < conf->raid_disks; i++) {
422 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
423 if (rdev && test_bit(Faulty, &rdev->flags))
424 rdev = rcu_dereference(conf->disks[i].replacement);
425 if (!rdev || test_bit(Faulty, &rdev->flags))
426 degraded2++;
427 else if (test_bit(In_sync, &rdev->flags))
429 else
430 /* not in-sync or faulty.
431 * If reshape increases the number of devices, this
432 * section has already been recovered, else it
433 * almost certainly hasn't.
435 if (conf->raid_disks <= conf->previous_raid_disks)
436 degraded2++;
438 rcu_read_unlock();
439 if (degraded2 > degraded)
440 return degraded2;
441 return degraded;
444 static int has_failed(struct r5conf *conf)
446 int degraded;
448 if (conf->mddev->reshape_position == MaxSector)
449 return conf->mddev->degraded > conf->max_degraded;
451 degraded = calc_degraded(conf);
452 if (degraded > conf->max_degraded)
453 return 1;
454 return 0;
457 static struct stripe_head *
458 get_active_stripe(struct r5conf *conf, sector_t sector,
459 int previous, int noblock, int noquiesce)
461 struct stripe_head *sh;
463 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
465 spin_lock_irq(&conf->device_lock);
467 do {
468 wait_event_lock_irq(conf->wait_for_stripe,
469 conf->quiesce == 0 || noquiesce,
470 conf->device_lock);
471 sh = __find_stripe(conf, sector, conf->generation - previous);
472 if (!sh) {
473 if (!conf->inactive_blocked)
474 sh = get_free_stripe(conf);
475 if (noblock && sh == NULL)
476 break;
477 if (!sh) {
478 conf->inactive_blocked = 1;
479 wait_event_lock_irq(conf->wait_for_stripe,
480 !list_empty(&conf->inactive_list) &&
481 (atomic_read(&conf->active_stripes)
482 < (conf->max_nr_stripes *3/4)
483 || !conf->inactive_blocked),
484 conf->device_lock);
485 conf->inactive_blocked = 0;
486 } else
487 init_stripe(sh, sector, previous);
488 } else {
489 if (atomic_read(&sh->count)) {
490 BUG_ON(!list_empty(&sh->lru)
491 && !test_bit(STRIPE_EXPANDING, &sh->state)
492 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493 } else {
494 if (!test_bit(STRIPE_HANDLE, &sh->state))
495 atomic_inc(&conf->active_stripes);
496 if (list_empty(&sh->lru) &&
497 !test_bit(STRIPE_EXPANDING, &sh->state))
498 BUG();
499 list_del_init(&sh->lru);
502 } while (sh == NULL);
504 if (sh)
505 atomic_inc(&sh->count);
507 spin_unlock_irq(&conf->device_lock);
508 return sh;
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512 * in this stripe_head.
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
516 sector_t progress = conf->reshape_progress;
517 /* Need a memory barrier to make sure we see the value
518 * of conf->generation, or ->data_offset that was set before
519 * reshape_progress was updated.
521 smp_rmb();
522 if (progress == MaxSector)
523 return 0;
524 if (sh->generation == conf->generation - 1)
525 return 0;
526 /* We are in a reshape, and this is a new-generation stripe,
527 * so use new_data_offset.
529 return 1;
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
539 struct r5conf *conf = sh->raid_conf;
540 int i, disks = sh->disks;
542 might_sleep();
544 for (i = disks; i--; ) {
545 int rw;
546 int replace_only = 0;
547 struct bio *bi, *rbi;
548 struct md_rdev *rdev, *rrdev = NULL;
549 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551 rw = WRITE_FUA;
552 else
553 rw = WRITE;
554 if (test_bit(R5_Discard, &sh->dev[i].flags))
555 rw |= REQ_DISCARD;
556 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557 rw = READ;
558 else if (test_and_clear_bit(R5_WantReplace,
559 &sh->dev[i].flags)) {
560 rw = WRITE;
561 replace_only = 1;
562 } else
563 continue;
564 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565 rw |= REQ_SYNC;
567 bi = &sh->dev[i].req;
568 rbi = &sh->dev[i].rreq; /* For writing to replacement */
570 bi->bi_rw = rw;
571 rbi->bi_rw = rw;
572 if (rw & WRITE) {
573 bi->bi_end_io = raid5_end_write_request;
574 rbi->bi_end_io = raid5_end_write_request;
575 } else
576 bi->bi_end_io = raid5_end_read_request;
578 rcu_read_lock();
579 rrdev = rcu_dereference(conf->disks[i].replacement);
580 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581 rdev = rcu_dereference(conf->disks[i].rdev);
582 if (!rdev) {
583 rdev = rrdev;
584 rrdev = NULL;
586 if (rw & WRITE) {
587 if (replace_only)
588 rdev = NULL;
589 if (rdev == rrdev)
590 /* We raced and saw duplicates */
591 rrdev = NULL;
592 } else {
593 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594 rdev = rrdev;
595 rrdev = NULL;
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = NULL;
600 if (rdev)
601 atomic_inc(&rdev->nr_pending);
602 if (rrdev && test_bit(Faulty, &rrdev->flags))
603 rrdev = NULL;
604 if (rrdev)
605 atomic_inc(&rrdev->nr_pending);
606 rcu_read_unlock();
608 /* We have already checked bad blocks for reads. Now
609 * need to check for writes. We never accept write errors
610 * on the replacement, so we don't to check rrdev.
612 while ((rw & WRITE) && rdev &&
613 test_bit(WriteErrorSeen, &rdev->flags)) {
614 sector_t first_bad;
615 int bad_sectors;
616 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617 &first_bad, &bad_sectors);
618 if (!bad)
619 break;
621 if (bad < 0) {
622 set_bit(BlockedBadBlocks, &rdev->flags);
623 if (!conf->mddev->external &&
624 conf->mddev->flags) {
625 /* It is very unlikely, but we might
626 * still need to write out the
627 * bad block log - better give it
628 * a chance*/
629 md_check_recovery(conf->mddev);
632 * Because md_wait_for_blocked_rdev
633 * will dec nr_pending, we must
634 * increment it first.
636 atomic_inc(&rdev->nr_pending);
637 md_wait_for_blocked_rdev(rdev, conf->mddev);
638 } else {
639 /* Acknowledged bad block - skip the write */
640 rdev_dec_pending(rdev, conf->mddev);
641 rdev = NULL;
645 if (rdev) {
646 if (s->syncing || s->expanding || s->expanded
647 || s->replacing)
648 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
650 set_bit(STRIPE_IO_STARTED, &sh->state);
652 bi->bi_bdev = rdev->bdev;
653 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654 __func__, (unsigned long long)sh->sector,
655 bi->bi_rw, i);
656 atomic_inc(&sh->count);
657 if (use_new_offset(conf, sh))
658 bi->bi_sector = (sh->sector
659 + rdev->new_data_offset);
660 else
661 bi->bi_sector = (sh->sector
662 + rdev->data_offset);
663 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664 bi->bi_rw |= REQ_FLUSH;
666 bi->bi_flags = 1 << BIO_UPTODATE;
667 bi->bi_idx = 0;
668 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669 bi->bi_io_vec[0].bv_offset = 0;
670 bi->bi_size = STRIPE_SIZE;
671 bi->bi_next = NULL;
672 if (rrdev)
673 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
675 if (conf->mddev->gendisk)
676 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
677 bi, disk_devt(conf->mddev->gendisk),
678 sh->dev[i].sector);
679 generic_make_request(bi);
681 if (rrdev) {
682 if (s->syncing || s->expanding || s->expanded
683 || s->replacing)
684 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
686 set_bit(STRIPE_IO_STARTED, &sh->state);
688 rbi->bi_bdev = rrdev->bdev;
689 pr_debug("%s: for %llu schedule op %ld on "
690 "replacement disc %d\n",
691 __func__, (unsigned long long)sh->sector,
692 rbi->bi_rw, i);
693 atomic_inc(&sh->count);
694 if (use_new_offset(conf, sh))
695 rbi->bi_sector = (sh->sector
696 + rrdev->new_data_offset);
697 else
698 rbi->bi_sector = (sh->sector
699 + rrdev->data_offset);
700 rbi->bi_flags = 1 << BIO_UPTODATE;
701 rbi->bi_idx = 0;
702 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
703 rbi->bi_io_vec[0].bv_offset = 0;
704 rbi->bi_size = STRIPE_SIZE;
705 rbi->bi_next = NULL;
706 if (conf->mddev->gendisk)
707 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
708 rbi, disk_devt(conf->mddev->gendisk),
709 sh->dev[i].sector);
710 generic_make_request(rbi);
712 if (!rdev && !rrdev) {
713 if (rw & WRITE)
714 set_bit(STRIPE_DEGRADED, &sh->state);
715 pr_debug("skip op %ld on disc %d for sector %llu\n",
716 bi->bi_rw, i, (unsigned long long)sh->sector);
717 clear_bit(R5_LOCKED, &sh->dev[i].flags);
718 set_bit(STRIPE_HANDLE, &sh->state);
723 static struct dma_async_tx_descriptor *
724 async_copy_data(int frombio, struct bio *bio, struct page *page,
725 sector_t sector, struct dma_async_tx_descriptor *tx)
727 struct bio_vec *bvl;
728 struct page *bio_page;
729 int i;
730 int page_offset;
731 struct async_submit_ctl submit;
732 enum async_tx_flags flags = 0;
734 if (bio->bi_sector >= sector)
735 page_offset = (signed)(bio->bi_sector - sector) * 512;
736 else
737 page_offset = (signed)(sector - bio->bi_sector) * -512;
739 if (frombio)
740 flags |= ASYNC_TX_FENCE;
741 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
743 bio_for_each_segment(bvl, bio, i) {
744 int len = bvl->bv_len;
745 int clen;
746 int b_offset = 0;
748 if (page_offset < 0) {
749 b_offset = -page_offset;
750 page_offset += b_offset;
751 len -= b_offset;
754 if (len > 0 && page_offset + len > STRIPE_SIZE)
755 clen = STRIPE_SIZE - page_offset;
756 else
757 clen = len;
759 if (clen > 0) {
760 b_offset += bvl->bv_offset;
761 bio_page = bvl->bv_page;
762 if (frombio)
763 tx = async_memcpy(page, bio_page, page_offset,
764 b_offset, clen, &submit);
765 else
766 tx = async_memcpy(bio_page, page, b_offset,
767 page_offset, clen, &submit);
769 /* chain the operations */
770 submit.depend_tx = tx;
772 if (clen < len) /* hit end of page */
773 break;
774 page_offset += len;
777 return tx;
780 static void ops_complete_biofill(void *stripe_head_ref)
782 struct stripe_head *sh = stripe_head_ref;
783 struct bio *return_bi = NULL;
784 int i;
786 pr_debug("%s: stripe %llu\n", __func__,
787 (unsigned long long)sh->sector);
789 /* clear completed biofills */
790 for (i = sh->disks; i--; ) {
791 struct r5dev *dev = &sh->dev[i];
793 /* acknowledge completion of a biofill operation */
794 /* and check if we need to reply to a read request,
795 * new R5_Wantfill requests are held off until
796 * !STRIPE_BIOFILL_RUN
798 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
799 struct bio *rbi, *rbi2;
801 BUG_ON(!dev->read);
802 rbi = dev->read;
803 dev->read = NULL;
804 while (rbi && rbi->bi_sector <
805 dev->sector + STRIPE_SECTORS) {
806 rbi2 = r5_next_bio(rbi, dev->sector);
807 if (!raid5_dec_bi_active_stripes(rbi)) {
808 rbi->bi_next = return_bi;
809 return_bi = rbi;
811 rbi = rbi2;
815 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
817 return_io(return_bi);
819 set_bit(STRIPE_HANDLE, &sh->state);
820 release_stripe(sh);
823 static void ops_run_biofill(struct stripe_head *sh)
825 struct dma_async_tx_descriptor *tx = NULL;
826 struct async_submit_ctl submit;
827 int i;
829 pr_debug("%s: stripe %llu\n", __func__,
830 (unsigned long long)sh->sector);
832 for (i = sh->disks; i--; ) {
833 struct r5dev *dev = &sh->dev[i];
834 if (test_bit(R5_Wantfill, &dev->flags)) {
835 struct bio *rbi;
836 spin_lock_irq(&sh->stripe_lock);
837 dev->read = rbi = dev->toread;
838 dev->toread = NULL;
839 spin_unlock_irq(&sh->stripe_lock);
840 while (rbi && rbi->bi_sector <
841 dev->sector + STRIPE_SECTORS) {
842 tx = async_copy_data(0, rbi, dev->page,
843 dev->sector, tx);
844 rbi = r5_next_bio(rbi, dev->sector);
849 atomic_inc(&sh->count);
850 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
851 async_trigger_callback(&submit);
854 static void mark_target_uptodate(struct stripe_head *sh, int target)
856 struct r5dev *tgt;
858 if (target < 0)
859 return;
861 tgt = &sh->dev[target];
862 set_bit(R5_UPTODATE, &tgt->flags);
863 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
864 clear_bit(R5_Wantcompute, &tgt->flags);
867 static void ops_complete_compute(void *stripe_head_ref)
869 struct stripe_head *sh = stripe_head_ref;
871 pr_debug("%s: stripe %llu\n", __func__,
872 (unsigned long long)sh->sector);
874 /* mark the computed target(s) as uptodate */
875 mark_target_uptodate(sh, sh->ops.target);
876 mark_target_uptodate(sh, sh->ops.target2);
878 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
879 if (sh->check_state == check_state_compute_run)
880 sh->check_state = check_state_compute_result;
881 set_bit(STRIPE_HANDLE, &sh->state);
882 release_stripe(sh);
885 /* return a pointer to the address conversion region of the scribble buffer */
886 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
887 struct raid5_percpu *percpu)
889 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
892 static struct dma_async_tx_descriptor *
893 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
895 int disks = sh->disks;
896 struct page **xor_srcs = percpu->scribble;
897 int target = sh->ops.target;
898 struct r5dev *tgt = &sh->dev[target];
899 struct page *xor_dest = tgt->page;
900 int count = 0;
901 struct dma_async_tx_descriptor *tx;
902 struct async_submit_ctl submit;
903 int i;
905 pr_debug("%s: stripe %llu block: %d\n",
906 __func__, (unsigned long long)sh->sector, target);
907 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
909 for (i = disks; i--; )
910 if (i != target)
911 xor_srcs[count++] = sh->dev[i].page;
913 atomic_inc(&sh->count);
915 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
916 ops_complete_compute, sh, to_addr_conv(sh, percpu));
917 if (unlikely(count == 1))
918 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
919 else
920 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
922 return tx;
925 /* set_syndrome_sources - populate source buffers for gen_syndrome
926 * @srcs - (struct page *) array of size sh->disks
927 * @sh - stripe_head to parse
929 * Populates srcs in proper layout order for the stripe and returns the
930 * 'count' of sources to be used in a call to async_gen_syndrome. The P
931 * destination buffer is recorded in srcs[count] and the Q destination
932 * is recorded in srcs[count+1]].
934 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
936 int disks = sh->disks;
937 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
938 int d0_idx = raid6_d0(sh);
939 int count;
940 int i;
942 for (i = 0; i < disks; i++)
943 srcs[i] = NULL;
945 count = 0;
946 i = d0_idx;
947 do {
948 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
950 srcs[slot] = sh->dev[i].page;
951 i = raid6_next_disk(i, disks);
952 } while (i != d0_idx);
954 return syndrome_disks;
957 static struct dma_async_tx_descriptor *
958 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
960 int disks = sh->disks;
961 struct page **blocks = percpu->scribble;
962 int target;
963 int qd_idx = sh->qd_idx;
964 struct dma_async_tx_descriptor *tx;
965 struct async_submit_ctl submit;
966 struct r5dev *tgt;
967 struct page *dest;
968 int i;
969 int count;
971 if (sh->ops.target < 0)
972 target = sh->ops.target2;
973 else if (sh->ops.target2 < 0)
974 target = sh->ops.target;
975 else
976 /* we should only have one valid target */
977 BUG();
978 BUG_ON(target < 0);
979 pr_debug("%s: stripe %llu block: %d\n",
980 __func__, (unsigned long long)sh->sector, target);
982 tgt = &sh->dev[target];
983 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
984 dest = tgt->page;
986 atomic_inc(&sh->count);
988 if (target == qd_idx) {
989 count = set_syndrome_sources(blocks, sh);
990 blocks[count] = NULL; /* regenerating p is not necessary */
991 BUG_ON(blocks[count+1] != dest); /* q should already be set */
992 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
993 ops_complete_compute, sh,
994 to_addr_conv(sh, percpu));
995 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
996 } else {
997 /* Compute any data- or p-drive using XOR */
998 count = 0;
999 for (i = disks; i-- ; ) {
1000 if (i == target || i == qd_idx)
1001 continue;
1002 blocks[count++] = sh->dev[i].page;
1005 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1006 NULL, ops_complete_compute, sh,
1007 to_addr_conv(sh, percpu));
1008 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1011 return tx;
1014 static struct dma_async_tx_descriptor *
1015 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1017 int i, count, disks = sh->disks;
1018 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1019 int d0_idx = raid6_d0(sh);
1020 int faila = -1, failb = -1;
1021 int target = sh->ops.target;
1022 int target2 = sh->ops.target2;
1023 struct r5dev *tgt = &sh->dev[target];
1024 struct r5dev *tgt2 = &sh->dev[target2];
1025 struct dma_async_tx_descriptor *tx;
1026 struct page **blocks = percpu->scribble;
1027 struct async_submit_ctl submit;
1029 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1030 __func__, (unsigned long long)sh->sector, target, target2);
1031 BUG_ON(target < 0 || target2 < 0);
1032 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1033 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1035 /* we need to open-code set_syndrome_sources to handle the
1036 * slot number conversion for 'faila' and 'failb'
1038 for (i = 0; i < disks ; i++)
1039 blocks[i] = NULL;
1040 count = 0;
1041 i = d0_idx;
1042 do {
1043 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1045 blocks[slot] = sh->dev[i].page;
1047 if (i == target)
1048 faila = slot;
1049 if (i == target2)
1050 failb = slot;
1051 i = raid6_next_disk(i, disks);
1052 } while (i != d0_idx);
1054 BUG_ON(faila == failb);
1055 if (failb < faila)
1056 swap(faila, failb);
1057 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1058 __func__, (unsigned long long)sh->sector, faila, failb);
1060 atomic_inc(&sh->count);
1062 if (failb == syndrome_disks+1) {
1063 /* Q disk is one of the missing disks */
1064 if (faila == syndrome_disks) {
1065 /* Missing P+Q, just recompute */
1066 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1067 ops_complete_compute, sh,
1068 to_addr_conv(sh, percpu));
1069 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1070 STRIPE_SIZE, &submit);
1071 } else {
1072 struct page *dest;
1073 int data_target;
1074 int qd_idx = sh->qd_idx;
1076 /* Missing D+Q: recompute D from P, then recompute Q */
1077 if (target == qd_idx)
1078 data_target = target2;
1079 else
1080 data_target = target;
1082 count = 0;
1083 for (i = disks; i-- ; ) {
1084 if (i == data_target || i == qd_idx)
1085 continue;
1086 blocks[count++] = sh->dev[i].page;
1088 dest = sh->dev[data_target].page;
1089 init_async_submit(&submit,
1090 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1091 NULL, NULL, NULL,
1092 to_addr_conv(sh, percpu));
1093 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1094 &submit);
1096 count = set_syndrome_sources(blocks, sh);
1097 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1098 ops_complete_compute, sh,
1099 to_addr_conv(sh, percpu));
1100 return async_gen_syndrome(blocks, 0, count+2,
1101 STRIPE_SIZE, &submit);
1103 } else {
1104 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1105 ops_complete_compute, sh,
1106 to_addr_conv(sh, percpu));
1107 if (failb == syndrome_disks) {
1108 /* We're missing D+P. */
1109 return async_raid6_datap_recov(syndrome_disks+2,
1110 STRIPE_SIZE, faila,
1111 blocks, &submit);
1112 } else {
1113 /* We're missing D+D. */
1114 return async_raid6_2data_recov(syndrome_disks+2,
1115 STRIPE_SIZE, faila, failb,
1116 blocks, &submit);
1122 static void ops_complete_prexor(void *stripe_head_ref)
1124 struct stripe_head *sh = stripe_head_ref;
1126 pr_debug("%s: stripe %llu\n", __func__,
1127 (unsigned long long)sh->sector);
1130 static struct dma_async_tx_descriptor *
1131 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1132 struct dma_async_tx_descriptor *tx)
1134 int disks = sh->disks;
1135 struct page **xor_srcs = percpu->scribble;
1136 int count = 0, pd_idx = sh->pd_idx, i;
1137 struct async_submit_ctl submit;
1139 /* existing parity data subtracted */
1140 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1142 pr_debug("%s: stripe %llu\n", __func__,
1143 (unsigned long long)sh->sector);
1145 for (i = disks; i--; ) {
1146 struct r5dev *dev = &sh->dev[i];
1147 /* Only process blocks that are known to be uptodate */
1148 if (test_bit(R5_Wantdrain, &dev->flags))
1149 xor_srcs[count++] = dev->page;
1152 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1153 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1154 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1156 return tx;
1159 static struct dma_async_tx_descriptor *
1160 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1162 int disks = sh->disks;
1163 int i;
1165 pr_debug("%s: stripe %llu\n", __func__,
1166 (unsigned long long)sh->sector);
1168 for (i = disks; i--; ) {
1169 struct r5dev *dev = &sh->dev[i];
1170 struct bio *chosen;
1172 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1173 struct bio *wbi;
1175 spin_lock_irq(&sh->stripe_lock);
1176 chosen = dev->towrite;
1177 dev->towrite = NULL;
1178 BUG_ON(dev->written);
1179 wbi = dev->written = chosen;
1180 spin_unlock_irq(&sh->stripe_lock);
1182 while (wbi && wbi->bi_sector <
1183 dev->sector + STRIPE_SECTORS) {
1184 if (wbi->bi_rw & REQ_FUA)
1185 set_bit(R5_WantFUA, &dev->flags);
1186 if (wbi->bi_rw & REQ_SYNC)
1187 set_bit(R5_SyncIO, &dev->flags);
1188 if (wbi->bi_rw & REQ_DISCARD)
1189 set_bit(R5_Discard, &dev->flags);
1190 else
1191 tx = async_copy_data(1, wbi, dev->page,
1192 dev->sector, tx);
1193 wbi = r5_next_bio(wbi, dev->sector);
1198 return tx;
1201 static void ops_complete_reconstruct(void *stripe_head_ref)
1203 struct stripe_head *sh = stripe_head_ref;
1204 int disks = sh->disks;
1205 int pd_idx = sh->pd_idx;
1206 int qd_idx = sh->qd_idx;
1207 int i;
1208 bool fua = false, sync = false, discard = false;
1210 pr_debug("%s: stripe %llu\n", __func__,
1211 (unsigned long long)sh->sector);
1213 for (i = disks; i--; ) {
1214 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1215 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1216 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1219 for (i = disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1222 if (dev->written || i == pd_idx || i == qd_idx) {
1223 if (!discard)
1224 set_bit(R5_UPTODATE, &dev->flags);
1225 if (fua)
1226 set_bit(R5_WantFUA, &dev->flags);
1227 if (sync)
1228 set_bit(R5_SyncIO, &dev->flags);
1232 if (sh->reconstruct_state == reconstruct_state_drain_run)
1233 sh->reconstruct_state = reconstruct_state_drain_result;
1234 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1235 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1236 else {
1237 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1238 sh->reconstruct_state = reconstruct_state_result;
1241 set_bit(STRIPE_HANDLE, &sh->state);
1242 release_stripe(sh);
1245 static void
1246 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1247 struct dma_async_tx_descriptor *tx)
1249 int disks = sh->disks;
1250 struct page **xor_srcs = percpu->scribble;
1251 struct async_submit_ctl submit;
1252 int count = 0, pd_idx = sh->pd_idx, i;
1253 struct page *xor_dest;
1254 int prexor = 0;
1255 unsigned long flags;
1257 pr_debug("%s: stripe %llu\n", __func__,
1258 (unsigned long long)sh->sector);
1260 for (i = 0; i < sh->disks; i++) {
1261 if (pd_idx == i)
1262 continue;
1263 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1264 break;
1266 if (i >= sh->disks) {
1267 atomic_inc(&sh->count);
1268 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1269 ops_complete_reconstruct(sh);
1270 return;
1272 /* check if prexor is active which means only process blocks
1273 * that are part of a read-modify-write (written)
1275 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1276 prexor = 1;
1277 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1278 for (i = disks; i--; ) {
1279 struct r5dev *dev = &sh->dev[i];
1280 if (dev->written)
1281 xor_srcs[count++] = dev->page;
1283 } else {
1284 xor_dest = sh->dev[pd_idx].page;
1285 for (i = disks; i--; ) {
1286 struct r5dev *dev = &sh->dev[i];
1287 if (i != pd_idx)
1288 xor_srcs[count++] = dev->page;
1292 /* 1/ if we prexor'd then the dest is reused as a source
1293 * 2/ if we did not prexor then we are redoing the parity
1294 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1295 * for the synchronous xor case
1297 flags = ASYNC_TX_ACK |
1298 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1300 atomic_inc(&sh->count);
1302 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1303 to_addr_conv(sh, percpu));
1304 if (unlikely(count == 1))
1305 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1306 else
1307 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1310 static void
1311 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1312 struct dma_async_tx_descriptor *tx)
1314 struct async_submit_ctl submit;
1315 struct page **blocks = percpu->scribble;
1316 int count, i;
1318 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1320 for (i = 0; i < sh->disks; i++) {
1321 if (sh->pd_idx == i || sh->qd_idx == i)
1322 continue;
1323 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1324 break;
1326 if (i >= sh->disks) {
1327 atomic_inc(&sh->count);
1328 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1329 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1330 ops_complete_reconstruct(sh);
1331 return;
1334 count = set_syndrome_sources(blocks, sh);
1336 atomic_inc(&sh->count);
1338 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1339 sh, to_addr_conv(sh, percpu));
1340 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1343 static void ops_complete_check(void *stripe_head_ref)
1345 struct stripe_head *sh = stripe_head_ref;
1347 pr_debug("%s: stripe %llu\n", __func__,
1348 (unsigned long long)sh->sector);
1350 sh->check_state = check_state_check_result;
1351 set_bit(STRIPE_HANDLE, &sh->state);
1352 release_stripe(sh);
1355 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1357 int disks = sh->disks;
1358 int pd_idx = sh->pd_idx;
1359 int qd_idx = sh->qd_idx;
1360 struct page *xor_dest;
1361 struct page **xor_srcs = percpu->scribble;
1362 struct dma_async_tx_descriptor *tx;
1363 struct async_submit_ctl submit;
1364 int count;
1365 int i;
1367 pr_debug("%s: stripe %llu\n", __func__,
1368 (unsigned long long)sh->sector);
1370 count = 0;
1371 xor_dest = sh->dev[pd_idx].page;
1372 xor_srcs[count++] = xor_dest;
1373 for (i = disks; i--; ) {
1374 if (i == pd_idx || i == qd_idx)
1375 continue;
1376 xor_srcs[count++] = sh->dev[i].page;
1379 init_async_submit(&submit, 0, NULL, NULL, NULL,
1380 to_addr_conv(sh, percpu));
1381 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1382 &sh->ops.zero_sum_result, &submit);
1384 atomic_inc(&sh->count);
1385 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1386 tx = async_trigger_callback(&submit);
1389 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1391 struct page **srcs = percpu->scribble;
1392 struct async_submit_ctl submit;
1393 int count;
1395 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1396 (unsigned long long)sh->sector, checkp);
1398 count = set_syndrome_sources(srcs, sh);
1399 if (!checkp)
1400 srcs[count] = NULL;
1402 atomic_inc(&sh->count);
1403 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1404 sh, to_addr_conv(sh, percpu));
1405 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1406 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1409 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1411 int overlap_clear = 0, i, disks = sh->disks;
1412 struct dma_async_tx_descriptor *tx = NULL;
1413 struct r5conf *conf = sh->raid_conf;
1414 int level = conf->level;
1415 struct raid5_percpu *percpu;
1416 unsigned long cpu;
1418 cpu = get_cpu();
1419 percpu = per_cpu_ptr(conf->percpu, cpu);
1420 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1421 ops_run_biofill(sh);
1422 overlap_clear++;
1425 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1426 if (level < 6)
1427 tx = ops_run_compute5(sh, percpu);
1428 else {
1429 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1430 tx = ops_run_compute6_1(sh, percpu);
1431 else
1432 tx = ops_run_compute6_2(sh, percpu);
1434 /* terminate the chain if reconstruct is not set to be run */
1435 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1436 async_tx_ack(tx);
1439 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1440 tx = ops_run_prexor(sh, percpu, tx);
1442 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1443 tx = ops_run_biodrain(sh, tx);
1444 overlap_clear++;
1447 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1448 if (level < 6)
1449 ops_run_reconstruct5(sh, percpu, tx);
1450 else
1451 ops_run_reconstruct6(sh, percpu, tx);
1454 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1455 if (sh->check_state == check_state_run)
1456 ops_run_check_p(sh, percpu);
1457 else if (sh->check_state == check_state_run_q)
1458 ops_run_check_pq(sh, percpu, 0);
1459 else if (sh->check_state == check_state_run_pq)
1460 ops_run_check_pq(sh, percpu, 1);
1461 else
1462 BUG();
1465 if (overlap_clear)
1466 for (i = disks; i--; ) {
1467 struct r5dev *dev = &sh->dev[i];
1468 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1469 wake_up(&sh->raid_conf->wait_for_overlap);
1471 put_cpu();
1474 static int grow_one_stripe(struct r5conf *conf)
1476 struct stripe_head *sh;
1477 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1478 if (!sh)
1479 return 0;
1481 sh->raid_conf = conf;
1483 spin_lock_init(&sh->stripe_lock);
1485 if (grow_buffers(sh)) {
1486 shrink_buffers(sh);
1487 kmem_cache_free(conf->slab_cache, sh);
1488 return 0;
1490 /* we just created an active stripe so... */
1491 atomic_set(&sh->count, 1);
1492 atomic_inc(&conf->active_stripes);
1493 INIT_LIST_HEAD(&sh->lru);
1494 release_stripe(sh);
1495 return 1;
1498 static int grow_stripes(struct r5conf *conf, int num)
1500 struct kmem_cache *sc;
1501 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1503 if (conf->mddev->gendisk)
1504 sprintf(conf->cache_name[0],
1505 "raid%d-%s", conf->level, mdname(conf->mddev));
1506 else
1507 sprintf(conf->cache_name[0],
1508 "raid%d-%p", conf->level, conf->mddev);
1509 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1511 conf->active_name = 0;
1512 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1513 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1514 0, 0, NULL);
1515 if (!sc)
1516 return 1;
1517 conf->slab_cache = sc;
1518 conf->pool_size = devs;
1519 while (num--)
1520 if (!grow_one_stripe(conf))
1521 return 1;
1522 return 0;
1526 * scribble_len - return the required size of the scribble region
1527 * @num - total number of disks in the array
1529 * The size must be enough to contain:
1530 * 1/ a struct page pointer for each device in the array +2
1531 * 2/ room to convert each entry in (1) to its corresponding dma
1532 * (dma_map_page()) or page (page_address()) address.
1534 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1535 * calculate over all devices (not just the data blocks), using zeros in place
1536 * of the P and Q blocks.
1538 static size_t scribble_len(int num)
1540 size_t len;
1542 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1544 return len;
1547 static int resize_stripes(struct r5conf *conf, int newsize)
1549 /* Make all the stripes able to hold 'newsize' devices.
1550 * New slots in each stripe get 'page' set to a new page.
1552 * This happens in stages:
1553 * 1/ create a new kmem_cache and allocate the required number of
1554 * stripe_heads.
1555 * 2/ gather all the old stripe_heads and transfer the pages across
1556 * to the new stripe_heads. This will have the side effect of
1557 * freezing the array as once all stripe_heads have been collected,
1558 * no IO will be possible. Old stripe heads are freed once their
1559 * pages have been transferred over, and the old kmem_cache is
1560 * freed when all stripes are done.
1561 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1562 * we simple return a failre status - no need to clean anything up.
1563 * 4/ allocate new pages for the new slots in the new stripe_heads.
1564 * If this fails, we don't bother trying the shrink the
1565 * stripe_heads down again, we just leave them as they are.
1566 * As each stripe_head is processed the new one is released into
1567 * active service.
1569 * Once step2 is started, we cannot afford to wait for a write,
1570 * so we use GFP_NOIO allocations.
1572 struct stripe_head *osh, *nsh;
1573 LIST_HEAD(newstripes);
1574 struct disk_info *ndisks;
1575 unsigned long cpu;
1576 int err;
1577 struct kmem_cache *sc;
1578 int i;
1580 if (newsize <= conf->pool_size)
1581 return 0; /* never bother to shrink */
1583 err = md_allow_write(conf->mddev);
1584 if (err)
1585 return err;
1587 /* Step 1 */
1588 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1589 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1590 0, 0, NULL);
1591 if (!sc)
1592 return -ENOMEM;
1594 for (i = conf->max_nr_stripes; i; i--) {
1595 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1596 if (!nsh)
1597 break;
1599 nsh->raid_conf = conf;
1600 spin_lock_init(&nsh->stripe_lock);
1602 list_add(&nsh->lru, &newstripes);
1604 if (i) {
1605 /* didn't get enough, give up */
1606 while (!list_empty(&newstripes)) {
1607 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1608 list_del(&nsh->lru);
1609 kmem_cache_free(sc, nsh);
1611 kmem_cache_destroy(sc);
1612 return -ENOMEM;
1614 /* Step 2 - Must use GFP_NOIO now.
1615 * OK, we have enough stripes, start collecting inactive
1616 * stripes and copying them over
1618 list_for_each_entry(nsh, &newstripes, lru) {
1619 spin_lock_irq(&conf->device_lock);
1620 wait_event_lock_irq(conf->wait_for_stripe,
1621 !list_empty(&conf->inactive_list),
1622 conf->device_lock);
1623 osh = get_free_stripe(conf);
1624 spin_unlock_irq(&conf->device_lock);
1625 atomic_set(&nsh->count, 1);
1626 for(i=0; i<conf->pool_size; i++)
1627 nsh->dev[i].page = osh->dev[i].page;
1628 for( ; i<newsize; i++)
1629 nsh->dev[i].page = NULL;
1630 kmem_cache_free(conf->slab_cache, osh);
1632 kmem_cache_destroy(conf->slab_cache);
1634 /* Step 3.
1635 * At this point, we are holding all the stripes so the array
1636 * is completely stalled, so now is a good time to resize
1637 * conf->disks and the scribble region
1639 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1640 if (ndisks) {
1641 for (i=0; i<conf->raid_disks; i++)
1642 ndisks[i] = conf->disks[i];
1643 kfree(conf->disks);
1644 conf->disks = ndisks;
1645 } else
1646 err = -ENOMEM;
1648 get_online_cpus();
1649 conf->scribble_len = scribble_len(newsize);
1650 for_each_present_cpu(cpu) {
1651 struct raid5_percpu *percpu;
1652 void *scribble;
1654 percpu = per_cpu_ptr(conf->percpu, cpu);
1655 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1657 if (scribble) {
1658 kfree(percpu->scribble);
1659 percpu->scribble = scribble;
1660 } else {
1661 err = -ENOMEM;
1662 break;
1665 put_online_cpus();
1667 /* Step 4, return new stripes to service */
1668 while(!list_empty(&newstripes)) {
1669 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1670 list_del_init(&nsh->lru);
1672 for (i=conf->raid_disks; i < newsize; i++)
1673 if (nsh->dev[i].page == NULL) {
1674 struct page *p = alloc_page(GFP_NOIO);
1675 nsh->dev[i].page = p;
1676 if (!p)
1677 err = -ENOMEM;
1679 release_stripe(nsh);
1681 /* critical section pass, GFP_NOIO no longer needed */
1683 conf->slab_cache = sc;
1684 conf->active_name = 1-conf->active_name;
1685 conf->pool_size = newsize;
1686 return err;
1689 static int drop_one_stripe(struct r5conf *conf)
1691 struct stripe_head *sh;
1693 spin_lock_irq(&conf->device_lock);
1694 sh = get_free_stripe(conf);
1695 spin_unlock_irq(&conf->device_lock);
1696 if (!sh)
1697 return 0;
1698 BUG_ON(atomic_read(&sh->count));
1699 shrink_buffers(sh);
1700 kmem_cache_free(conf->slab_cache, sh);
1701 atomic_dec(&conf->active_stripes);
1702 return 1;
1705 static void shrink_stripes(struct r5conf *conf)
1707 while (drop_one_stripe(conf))
1710 if (conf->slab_cache)
1711 kmem_cache_destroy(conf->slab_cache);
1712 conf->slab_cache = NULL;
1715 static void raid5_end_read_request(struct bio * bi, int error)
1717 struct stripe_head *sh = bi->bi_private;
1718 struct r5conf *conf = sh->raid_conf;
1719 int disks = sh->disks, i;
1720 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1721 char b[BDEVNAME_SIZE];
1722 struct md_rdev *rdev = NULL;
1723 sector_t s;
1725 for (i=0 ; i<disks; i++)
1726 if (bi == &sh->dev[i].req)
1727 break;
1729 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1730 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1731 uptodate);
1732 if (i == disks) {
1733 BUG();
1734 return;
1736 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1737 /* If replacement finished while this request was outstanding,
1738 * 'replacement' might be NULL already.
1739 * In that case it moved down to 'rdev'.
1740 * rdev is not removed until all requests are finished.
1742 rdev = conf->disks[i].replacement;
1743 if (!rdev)
1744 rdev = conf->disks[i].rdev;
1746 if (use_new_offset(conf, sh))
1747 s = sh->sector + rdev->new_data_offset;
1748 else
1749 s = sh->sector + rdev->data_offset;
1750 if (uptodate) {
1751 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1752 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1753 /* Note that this cannot happen on a
1754 * replacement device. We just fail those on
1755 * any error
1757 printk_ratelimited(
1758 KERN_INFO
1759 "md/raid:%s: read error corrected"
1760 " (%lu sectors at %llu on %s)\n",
1761 mdname(conf->mddev), STRIPE_SECTORS,
1762 (unsigned long long)s,
1763 bdevname(rdev->bdev, b));
1764 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1765 clear_bit(R5_ReadError, &sh->dev[i].flags);
1766 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1767 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1768 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1770 if (atomic_read(&rdev->read_errors))
1771 atomic_set(&rdev->read_errors, 0);
1772 } else {
1773 const char *bdn = bdevname(rdev->bdev, b);
1774 int retry = 0;
1775 int set_bad = 0;
1777 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1778 atomic_inc(&rdev->read_errors);
1779 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1780 printk_ratelimited(
1781 KERN_WARNING
1782 "md/raid:%s: read error on replacement device "
1783 "(sector %llu on %s).\n",
1784 mdname(conf->mddev),
1785 (unsigned long long)s,
1786 bdn);
1787 else if (conf->mddev->degraded >= conf->max_degraded) {
1788 set_bad = 1;
1789 printk_ratelimited(
1790 KERN_WARNING
1791 "md/raid:%s: read error not correctable "
1792 "(sector %llu on %s).\n",
1793 mdname(conf->mddev),
1794 (unsigned long long)s,
1795 bdn);
1796 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1797 /* Oh, no!!! */
1798 set_bad = 1;
1799 printk_ratelimited(
1800 KERN_WARNING
1801 "md/raid:%s: read error NOT corrected!! "
1802 "(sector %llu on %s).\n",
1803 mdname(conf->mddev),
1804 (unsigned long long)s,
1805 bdn);
1806 } else if (atomic_read(&rdev->read_errors)
1807 > conf->max_nr_stripes)
1808 printk(KERN_WARNING
1809 "md/raid:%s: Too many read errors, failing device %s.\n",
1810 mdname(conf->mddev), bdn);
1811 else
1812 retry = 1;
1813 if (retry)
1814 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1815 set_bit(R5_ReadError, &sh->dev[i].flags);
1816 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1817 } else
1818 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1819 else {
1820 clear_bit(R5_ReadError, &sh->dev[i].flags);
1821 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1822 if (!(set_bad
1823 && test_bit(In_sync, &rdev->flags)
1824 && rdev_set_badblocks(
1825 rdev, sh->sector, STRIPE_SECTORS, 0)))
1826 md_error(conf->mddev, rdev);
1829 rdev_dec_pending(rdev, conf->mddev);
1830 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1831 set_bit(STRIPE_HANDLE, &sh->state);
1832 release_stripe(sh);
1835 static void raid5_end_write_request(struct bio *bi, int error)
1837 struct stripe_head *sh = bi->bi_private;
1838 struct r5conf *conf = sh->raid_conf;
1839 int disks = sh->disks, i;
1840 struct md_rdev *uninitialized_var(rdev);
1841 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1842 sector_t first_bad;
1843 int bad_sectors;
1844 int replacement = 0;
1846 for (i = 0 ; i < disks; i++) {
1847 if (bi == &sh->dev[i].req) {
1848 rdev = conf->disks[i].rdev;
1849 break;
1851 if (bi == &sh->dev[i].rreq) {
1852 rdev = conf->disks[i].replacement;
1853 if (rdev)
1854 replacement = 1;
1855 else
1856 /* rdev was removed and 'replacement'
1857 * replaced it. rdev is not removed
1858 * until all requests are finished.
1860 rdev = conf->disks[i].rdev;
1861 break;
1864 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1865 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1866 uptodate);
1867 if (i == disks) {
1868 BUG();
1869 return;
1872 if (replacement) {
1873 if (!uptodate)
1874 md_error(conf->mddev, rdev);
1875 else if (is_badblock(rdev, sh->sector,
1876 STRIPE_SECTORS,
1877 &first_bad, &bad_sectors))
1878 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1879 } else {
1880 if (!uptodate) {
1881 set_bit(WriteErrorSeen, &rdev->flags);
1882 set_bit(R5_WriteError, &sh->dev[i].flags);
1883 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1884 set_bit(MD_RECOVERY_NEEDED,
1885 &rdev->mddev->recovery);
1886 } else if (is_badblock(rdev, sh->sector,
1887 STRIPE_SECTORS,
1888 &first_bad, &bad_sectors))
1889 set_bit(R5_MadeGood, &sh->dev[i].flags);
1891 rdev_dec_pending(rdev, conf->mddev);
1893 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1894 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1895 set_bit(STRIPE_HANDLE, &sh->state);
1896 release_stripe(sh);
1899 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1901 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1903 struct r5dev *dev = &sh->dev[i];
1905 bio_init(&dev->req);
1906 dev->req.bi_io_vec = &dev->vec;
1907 dev->req.bi_vcnt++;
1908 dev->req.bi_max_vecs++;
1909 dev->req.bi_private = sh;
1910 dev->vec.bv_page = dev->page;
1912 bio_init(&dev->rreq);
1913 dev->rreq.bi_io_vec = &dev->rvec;
1914 dev->rreq.bi_vcnt++;
1915 dev->rreq.bi_max_vecs++;
1916 dev->rreq.bi_private = sh;
1917 dev->rvec.bv_page = dev->page;
1919 dev->flags = 0;
1920 dev->sector = compute_blocknr(sh, i, previous);
1923 static void error(struct mddev *mddev, struct md_rdev *rdev)
1925 char b[BDEVNAME_SIZE];
1926 struct r5conf *conf = mddev->private;
1927 unsigned long flags;
1928 pr_debug("raid456: error called\n");
1930 spin_lock_irqsave(&conf->device_lock, flags);
1931 clear_bit(In_sync, &rdev->flags);
1932 mddev->degraded = calc_degraded(conf);
1933 spin_unlock_irqrestore(&conf->device_lock, flags);
1934 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1936 set_bit(Blocked, &rdev->flags);
1937 set_bit(Faulty, &rdev->flags);
1938 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1939 printk(KERN_ALERT
1940 "md/raid:%s: Disk failure on %s, disabling device.\n"
1941 "md/raid:%s: Operation continuing on %d devices.\n",
1942 mdname(mddev),
1943 bdevname(rdev->bdev, b),
1944 mdname(mddev),
1945 conf->raid_disks - mddev->degraded);
1949 * Input: a 'big' sector number,
1950 * Output: index of the data and parity disk, and the sector # in them.
1952 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1953 int previous, int *dd_idx,
1954 struct stripe_head *sh)
1956 sector_t stripe, stripe2;
1957 sector_t chunk_number;
1958 unsigned int chunk_offset;
1959 int pd_idx, qd_idx;
1960 int ddf_layout = 0;
1961 sector_t new_sector;
1962 int algorithm = previous ? conf->prev_algo
1963 : conf->algorithm;
1964 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1965 : conf->chunk_sectors;
1966 int raid_disks = previous ? conf->previous_raid_disks
1967 : conf->raid_disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1970 /* First compute the information on this sector */
1973 * Compute the chunk number and the sector offset inside the chunk
1975 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1976 chunk_number = r_sector;
1979 * Compute the stripe number
1981 stripe = chunk_number;
1982 *dd_idx = sector_div(stripe, data_disks);
1983 stripe2 = stripe;
1985 * Select the parity disk based on the user selected algorithm.
1987 pd_idx = qd_idx = -1;
1988 switch(conf->level) {
1989 case 4:
1990 pd_idx = data_disks;
1991 break;
1992 case 5:
1993 switch (algorithm) {
1994 case ALGORITHM_LEFT_ASYMMETRIC:
1995 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1996 if (*dd_idx >= pd_idx)
1997 (*dd_idx)++;
1998 break;
1999 case ALGORITHM_RIGHT_ASYMMETRIC:
2000 pd_idx = sector_div(stripe2, raid_disks);
2001 if (*dd_idx >= pd_idx)
2002 (*dd_idx)++;
2003 break;
2004 case ALGORITHM_LEFT_SYMMETRIC:
2005 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2006 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2007 break;
2008 case ALGORITHM_RIGHT_SYMMETRIC:
2009 pd_idx = sector_div(stripe2, raid_disks);
2010 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2011 break;
2012 case ALGORITHM_PARITY_0:
2013 pd_idx = 0;
2014 (*dd_idx)++;
2015 break;
2016 case ALGORITHM_PARITY_N:
2017 pd_idx = data_disks;
2018 break;
2019 default:
2020 BUG();
2022 break;
2023 case 6:
2025 switch (algorithm) {
2026 case ALGORITHM_LEFT_ASYMMETRIC:
2027 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2028 qd_idx = pd_idx + 1;
2029 if (pd_idx == raid_disks-1) {
2030 (*dd_idx)++; /* Q D D D P */
2031 qd_idx = 0;
2032 } else if (*dd_idx >= pd_idx)
2033 (*dd_idx) += 2; /* D D P Q D */
2034 break;
2035 case ALGORITHM_RIGHT_ASYMMETRIC:
2036 pd_idx = sector_div(stripe2, raid_disks);
2037 qd_idx = pd_idx + 1;
2038 if (pd_idx == raid_disks-1) {
2039 (*dd_idx)++; /* Q D D D P */
2040 qd_idx = 0;
2041 } else if (*dd_idx >= pd_idx)
2042 (*dd_idx) += 2; /* D D P Q D */
2043 break;
2044 case ALGORITHM_LEFT_SYMMETRIC:
2045 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2046 qd_idx = (pd_idx + 1) % raid_disks;
2047 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2048 break;
2049 case ALGORITHM_RIGHT_SYMMETRIC:
2050 pd_idx = sector_div(stripe2, raid_disks);
2051 qd_idx = (pd_idx + 1) % raid_disks;
2052 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2053 break;
2055 case ALGORITHM_PARITY_0:
2056 pd_idx = 0;
2057 qd_idx = 1;
2058 (*dd_idx) += 2;
2059 break;
2060 case ALGORITHM_PARITY_N:
2061 pd_idx = data_disks;
2062 qd_idx = data_disks + 1;
2063 break;
2065 case ALGORITHM_ROTATING_ZERO_RESTART:
2066 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2067 * of blocks for computing Q is different.
2069 pd_idx = sector_div(stripe2, raid_disks);
2070 qd_idx = pd_idx + 1;
2071 if (pd_idx == raid_disks-1) {
2072 (*dd_idx)++; /* Q D D D P */
2073 qd_idx = 0;
2074 } else if (*dd_idx >= pd_idx)
2075 (*dd_idx) += 2; /* D D P Q D */
2076 ddf_layout = 1;
2077 break;
2079 case ALGORITHM_ROTATING_N_RESTART:
2080 /* Same a left_asymmetric, by first stripe is
2081 * D D D P Q rather than
2082 * Q D D D P
2084 stripe2 += 1;
2085 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2086 qd_idx = pd_idx + 1;
2087 if (pd_idx == raid_disks-1) {
2088 (*dd_idx)++; /* Q D D D P */
2089 qd_idx = 0;
2090 } else if (*dd_idx >= pd_idx)
2091 (*dd_idx) += 2; /* D D P Q D */
2092 ddf_layout = 1;
2093 break;
2095 case ALGORITHM_ROTATING_N_CONTINUE:
2096 /* Same as left_symmetric but Q is before P */
2097 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2098 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2099 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2100 ddf_layout = 1;
2101 break;
2103 case ALGORITHM_LEFT_ASYMMETRIC_6:
2104 /* RAID5 left_asymmetric, with Q on last device */
2105 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2106 if (*dd_idx >= pd_idx)
2107 (*dd_idx)++;
2108 qd_idx = raid_disks - 1;
2109 break;
2111 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2112 pd_idx = sector_div(stripe2, raid_disks-1);
2113 if (*dd_idx >= pd_idx)
2114 (*dd_idx)++;
2115 qd_idx = raid_disks - 1;
2116 break;
2118 case ALGORITHM_LEFT_SYMMETRIC_6:
2119 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2120 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2121 qd_idx = raid_disks - 1;
2122 break;
2124 case ALGORITHM_RIGHT_SYMMETRIC_6:
2125 pd_idx = sector_div(stripe2, raid_disks-1);
2126 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2127 qd_idx = raid_disks - 1;
2128 break;
2130 case ALGORITHM_PARITY_0_6:
2131 pd_idx = 0;
2132 (*dd_idx)++;
2133 qd_idx = raid_disks - 1;
2134 break;
2136 default:
2137 BUG();
2139 break;
2142 if (sh) {
2143 sh->pd_idx = pd_idx;
2144 sh->qd_idx = qd_idx;
2145 sh->ddf_layout = ddf_layout;
2148 * Finally, compute the new sector number
2150 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2151 return new_sector;
2155 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2157 struct r5conf *conf = sh->raid_conf;
2158 int raid_disks = sh->disks;
2159 int data_disks = raid_disks - conf->max_degraded;
2160 sector_t new_sector = sh->sector, check;
2161 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2162 : conf->chunk_sectors;
2163 int algorithm = previous ? conf->prev_algo
2164 : conf->algorithm;
2165 sector_t stripe;
2166 int chunk_offset;
2167 sector_t chunk_number;
2168 int dummy1, dd_idx = i;
2169 sector_t r_sector;
2170 struct stripe_head sh2;
2173 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2174 stripe = new_sector;
2176 if (i == sh->pd_idx)
2177 return 0;
2178 switch(conf->level) {
2179 case 4: break;
2180 case 5:
2181 switch (algorithm) {
2182 case ALGORITHM_LEFT_ASYMMETRIC:
2183 case ALGORITHM_RIGHT_ASYMMETRIC:
2184 if (i > sh->pd_idx)
2185 i--;
2186 break;
2187 case ALGORITHM_LEFT_SYMMETRIC:
2188 case ALGORITHM_RIGHT_SYMMETRIC:
2189 if (i < sh->pd_idx)
2190 i += raid_disks;
2191 i -= (sh->pd_idx + 1);
2192 break;
2193 case ALGORITHM_PARITY_0:
2194 i -= 1;
2195 break;
2196 case ALGORITHM_PARITY_N:
2197 break;
2198 default:
2199 BUG();
2201 break;
2202 case 6:
2203 if (i == sh->qd_idx)
2204 return 0; /* It is the Q disk */
2205 switch (algorithm) {
2206 case ALGORITHM_LEFT_ASYMMETRIC:
2207 case ALGORITHM_RIGHT_ASYMMETRIC:
2208 case ALGORITHM_ROTATING_ZERO_RESTART:
2209 case ALGORITHM_ROTATING_N_RESTART:
2210 if (sh->pd_idx == raid_disks-1)
2211 i--; /* Q D D D P */
2212 else if (i > sh->pd_idx)
2213 i -= 2; /* D D P Q D */
2214 break;
2215 case ALGORITHM_LEFT_SYMMETRIC:
2216 case ALGORITHM_RIGHT_SYMMETRIC:
2217 if (sh->pd_idx == raid_disks-1)
2218 i--; /* Q D D D P */
2219 else {
2220 /* D D P Q D */
2221 if (i < sh->pd_idx)
2222 i += raid_disks;
2223 i -= (sh->pd_idx + 2);
2225 break;
2226 case ALGORITHM_PARITY_0:
2227 i -= 2;
2228 break;
2229 case ALGORITHM_PARITY_N:
2230 break;
2231 case ALGORITHM_ROTATING_N_CONTINUE:
2232 /* Like left_symmetric, but P is before Q */
2233 if (sh->pd_idx == 0)
2234 i--; /* P D D D Q */
2235 else {
2236 /* D D Q P D */
2237 if (i < sh->pd_idx)
2238 i += raid_disks;
2239 i -= (sh->pd_idx + 1);
2241 break;
2242 case ALGORITHM_LEFT_ASYMMETRIC_6:
2243 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2244 if (i > sh->pd_idx)
2245 i--;
2246 break;
2247 case ALGORITHM_LEFT_SYMMETRIC_6:
2248 case ALGORITHM_RIGHT_SYMMETRIC_6:
2249 if (i < sh->pd_idx)
2250 i += data_disks + 1;
2251 i -= (sh->pd_idx + 1);
2252 break;
2253 case ALGORITHM_PARITY_0_6:
2254 i -= 1;
2255 break;
2256 default:
2257 BUG();
2259 break;
2262 chunk_number = stripe * data_disks + i;
2263 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2265 check = raid5_compute_sector(conf, r_sector,
2266 previous, &dummy1, &sh2);
2267 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2268 || sh2.qd_idx != sh->qd_idx) {
2269 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2270 mdname(conf->mddev));
2271 return 0;
2273 return r_sector;
2277 static void
2278 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2279 int rcw, int expand)
2281 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2282 struct r5conf *conf = sh->raid_conf;
2283 int level = conf->level;
2285 if (rcw) {
2287 for (i = disks; i--; ) {
2288 struct r5dev *dev = &sh->dev[i];
2290 if (dev->towrite) {
2291 set_bit(R5_LOCKED, &dev->flags);
2292 set_bit(R5_Wantdrain, &dev->flags);
2293 if (!expand)
2294 clear_bit(R5_UPTODATE, &dev->flags);
2295 s->locked++;
2298 /* if we are not expanding this is a proper write request, and
2299 * there will be bios with new data to be drained into the
2300 * stripe cache
2302 if (!expand) {
2303 if (!s->locked)
2304 /* False alarm, nothing to do */
2305 return;
2306 sh->reconstruct_state = reconstruct_state_drain_run;
2307 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2308 } else
2309 sh->reconstruct_state = reconstruct_state_run;
2311 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2313 if (s->locked + conf->max_degraded == disks)
2314 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2315 atomic_inc(&conf->pending_full_writes);
2316 } else {
2317 BUG_ON(level == 6);
2318 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2319 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2321 for (i = disks; i--; ) {
2322 struct r5dev *dev = &sh->dev[i];
2323 if (i == pd_idx)
2324 continue;
2326 if (dev->towrite &&
2327 (test_bit(R5_UPTODATE, &dev->flags) ||
2328 test_bit(R5_Wantcompute, &dev->flags))) {
2329 set_bit(R5_Wantdrain, &dev->flags);
2330 set_bit(R5_LOCKED, &dev->flags);
2331 clear_bit(R5_UPTODATE, &dev->flags);
2332 s->locked++;
2335 if (!s->locked)
2336 /* False alarm - nothing to do */
2337 return;
2338 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2339 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2340 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2341 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2344 /* keep the parity disk(s) locked while asynchronous operations
2345 * are in flight
2347 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2348 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2349 s->locked++;
2351 if (level == 6) {
2352 int qd_idx = sh->qd_idx;
2353 struct r5dev *dev = &sh->dev[qd_idx];
2355 set_bit(R5_LOCKED, &dev->flags);
2356 clear_bit(R5_UPTODATE, &dev->flags);
2357 s->locked++;
2360 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2361 __func__, (unsigned long long)sh->sector,
2362 s->locked, s->ops_request);
2366 * Each stripe/dev can have one or more bion attached.
2367 * toread/towrite point to the first in a chain.
2368 * The bi_next chain must be in order.
2370 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2372 struct bio **bip;
2373 struct r5conf *conf = sh->raid_conf;
2374 int firstwrite=0;
2376 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2377 (unsigned long long)bi->bi_sector,
2378 (unsigned long long)sh->sector);
2381 * If several bio share a stripe. The bio bi_phys_segments acts as a
2382 * reference count to avoid race. The reference count should already be
2383 * increased before this function is called (for example, in
2384 * make_request()), so other bio sharing this stripe will not free the
2385 * stripe. If a stripe is owned by one stripe, the stripe lock will
2386 * protect it.
2388 spin_lock_irq(&sh->stripe_lock);
2389 if (forwrite) {
2390 bip = &sh->dev[dd_idx].towrite;
2391 if (*bip == NULL)
2392 firstwrite = 1;
2393 } else
2394 bip = &sh->dev[dd_idx].toread;
2395 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2396 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2397 goto overlap;
2398 bip = & (*bip)->bi_next;
2400 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2401 goto overlap;
2403 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2404 if (*bip)
2405 bi->bi_next = *bip;
2406 *bip = bi;
2407 raid5_inc_bi_active_stripes(bi);
2409 if (forwrite) {
2410 /* check if page is covered */
2411 sector_t sector = sh->dev[dd_idx].sector;
2412 for (bi=sh->dev[dd_idx].towrite;
2413 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2414 bi && bi->bi_sector <= sector;
2415 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2416 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2417 sector = bi->bi_sector + (bi->bi_size>>9);
2419 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2420 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2423 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2424 (unsigned long long)(*bip)->bi_sector,
2425 (unsigned long long)sh->sector, dd_idx);
2426 spin_unlock_irq(&sh->stripe_lock);
2428 if (conf->mddev->bitmap && firstwrite) {
2429 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2430 STRIPE_SECTORS, 0);
2431 sh->bm_seq = conf->seq_flush+1;
2432 set_bit(STRIPE_BIT_DELAY, &sh->state);
2434 return 1;
2436 overlap:
2437 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2438 spin_unlock_irq(&sh->stripe_lock);
2439 return 0;
2442 static void end_reshape(struct r5conf *conf);
2444 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2445 struct stripe_head *sh)
2447 int sectors_per_chunk =
2448 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2449 int dd_idx;
2450 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2451 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2453 raid5_compute_sector(conf,
2454 stripe * (disks - conf->max_degraded)
2455 *sectors_per_chunk + chunk_offset,
2456 previous,
2457 &dd_idx, sh);
2460 static void
2461 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2462 struct stripe_head_state *s, int disks,
2463 struct bio **return_bi)
2465 int i;
2466 for (i = disks; i--; ) {
2467 struct bio *bi;
2468 int bitmap_end = 0;
2470 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2471 struct md_rdev *rdev;
2472 rcu_read_lock();
2473 rdev = rcu_dereference(conf->disks[i].rdev);
2474 if (rdev && test_bit(In_sync, &rdev->flags))
2475 atomic_inc(&rdev->nr_pending);
2476 else
2477 rdev = NULL;
2478 rcu_read_unlock();
2479 if (rdev) {
2480 if (!rdev_set_badblocks(
2481 rdev,
2482 sh->sector,
2483 STRIPE_SECTORS, 0))
2484 md_error(conf->mddev, rdev);
2485 rdev_dec_pending(rdev, conf->mddev);
2488 spin_lock_irq(&sh->stripe_lock);
2489 /* fail all writes first */
2490 bi = sh->dev[i].towrite;
2491 sh->dev[i].towrite = NULL;
2492 spin_unlock_irq(&sh->stripe_lock);
2493 if (bi)
2494 bitmap_end = 1;
2496 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2497 wake_up(&conf->wait_for_overlap);
2499 while (bi && bi->bi_sector <
2500 sh->dev[i].sector + STRIPE_SECTORS) {
2501 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2502 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2503 if (!raid5_dec_bi_active_stripes(bi)) {
2504 md_write_end(conf->mddev);
2505 bi->bi_next = *return_bi;
2506 *return_bi = bi;
2508 bi = nextbi;
2510 if (bitmap_end)
2511 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2512 STRIPE_SECTORS, 0, 0);
2513 bitmap_end = 0;
2514 /* and fail all 'written' */
2515 bi = sh->dev[i].written;
2516 sh->dev[i].written = NULL;
2517 if (bi) bitmap_end = 1;
2518 while (bi && bi->bi_sector <
2519 sh->dev[i].sector + STRIPE_SECTORS) {
2520 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2521 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2522 if (!raid5_dec_bi_active_stripes(bi)) {
2523 md_write_end(conf->mddev);
2524 bi->bi_next = *return_bi;
2525 *return_bi = bi;
2527 bi = bi2;
2530 /* fail any reads if this device is non-operational and
2531 * the data has not reached the cache yet.
2533 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2534 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2535 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2536 spin_lock_irq(&sh->stripe_lock);
2537 bi = sh->dev[i].toread;
2538 sh->dev[i].toread = NULL;
2539 spin_unlock_irq(&sh->stripe_lock);
2540 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2541 wake_up(&conf->wait_for_overlap);
2542 while (bi && bi->bi_sector <
2543 sh->dev[i].sector + STRIPE_SECTORS) {
2544 struct bio *nextbi =
2545 r5_next_bio(bi, sh->dev[i].sector);
2546 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2547 if (!raid5_dec_bi_active_stripes(bi)) {
2548 bi->bi_next = *return_bi;
2549 *return_bi = bi;
2551 bi = nextbi;
2554 if (bitmap_end)
2555 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2556 STRIPE_SECTORS, 0, 0);
2557 /* If we were in the middle of a write the parity block might
2558 * still be locked - so just clear all R5_LOCKED flags
2560 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2563 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2564 if (atomic_dec_and_test(&conf->pending_full_writes))
2565 md_wakeup_thread(conf->mddev->thread);
2568 static void
2569 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2570 struct stripe_head_state *s)
2572 int abort = 0;
2573 int i;
2575 clear_bit(STRIPE_SYNCING, &sh->state);
2576 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2577 wake_up(&conf->wait_for_overlap);
2578 s->syncing = 0;
2579 s->replacing = 0;
2580 /* There is nothing more to do for sync/check/repair.
2581 * Don't even need to abort as that is handled elsewhere
2582 * if needed, and not always wanted e.g. if there is a known
2583 * bad block here.
2584 * For recover/replace we need to record a bad block on all
2585 * non-sync devices, or abort the recovery
2587 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2588 /* During recovery devices cannot be removed, so
2589 * locking and refcounting of rdevs is not needed
2591 for (i = 0; i < conf->raid_disks; i++) {
2592 struct md_rdev *rdev = conf->disks[i].rdev;
2593 if (rdev
2594 && !test_bit(Faulty, &rdev->flags)
2595 && !test_bit(In_sync, &rdev->flags)
2596 && !rdev_set_badblocks(rdev, sh->sector,
2597 STRIPE_SECTORS, 0))
2598 abort = 1;
2599 rdev = conf->disks[i].replacement;
2600 if (rdev
2601 && !test_bit(Faulty, &rdev->flags)
2602 && !test_bit(In_sync, &rdev->flags)
2603 && !rdev_set_badblocks(rdev, sh->sector,
2604 STRIPE_SECTORS, 0))
2605 abort = 1;
2607 if (abort)
2608 conf->recovery_disabled =
2609 conf->mddev->recovery_disabled;
2611 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2614 static int want_replace(struct stripe_head *sh, int disk_idx)
2616 struct md_rdev *rdev;
2617 int rv = 0;
2618 /* Doing recovery so rcu locking not required */
2619 rdev = sh->raid_conf->disks[disk_idx].replacement;
2620 if (rdev
2621 && !test_bit(Faulty, &rdev->flags)
2622 && !test_bit(In_sync, &rdev->flags)
2623 && (rdev->recovery_offset <= sh->sector
2624 || rdev->mddev->recovery_cp <= sh->sector))
2625 rv = 1;
2627 return rv;
2630 /* fetch_block - checks the given member device to see if its data needs
2631 * to be read or computed to satisfy a request.
2633 * Returns 1 when no more member devices need to be checked, otherwise returns
2634 * 0 to tell the loop in handle_stripe_fill to continue
2636 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2637 int disk_idx, int disks)
2639 struct r5dev *dev = &sh->dev[disk_idx];
2640 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2641 &sh->dev[s->failed_num[1]] };
2643 /* is the data in this block needed, and can we get it? */
2644 if (!test_bit(R5_LOCKED, &dev->flags) &&
2645 !test_bit(R5_UPTODATE, &dev->flags) &&
2646 (dev->toread ||
2647 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2648 s->syncing || s->expanding ||
2649 (s->replacing && want_replace(sh, disk_idx)) ||
2650 (s->failed >= 1 && fdev[0]->toread) ||
2651 (s->failed >= 2 && fdev[1]->toread) ||
2652 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2653 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2654 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2655 /* we would like to get this block, possibly by computing it,
2656 * otherwise read it if the backing disk is insync
2658 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2659 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2660 if ((s->uptodate == disks - 1) &&
2661 (s->failed && (disk_idx == s->failed_num[0] ||
2662 disk_idx == s->failed_num[1]))) {
2663 /* have disk failed, and we're requested to fetch it;
2664 * do compute it
2666 pr_debug("Computing stripe %llu block %d\n",
2667 (unsigned long long)sh->sector, disk_idx);
2668 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2669 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2670 set_bit(R5_Wantcompute, &dev->flags);
2671 sh->ops.target = disk_idx;
2672 sh->ops.target2 = -1; /* no 2nd target */
2673 s->req_compute = 1;
2674 /* Careful: from this point on 'uptodate' is in the eye
2675 * of raid_run_ops which services 'compute' operations
2676 * before writes. R5_Wantcompute flags a block that will
2677 * be R5_UPTODATE by the time it is needed for a
2678 * subsequent operation.
2680 s->uptodate++;
2681 return 1;
2682 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2683 /* Computing 2-failure is *very* expensive; only
2684 * do it if failed >= 2
2686 int other;
2687 for (other = disks; other--; ) {
2688 if (other == disk_idx)
2689 continue;
2690 if (!test_bit(R5_UPTODATE,
2691 &sh->dev[other].flags))
2692 break;
2694 BUG_ON(other < 0);
2695 pr_debug("Computing stripe %llu blocks %d,%d\n",
2696 (unsigned long long)sh->sector,
2697 disk_idx, other);
2698 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2699 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2700 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2701 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2702 sh->ops.target = disk_idx;
2703 sh->ops.target2 = other;
2704 s->uptodate += 2;
2705 s->req_compute = 1;
2706 return 1;
2707 } else if (test_bit(R5_Insync, &dev->flags)) {
2708 set_bit(R5_LOCKED, &dev->flags);
2709 set_bit(R5_Wantread, &dev->flags);
2710 s->locked++;
2711 pr_debug("Reading block %d (sync=%d)\n",
2712 disk_idx, s->syncing);
2716 return 0;
2720 * handle_stripe_fill - read or compute data to satisfy pending requests.
2722 static void handle_stripe_fill(struct stripe_head *sh,
2723 struct stripe_head_state *s,
2724 int disks)
2726 int i;
2728 /* look for blocks to read/compute, skip this if a compute
2729 * is already in flight, or if the stripe contents are in the
2730 * midst of changing due to a write
2732 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2733 !sh->reconstruct_state)
2734 for (i = disks; i--; )
2735 if (fetch_block(sh, s, i, disks))
2736 break;
2737 set_bit(STRIPE_HANDLE, &sh->state);
2741 /* handle_stripe_clean_event
2742 * any written block on an uptodate or failed drive can be returned.
2743 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2744 * never LOCKED, so we don't need to test 'failed' directly.
2746 static void handle_stripe_clean_event(struct r5conf *conf,
2747 struct stripe_head *sh, int disks, struct bio **return_bi)
2749 int i;
2750 struct r5dev *dev;
2751 int discard_pending = 0;
2753 for (i = disks; i--; )
2754 if (sh->dev[i].written) {
2755 dev = &sh->dev[i];
2756 if (!test_bit(R5_LOCKED, &dev->flags) &&
2757 (test_bit(R5_UPTODATE, &dev->flags) ||
2758 test_bit(R5_Discard, &dev->flags))) {
2759 /* We can return any write requests */
2760 struct bio *wbi, *wbi2;
2761 pr_debug("Return write for disc %d\n", i);
2762 if (test_and_clear_bit(R5_Discard, &dev->flags))
2763 clear_bit(R5_UPTODATE, &dev->flags);
2764 wbi = dev->written;
2765 dev->written = NULL;
2766 while (wbi && wbi->bi_sector <
2767 dev->sector + STRIPE_SECTORS) {
2768 wbi2 = r5_next_bio(wbi, dev->sector);
2769 if (!raid5_dec_bi_active_stripes(wbi)) {
2770 md_write_end(conf->mddev);
2771 wbi->bi_next = *return_bi;
2772 *return_bi = wbi;
2774 wbi = wbi2;
2776 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2777 STRIPE_SECTORS,
2778 !test_bit(STRIPE_DEGRADED, &sh->state),
2780 } else if (test_bit(R5_Discard, &dev->flags))
2781 discard_pending = 1;
2783 if (!discard_pending &&
2784 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
2785 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2786 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2787 if (sh->qd_idx >= 0) {
2788 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2789 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
2791 /* now that discard is done we can proceed with any sync */
2792 clear_bit(STRIPE_DISCARD, &sh->state);
2793 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2794 set_bit(STRIPE_HANDLE, &sh->state);
2798 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2799 if (atomic_dec_and_test(&conf->pending_full_writes))
2800 md_wakeup_thread(conf->mddev->thread);
2803 static void handle_stripe_dirtying(struct r5conf *conf,
2804 struct stripe_head *sh,
2805 struct stripe_head_state *s,
2806 int disks)
2808 int rmw = 0, rcw = 0, i;
2809 sector_t recovery_cp = conf->mddev->recovery_cp;
2811 /* RAID6 requires 'rcw' in current implementation.
2812 * Otherwise, check whether resync is now happening or should start.
2813 * If yes, then the array is dirty (after unclean shutdown or
2814 * initial creation), so parity in some stripes might be inconsistent.
2815 * In this case, we need to always do reconstruct-write, to ensure
2816 * that in case of drive failure or read-error correction, we
2817 * generate correct data from the parity.
2819 if (conf->max_degraded == 2 ||
2820 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2821 /* Calculate the real rcw later - for now make it
2822 * look like rcw is cheaper
2824 rcw = 1; rmw = 2;
2825 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2826 conf->max_degraded, (unsigned long long)recovery_cp,
2827 (unsigned long long)sh->sector);
2828 } else for (i = disks; i--; ) {
2829 /* would I have to read this buffer for read_modify_write */
2830 struct r5dev *dev = &sh->dev[i];
2831 if ((dev->towrite || i == sh->pd_idx) &&
2832 !test_bit(R5_LOCKED, &dev->flags) &&
2833 !(test_bit(R5_UPTODATE, &dev->flags) ||
2834 test_bit(R5_Wantcompute, &dev->flags))) {
2835 if (test_bit(R5_Insync, &dev->flags))
2836 rmw++;
2837 else
2838 rmw += 2*disks; /* cannot read it */
2840 /* Would I have to read this buffer for reconstruct_write */
2841 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2842 !test_bit(R5_LOCKED, &dev->flags) &&
2843 !(test_bit(R5_UPTODATE, &dev->flags) ||
2844 test_bit(R5_Wantcompute, &dev->flags))) {
2845 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2846 else
2847 rcw += 2*disks;
2850 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2851 (unsigned long long)sh->sector, rmw, rcw);
2852 set_bit(STRIPE_HANDLE, &sh->state);
2853 if (rmw < rcw && rmw > 0) {
2854 /* prefer read-modify-write, but need to get some data */
2855 if (conf->mddev->queue)
2856 blk_add_trace_msg(conf->mddev->queue,
2857 "raid5 rmw %llu %d",
2858 (unsigned long long)sh->sector, rmw);
2859 for (i = disks; i--; ) {
2860 struct r5dev *dev = &sh->dev[i];
2861 if ((dev->towrite || i == sh->pd_idx) &&
2862 !test_bit(R5_LOCKED, &dev->flags) &&
2863 !(test_bit(R5_UPTODATE, &dev->flags) ||
2864 test_bit(R5_Wantcompute, &dev->flags)) &&
2865 test_bit(R5_Insync, &dev->flags)) {
2866 if (
2867 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2868 pr_debug("Read_old block "
2869 "%d for r-m-w\n", i);
2870 set_bit(R5_LOCKED, &dev->flags);
2871 set_bit(R5_Wantread, &dev->flags);
2872 s->locked++;
2873 } else {
2874 set_bit(STRIPE_DELAYED, &sh->state);
2875 set_bit(STRIPE_HANDLE, &sh->state);
2880 if (rcw <= rmw && rcw > 0) {
2881 /* want reconstruct write, but need to get some data */
2882 int qread =0;
2883 rcw = 0;
2884 for (i = disks; i--; ) {
2885 struct r5dev *dev = &sh->dev[i];
2886 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2887 i != sh->pd_idx && i != sh->qd_idx &&
2888 !test_bit(R5_LOCKED, &dev->flags) &&
2889 !(test_bit(R5_UPTODATE, &dev->flags) ||
2890 test_bit(R5_Wantcompute, &dev->flags))) {
2891 rcw++;
2892 if (!test_bit(R5_Insync, &dev->flags))
2893 continue; /* it's a failed drive */
2894 if (
2895 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2896 pr_debug("Read_old block "
2897 "%d for Reconstruct\n", i);
2898 set_bit(R5_LOCKED, &dev->flags);
2899 set_bit(R5_Wantread, &dev->flags);
2900 s->locked++;
2901 qread++;
2902 } else {
2903 set_bit(STRIPE_DELAYED, &sh->state);
2904 set_bit(STRIPE_HANDLE, &sh->state);
2908 if (rcw && conf->mddev->queue)
2909 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2910 (unsigned long long)sh->sector,
2911 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2913 /* now if nothing is locked, and if we have enough data,
2914 * we can start a write request
2916 /* since handle_stripe can be called at any time we need to handle the
2917 * case where a compute block operation has been submitted and then a
2918 * subsequent call wants to start a write request. raid_run_ops only
2919 * handles the case where compute block and reconstruct are requested
2920 * simultaneously. If this is not the case then new writes need to be
2921 * held off until the compute completes.
2923 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2924 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2925 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2926 schedule_reconstruction(sh, s, rcw == 0, 0);
2929 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2930 struct stripe_head_state *s, int disks)
2932 struct r5dev *dev = NULL;
2934 set_bit(STRIPE_HANDLE, &sh->state);
2936 switch (sh->check_state) {
2937 case check_state_idle:
2938 /* start a new check operation if there are no failures */
2939 if (s->failed == 0) {
2940 BUG_ON(s->uptodate != disks);
2941 sh->check_state = check_state_run;
2942 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2943 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2944 s->uptodate--;
2945 break;
2947 dev = &sh->dev[s->failed_num[0]];
2948 /* fall through */
2949 case check_state_compute_result:
2950 sh->check_state = check_state_idle;
2951 if (!dev)
2952 dev = &sh->dev[sh->pd_idx];
2954 /* check that a write has not made the stripe insync */
2955 if (test_bit(STRIPE_INSYNC, &sh->state))
2956 break;
2958 /* either failed parity check, or recovery is happening */
2959 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2960 BUG_ON(s->uptodate != disks);
2962 set_bit(R5_LOCKED, &dev->flags);
2963 s->locked++;
2964 set_bit(R5_Wantwrite, &dev->flags);
2966 clear_bit(STRIPE_DEGRADED, &sh->state);
2967 set_bit(STRIPE_INSYNC, &sh->state);
2968 break;
2969 case check_state_run:
2970 break; /* we will be called again upon completion */
2971 case check_state_check_result:
2972 sh->check_state = check_state_idle;
2974 /* if a failure occurred during the check operation, leave
2975 * STRIPE_INSYNC not set and let the stripe be handled again
2977 if (s->failed)
2978 break;
2980 /* handle a successful check operation, if parity is correct
2981 * we are done. Otherwise update the mismatch count and repair
2982 * parity if !MD_RECOVERY_CHECK
2984 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2985 /* parity is correct (on disc,
2986 * not in buffer any more)
2988 set_bit(STRIPE_INSYNC, &sh->state);
2989 else {
2990 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2991 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2992 /* don't try to repair!! */
2993 set_bit(STRIPE_INSYNC, &sh->state);
2994 else {
2995 sh->check_state = check_state_compute_run;
2996 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2997 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2998 set_bit(R5_Wantcompute,
2999 &sh->dev[sh->pd_idx].flags);
3000 sh->ops.target = sh->pd_idx;
3001 sh->ops.target2 = -1;
3002 s->uptodate++;
3005 break;
3006 case check_state_compute_run:
3007 break;
3008 default:
3009 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3010 __func__, sh->check_state,
3011 (unsigned long long) sh->sector);
3012 BUG();
3017 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3018 struct stripe_head_state *s,
3019 int disks)
3021 int pd_idx = sh->pd_idx;
3022 int qd_idx = sh->qd_idx;
3023 struct r5dev *dev;
3025 set_bit(STRIPE_HANDLE, &sh->state);
3027 BUG_ON(s->failed > 2);
3029 /* Want to check and possibly repair P and Q.
3030 * However there could be one 'failed' device, in which
3031 * case we can only check one of them, possibly using the
3032 * other to generate missing data
3035 switch (sh->check_state) {
3036 case check_state_idle:
3037 /* start a new check operation if there are < 2 failures */
3038 if (s->failed == s->q_failed) {
3039 /* The only possible failed device holds Q, so it
3040 * makes sense to check P (If anything else were failed,
3041 * we would have used P to recreate it).
3043 sh->check_state = check_state_run;
3045 if (!s->q_failed && s->failed < 2) {
3046 /* Q is not failed, and we didn't use it to generate
3047 * anything, so it makes sense to check it
3049 if (sh->check_state == check_state_run)
3050 sh->check_state = check_state_run_pq;
3051 else
3052 sh->check_state = check_state_run_q;
3055 /* discard potentially stale zero_sum_result */
3056 sh->ops.zero_sum_result = 0;
3058 if (sh->check_state == check_state_run) {
3059 /* async_xor_zero_sum destroys the contents of P */
3060 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3061 s->uptodate--;
3063 if (sh->check_state >= check_state_run &&
3064 sh->check_state <= check_state_run_pq) {
3065 /* async_syndrome_zero_sum preserves P and Q, so
3066 * no need to mark them !uptodate here
3068 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3069 break;
3072 /* we have 2-disk failure */
3073 BUG_ON(s->failed != 2);
3074 /* fall through */
3075 case check_state_compute_result:
3076 sh->check_state = check_state_idle;
3078 /* check that a write has not made the stripe insync */
3079 if (test_bit(STRIPE_INSYNC, &sh->state))
3080 break;
3082 /* now write out any block on a failed drive,
3083 * or P or Q if they were recomputed
3085 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3086 if (s->failed == 2) {
3087 dev = &sh->dev[s->failed_num[1]];
3088 s->locked++;
3089 set_bit(R5_LOCKED, &dev->flags);
3090 set_bit(R5_Wantwrite, &dev->flags);
3092 if (s->failed >= 1) {
3093 dev = &sh->dev[s->failed_num[0]];
3094 s->locked++;
3095 set_bit(R5_LOCKED, &dev->flags);
3096 set_bit(R5_Wantwrite, &dev->flags);
3098 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3099 dev = &sh->dev[pd_idx];
3100 s->locked++;
3101 set_bit(R5_LOCKED, &dev->flags);
3102 set_bit(R5_Wantwrite, &dev->flags);
3104 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3105 dev = &sh->dev[qd_idx];
3106 s->locked++;
3107 set_bit(R5_LOCKED, &dev->flags);
3108 set_bit(R5_Wantwrite, &dev->flags);
3110 clear_bit(STRIPE_DEGRADED, &sh->state);
3112 set_bit(STRIPE_INSYNC, &sh->state);
3113 break;
3114 case check_state_run:
3115 case check_state_run_q:
3116 case check_state_run_pq:
3117 break; /* we will be called again upon completion */
3118 case check_state_check_result:
3119 sh->check_state = check_state_idle;
3121 /* handle a successful check operation, if parity is correct
3122 * we are done. Otherwise update the mismatch count and repair
3123 * parity if !MD_RECOVERY_CHECK
3125 if (sh->ops.zero_sum_result == 0) {
3126 /* both parities are correct */
3127 if (!s->failed)
3128 set_bit(STRIPE_INSYNC, &sh->state);
3129 else {
3130 /* in contrast to the raid5 case we can validate
3131 * parity, but still have a failure to write
3132 * back
3134 sh->check_state = check_state_compute_result;
3135 /* Returning at this point means that we may go
3136 * off and bring p and/or q uptodate again so
3137 * we make sure to check zero_sum_result again
3138 * to verify if p or q need writeback
3141 } else {
3142 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3143 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3144 /* don't try to repair!! */
3145 set_bit(STRIPE_INSYNC, &sh->state);
3146 else {
3147 int *target = &sh->ops.target;
3149 sh->ops.target = -1;
3150 sh->ops.target2 = -1;
3151 sh->check_state = check_state_compute_run;
3152 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3153 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3154 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3155 set_bit(R5_Wantcompute,
3156 &sh->dev[pd_idx].flags);
3157 *target = pd_idx;
3158 target = &sh->ops.target2;
3159 s->uptodate++;
3161 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3162 set_bit(R5_Wantcompute,
3163 &sh->dev[qd_idx].flags);
3164 *target = qd_idx;
3165 s->uptodate++;
3169 break;
3170 case check_state_compute_run:
3171 break;
3172 default:
3173 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3174 __func__, sh->check_state,
3175 (unsigned long long) sh->sector);
3176 BUG();
3180 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3182 int i;
3184 /* We have read all the blocks in this stripe and now we need to
3185 * copy some of them into a target stripe for expand.
3187 struct dma_async_tx_descriptor *tx = NULL;
3188 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3189 for (i = 0; i < sh->disks; i++)
3190 if (i != sh->pd_idx && i != sh->qd_idx) {
3191 int dd_idx, j;
3192 struct stripe_head *sh2;
3193 struct async_submit_ctl submit;
3195 sector_t bn = compute_blocknr(sh, i, 1);
3196 sector_t s = raid5_compute_sector(conf, bn, 0,
3197 &dd_idx, NULL);
3198 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3199 if (sh2 == NULL)
3200 /* so far only the early blocks of this stripe
3201 * have been requested. When later blocks
3202 * get requested, we will try again
3204 continue;
3205 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3206 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3207 /* must have already done this block */
3208 release_stripe(sh2);
3209 continue;
3212 /* place all the copies on one channel */
3213 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3214 tx = async_memcpy(sh2->dev[dd_idx].page,
3215 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3216 &submit);
3218 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3219 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3220 for (j = 0; j < conf->raid_disks; j++)
3221 if (j != sh2->pd_idx &&
3222 j != sh2->qd_idx &&
3223 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3224 break;
3225 if (j == conf->raid_disks) {
3226 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3227 set_bit(STRIPE_HANDLE, &sh2->state);
3229 release_stripe(sh2);
3232 /* done submitting copies, wait for them to complete */
3233 async_tx_quiesce(&tx);
3237 * handle_stripe - do things to a stripe.
3239 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3240 * state of various bits to see what needs to be done.
3241 * Possible results:
3242 * return some read requests which now have data
3243 * return some write requests which are safely on storage
3244 * schedule a read on some buffers
3245 * schedule a write of some buffers
3246 * return confirmation of parity correctness
3250 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3252 struct r5conf *conf = sh->raid_conf;
3253 int disks = sh->disks;
3254 struct r5dev *dev;
3255 int i;
3256 int do_recovery = 0;
3258 memset(s, 0, sizeof(*s));
3260 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3261 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3262 s->failed_num[0] = -1;
3263 s->failed_num[1] = -1;
3265 /* Now to look around and see what can be done */
3266 rcu_read_lock();
3267 for (i=disks; i--; ) {
3268 struct md_rdev *rdev;
3269 sector_t first_bad;
3270 int bad_sectors;
3271 int is_bad = 0;
3273 dev = &sh->dev[i];
3275 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3276 i, dev->flags,
3277 dev->toread, dev->towrite, dev->written);
3278 /* maybe we can reply to a read
3280 * new wantfill requests are only permitted while
3281 * ops_complete_biofill is guaranteed to be inactive
3283 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3284 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3285 set_bit(R5_Wantfill, &dev->flags);
3287 /* now count some things */
3288 if (test_bit(R5_LOCKED, &dev->flags))
3289 s->locked++;
3290 if (test_bit(R5_UPTODATE, &dev->flags))
3291 s->uptodate++;
3292 if (test_bit(R5_Wantcompute, &dev->flags)) {
3293 s->compute++;
3294 BUG_ON(s->compute > 2);
3297 if (test_bit(R5_Wantfill, &dev->flags))
3298 s->to_fill++;
3299 else if (dev->toread)
3300 s->to_read++;
3301 if (dev->towrite) {
3302 s->to_write++;
3303 if (!test_bit(R5_OVERWRITE, &dev->flags))
3304 s->non_overwrite++;
3306 if (dev->written)
3307 s->written++;
3308 /* Prefer to use the replacement for reads, but only
3309 * if it is recovered enough and has no bad blocks.
3311 rdev = rcu_dereference(conf->disks[i].replacement);
3312 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3313 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3314 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3315 &first_bad, &bad_sectors))
3316 set_bit(R5_ReadRepl, &dev->flags);
3317 else {
3318 if (rdev)
3319 set_bit(R5_NeedReplace, &dev->flags);
3320 rdev = rcu_dereference(conf->disks[i].rdev);
3321 clear_bit(R5_ReadRepl, &dev->flags);
3323 if (rdev && test_bit(Faulty, &rdev->flags))
3324 rdev = NULL;
3325 if (rdev) {
3326 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3327 &first_bad, &bad_sectors);
3328 if (s->blocked_rdev == NULL
3329 && (test_bit(Blocked, &rdev->flags)
3330 || is_bad < 0)) {
3331 if (is_bad < 0)
3332 set_bit(BlockedBadBlocks,
3333 &rdev->flags);
3334 s->blocked_rdev = rdev;
3335 atomic_inc(&rdev->nr_pending);
3338 clear_bit(R5_Insync, &dev->flags);
3339 if (!rdev)
3340 /* Not in-sync */;
3341 else if (is_bad) {
3342 /* also not in-sync */
3343 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3344 test_bit(R5_UPTODATE, &dev->flags)) {
3345 /* treat as in-sync, but with a read error
3346 * which we can now try to correct
3348 set_bit(R5_Insync, &dev->flags);
3349 set_bit(R5_ReadError, &dev->flags);
3351 } else if (test_bit(In_sync, &rdev->flags))
3352 set_bit(R5_Insync, &dev->flags);
3353 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3354 /* in sync if before recovery_offset */
3355 set_bit(R5_Insync, &dev->flags);
3356 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3357 test_bit(R5_Expanded, &dev->flags))
3358 /* If we've reshaped into here, we assume it is Insync.
3359 * We will shortly update recovery_offset to make
3360 * it official.
3362 set_bit(R5_Insync, &dev->flags);
3364 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3365 /* This flag does not apply to '.replacement'
3366 * only to .rdev, so make sure to check that*/
3367 struct md_rdev *rdev2 = rcu_dereference(
3368 conf->disks[i].rdev);
3369 if (rdev2 == rdev)
3370 clear_bit(R5_Insync, &dev->flags);
3371 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3372 s->handle_bad_blocks = 1;
3373 atomic_inc(&rdev2->nr_pending);
3374 } else
3375 clear_bit(R5_WriteError, &dev->flags);
3377 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3378 /* This flag does not apply to '.replacement'
3379 * only to .rdev, so make sure to check that*/
3380 struct md_rdev *rdev2 = rcu_dereference(
3381 conf->disks[i].rdev);
3382 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3383 s->handle_bad_blocks = 1;
3384 atomic_inc(&rdev2->nr_pending);
3385 } else
3386 clear_bit(R5_MadeGood, &dev->flags);
3388 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3389 struct md_rdev *rdev2 = rcu_dereference(
3390 conf->disks[i].replacement);
3391 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3392 s->handle_bad_blocks = 1;
3393 atomic_inc(&rdev2->nr_pending);
3394 } else
3395 clear_bit(R5_MadeGoodRepl, &dev->flags);
3397 if (!test_bit(R5_Insync, &dev->flags)) {
3398 /* The ReadError flag will just be confusing now */
3399 clear_bit(R5_ReadError, &dev->flags);
3400 clear_bit(R5_ReWrite, &dev->flags);
3402 if (test_bit(R5_ReadError, &dev->flags))
3403 clear_bit(R5_Insync, &dev->flags);
3404 if (!test_bit(R5_Insync, &dev->flags)) {
3405 if (s->failed < 2)
3406 s->failed_num[s->failed] = i;
3407 s->failed++;
3408 if (rdev && !test_bit(Faulty, &rdev->flags))
3409 do_recovery = 1;
3412 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3413 /* If there is a failed device being replaced,
3414 * we must be recovering.
3415 * else if we are after recovery_cp, we must be syncing
3416 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3417 * else we can only be replacing
3418 * sync and recovery both need to read all devices, and so
3419 * use the same flag.
3421 if (do_recovery ||
3422 sh->sector >= conf->mddev->recovery_cp ||
3423 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3424 s->syncing = 1;
3425 else
3426 s->replacing = 1;
3428 rcu_read_unlock();
3431 static void handle_stripe(struct stripe_head *sh)
3433 struct stripe_head_state s;
3434 struct r5conf *conf = sh->raid_conf;
3435 int i;
3436 int prexor;
3437 int disks = sh->disks;
3438 struct r5dev *pdev, *qdev;
3440 clear_bit(STRIPE_HANDLE, &sh->state);
3441 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3442 /* already being handled, ensure it gets handled
3443 * again when current action finishes */
3444 set_bit(STRIPE_HANDLE, &sh->state);
3445 return;
3448 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3449 spin_lock(&sh->stripe_lock);
3450 /* Cannot process 'sync' concurrently with 'discard' */
3451 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3452 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3453 set_bit(STRIPE_SYNCING, &sh->state);
3454 clear_bit(STRIPE_INSYNC, &sh->state);
3456 spin_unlock(&sh->stripe_lock);
3458 clear_bit(STRIPE_DELAYED, &sh->state);
3460 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3461 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3462 (unsigned long long)sh->sector, sh->state,
3463 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3464 sh->check_state, sh->reconstruct_state);
3466 analyse_stripe(sh, &s);
3468 if (s.handle_bad_blocks) {
3469 set_bit(STRIPE_HANDLE, &sh->state);
3470 goto finish;
3473 if (unlikely(s.blocked_rdev)) {
3474 if (s.syncing || s.expanding || s.expanded ||
3475 s.replacing || s.to_write || s.written) {
3476 set_bit(STRIPE_HANDLE, &sh->state);
3477 goto finish;
3479 /* There is nothing for the blocked_rdev to block */
3480 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3481 s.blocked_rdev = NULL;
3484 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3485 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3486 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3489 pr_debug("locked=%d uptodate=%d to_read=%d"
3490 " to_write=%d failed=%d failed_num=%d,%d\n",
3491 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3492 s.failed_num[0], s.failed_num[1]);
3493 /* check if the array has lost more than max_degraded devices and,
3494 * if so, some requests might need to be failed.
3496 if (s.failed > conf->max_degraded) {
3497 sh->check_state = 0;
3498 sh->reconstruct_state = 0;
3499 if (s.to_read+s.to_write+s.written)
3500 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3501 if (s.syncing + s.replacing)
3502 handle_failed_sync(conf, sh, &s);
3505 /* Now we check to see if any write operations have recently
3506 * completed
3508 prexor = 0;
3509 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3510 prexor = 1;
3511 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3512 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3513 sh->reconstruct_state = reconstruct_state_idle;
3515 /* All the 'written' buffers and the parity block are ready to
3516 * be written back to disk
3518 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3519 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3520 BUG_ON(sh->qd_idx >= 0 &&
3521 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3522 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3523 for (i = disks; i--; ) {
3524 struct r5dev *dev = &sh->dev[i];
3525 if (test_bit(R5_LOCKED, &dev->flags) &&
3526 (i == sh->pd_idx || i == sh->qd_idx ||
3527 dev->written)) {
3528 pr_debug("Writing block %d\n", i);
3529 set_bit(R5_Wantwrite, &dev->flags);
3530 if (prexor)
3531 continue;
3532 if (!test_bit(R5_Insync, &dev->flags) ||
3533 ((i == sh->pd_idx || i == sh->qd_idx) &&
3534 s.failed == 0))
3535 set_bit(STRIPE_INSYNC, &sh->state);
3538 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3539 s.dec_preread_active = 1;
3543 * might be able to return some write requests if the parity blocks
3544 * are safe, or on a failed drive
3546 pdev = &sh->dev[sh->pd_idx];
3547 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3548 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3549 qdev = &sh->dev[sh->qd_idx];
3550 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3551 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3552 || conf->level < 6;
3554 if (s.written &&
3555 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3556 && !test_bit(R5_LOCKED, &pdev->flags)
3557 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3558 test_bit(R5_Discard, &pdev->flags))))) &&
3559 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3560 && !test_bit(R5_LOCKED, &qdev->flags)
3561 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3562 test_bit(R5_Discard, &qdev->flags))))))
3563 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3565 /* Now we might consider reading some blocks, either to check/generate
3566 * parity, or to satisfy requests
3567 * or to load a block that is being partially written.
3569 if (s.to_read || s.non_overwrite
3570 || (conf->level == 6 && s.to_write && s.failed)
3571 || (s.syncing && (s.uptodate + s.compute < disks))
3572 || s.replacing
3573 || s.expanding)
3574 handle_stripe_fill(sh, &s, disks);
3576 /* Now to consider new write requests and what else, if anything
3577 * should be read. We do not handle new writes when:
3578 * 1/ A 'write' operation (copy+xor) is already in flight.
3579 * 2/ A 'check' operation is in flight, as it may clobber the parity
3580 * block.
3582 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3583 handle_stripe_dirtying(conf, sh, &s, disks);
3585 /* maybe we need to check and possibly fix the parity for this stripe
3586 * Any reads will already have been scheduled, so we just see if enough
3587 * data is available. The parity check is held off while parity
3588 * dependent operations are in flight.
3590 if (sh->check_state ||
3591 (s.syncing && s.locked == 0 &&
3592 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3593 !test_bit(STRIPE_INSYNC, &sh->state))) {
3594 if (conf->level == 6)
3595 handle_parity_checks6(conf, sh, &s, disks);
3596 else
3597 handle_parity_checks5(conf, sh, &s, disks);
3600 if (s.replacing && s.locked == 0
3601 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3602 /* Write out to replacement devices where possible */
3603 for (i = 0; i < conf->raid_disks; i++)
3604 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3605 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3606 set_bit(R5_WantReplace, &sh->dev[i].flags);
3607 set_bit(R5_LOCKED, &sh->dev[i].flags);
3608 s.locked++;
3610 set_bit(STRIPE_INSYNC, &sh->state);
3612 if ((s.syncing || s.replacing) && s.locked == 0 &&
3613 test_bit(STRIPE_INSYNC, &sh->state)) {
3614 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3615 clear_bit(STRIPE_SYNCING, &sh->state);
3616 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3617 wake_up(&conf->wait_for_overlap);
3620 /* If the failed drives are just a ReadError, then we might need
3621 * to progress the repair/check process
3623 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3624 for (i = 0; i < s.failed; i++) {
3625 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3626 if (test_bit(R5_ReadError, &dev->flags)
3627 && !test_bit(R5_LOCKED, &dev->flags)
3628 && test_bit(R5_UPTODATE, &dev->flags)
3630 if (!test_bit(R5_ReWrite, &dev->flags)) {
3631 set_bit(R5_Wantwrite, &dev->flags);
3632 set_bit(R5_ReWrite, &dev->flags);
3633 set_bit(R5_LOCKED, &dev->flags);
3634 s.locked++;
3635 } else {
3636 /* let's read it back */
3637 set_bit(R5_Wantread, &dev->flags);
3638 set_bit(R5_LOCKED, &dev->flags);
3639 s.locked++;
3645 /* Finish reconstruct operations initiated by the expansion process */
3646 if (sh->reconstruct_state == reconstruct_state_result) {
3647 struct stripe_head *sh_src
3648 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3649 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3650 /* sh cannot be written until sh_src has been read.
3651 * so arrange for sh to be delayed a little
3653 set_bit(STRIPE_DELAYED, &sh->state);
3654 set_bit(STRIPE_HANDLE, &sh->state);
3655 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3656 &sh_src->state))
3657 atomic_inc(&conf->preread_active_stripes);
3658 release_stripe(sh_src);
3659 goto finish;
3661 if (sh_src)
3662 release_stripe(sh_src);
3664 sh->reconstruct_state = reconstruct_state_idle;
3665 clear_bit(STRIPE_EXPANDING, &sh->state);
3666 for (i = conf->raid_disks; i--; ) {
3667 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3668 set_bit(R5_LOCKED, &sh->dev[i].flags);
3669 s.locked++;
3673 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3674 !sh->reconstruct_state) {
3675 /* Need to write out all blocks after computing parity */
3676 sh->disks = conf->raid_disks;
3677 stripe_set_idx(sh->sector, conf, 0, sh);
3678 schedule_reconstruction(sh, &s, 1, 1);
3679 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3680 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3681 atomic_dec(&conf->reshape_stripes);
3682 wake_up(&conf->wait_for_overlap);
3683 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3686 if (s.expanding && s.locked == 0 &&
3687 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3688 handle_stripe_expansion(conf, sh);
3690 finish:
3691 /* wait for this device to become unblocked */
3692 if (unlikely(s.blocked_rdev)) {
3693 if (conf->mddev->external)
3694 md_wait_for_blocked_rdev(s.blocked_rdev,
3695 conf->mddev);
3696 else
3697 /* Internal metadata will immediately
3698 * be written by raid5d, so we don't
3699 * need to wait here.
3701 rdev_dec_pending(s.blocked_rdev,
3702 conf->mddev);
3705 if (s.handle_bad_blocks)
3706 for (i = disks; i--; ) {
3707 struct md_rdev *rdev;
3708 struct r5dev *dev = &sh->dev[i];
3709 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3710 /* We own a safe reference to the rdev */
3711 rdev = conf->disks[i].rdev;
3712 if (!rdev_set_badblocks(rdev, sh->sector,
3713 STRIPE_SECTORS, 0))
3714 md_error(conf->mddev, rdev);
3715 rdev_dec_pending(rdev, conf->mddev);
3717 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3718 rdev = conf->disks[i].rdev;
3719 rdev_clear_badblocks(rdev, sh->sector,
3720 STRIPE_SECTORS, 0);
3721 rdev_dec_pending(rdev, conf->mddev);
3723 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3724 rdev = conf->disks[i].replacement;
3725 if (!rdev)
3726 /* rdev have been moved down */
3727 rdev = conf->disks[i].rdev;
3728 rdev_clear_badblocks(rdev, sh->sector,
3729 STRIPE_SECTORS, 0);
3730 rdev_dec_pending(rdev, conf->mddev);
3734 if (s.ops_request)
3735 raid_run_ops(sh, s.ops_request);
3737 ops_run_io(sh, &s);
3739 if (s.dec_preread_active) {
3740 /* We delay this until after ops_run_io so that if make_request
3741 * is waiting on a flush, it won't continue until the writes
3742 * have actually been submitted.
3744 atomic_dec(&conf->preread_active_stripes);
3745 if (atomic_read(&conf->preread_active_stripes) <
3746 IO_THRESHOLD)
3747 md_wakeup_thread(conf->mddev->thread);
3750 return_io(s.return_bi);
3752 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3755 static void raid5_activate_delayed(struct r5conf *conf)
3757 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3758 while (!list_empty(&conf->delayed_list)) {
3759 struct list_head *l = conf->delayed_list.next;
3760 struct stripe_head *sh;
3761 sh = list_entry(l, struct stripe_head, lru);
3762 list_del_init(l);
3763 clear_bit(STRIPE_DELAYED, &sh->state);
3764 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3765 atomic_inc(&conf->preread_active_stripes);
3766 list_add_tail(&sh->lru, &conf->hold_list);
3771 static void activate_bit_delay(struct r5conf *conf)
3773 /* device_lock is held */
3774 struct list_head head;
3775 list_add(&head, &conf->bitmap_list);
3776 list_del_init(&conf->bitmap_list);
3777 while (!list_empty(&head)) {
3778 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3779 list_del_init(&sh->lru);
3780 atomic_inc(&sh->count);
3781 __release_stripe(conf, sh);
3785 int md_raid5_congested(struct mddev *mddev, int bits)
3787 struct r5conf *conf = mddev->private;
3789 /* No difference between reads and writes. Just check
3790 * how busy the stripe_cache is
3793 if (conf->inactive_blocked)
3794 return 1;
3795 if (conf->quiesce)
3796 return 1;
3797 if (list_empty_careful(&conf->inactive_list))
3798 return 1;
3800 return 0;
3802 EXPORT_SYMBOL_GPL(md_raid5_congested);
3804 static int raid5_congested(void *data, int bits)
3806 struct mddev *mddev = data;
3808 return mddev_congested(mddev, bits) ||
3809 md_raid5_congested(mddev, bits);
3812 /* We want read requests to align with chunks where possible,
3813 * but write requests don't need to.
3815 static int raid5_mergeable_bvec(struct request_queue *q,
3816 struct bvec_merge_data *bvm,
3817 struct bio_vec *biovec)
3819 struct mddev *mddev = q->queuedata;
3820 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3821 int max;
3822 unsigned int chunk_sectors = mddev->chunk_sectors;
3823 unsigned int bio_sectors = bvm->bi_size >> 9;
3825 if ((bvm->bi_rw & 1) == WRITE)
3826 return biovec->bv_len; /* always allow writes to be mergeable */
3828 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3829 chunk_sectors = mddev->new_chunk_sectors;
3830 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3831 if (max < 0) max = 0;
3832 if (max <= biovec->bv_len && bio_sectors == 0)
3833 return biovec->bv_len;
3834 else
3835 return max;
3839 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3841 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3842 unsigned int chunk_sectors = mddev->chunk_sectors;
3843 unsigned int bio_sectors = bio->bi_size >> 9;
3845 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3846 chunk_sectors = mddev->new_chunk_sectors;
3847 return chunk_sectors >=
3848 ((sector & (chunk_sectors - 1)) + bio_sectors);
3852 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3853 * later sampled by raid5d.
3855 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3857 unsigned long flags;
3859 spin_lock_irqsave(&conf->device_lock, flags);
3861 bi->bi_next = conf->retry_read_aligned_list;
3862 conf->retry_read_aligned_list = bi;
3864 spin_unlock_irqrestore(&conf->device_lock, flags);
3865 md_wakeup_thread(conf->mddev->thread);
3869 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3871 struct bio *bi;
3873 bi = conf->retry_read_aligned;
3874 if (bi) {
3875 conf->retry_read_aligned = NULL;
3876 return bi;
3878 bi = conf->retry_read_aligned_list;
3879 if(bi) {
3880 conf->retry_read_aligned_list = bi->bi_next;
3881 bi->bi_next = NULL;
3883 * this sets the active strip count to 1 and the processed
3884 * strip count to zero (upper 8 bits)
3886 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3889 return bi;
3894 * The "raid5_align_endio" should check if the read succeeded and if it
3895 * did, call bio_endio on the original bio (having bio_put the new bio
3896 * first).
3897 * If the read failed..
3899 static void raid5_align_endio(struct bio *bi, int error)
3901 struct bio* raid_bi = bi->bi_private;
3902 struct mddev *mddev;
3903 struct r5conf *conf;
3904 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3905 struct md_rdev *rdev;
3907 bio_put(bi);
3909 rdev = (void*)raid_bi->bi_next;
3910 raid_bi->bi_next = NULL;
3911 mddev = rdev->mddev;
3912 conf = mddev->private;
3914 rdev_dec_pending(rdev, conf->mddev);
3916 if (!error && uptodate) {
3917 bio_endio(raid_bi, 0);
3918 if (atomic_dec_and_test(&conf->active_aligned_reads))
3919 wake_up(&conf->wait_for_stripe);
3920 return;
3924 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3926 add_bio_to_retry(raid_bi, conf);
3929 static int bio_fits_rdev(struct bio *bi)
3931 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3933 if ((bi->bi_size>>9) > queue_max_sectors(q))
3934 return 0;
3935 blk_recount_segments(q, bi);
3936 if (bi->bi_phys_segments > queue_max_segments(q))
3937 return 0;
3939 if (q->merge_bvec_fn)
3940 /* it's too hard to apply the merge_bvec_fn at this stage,
3941 * just just give up
3943 return 0;
3945 return 1;
3949 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3951 struct r5conf *conf = mddev->private;
3952 int dd_idx;
3953 struct bio* align_bi;
3954 struct md_rdev *rdev;
3955 sector_t end_sector;
3957 if (!in_chunk_boundary(mddev, raid_bio)) {
3958 pr_debug("chunk_aligned_read : non aligned\n");
3959 return 0;
3962 * use bio_clone_mddev to make a copy of the bio
3964 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3965 if (!align_bi)
3966 return 0;
3968 * set bi_end_io to a new function, and set bi_private to the
3969 * original bio.
3971 align_bi->bi_end_io = raid5_align_endio;
3972 align_bi->bi_private = raid_bio;
3974 * compute position
3976 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3978 &dd_idx, NULL);
3980 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3981 rcu_read_lock();
3982 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3983 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3984 rdev->recovery_offset < end_sector) {
3985 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3986 if (rdev &&
3987 (test_bit(Faulty, &rdev->flags) ||
3988 !(test_bit(In_sync, &rdev->flags) ||
3989 rdev->recovery_offset >= end_sector)))
3990 rdev = NULL;
3992 if (rdev) {
3993 sector_t first_bad;
3994 int bad_sectors;
3996 atomic_inc(&rdev->nr_pending);
3997 rcu_read_unlock();
3998 raid_bio->bi_next = (void*)rdev;
3999 align_bi->bi_bdev = rdev->bdev;
4000 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4002 if (!bio_fits_rdev(align_bi) ||
4003 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4004 &first_bad, &bad_sectors)) {
4005 /* too big in some way, or has a known bad block */
4006 bio_put(align_bi);
4007 rdev_dec_pending(rdev, mddev);
4008 return 0;
4011 /* No reshape active, so we can trust rdev->data_offset */
4012 align_bi->bi_sector += rdev->data_offset;
4014 spin_lock_irq(&conf->device_lock);
4015 wait_event_lock_irq(conf->wait_for_stripe,
4016 conf->quiesce == 0,
4017 conf->device_lock);
4018 atomic_inc(&conf->active_aligned_reads);
4019 spin_unlock_irq(&conf->device_lock);
4021 if (mddev->gendisk)
4022 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4023 align_bi, disk_devt(mddev->gendisk),
4024 raid_bio->bi_sector);
4025 generic_make_request(align_bi);
4026 return 1;
4027 } else {
4028 rcu_read_unlock();
4029 bio_put(align_bi);
4030 return 0;
4034 /* __get_priority_stripe - get the next stripe to process
4036 * Full stripe writes are allowed to pass preread active stripes up until
4037 * the bypass_threshold is exceeded. In general the bypass_count
4038 * increments when the handle_list is handled before the hold_list; however, it
4039 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4040 * stripe with in flight i/o. The bypass_count will be reset when the
4041 * head of the hold_list has changed, i.e. the head was promoted to the
4042 * handle_list.
4044 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4046 struct stripe_head *sh;
4048 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4049 __func__,
4050 list_empty(&conf->handle_list) ? "empty" : "busy",
4051 list_empty(&conf->hold_list) ? "empty" : "busy",
4052 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4054 if (!list_empty(&conf->handle_list)) {
4055 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4057 if (list_empty(&conf->hold_list))
4058 conf->bypass_count = 0;
4059 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4060 if (conf->hold_list.next == conf->last_hold)
4061 conf->bypass_count++;
4062 else {
4063 conf->last_hold = conf->hold_list.next;
4064 conf->bypass_count -= conf->bypass_threshold;
4065 if (conf->bypass_count < 0)
4066 conf->bypass_count = 0;
4069 } else if (!list_empty(&conf->hold_list) &&
4070 ((conf->bypass_threshold &&
4071 conf->bypass_count > conf->bypass_threshold) ||
4072 atomic_read(&conf->pending_full_writes) == 0)) {
4073 sh = list_entry(conf->hold_list.next,
4074 typeof(*sh), lru);
4075 conf->bypass_count -= conf->bypass_threshold;
4076 if (conf->bypass_count < 0)
4077 conf->bypass_count = 0;
4078 } else
4079 return NULL;
4081 list_del_init(&sh->lru);
4082 atomic_inc(&sh->count);
4083 BUG_ON(atomic_read(&sh->count) != 1);
4084 return sh;
4087 struct raid5_plug_cb {
4088 struct blk_plug_cb cb;
4089 struct list_head list;
4092 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4094 struct raid5_plug_cb *cb = container_of(
4095 blk_cb, struct raid5_plug_cb, cb);
4096 struct stripe_head *sh;
4097 struct mddev *mddev = cb->cb.data;
4098 struct r5conf *conf = mddev->private;
4099 int cnt = 0;
4101 if (cb->list.next && !list_empty(&cb->list)) {
4102 spin_lock_irq(&conf->device_lock);
4103 while (!list_empty(&cb->list)) {
4104 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4105 list_del_init(&sh->lru);
4107 * avoid race release_stripe_plug() sees
4108 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4109 * is still in our list
4111 smp_mb__before_clear_bit();
4112 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4113 __release_stripe(conf, sh);
4114 cnt++;
4116 spin_unlock_irq(&conf->device_lock);
4118 if (mddev->queue)
4119 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4120 kfree(cb);
4123 static void release_stripe_plug(struct mddev *mddev,
4124 struct stripe_head *sh)
4126 struct blk_plug_cb *blk_cb = blk_check_plugged(
4127 raid5_unplug, mddev,
4128 sizeof(struct raid5_plug_cb));
4129 struct raid5_plug_cb *cb;
4131 if (!blk_cb) {
4132 release_stripe(sh);
4133 return;
4136 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4138 if (cb->list.next == NULL)
4139 INIT_LIST_HEAD(&cb->list);
4141 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4142 list_add_tail(&sh->lru, &cb->list);
4143 else
4144 release_stripe(sh);
4147 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4149 struct r5conf *conf = mddev->private;
4150 sector_t logical_sector, last_sector;
4151 struct stripe_head *sh;
4152 int remaining;
4153 int stripe_sectors;
4155 if (mddev->reshape_position != MaxSector)
4156 /* Skip discard while reshape is happening */
4157 return;
4159 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4160 last_sector = bi->bi_sector + (bi->bi_size>>9);
4162 bi->bi_next = NULL;
4163 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4165 stripe_sectors = conf->chunk_sectors *
4166 (conf->raid_disks - conf->max_degraded);
4167 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4168 stripe_sectors);
4169 sector_div(last_sector, stripe_sectors);
4171 logical_sector *= conf->chunk_sectors;
4172 last_sector *= conf->chunk_sectors;
4174 for (; logical_sector < last_sector;
4175 logical_sector += STRIPE_SECTORS) {
4176 DEFINE_WAIT(w);
4177 int d;
4178 again:
4179 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4180 prepare_to_wait(&conf->wait_for_overlap, &w,
4181 TASK_UNINTERRUPTIBLE);
4182 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4183 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4184 release_stripe(sh);
4185 schedule();
4186 goto again;
4188 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4189 spin_lock_irq(&sh->stripe_lock);
4190 for (d = 0; d < conf->raid_disks; d++) {
4191 if (d == sh->pd_idx || d == sh->qd_idx)
4192 continue;
4193 if (sh->dev[d].towrite || sh->dev[d].toread) {
4194 set_bit(R5_Overlap, &sh->dev[d].flags);
4195 spin_unlock_irq(&sh->stripe_lock);
4196 release_stripe(sh);
4197 schedule();
4198 goto again;
4201 set_bit(STRIPE_DISCARD, &sh->state);
4202 finish_wait(&conf->wait_for_overlap, &w);
4203 for (d = 0; d < conf->raid_disks; d++) {
4204 if (d == sh->pd_idx || d == sh->qd_idx)
4205 continue;
4206 sh->dev[d].towrite = bi;
4207 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4208 raid5_inc_bi_active_stripes(bi);
4210 spin_unlock_irq(&sh->stripe_lock);
4211 if (conf->mddev->bitmap) {
4212 for (d = 0;
4213 d < conf->raid_disks - conf->max_degraded;
4214 d++)
4215 bitmap_startwrite(mddev->bitmap,
4216 sh->sector,
4217 STRIPE_SECTORS,
4219 sh->bm_seq = conf->seq_flush + 1;
4220 set_bit(STRIPE_BIT_DELAY, &sh->state);
4223 set_bit(STRIPE_HANDLE, &sh->state);
4224 clear_bit(STRIPE_DELAYED, &sh->state);
4225 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4226 atomic_inc(&conf->preread_active_stripes);
4227 release_stripe_plug(mddev, sh);
4230 remaining = raid5_dec_bi_active_stripes(bi);
4231 if (remaining == 0) {
4232 md_write_end(mddev);
4233 bio_endio(bi, 0);
4237 static void make_request(struct mddev *mddev, struct bio * bi)
4239 struct r5conf *conf = mddev->private;
4240 int dd_idx;
4241 sector_t new_sector;
4242 sector_t logical_sector, last_sector;
4243 struct stripe_head *sh;
4244 const int rw = bio_data_dir(bi);
4245 int remaining;
4247 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4248 md_flush_request(mddev, bi);
4249 return;
4252 md_write_start(mddev, bi);
4254 if (rw == READ &&
4255 mddev->reshape_position == MaxSector &&
4256 chunk_aligned_read(mddev,bi))
4257 return;
4259 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4260 make_discard_request(mddev, bi);
4261 return;
4264 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4265 last_sector = bi->bi_sector + (bi->bi_size>>9);
4266 bi->bi_next = NULL;
4267 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4269 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4270 DEFINE_WAIT(w);
4271 int previous;
4273 retry:
4274 previous = 0;
4275 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4276 if (unlikely(conf->reshape_progress != MaxSector)) {
4277 /* spinlock is needed as reshape_progress may be
4278 * 64bit on a 32bit platform, and so it might be
4279 * possible to see a half-updated value
4280 * Of course reshape_progress could change after
4281 * the lock is dropped, so once we get a reference
4282 * to the stripe that we think it is, we will have
4283 * to check again.
4285 spin_lock_irq(&conf->device_lock);
4286 if (mddev->reshape_backwards
4287 ? logical_sector < conf->reshape_progress
4288 : logical_sector >= conf->reshape_progress) {
4289 previous = 1;
4290 } else {
4291 if (mddev->reshape_backwards
4292 ? logical_sector < conf->reshape_safe
4293 : logical_sector >= conf->reshape_safe) {
4294 spin_unlock_irq(&conf->device_lock);
4295 schedule();
4296 goto retry;
4299 spin_unlock_irq(&conf->device_lock);
4302 new_sector = raid5_compute_sector(conf, logical_sector,
4303 previous,
4304 &dd_idx, NULL);
4305 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4306 (unsigned long long)new_sector,
4307 (unsigned long long)logical_sector);
4309 sh = get_active_stripe(conf, new_sector, previous,
4310 (bi->bi_rw&RWA_MASK), 0);
4311 if (sh) {
4312 if (unlikely(previous)) {
4313 /* expansion might have moved on while waiting for a
4314 * stripe, so we must do the range check again.
4315 * Expansion could still move past after this
4316 * test, but as we are holding a reference to
4317 * 'sh', we know that if that happens,
4318 * STRIPE_EXPANDING will get set and the expansion
4319 * won't proceed until we finish with the stripe.
4321 int must_retry = 0;
4322 spin_lock_irq(&conf->device_lock);
4323 if (mddev->reshape_backwards
4324 ? logical_sector >= conf->reshape_progress
4325 : logical_sector < conf->reshape_progress)
4326 /* mismatch, need to try again */
4327 must_retry = 1;
4328 spin_unlock_irq(&conf->device_lock);
4329 if (must_retry) {
4330 release_stripe(sh);
4331 schedule();
4332 goto retry;
4336 if (rw == WRITE &&
4337 logical_sector >= mddev->suspend_lo &&
4338 logical_sector < mddev->suspend_hi) {
4339 release_stripe(sh);
4340 /* As the suspend_* range is controlled by
4341 * userspace, we want an interruptible
4342 * wait.
4344 flush_signals(current);
4345 prepare_to_wait(&conf->wait_for_overlap,
4346 &w, TASK_INTERRUPTIBLE);
4347 if (logical_sector >= mddev->suspend_lo &&
4348 logical_sector < mddev->suspend_hi)
4349 schedule();
4350 goto retry;
4353 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4354 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4355 /* Stripe is busy expanding or
4356 * add failed due to overlap. Flush everything
4357 * and wait a while
4359 md_wakeup_thread(mddev->thread);
4360 release_stripe(sh);
4361 schedule();
4362 goto retry;
4364 finish_wait(&conf->wait_for_overlap, &w);
4365 set_bit(STRIPE_HANDLE, &sh->state);
4366 clear_bit(STRIPE_DELAYED, &sh->state);
4367 if ((bi->bi_rw & REQ_SYNC) &&
4368 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4369 atomic_inc(&conf->preread_active_stripes);
4370 release_stripe_plug(mddev, sh);
4371 } else {
4372 /* cannot get stripe for read-ahead, just give-up */
4373 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4374 finish_wait(&conf->wait_for_overlap, &w);
4375 break;
4379 remaining = raid5_dec_bi_active_stripes(bi);
4380 if (remaining == 0) {
4382 if ( rw == WRITE )
4383 md_write_end(mddev);
4385 bio_endio(bi, 0);
4389 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4391 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4393 /* reshaping is quite different to recovery/resync so it is
4394 * handled quite separately ... here.
4396 * On each call to sync_request, we gather one chunk worth of
4397 * destination stripes and flag them as expanding.
4398 * Then we find all the source stripes and request reads.
4399 * As the reads complete, handle_stripe will copy the data
4400 * into the destination stripe and release that stripe.
4402 struct r5conf *conf = mddev->private;
4403 struct stripe_head *sh;
4404 sector_t first_sector, last_sector;
4405 int raid_disks = conf->previous_raid_disks;
4406 int data_disks = raid_disks - conf->max_degraded;
4407 int new_data_disks = conf->raid_disks - conf->max_degraded;
4408 int i;
4409 int dd_idx;
4410 sector_t writepos, readpos, safepos;
4411 sector_t stripe_addr;
4412 int reshape_sectors;
4413 struct list_head stripes;
4415 if (sector_nr == 0) {
4416 /* If restarting in the middle, skip the initial sectors */
4417 if (mddev->reshape_backwards &&
4418 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4419 sector_nr = raid5_size(mddev, 0, 0)
4420 - conf->reshape_progress;
4421 } else if (!mddev->reshape_backwards &&
4422 conf->reshape_progress > 0)
4423 sector_nr = conf->reshape_progress;
4424 sector_div(sector_nr, new_data_disks);
4425 if (sector_nr) {
4426 mddev->curr_resync_completed = sector_nr;
4427 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4428 *skipped = 1;
4429 return sector_nr;
4433 /* We need to process a full chunk at a time.
4434 * If old and new chunk sizes differ, we need to process the
4435 * largest of these
4437 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4438 reshape_sectors = mddev->new_chunk_sectors;
4439 else
4440 reshape_sectors = mddev->chunk_sectors;
4442 /* We update the metadata at least every 10 seconds, or when
4443 * the data about to be copied would over-write the source of
4444 * the data at the front of the range. i.e. one new_stripe
4445 * along from reshape_progress new_maps to after where
4446 * reshape_safe old_maps to
4448 writepos = conf->reshape_progress;
4449 sector_div(writepos, new_data_disks);
4450 readpos = conf->reshape_progress;
4451 sector_div(readpos, data_disks);
4452 safepos = conf->reshape_safe;
4453 sector_div(safepos, data_disks);
4454 if (mddev->reshape_backwards) {
4455 writepos -= min_t(sector_t, reshape_sectors, writepos);
4456 readpos += reshape_sectors;
4457 safepos += reshape_sectors;
4458 } else {
4459 writepos += reshape_sectors;
4460 readpos -= min_t(sector_t, reshape_sectors, readpos);
4461 safepos -= min_t(sector_t, reshape_sectors, safepos);
4464 /* Having calculated the 'writepos' possibly use it
4465 * to set 'stripe_addr' which is where we will write to.
4467 if (mddev->reshape_backwards) {
4468 BUG_ON(conf->reshape_progress == 0);
4469 stripe_addr = writepos;
4470 BUG_ON((mddev->dev_sectors &
4471 ~((sector_t)reshape_sectors - 1))
4472 - reshape_sectors - stripe_addr
4473 != sector_nr);
4474 } else {
4475 BUG_ON(writepos != sector_nr + reshape_sectors);
4476 stripe_addr = sector_nr;
4479 /* 'writepos' is the most advanced device address we might write.
4480 * 'readpos' is the least advanced device address we might read.
4481 * 'safepos' is the least address recorded in the metadata as having
4482 * been reshaped.
4483 * If there is a min_offset_diff, these are adjusted either by
4484 * increasing the safepos/readpos if diff is negative, or
4485 * increasing writepos if diff is positive.
4486 * If 'readpos' is then behind 'writepos', there is no way that we can
4487 * ensure safety in the face of a crash - that must be done by userspace
4488 * making a backup of the data. So in that case there is no particular
4489 * rush to update metadata.
4490 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4491 * update the metadata to advance 'safepos' to match 'readpos' so that
4492 * we can be safe in the event of a crash.
4493 * So we insist on updating metadata if safepos is behind writepos and
4494 * readpos is beyond writepos.
4495 * In any case, update the metadata every 10 seconds.
4496 * Maybe that number should be configurable, but I'm not sure it is
4497 * worth it.... maybe it could be a multiple of safemode_delay???
4499 if (conf->min_offset_diff < 0) {
4500 safepos += -conf->min_offset_diff;
4501 readpos += -conf->min_offset_diff;
4502 } else
4503 writepos += conf->min_offset_diff;
4505 if ((mddev->reshape_backwards
4506 ? (safepos > writepos && readpos < writepos)
4507 : (safepos < writepos && readpos > writepos)) ||
4508 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4509 /* Cannot proceed until we've updated the superblock... */
4510 wait_event(conf->wait_for_overlap,
4511 atomic_read(&conf->reshape_stripes)==0);
4512 mddev->reshape_position = conf->reshape_progress;
4513 mddev->curr_resync_completed = sector_nr;
4514 conf->reshape_checkpoint = jiffies;
4515 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4516 md_wakeup_thread(mddev->thread);
4517 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4518 kthread_should_stop());
4519 spin_lock_irq(&conf->device_lock);
4520 conf->reshape_safe = mddev->reshape_position;
4521 spin_unlock_irq(&conf->device_lock);
4522 wake_up(&conf->wait_for_overlap);
4523 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4526 INIT_LIST_HEAD(&stripes);
4527 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4528 int j;
4529 int skipped_disk = 0;
4530 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4531 set_bit(STRIPE_EXPANDING, &sh->state);
4532 atomic_inc(&conf->reshape_stripes);
4533 /* If any of this stripe is beyond the end of the old
4534 * array, then we need to zero those blocks
4536 for (j=sh->disks; j--;) {
4537 sector_t s;
4538 if (j == sh->pd_idx)
4539 continue;
4540 if (conf->level == 6 &&
4541 j == sh->qd_idx)
4542 continue;
4543 s = compute_blocknr(sh, j, 0);
4544 if (s < raid5_size(mddev, 0, 0)) {
4545 skipped_disk = 1;
4546 continue;
4548 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4549 set_bit(R5_Expanded, &sh->dev[j].flags);
4550 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4552 if (!skipped_disk) {
4553 set_bit(STRIPE_EXPAND_READY, &sh->state);
4554 set_bit(STRIPE_HANDLE, &sh->state);
4556 list_add(&sh->lru, &stripes);
4558 spin_lock_irq(&conf->device_lock);
4559 if (mddev->reshape_backwards)
4560 conf->reshape_progress -= reshape_sectors * new_data_disks;
4561 else
4562 conf->reshape_progress += reshape_sectors * new_data_disks;
4563 spin_unlock_irq(&conf->device_lock);
4564 /* Ok, those stripe are ready. We can start scheduling
4565 * reads on the source stripes.
4566 * The source stripes are determined by mapping the first and last
4567 * block on the destination stripes.
4569 first_sector =
4570 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4571 1, &dd_idx, NULL);
4572 last_sector =
4573 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4574 * new_data_disks - 1),
4575 1, &dd_idx, NULL);
4576 if (last_sector >= mddev->dev_sectors)
4577 last_sector = mddev->dev_sectors - 1;
4578 while (first_sector <= last_sector) {
4579 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4580 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4581 set_bit(STRIPE_HANDLE, &sh->state);
4582 release_stripe(sh);
4583 first_sector += STRIPE_SECTORS;
4585 /* Now that the sources are clearly marked, we can release
4586 * the destination stripes
4588 while (!list_empty(&stripes)) {
4589 sh = list_entry(stripes.next, struct stripe_head, lru);
4590 list_del_init(&sh->lru);
4591 release_stripe(sh);
4593 /* If this takes us to the resync_max point where we have to pause,
4594 * then we need to write out the superblock.
4596 sector_nr += reshape_sectors;
4597 if ((sector_nr - mddev->curr_resync_completed) * 2
4598 >= mddev->resync_max - mddev->curr_resync_completed) {
4599 /* Cannot proceed until we've updated the superblock... */
4600 wait_event(conf->wait_for_overlap,
4601 atomic_read(&conf->reshape_stripes) == 0);
4602 mddev->reshape_position = conf->reshape_progress;
4603 mddev->curr_resync_completed = sector_nr;
4604 conf->reshape_checkpoint = jiffies;
4605 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4606 md_wakeup_thread(mddev->thread);
4607 wait_event(mddev->sb_wait,
4608 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4609 || kthread_should_stop());
4610 spin_lock_irq(&conf->device_lock);
4611 conf->reshape_safe = mddev->reshape_position;
4612 spin_unlock_irq(&conf->device_lock);
4613 wake_up(&conf->wait_for_overlap);
4614 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4616 return reshape_sectors;
4619 /* FIXME go_faster isn't used */
4620 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4622 struct r5conf *conf = mddev->private;
4623 struct stripe_head *sh;
4624 sector_t max_sector = mddev->dev_sectors;
4625 sector_t sync_blocks;
4626 int still_degraded = 0;
4627 int i;
4629 if (sector_nr >= max_sector) {
4630 /* just being told to finish up .. nothing much to do */
4632 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4633 end_reshape(conf);
4634 return 0;
4637 if (mddev->curr_resync < max_sector) /* aborted */
4638 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4639 &sync_blocks, 1);
4640 else /* completed sync */
4641 conf->fullsync = 0;
4642 bitmap_close_sync(mddev->bitmap);
4644 return 0;
4647 /* Allow raid5_quiesce to complete */
4648 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4650 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4651 return reshape_request(mddev, sector_nr, skipped);
4653 /* No need to check resync_max as we never do more than one
4654 * stripe, and as resync_max will always be on a chunk boundary,
4655 * if the check in md_do_sync didn't fire, there is no chance
4656 * of overstepping resync_max here
4659 /* if there is too many failed drives and we are trying
4660 * to resync, then assert that we are finished, because there is
4661 * nothing we can do.
4663 if (mddev->degraded >= conf->max_degraded &&
4664 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4665 sector_t rv = mddev->dev_sectors - sector_nr;
4666 *skipped = 1;
4667 return rv;
4669 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4670 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4671 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4672 /* we can skip this block, and probably more */
4673 sync_blocks /= STRIPE_SECTORS;
4674 *skipped = 1;
4675 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4678 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4680 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4681 if (sh == NULL) {
4682 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4683 /* make sure we don't swamp the stripe cache if someone else
4684 * is trying to get access
4686 schedule_timeout_uninterruptible(1);
4688 /* Need to check if array will still be degraded after recovery/resync
4689 * We don't need to check the 'failed' flag as when that gets set,
4690 * recovery aborts.
4692 for (i = 0; i < conf->raid_disks; i++)
4693 if (conf->disks[i].rdev == NULL)
4694 still_degraded = 1;
4696 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4698 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4700 handle_stripe(sh);
4701 release_stripe(sh);
4703 return STRIPE_SECTORS;
4706 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4708 /* We may not be able to submit a whole bio at once as there
4709 * may not be enough stripe_heads available.
4710 * We cannot pre-allocate enough stripe_heads as we may need
4711 * more than exist in the cache (if we allow ever large chunks).
4712 * So we do one stripe head at a time and record in
4713 * ->bi_hw_segments how many have been done.
4715 * We *know* that this entire raid_bio is in one chunk, so
4716 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4718 struct stripe_head *sh;
4719 int dd_idx;
4720 sector_t sector, logical_sector, last_sector;
4721 int scnt = 0;
4722 int remaining;
4723 int handled = 0;
4725 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4726 sector = raid5_compute_sector(conf, logical_sector,
4727 0, &dd_idx, NULL);
4728 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4730 for (; logical_sector < last_sector;
4731 logical_sector += STRIPE_SECTORS,
4732 sector += STRIPE_SECTORS,
4733 scnt++) {
4735 if (scnt < raid5_bi_processed_stripes(raid_bio))
4736 /* already done this stripe */
4737 continue;
4739 sh = get_active_stripe(conf, sector, 0, 1, 0);
4741 if (!sh) {
4742 /* failed to get a stripe - must wait */
4743 raid5_set_bi_processed_stripes(raid_bio, scnt);
4744 conf->retry_read_aligned = raid_bio;
4745 return handled;
4748 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4749 release_stripe(sh);
4750 raid5_set_bi_processed_stripes(raid_bio, scnt);
4751 conf->retry_read_aligned = raid_bio;
4752 return handled;
4755 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4756 handle_stripe(sh);
4757 release_stripe(sh);
4758 handled++;
4760 remaining = raid5_dec_bi_active_stripes(raid_bio);
4761 if (remaining == 0)
4762 bio_endio(raid_bio, 0);
4763 if (atomic_dec_and_test(&conf->active_aligned_reads))
4764 wake_up(&conf->wait_for_stripe);
4765 return handled;
4768 #define MAX_STRIPE_BATCH 8
4769 static int handle_active_stripes(struct r5conf *conf)
4771 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4772 int i, batch_size = 0;
4774 while (batch_size < MAX_STRIPE_BATCH &&
4775 (sh = __get_priority_stripe(conf)) != NULL)
4776 batch[batch_size++] = sh;
4778 if (batch_size == 0)
4779 return batch_size;
4780 spin_unlock_irq(&conf->device_lock);
4782 for (i = 0; i < batch_size; i++)
4783 handle_stripe(batch[i]);
4785 cond_resched();
4787 spin_lock_irq(&conf->device_lock);
4788 for (i = 0; i < batch_size; i++)
4789 __release_stripe(conf, batch[i]);
4790 return batch_size;
4794 * This is our raid5 kernel thread.
4796 * We scan the hash table for stripes which can be handled now.
4797 * During the scan, completed stripes are saved for us by the interrupt
4798 * handler, so that they will not have to wait for our next wakeup.
4800 static void raid5d(struct md_thread *thread)
4802 struct mddev *mddev = thread->mddev;
4803 struct r5conf *conf = mddev->private;
4804 int handled;
4805 struct blk_plug plug;
4807 pr_debug("+++ raid5d active\n");
4809 md_check_recovery(mddev);
4811 blk_start_plug(&plug);
4812 handled = 0;
4813 spin_lock_irq(&conf->device_lock);
4814 while (1) {
4815 struct bio *bio;
4816 int batch_size;
4818 if (
4819 !list_empty(&conf->bitmap_list)) {
4820 /* Now is a good time to flush some bitmap updates */
4821 conf->seq_flush++;
4822 spin_unlock_irq(&conf->device_lock);
4823 bitmap_unplug(mddev->bitmap);
4824 spin_lock_irq(&conf->device_lock);
4825 conf->seq_write = conf->seq_flush;
4826 activate_bit_delay(conf);
4828 raid5_activate_delayed(conf);
4830 while ((bio = remove_bio_from_retry(conf))) {
4831 int ok;
4832 spin_unlock_irq(&conf->device_lock);
4833 ok = retry_aligned_read(conf, bio);
4834 spin_lock_irq(&conf->device_lock);
4835 if (!ok)
4836 break;
4837 handled++;
4840 batch_size = handle_active_stripes(conf);
4841 if (!batch_size)
4842 break;
4843 handled += batch_size;
4845 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4846 spin_unlock_irq(&conf->device_lock);
4847 md_check_recovery(mddev);
4848 spin_lock_irq(&conf->device_lock);
4851 pr_debug("%d stripes handled\n", handled);
4853 spin_unlock_irq(&conf->device_lock);
4855 async_tx_issue_pending_all();
4856 blk_finish_plug(&plug);
4858 pr_debug("--- raid5d inactive\n");
4861 static ssize_t
4862 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4864 struct r5conf *conf = mddev->private;
4865 if (conf)
4866 return sprintf(page, "%d\n", conf->max_nr_stripes);
4867 else
4868 return 0;
4872 raid5_set_cache_size(struct mddev *mddev, int size)
4874 struct r5conf *conf = mddev->private;
4875 int err;
4877 if (size <= 16 || size > 32768)
4878 return -EINVAL;
4879 while (size < conf->max_nr_stripes) {
4880 if (drop_one_stripe(conf))
4881 conf->max_nr_stripes--;
4882 else
4883 break;
4885 err = md_allow_write(mddev);
4886 if (err)
4887 return err;
4888 while (size > conf->max_nr_stripes) {
4889 if (grow_one_stripe(conf))
4890 conf->max_nr_stripes++;
4891 else break;
4893 return 0;
4895 EXPORT_SYMBOL(raid5_set_cache_size);
4897 static ssize_t
4898 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4900 struct r5conf *conf = mddev->private;
4901 unsigned long new;
4902 int err;
4904 if (len >= PAGE_SIZE)
4905 return -EINVAL;
4906 if (!conf)
4907 return -ENODEV;
4909 if (strict_strtoul(page, 10, &new))
4910 return -EINVAL;
4911 err = raid5_set_cache_size(mddev, new);
4912 if (err)
4913 return err;
4914 return len;
4917 static struct md_sysfs_entry
4918 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4919 raid5_show_stripe_cache_size,
4920 raid5_store_stripe_cache_size);
4922 static ssize_t
4923 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4925 struct r5conf *conf = mddev->private;
4926 if (conf)
4927 return sprintf(page, "%d\n", conf->bypass_threshold);
4928 else
4929 return 0;
4932 static ssize_t
4933 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4935 struct r5conf *conf = mddev->private;
4936 unsigned long new;
4937 if (len >= PAGE_SIZE)
4938 return -EINVAL;
4939 if (!conf)
4940 return -ENODEV;
4942 if (strict_strtoul(page, 10, &new))
4943 return -EINVAL;
4944 if (new > conf->max_nr_stripes)
4945 return -EINVAL;
4946 conf->bypass_threshold = new;
4947 return len;
4950 static struct md_sysfs_entry
4951 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4952 S_IRUGO | S_IWUSR,
4953 raid5_show_preread_threshold,
4954 raid5_store_preread_threshold);
4956 static ssize_t
4957 stripe_cache_active_show(struct mddev *mddev, char *page)
4959 struct r5conf *conf = mddev->private;
4960 if (conf)
4961 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4962 else
4963 return 0;
4966 static struct md_sysfs_entry
4967 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4969 static struct attribute *raid5_attrs[] = {
4970 &raid5_stripecache_size.attr,
4971 &raid5_stripecache_active.attr,
4972 &raid5_preread_bypass_threshold.attr,
4973 NULL,
4975 static struct attribute_group raid5_attrs_group = {
4976 .name = NULL,
4977 .attrs = raid5_attrs,
4980 static sector_t
4981 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4983 struct r5conf *conf = mddev->private;
4985 if (!sectors)
4986 sectors = mddev->dev_sectors;
4987 if (!raid_disks)
4988 /* size is defined by the smallest of previous and new size */
4989 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4991 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4992 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4993 return sectors * (raid_disks - conf->max_degraded);
4996 static void raid5_free_percpu(struct r5conf *conf)
4998 struct raid5_percpu *percpu;
4999 unsigned long cpu;
5001 if (!conf->percpu)
5002 return;
5004 get_online_cpus();
5005 for_each_possible_cpu(cpu) {
5006 percpu = per_cpu_ptr(conf->percpu, cpu);
5007 safe_put_page(percpu->spare_page);
5008 kfree(percpu->scribble);
5010 #ifdef CONFIG_HOTPLUG_CPU
5011 unregister_cpu_notifier(&conf->cpu_notify);
5012 #endif
5013 put_online_cpus();
5015 free_percpu(conf->percpu);
5018 static void free_conf(struct r5conf *conf)
5020 shrink_stripes(conf);
5021 raid5_free_percpu(conf);
5022 kfree(conf->disks);
5023 kfree(conf->stripe_hashtbl);
5024 kfree(conf);
5027 #ifdef CONFIG_HOTPLUG_CPU
5028 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5029 void *hcpu)
5031 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5032 long cpu = (long)hcpu;
5033 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5035 switch (action) {
5036 case CPU_UP_PREPARE:
5037 case CPU_UP_PREPARE_FROZEN:
5038 if (conf->level == 6 && !percpu->spare_page)
5039 percpu->spare_page = alloc_page(GFP_KERNEL);
5040 if (!percpu->scribble)
5041 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5043 if (!percpu->scribble ||
5044 (conf->level == 6 && !percpu->spare_page)) {
5045 safe_put_page(percpu->spare_page);
5046 kfree(percpu->scribble);
5047 pr_err("%s: failed memory allocation for cpu%ld\n",
5048 __func__, cpu);
5049 return notifier_from_errno(-ENOMEM);
5051 break;
5052 case CPU_DEAD:
5053 case CPU_DEAD_FROZEN:
5054 safe_put_page(percpu->spare_page);
5055 kfree(percpu->scribble);
5056 percpu->spare_page = NULL;
5057 percpu->scribble = NULL;
5058 break;
5059 default:
5060 break;
5062 return NOTIFY_OK;
5064 #endif
5066 static int raid5_alloc_percpu(struct r5conf *conf)
5068 unsigned long cpu;
5069 struct page *spare_page;
5070 struct raid5_percpu __percpu *allcpus;
5071 void *scribble;
5072 int err;
5074 allcpus = alloc_percpu(struct raid5_percpu);
5075 if (!allcpus)
5076 return -ENOMEM;
5077 conf->percpu = allcpus;
5079 get_online_cpus();
5080 err = 0;
5081 for_each_present_cpu(cpu) {
5082 if (conf->level == 6) {
5083 spare_page = alloc_page(GFP_KERNEL);
5084 if (!spare_page) {
5085 err = -ENOMEM;
5086 break;
5088 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5090 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5091 if (!scribble) {
5092 err = -ENOMEM;
5093 break;
5095 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5097 #ifdef CONFIG_HOTPLUG_CPU
5098 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5099 conf->cpu_notify.priority = 0;
5100 if (err == 0)
5101 err = register_cpu_notifier(&conf->cpu_notify);
5102 #endif
5103 put_online_cpus();
5105 return err;
5108 static struct r5conf *setup_conf(struct mddev *mddev)
5110 struct r5conf *conf;
5111 int raid_disk, memory, max_disks;
5112 struct md_rdev *rdev;
5113 struct disk_info *disk;
5114 char pers_name[6];
5116 if (mddev->new_level != 5
5117 && mddev->new_level != 4
5118 && mddev->new_level != 6) {
5119 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5120 mdname(mddev), mddev->new_level);
5121 return ERR_PTR(-EIO);
5123 if ((mddev->new_level == 5
5124 && !algorithm_valid_raid5(mddev->new_layout)) ||
5125 (mddev->new_level == 6
5126 && !algorithm_valid_raid6(mddev->new_layout))) {
5127 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5128 mdname(mddev), mddev->new_layout);
5129 return ERR_PTR(-EIO);
5131 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5132 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5133 mdname(mddev), mddev->raid_disks);
5134 return ERR_PTR(-EINVAL);
5137 if (!mddev->new_chunk_sectors ||
5138 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5139 !is_power_of_2(mddev->new_chunk_sectors)) {
5140 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5141 mdname(mddev), mddev->new_chunk_sectors << 9);
5142 return ERR_PTR(-EINVAL);
5145 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5146 if (conf == NULL)
5147 goto abort;
5148 spin_lock_init(&conf->device_lock);
5149 init_waitqueue_head(&conf->wait_for_stripe);
5150 init_waitqueue_head(&conf->wait_for_overlap);
5151 INIT_LIST_HEAD(&conf->handle_list);
5152 INIT_LIST_HEAD(&conf->hold_list);
5153 INIT_LIST_HEAD(&conf->delayed_list);
5154 INIT_LIST_HEAD(&conf->bitmap_list);
5155 INIT_LIST_HEAD(&conf->inactive_list);
5156 atomic_set(&conf->active_stripes, 0);
5157 atomic_set(&conf->preread_active_stripes, 0);
5158 atomic_set(&conf->active_aligned_reads, 0);
5159 conf->bypass_threshold = BYPASS_THRESHOLD;
5160 conf->recovery_disabled = mddev->recovery_disabled - 1;
5162 conf->raid_disks = mddev->raid_disks;
5163 if (mddev->reshape_position == MaxSector)
5164 conf->previous_raid_disks = mddev->raid_disks;
5165 else
5166 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5167 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5168 conf->scribble_len = scribble_len(max_disks);
5170 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5171 GFP_KERNEL);
5172 if (!conf->disks)
5173 goto abort;
5175 conf->mddev = mddev;
5177 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5178 goto abort;
5180 conf->level = mddev->new_level;
5181 if (raid5_alloc_percpu(conf) != 0)
5182 goto abort;
5184 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5186 rdev_for_each(rdev, mddev) {
5187 raid_disk = rdev->raid_disk;
5188 if (raid_disk >= max_disks
5189 || raid_disk < 0)
5190 continue;
5191 disk = conf->disks + raid_disk;
5193 if (test_bit(Replacement, &rdev->flags)) {
5194 if (disk->replacement)
5195 goto abort;
5196 disk->replacement = rdev;
5197 } else {
5198 if (disk->rdev)
5199 goto abort;
5200 disk->rdev = rdev;
5203 if (test_bit(In_sync, &rdev->flags)) {
5204 char b[BDEVNAME_SIZE];
5205 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5206 " disk %d\n",
5207 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5208 } else if (rdev->saved_raid_disk != raid_disk)
5209 /* Cannot rely on bitmap to complete recovery */
5210 conf->fullsync = 1;
5213 conf->chunk_sectors = mddev->new_chunk_sectors;
5214 conf->level = mddev->new_level;
5215 if (conf->level == 6)
5216 conf->max_degraded = 2;
5217 else
5218 conf->max_degraded = 1;
5219 conf->algorithm = mddev->new_layout;
5220 conf->max_nr_stripes = NR_STRIPES;
5221 conf->reshape_progress = mddev->reshape_position;
5222 if (conf->reshape_progress != MaxSector) {
5223 conf->prev_chunk_sectors = mddev->chunk_sectors;
5224 conf->prev_algo = mddev->layout;
5227 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5228 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5229 if (grow_stripes(conf, conf->max_nr_stripes)) {
5230 printk(KERN_ERR
5231 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5232 mdname(mddev), memory);
5233 goto abort;
5234 } else
5235 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5236 mdname(mddev), memory);
5238 sprintf(pers_name, "raid%d", mddev->new_level);
5239 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5240 if (!conf->thread) {
5241 printk(KERN_ERR
5242 "md/raid:%s: couldn't allocate thread.\n",
5243 mdname(mddev));
5244 goto abort;
5247 return conf;
5249 abort:
5250 if (conf) {
5251 free_conf(conf);
5252 return ERR_PTR(-EIO);
5253 } else
5254 return ERR_PTR(-ENOMEM);
5258 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5260 switch (algo) {
5261 case ALGORITHM_PARITY_0:
5262 if (raid_disk < max_degraded)
5263 return 1;
5264 break;
5265 case ALGORITHM_PARITY_N:
5266 if (raid_disk >= raid_disks - max_degraded)
5267 return 1;
5268 break;
5269 case ALGORITHM_PARITY_0_6:
5270 if (raid_disk == 0 ||
5271 raid_disk == raid_disks - 1)
5272 return 1;
5273 break;
5274 case ALGORITHM_LEFT_ASYMMETRIC_6:
5275 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5276 case ALGORITHM_LEFT_SYMMETRIC_6:
5277 case ALGORITHM_RIGHT_SYMMETRIC_6:
5278 if (raid_disk == raid_disks - 1)
5279 return 1;
5281 return 0;
5284 static int run(struct mddev *mddev)
5286 struct r5conf *conf;
5287 int working_disks = 0;
5288 int dirty_parity_disks = 0;
5289 struct md_rdev *rdev;
5290 sector_t reshape_offset = 0;
5291 int i;
5292 long long min_offset_diff = 0;
5293 int first = 1;
5295 if (mddev->recovery_cp != MaxSector)
5296 printk(KERN_NOTICE "md/raid:%s: not clean"
5297 " -- starting background reconstruction\n",
5298 mdname(mddev));
5300 rdev_for_each(rdev, mddev) {
5301 long long diff;
5302 if (rdev->raid_disk < 0)
5303 continue;
5304 diff = (rdev->new_data_offset - rdev->data_offset);
5305 if (first) {
5306 min_offset_diff = diff;
5307 first = 0;
5308 } else if (mddev->reshape_backwards &&
5309 diff < min_offset_diff)
5310 min_offset_diff = diff;
5311 else if (!mddev->reshape_backwards &&
5312 diff > min_offset_diff)
5313 min_offset_diff = diff;
5316 if (mddev->reshape_position != MaxSector) {
5317 /* Check that we can continue the reshape.
5318 * Difficulties arise if the stripe we would write to
5319 * next is at or after the stripe we would read from next.
5320 * For a reshape that changes the number of devices, this
5321 * is only possible for a very short time, and mdadm makes
5322 * sure that time appears to have past before assembling
5323 * the array. So we fail if that time hasn't passed.
5324 * For a reshape that keeps the number of devices the same
5325 * mdadm must be monitoring the reshape can keeping the
5326 * critical areas read-only and backed up. It will start
5327 * the array in read-only mode, so we check for that.
5329 sector_t here_new, here_old;
5330 int old_disks;
5331 int max_degraded = (mddev->level == 6 ? 2 : 1);
5333 if (mddev->new_level != mddev->level) {
5334 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5335 "required - aborting.\n",
5336 mdname(mddev));
5337 return -EINVAL;
5339 old_disks = mddev->raid_disks - mddev->delta_disks;
5340 /* reshape_position must be on a new-stripe boundary, and one
5341 * further up in new geometry must map after here in old
5342 * geometry.
5344 here_new = mddev->reshape_position;
5345 if (sector_div(here_new, mddev->new_chunk_sectors *
5346 (mddev->raid_disks - max_degraded))) {
5347 printk(KERN_ERR "md/raid:%s: reshape_position not "
5348 "on a stripe boundary\n", mdname(mddev));
5349 return -EINVAL;
5351 reshape_offset = here_new * mddev->new_chunk_sectors;
5352 /* here_new is the stripe we will write to */
5353 here_old = mddev->reshape_position;
5354 sector_div(here_old, mddev->chunk_sectors *
5355 (old_disks-max_degraded));
5356 /* here_old is the first stripe that we might need to read
5357 * from */
5358 if (mddev->delta_disks == 0) {
5359 if ((here_new * mddev->new_chunk_sectors !=
5360 here_old * mddev->chunk_sectors)) {
5361 printk(KERN_ERR "md/raid:%s: reshape position is"
5362 " confused - aborting\n", mdname(mddev));
5363 return -EINVAL;
5365 /* We cannot be sure it is safe to start an in-place
5366 * reshape. It is only safe if user-space is monitoring
5367 * and taking constant backups.
5368 * mdadm always starts a situation like this in
5369 * readonly mode so it can take control before
5370 * allowing any writes. So just check for that.
5372 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5373 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5374 /* not really in-place - so OK */;
5375 else if (mddev->ro == 0) {
5376 printk(KERN_ERR "md/raid:%s: in-place reshape "
5377 "must be started in read-only mode "
5378 "- aborting\n",
5379 mdname(mddev));
5380 return -EINVAL;
5382 } else if (mddev->reshape_backwards
5383 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5384 here_old * mddev->chunk_sectors)
5385 : (here_new * mddev->new_chunk_sectors >=
5386 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5387 /* Reading from the same stripe as writing to - bad */
5388 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5389 "auto-recovery - aborting.\n",
5390 mdname(mddev));
5391 return -EINVAL;
5393 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5394 mdname(mddev));
5395 /* OK, we should be able to continue; */
5396 } else {
5397 BUG_ON(mddev->level != mddev->new_level);
5398 BUG_ON(mddev->layout != mddev->new_layout);
5399 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5400 BUG_ON(mddev->delta_disks != 0);
5403 if (mddev->private == NULL)
5404 conf = setup_conf(mddev);
5405 else
5406 conf = mddev->private;
5408 if (IS_ERR(conf))
5409 return PTR_ERR(conf);
5411 conf->min_offset_diff = min_offset_diff;
5412 mddev->thread = conf->thread;
5413 conf->thread = NULL;
5414 mddev->private = conf;
5416 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5417 i++) {
5418 rdev = conf->disks[i].rdev;
5419 if (!rdev && conf->disks[i].replacement) {
5420 /* The replacement is all we have yet */
5421 rdev = conf->disks[i].replacement;
5422 conf->disks[i].replacement = NULL;
5423 clear_bit(Replacement, &rdev->flags);
5424 conf->disks[i].rdev = rdev;
5426 if (!rdev)
5427 continue;
5428 if (conf->disks[i].replacement &&
5429 conf->reshape_progress != MaxSector) {
5430 /* replacements and reshape simply do not mix. */
5431 printk(KERN_ERR "md: cannot handle concurrent "
5432 "replacement and reshape.\n");
5433 goto abort;
5435 if (test_bit(In_sync, &rdev->flags)) {
5436 working_disks++;
5437 continue;
5439 /* This disc is not fully in-sync. However if it
5440 * just stored parity (beyond the recovery_offset),
5441 * when we don't need to be concerned about the
5442 * array being dirty.
5443 * When reshape goes 'backwards', we never have
5444 * partially completed devices, so we only need
5445 * to worry about reshape going forwards.
5447 /* Hack because v0.91 doesn't store recovery_offset properly. */
5448 if (mddev->major_version == 0 &&
5449 mddev->minor_version > 90)
5450 rdev->recovery_offset = reshape_offset;
5452 if (rdev->recovery_offset < reshape_offset) {
5453 /* We need to check old and new layout */
5454 if (!only_parity(rdev->raid_disk,
5455 conf->algorithm,
5456 conf->raid_disks,
5457 conf->max_degraded))
5458 continue;
5460 if (!only_parity(rdev->raid_disk,
5461 conf->prev_algo,
5462 conf->previous_raid_disks,
5463 conf->max_degraded))
5464 continue;
5465 dirty_parity_disks++;
5469 * 0 for a fully functional array, 1 or 2 for a degraded array.
5471 mddev->degraded = calc_degraded(conf);
5473 if (has_failed(conf)) {
5474 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5475 " (%d/%d failed)\n",
5476 mdname(mddev), mddev->degraded, conf->raid_disks);
5477 goto abort;
5480 /* device size must be a multiple of chunk size */
5481 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5482 mddev->resync_max_sectors = mddev->dev_sectors;
5484 if (mddev->degraded > dirty_parity_disks &&
5485 mddev->recovery_cp != MaxSector) {
5486 if (mddev->ok_start_degraded)
5487 printk(KERN_WARNING
5488 "md/raid:%s: starting dirty degraded array"
5489 " - data corruption possible.\n",
5490 mdname(mddev));
5491 else {
5492 printk(KERN_ERR
5493 "md/raid:%s: cannot start dirty degraded array.\n",
5494 mdname(mddev));
5495 goto abort;
5499 if (mddev->degraded == 0)
5500 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5501 " devices, algorithm %d\n", mdname(mddev), conf->level,
5502 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5503 mddev->new_layout);
5504 else
5505 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5506 " out of %d devices, algorithm %d\n",
5507 mdname(mddev), conf->level,
5508 mddev->raid_disks - mddev->degraded,
5509 mddev->raid_disks, mddev->new_layout);
5511 print_raid5_conf(conf);
5513 if (conf->reshape_progress != MaxSector) {
5514 conf->reshape_safe = conf->reshape_progress;
5515 atomic_set(&conf->reshape_stripes, 0);
5516 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5517 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5518 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5519 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5520 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5521 "reshape");
5525 /* Ok, everything is just fine now */
5526 if (mddev->to_remove == &raid5_attrs_group)
5527 mddev->to_remove = NULL;
5528 else if (mddev->kobj.sd &&
5529 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5530 printk(KERN_WARNING
5531 "raid5: failed to create sysfs attributes for %s\n",
5532 mdname(mddev));
5533 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5535 if (mddev->queue) {
5536 int chunk_size;
5537 bool discard_supported = true;
5538 /* read-ahead size must cover two whole stripes, which
5539 * is 2 * (datadisks) * chunksize where 'n' is the
5540 * number of raid devices
5542 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5543 int stripe = data_disks *
5544 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5545 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5546 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5548 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5550 mddev->queue->backing_dev_info.congested_data = mddev;
5551 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5553 chunk_size = mddev->chunk_sectors << 9;
5554 blk_queue_io_min(mddev->queue, chunk_size);
5555 blk_queue_io_opt(mddev->queue, chunk_size *
5556 (conf->raid_disks - conf->max_degraded));
5558 * We can only discard a whole stripe. It doesn't make sense to
5559 * discard data disk but write parity disk
5561 stripe = stripe * PAGE_SIZE;
5562 /* Round up to power of 2, as discard handling
5563 * currently assumes that */
5564 while ((stripe-1) & stripe)
5565 stripe = (stripe | (stripe-1)) + 1;
5566 mddev->queue->limits.discard_alignment = stripe;
5567 mddev->queue->limits.discard_granularity = stripe;
5569 * unaligned part of discard request will be ignored, so can't
5570 * guarantee discard_zerors_data
5572 mddev->queue->limits.discard_zeroes_data = 0;
5574 rdev_for_each(rdev, mddev) {
5575 disk_stack_limits(mddev->gendisk, rdev->bdev,
5576 rdev->data_offset << 9);
5577 disk_stack_limits(mddev->gendisk, rdev->bdev,
5578 rdev->new_data_offset << 9);
5580 * discard_zeroes_data is required, otherwise data
5581 * could be lost. Consider a scenario: discard a stripe
5582 * (the stripe could be inconsistent if
5583 * discard_zeroes_data is 0); write one disk of the
5584 * stripe (the stripe could be inconsistent again
5585 * depending on which disks are used to calculate
5586 * parity); the disk is broken; The stripe data of this
5587 * disk is lost.
5589 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5590 !bdev_get_queue(rdev->bdev)->
5591 limits.discard_zeroes_data)
5592 discard_supported = false;
5595 if (discard_supported &&
5596 mddev->queue->limits.max_discard_sectors >= stripe &&
5597 mddev->queue->limits.discard_granularity >= stripe)
5598 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5599 mddev->queue);
5600 else
5601 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5602 mddev->queue);
5605 return 0;
5606 abort:
5607 md_unregister_thread(&mddev->thread);
5608 print_raid5_conf(conf);
5609 free_conf(conf);
5610 mddev->private = NULL;
5611 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5612 return -EIO;
5615 static int stop(struct mddev *mddev)
5617 struct r5conf *conf = mddev->private;
5619 md_unregister_thread(&mddev->thread);
5620 if (mddev->queue)
5621 mddev->queue->backing_dev_info.congested_fn = NULL;
5622 free_conf(conf);
5623 mddev->private = NULL;
5624 mddev->to_remove = &raid5_attrs_group;
5625 return 0;
5628 static void status(struct seq_file *seq, struct mddev *mddev)
5630 struct r5conf *conf = mddev->private;
5631 int i;
5633 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5634 mddev->chunk_sectors / 2, mddev->layout);
5635 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5636 for (i = 0; i < conf->raid_disks; i++)
5637 seq_printf (seq, "%s",
5638 conf->disks[i].rdev &&
5639 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5640 seq_printf (seq, "]");
5643 static void print_raid5_conf (struct r5conf *conf)
5645 int i;
5646 struct disk_info *tmp;
5648 printk(KERN_DEBUG "RAID conf printout:\n");
5649 if (!conf) {
5650 printk("(conf==NULL)\n");
5651 return;
5653 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5654 conf->raid_disks,
5655 conf->raid_disks - conf->mddev->degraded);
5657 for (i = 0; i < conf->raid_disks; i++) {
5658 char b[BDEVNAME_SIZE];
5659 tmp = conf->disks + i;
5660 if (tmp->rdev)
5661 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5662 i, !test_bit(Faulty, &tmp->rdev->flags),
5663 bdevname(tmp->rdev->bdev, b));
5667 static int raid5_spare_active(struct mddev *mddev)
5669 int i;
5670 struct r5conf *conf = mddev->private;
5671 struct disk_info *tmp;
5672 int count = 0;
5673 unsigned long flags;
5675 for (i = 0; i < conf->raid_disks; i++) {
5676 tmp = conf->disks + i;
5677 if (tmp->replacement
5678 && tmp->replacement->recovery_offset == MaxSector
5679 && !test_bit(Faulty, &tmp->replacement->flags)
5680 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5681 /* Replacement has just become active. */
5682 if (!tmp->rdev
5683 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5684 count++;
5685 if (tmp->rdev) {
5686 /* Replaced device not technically faulty,
5687 * but we need to be sure it gets removed
5688 * and never re-added.
5690 set_bit(Faulty, &tmp->rdev->flags);
5691 sysfs_notify_dirent_safe(
5692 tmp->rdev->sysfs_state);
5694 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5695 } else if (tmp->rdev
5696 && tmp->rdev->recovery_offset == MaxSector
5697 && !test_bit(Faulty, &tmp->rdev->flags)
5698 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5699 count++;
5700 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5703 spin_lock_irqsave(&conf->device_lock, flags);
5704 mddev->degraded = calc_degraded(conf);
5705 spin_unlock_irqrestore(&conf->device_lock, flags);
5706 print_raid5_conf(conf);
5707 return count;
5710 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5712 struct r5conf *conf = mddev->private;
5713 int err = 0;
5714 int number = rdev->raid_disk;
5715 struct md_rdev **rdevp;
5716 struct disk_info *p = conf->disks + number;
5718 print_raid5_conf(conf);
5719 if (rdev == p->rdev)
5720 rdevp = &p->rdev;
5721 else if (rdev == p->replacement)
5722 rdevp = &p->replacement;
5723 else
5724 return 0;
5726 if (number >= conf->raid_disks &&
5727 conf->reshape_progress == MaxSector)
5728 clear_bit(In_sync, &rdev->flags);
5730 if (test_bit(In_sync, &rdev->flags) ||
5731 atomic_read(&rdev->nr_pending)) {
5732 err = -EBUSY;
5733 goto abort;
5735 /* Only remove non-faulty devices if recovery
5736 * isn't possible.
5738 if (!test_bit(Faulty, &rdev->flags) &&
5739 mddev->recovery_disabled != conf->recovery_disabled &&
5740 !has_failed(conf) &&
5741 (!p->replacement || p->replacement == rdev) &&
5742 number < conf->raid_disks) {
5743 err = -EBUSY;
5744 goto abort;
5746 *rdevp = NULL;
5747 synchronize_rcu();
5748 if (atomic_read(&rdev->nr_pending)) {
5749 /* lost the race, try later */
5750 err = -EBUSY;
5751 *rdevp = rdev;
5752 } else if (p->replacement) {
5753 /* We must have just cleared 'rdev' */
5754 p->rdev = p->replacement;
5755 clear_bit(Replacement, &p->replacement->flags);
5756 smp_mb(); /* Make sure other CPUs may see both as identical
5757 * but will never see neither - if they are careful
5759 p->replacement = NULL;
5760 clear_bit(WantReplacement, &rdev->flags);
5761 } else
5762 /* We might have just removed the Replacement as faulty-
5763 * clear the bit just in case
5765 clear_bit(WantReplacement, &rdev->flags);
5766 abort:
5768 print_raid5_conf(conf);
5769 return err;
5772 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5774 struct r5conf *conf = mddev->private;
5775 int err = -EEXIST;
5776 int disk;
5777 struct disk_info *p;
5778 int first = 0;
5779 int last = conf->raid_disks - 1;
5781 if (mddev->recovery_disabled == conf->recovery_disabled)
5782 return -EBUSY;
5784 if (rdev->saved_raid_disk < 0 && has_failed(conf))
5785 /* no point adding a device */
5786 return -EINVAL;
5788 if (rdev->raid_disk >= 0)
5789 first = last = rdev->raid_disk;
5792 * find the disk ... but prefer rdev->saved_raid_disk
5793 * if possible.
5795 if (rdev->saved_raid_disk >= 0 &&
5796 rdev->saved_raid_disk >= first &&
5797 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5798 first = rdev->saved_raid_disk;
5800 for (disk = first; disk <= last; disk++) {
5801 p = conf->disks + disk;
5802 if (p->rdev == NULL) {
5803 clear_bit(In_sync, &rdev->flags);
5804 rdev->raid_disk = disk;
5805 err = 0;
5806 if (rdev->saved_raid_disk != disk)
5807 conf->fullsync = 1;
5808 rcu_assign_pointer(p->rdev, rdev);
5809 goto out;
5812 for (disk = first; disk <= last; disk++) {
5813 p = conf->disks + disk;
5814 if (test_bit(WantReplacement, &p->rdev->flags) &&
5815 p->replacement == NULL) {
5816 clear_bit(In_sync, &rdev->flags);
5817 set_bit(Replacement, &rdev->flags);
5818 rdev->raid_disk = disk;
5819 err = 0;
5820 conf->fullsync = 1;
5821 rcu_assign_pointer(p->replacement, rdev);
5822 break;
5825 out:
5826 print_raid5_conf(conf);
5827 return err;
5830 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5832 /* no resync is happening, and there is enough space
5833 * on all devices, so we can resize.
5834 * We need to make sure resync covers any new space.
5835 * If the array is shrinking we should possibly wait until
5836 * any io in the removed space completes, but it hardly seems
5837 * worth it.
5839 sector_t newsize;
5840 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5841 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5842 if (mddev->external_size &&
5843 mddev->array_sectors > newsize)
5844 return -EINVAL;
5845 if (mddev->bitmap) {
5846 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5847 if (ret)
5848 return ret;
5850 md_set_array_sectors(mddev, newsize);
5851 set_capacity(mddev->gendisk, mddev->array_sectors);
5852 revalidate_disk(mddev->gendisk);
5853 if (sectors > mddev->dev_sectors &&
5854 mddev->recovery_cp > mddev->dev_sectors) {
5855 mddev->recovery_cp = mddev->dev_sectors;
5856 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5858 mddev->dev_sectors = sectors;
5859 mddev->resync_max_sectors = sectors;
5860 return 0;
5863 static int check_stripe_cache(struct mddev *mddev)
5865 /* Can only proceed if there are plenty of stripe_heads.
5866 * We need a minimum of one full stripe,, and for sensible progress
5867 * it is best to have about 4 times that.
5868 * If we require 4 times, then the default 256 4K stripe_heads will
5869 * allow for chunk sizes up to 256K, which is probably OK.
5870 * If the chunk size is greater, user-space should request more
5871 * stripe_heads first.
5873 struct r5conf *conf = mddev->private;
5874 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5875 > conf->max_nr_stripes ||
5876 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5877 > conf->max_nr_stripes) {
5878 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5879 mdname(mddev),
5880 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5881 / STRIPE_SIZE)*4);
5882 return 0;
5884 return 1;
5887 static int check_reshape(struct mddev *mddev)
5889 struct r5conf *conf = mddev->private;
5891 if (mddev->delta_disks == 0 &&
5892 mddev->new_layout == mddev->layout &&
5893 mddev->new_chunk_sectors == mddev->chunk_sectors)
5894 return 0; /* nothing to do */
5895 if (has_failed(conf))
5896 return -EINVAL;
5897 if (mddev->delta_disks < 0) {
5898 /* We might be able to shrink, but the devices must
5899 * be made bigger first.
5900 * For raid6, 4 is the minimum size.
5901 * Otherwise 2 is the minimum
5903 int min = 2;
5904 if (mddev->level == 6)
5905 min = 4;
5906 if (mddev->raid_disks + mddev->delta_disks < min)
5907 return -EINVAL;
5910 if (!check_stripe_cache(mddev))
5911 return -ENOSPC;
5913 return resize_stripes(conf, (conf->previous_raid_disks
5914 + mddev->delta_disks));
5917 static int raid5_start_reshape(struct mddev *mddev)
5919 struct r5conf *conf = mddev->private;
5920 struct md_rdev *rdev;
5921 int spares = 0;
5922 unsigned long flags;
5924 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5925 return -EBUSY;
5927 if (!check_stripe_cache(mddev))
5928 return -ENOSPC;
5930 if (has_failed(conf))
5931 return -EINVAL;
5933 rdev_for_each(rdev, mddev) {
5934 if (!test_bit(In_sync, &rdev->flags)
5935 && !test_bit(Faulty, &rdev->flags))
5936 spares++;
5939 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5940 /* Not enough devices even to make a degraded array
5941 * of that size
5943 return -EINVAL;
5945 /* Refuse to reduce size of the array. Any reductions in
5946 * array size must be through explicit setting of array_size
5947 * attribute.
5949 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5950 < mddev->array_sectors) {
5951 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5952 "before number of disks\n", mdname(mddev));
5953 return -EINVAL;
5956 atomic_set(&conf->reshape_stripes, 0);
5957 spin_lock_irq(&conf->device_lock);
5958 conf->previous_raid_disks = conf->raid_disks;
5959 conf->raid_disks += mddev->delta_disks;
5960 conf->prev_chunk_sectors = conf->chunk_sectors;
5961 conf->chunk_sectors = mddev->new_chunk_sectors;
5962 conf->prev_algo = conf->algorithm;
5963 conf->algorithm = mddev->new_layout;
5964 conf->generation++;
5965 /* Code that selects data_offset needs to see the generation update
5966 * if reshape_progress has been set - so a memory barrier needed.
5968 smp_mb();
5969 if (mddev->reshape_backwards)
5970 conf->reshape_progress = raid5_size(mddev, 0, 0);
5971 else
5972 conf->reshape_progress = 0;
5973 conf->reshape_safe = conf->reshape_progress;
5974 spin_unlock_irq(&conf->device_lock);
5976 /* Add some new drives, as many as will fit.
5977 * We know there are enough to make the newly sized array work.
5978 * Don't add devices if we are reducing the number of
5979 * devices in the array. This is because it is not possible
5980 * to correctly record the "partially reconstructed" state of
5981 * such devices during the reshape and confusion could result.
5983 if (mddev->delta_disks >= 0) {
5984 rdev_for_each(rdev, mddev)
5985 if (rdev->raid_disk < 0 &&
5986 !test_bit(Faulty, &rdev->flags)) {
5987 if (raid5_add_disk(mddev, rdev) == 0) {
5988 if (rdev->raid_disk
5989 >= conf->previous_raid_disks)
5990 set_bit(In_sync, &rdev->flags);
5991 else
5992 rdev->recovery_offset = 0;
5994 if (sysfs_link_rdev(mddev, rdev))
5995 /* Failure here is OK */;
5997 } else if (rdev->raid_disk >= conf->previous_raid_disks
5998 && !test_bit(Faulty, &rdev->flags)) {
5999 /* This is a spare that was manually added */
6000 set_bit(In_sync, &rdev->flags);
6003 /* When a reshape changes the number of devices,
6004 * ->degraded is measured against the larger of the
6005 * pre and post number of devices.
6007 spin_lock_irqsave(&conf->device_lock, flags);
6008 mddev->degraded = calc_degraded(conf);
6009 spin_unlock_irqrestore(&conf->device_lock, flags);
6011 mddev->raid_disks = conf->raid_disks;
6012 mddev->reshape_position = conf->reshape_progress;
6013 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6015 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6016 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6017 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6018 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6019 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6020 "reshape");
6021 if (!mddev->sync_thread) {
6022 mddev->recovery = 0;
6023 spin_lock_irq(&conf->device_lock);
6024 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6025 rdev_for_each(rdev, mddev)
6026 rdev->new_data_offset = rdev->data_offset;
6027 smp_wmb();
6028 conf->reshape_progress = MaxSector;
6029 mddev->reshape_position = MaxSector;
6030 spin_unlock_irq(&conf->device_lock);
6031 return -EAGAIN;
6033 conf->reshape_checkpoint = jiffies;
6034 md_wakeup_thread(mddev->sync_thread);
6035 md_new_event(mddev);
6036 return 0;
6039 /* This is called from the reshape thread and should make any
6040 * changes needed in 'conf'
6042 static void end_reshape(struct r5conf *conf)
6045 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6046 struct md_rdev *rdev;
6048 spin_lock_irq(&conf->device_lock);
6049 conf->previous_raid_disks = conf->raid_disks;
6050 rdev_for_each(rdev, conf->mddev)
6051 rdev->data_offset = rdev->new_data_offset;
6052 smp_wmb();
6053 conf->reshape_progress = MaxSector;
6054 spin_unlock_irq(&conf->device_lock);
6055 wake_up(&conf->wait_for_overlap);
6057 /* read-ahead size must cover two whole stripes, which is
6058 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6060 if (conf->mddev->queue) {
6061 int data_disks = conf->raid_disks - conf->max_degraded;
6062 int stripe = data_disks * ((conf->chunk_sectors << 9)
6063 / PAGE_SIZE);
6064 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6065 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6070 /* This is called from the raid5d thread with mddev_lock held.
6071 * It makes config changes to the device.
6073 static void raid5_finish_reshape(struct mddev *mddev)
6075 struct r5conf *conf = mddev->private;
6077 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6079 if (mddev->delta_disks > 0) {
6080 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6081 set_capacity(mddev->gendisk, mddev->array_sectors);
6082 revalidate_disk(mddev->gendisk);
6083 } else {
6084 int d;
6085 spin_lock_irq(&conf->device_lock);
6086 mddev->degraded = calc_degraded(conf);
6087 spin_unlock_irq(&conf->device_lock);
6088 for (d = conf->raid_disks ;
6089 d < conf->raid_disks - mddev->delta_disks;
6090 d++) {
6091 struct md_rdev *rdev = conf->disks[d].rdev;
6092 if (rdev)
6093 clear_bit(In_sync, &rdev->flags);
6094 rdev = conf->disks[d].replacement;
6095 if (rdev)
6096 clear_bit(In_sync, &rdev->flags);
6099 mddev->layout = conf->algorithm;
6100 mddev->chunk_sectors = conf->chunk_sectors;
6101 mddev->reshape_position = MaxSector;
6102 mddev->delta_disks = 0;
6103 mddev->reshape_backwards = 0;
6107 static void raid5_quiesce(struct mddev *mddev, int state)
6109 struct r5conf *conf = mddev->private;
6111 switch(state) {
6112 case 2: /* resume for a suspend */
6113 wake_up(&conf->wait_for_overlap);
6114 break;
6116 case 1: /* stop all writes */
6117 spin_lock_irq(&conf->device_lock);
6118 /* '2' tells resync/reshape to pause so that all
6119 * active stripes can drain
6121 conf->quiesce = 2;
6122 wait_event_lock_irq(conf->wait_for_stripe,
6123 atomic_read(&conf->active_stripes) == 0 &&
6124 atomic_read(&conf->active_aligned_reads) == 0,
6125 conf->device_lock);
6126 conf->quiesce = 1;
6127 spin_unlock_irq(&conf->device_lock);
6128 /* allow reshape to continue */
6129 wake_up(&conf->wait_for_overlap);
6130 break;
6132 case 0: /* re-enable writes */
6133 spin_lock_irq(&conf->device_lock);
6134 conf->quiesce = 0;
6135 wake_up(&conf->wait_for_stripe);
6136 wake_up(&conf->wait_for_overlap);
6137 spin_unlock_irq(&conf->device_lock);
6138 break;
6143 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6145 struct r0conf *raid0_conf = mddev->private;
6146 sector_t sectors;
6148 /* for raid0 takeover only one zone is supported */
6149 if (raid0_conf->nr_strip_zones > 1) {
6150 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6151 mdname(mddev));
6152 return ERR_PTR(-EINVAL);
6155 sectors = raid0_conf->strip_zone[0].zone_end;
6156 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6157 mddev->dev_sectors = sectors;
6158 mddev->new_level = level;
6159 mddev->new_layout = ALGORITHM_PARITY_N;
6160 mddev->new_chunk_sectors = mddev->chunk_sectors;
6161 mddev->raid_disks += 1;
6162 mddev->delta_disks = 1;
6163 /* make sure it will be not marked as dirty */
6164 mddev->recovery_cp = MaxSector;
6166 return setup_conf(mddev);
6170 static void *raid5_takeover_raid1(struct mddev *mddev)
6172 int chunksect;
6174 if (mddev->raid_disks != 2 ||
6175 mddev->degraded > 1)
6176 return ERR_PTR(-EINVAL);
6178 /* Should check if there are write-behind devices? */
6180 chunksect = 64*2; /* 64K by default */
6182 /* The array must be an exact multiple of chunksize */
6183 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6184 chunksect >>= 1;
6186 if ((chunksect<<9) < STRIPE_SIZE)
6187 /* array size does not allow a suitable chunk size */
6188 return ERR_PTR(-EINVAL);
6190 mddev->new_level = 5;
6191 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6192 mddev->new_chunk_sectors = chunksect;
6194 return setup_conf(mddev);
6197 static void *raid5_takeover_raid6(struct mddev *mddev)
6199 int new_layout;
6201 switch (mddev->layout) {
6202 case ALGORITHM_LEFT_ASYMMETRIC_6:
6203 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6204 break;
6205 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6206 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6207 break;
6208 case ALGORITHM_LEFT_SYMMETRIC_6:
6209 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6210 break;
6211 case ALGORITHM_RIGHT_SYMMETRIC_6:
6212 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6213 break;
6214 case ALGORITHM_PARITY_0_6:
6215 new_layout = ALGORITHM_PARITY_0;
6216 break;
6217 case ALGORITHM_PARITY_N:
6218 new_layout = ALGORITHM_PARITY_N;
6219 break;
6220 default:
6221 return ERR_PTR(-EINVAL);
6223 mddev->new_level = 5;
6224 mddev->new_layout = new_layout;
6225 mddev->delta_disks = -1;
6226 mddev->raid_disks -= 1;
6227 return setup_conf(mddev);
6231 static int raid5_check_reshape(struct mddev *mddev)
6233 /* For a 2-drive array, the layout and chunk size can be changed
6234 * immediately as not restriping is needed.
6235 * For larger arrays we record the new value - after validation
6236 * to be used by a reshape pass.
6238 struct r5conf *conf = mddev->private;
6239 int new_chunk = mddev->new_chunk_sectors;
6241 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6242 return -EINVAL;
6243 if (new_chunk > 0) {
6244 if (!is_power_of_2(new_chunk))
6245 return -EINVAL;
6246 if (new_chunk < (PAGE_SIZE>>9))
6247 return -EINVAL;
6248 if (mddev->array_sectors & (new_chunk-1))
6249 /* not factor of array size */
6250 return -EINVAL;
6253 /* They look valid */
6255 if (mddev->raid_disks == 2) {
6256 /* can make the change immediately */
6257 if (mddev->new_layout >= 0) {
6258 conf->algorithm = mddev->new_layout;
6259 mddev->layout = mddev->new_layout;
6261 if (new_chunk > 0) {
6262 conf->chunk_sectors = new_chunk ;
6263 mddev->chunk_sectors = new_chunk;
6265 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6266 md_wakeup_thread(mddev->thread);
6268 return check_reshape(mddev);
6271 static int raid6_check_reshape(struct mddev *mddev)
6273 int new_chunk = mddev->new_chunk_sectors;
6275 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6276 return -EINVAL;
6277 if (new_chunk > 0) {
6278 if (!is_power_of_2(new_chunk))
6279 return -EINVAL;
6280 if (new_chunk < (PAGE_SIZE >> 9))
6281 return -EINVAL;
6282 if (mddev->array_sectors & (new_chunk-1))
6283 /* not factor of array size */
6284 return -EINVAL;
6287 /* They look valid */
6288 return check_reshape(mddev);
6291 static void *raid5_takeover(struct mddev *mddev)
6293 /* raid5 can take over:
6294 * raid0 - if there is only one strip zone - make it a raid4 layout
6295 * raid1 - if there are two drives. We need to know the chunk size
6296 * raid4 - trivial - just use a raid4 layout.
6297 * raid6 - Providing it is a *_6 layout
6299 if (mddev->level == 0)
6300 return raid45_takeover_raid0(mddev, 5);
6301 if (mddev->level == 1)
6302 return raid5_takeover_raid1(mddev);
6303 if (mddev->level == 4) {
6304 mddev->new_layout = ALGORITHM_PARITY_N;
6305 mddev->new_level = 5;
6306 return setup_conf(mddev);
6308 if (mddev->level == 6)
6309 return raid5_takeover_raid6(mddev);
6311 return ERR_PTR(-EINVAL);
6314 static void *raid4_takeover(struct mddev *mddev)
6316 /* raid4 can take over:
6317 * raid0 - if there is only one strip zone
6318 * raid5 - if layout is right
6320 if (mddev->level == 0)
6321 return raid45_takeover_raid0(mddev, 4);
6322 if (mddev->level == 5 &&
6323 mddev->layout == ALGORITHM_PARITY_N) {
6324 mddev->new_layout = 0;
6325 mddev->new_level = 4;
6326 return setup_conf(mddev);
6328 return ERR_PTR(-EINVAL);
6331 static struct md_personality raid5_personality;
6333 static void *raid6_takeover(struct mddev *mddev)
6335 /* Currently can only take over a raid5. We map the
6336 * personality to an equivalent raid6 personality
6337 * with the Q block at the end.
6339 int new_layout;
6341 if (mddev->pers != &raid5_personality)
6342 return ERR_PTR(-EINVAL);
6343 if (mddev->degraded > 1)
6344 return ERR_PTR(-EINVAL);
6345 if (mddev->raid_disks > 253)
6346 return ERR_PTR(-EINVAL);
6347 if (mddev->raid_disks < 3)
6348 return ERR_PTR(-EINVAL);
6350 switch (mddev->layout) {
6351 case ALGORITHM_LEFT_ASYMMETRIC:
6352 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6353 break;
6354 case ALGORITHM_RIGHT_ASYMMETRIC:
6355 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6356 break;
6357 case ALGORITHM_LEFT_SYMMETRIC:
6358 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6359 break;
6360 case ALGORITHM_RIGHT_SYMMETRIC:
6361 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6362 break;
6363 case ALGORITHM_PARITY_0:
6364 new_layout = ALGORITHM_PARITY_0_6;
6365 break;
6366 case ALGORITHM_PARITY_N:
6367 new_layout = ALGORITHM_PARITY_N;
6368 break;
6369 default:
6370 return ERR_PTR(-EINVAL);
6372 mddev->new_level = 6;
6373 mddev->new_layout = new_layout;
6374 mddev->delta_disks = 1;
6375 mddev->raid_disks += 1;
6376 return setup_conf(mddev);
6380 static struct md_personality raid6_personality =
6382 .name = "raid6",
6383 .level = 6,
6384 .owner = THIS_MODULE,
6385 .make_request = make_request,
6386 .run = run,
6387 .stop = stop,
6388 .status = status,
6389 .error_handler = error,
6390 .hot_add_disk = raid5_add_disk,
6391 .hot_remove_disk= raid5_remove_disk,
6392 .spare_active = raid5_spare_active,
6393 .sync_request = sync_request,
6394 .resize = raid5_resize,
6395 .size = raid5_size,
6396 .check_reshape = raid6_check_reshape,
6397 .start_reshape = raid5_start_reshape,
6398 .finish_reshape = raid5_finish_reshape,
6399 .quiesce = raid5_quiesce,
6400 .takeover = raid6_takeover,
6402 static struct md_personality raid5_personality =
6404 .name = "raid5",
6405 .level = 5,
6406 .owner = THIS_MODULE,
6407 .make_request = make_request,
6408 .run = run,
6409 .stop = stop,
6410 .status = status,
6411 .error_handler = error,
6412 .hot_add_disk = raid5_add_disk,
6413 .hot_remove_disk= raid5_remove_disk,
6414 .spare_active = raid5_spare_active,
6415 .sync_request = sync_request,
6416 .resize = raid5_resize,
6417 .size = raid5_size,
6418 .check_reshape = raid5_check_reshape,
6419 .start_reshape = raid5_start_reshape,
6420 .finish_reshape = raid5_finish_reshape,
6421 .quiesce = raid5_quiesce,
6422 .takeover = raid5_takeover,
6425 static struct md_personality raid4_personality =
6427 .name = "raid4",
6428 .level = 4,
6429 .owner = THIS_MODULE,
6430 .make_request = make_request,
6431 .run = run,
6432 .stop = stop,
6433 .status = status,
6434 .error_handler = error,
6435 .hot_add_disk = raid5_add_disk,
6436 .hot_remove_disk= raid5_remove_disk,
6437 .spare_active = raid5_spare_active,
6438 .sync_request = sync_request,
6439 .resize = raid5_resize,
6440 .size = raid5_size,
6441 .check_reshape = raid5_check_reshape,
6442 .start_reshape = raid5_start_reshape,
6443 .finish_reshape = raid5_finish_reshape,
6444 .quiesce = raid5_quiesce,
6445 .takeover = raid4_takeover,
6448 static int __init raid5_init(void)
6450 register_md_personality(&raid6_personality);
6451 register_md_personality(&raid5_personality);
6452 register_md_personality(&raid4_personality);
6453 return 0;
6456 static void raid5_exit(void)
6458 unregister_md_personality(&raid6_personality);
6459 unregister_md_personality(&raid5_personality);
6460 unregister_md_personality(&raid4_personality);
6463 module_init(raid5_init);
6464 module_exit(raid5_exit);
6465 MODULE_LICENSE("GPL");
6466 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6467 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6468 MODULE_ALIAS("md-raid5");
6469 MODULE_ALIAS("md-raid4");
6470 MODULE_ALIAS("md-level-5");
6471 MODULE_ALIAS("md-level-4");
6472 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6473 MODULE_ALIAS("md-raid6");
6474 MODULE_ALIAS("md-level-6");
6476 /* This used to be two separate modules, they were: */
6477 MODULE_ALIAS("raid5");
6478 MODULE_ALIAS("raid6");