Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[linux-2.6/libata-dev.git] / arch / ia64 / pci / pci.c
blob60532ab2734684eafc036e5a5bc88194b7bae142
1 /*
2 * pci.c - Low-Level PCI Access in IA-64
4 * Derived from bios32.c of i386 tree.
6 * (c) Copyright 2002, 2005 Hewlett-Packard Development Company, L.P.
7 * David Mosberger-Tang <davidm@hpl.hp.com>
8 * Bjorn Helgaas <bjorn.helgaas@hp.com>
9 * Copyright (C) 2004 Silicon Graphics, Inc.
11 * Note: Above list of copyright holders is incomplete...
14 #include <linux/acpi.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/pci.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 #include <linux/bootmem.h>
23 #include <linux/export.h>
25 #include <asm/machvec.h>
26 #include <asm/page.h>
27 #include <asm/io.h>
28 #include <asm/sal.h>
29 #include <asm/smp.h>
30 #include <asm/irq.h>
31 #include <asm/hw_irq.h>
34 * Low-level SAL-based PCI configuration access functions. Note that SAL
35 * calls are already serialized (via sal_lock), so we don't need another
36 * synchronization mechanism here.
39 #define PCI_SAL_ADDRESS(seg, bus, devfn, reg) \
40 (((u64) seg << 24) | (bus << 16) | (devfn << 8) | (reg))
42 /* SAL 3.2 adds support for extended config space. */
44 #define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg) \
45 (((u64) seg << 28) | (bus << 20) | (devfn << 12) | (reg))
47 int raw_pci_read(unsigned int seg, unsigned int bus, unsigned int devfn,
48 int reg, int len, u32 *value)
50 u64 addr, data = 0;
51 int mode, result;
53 if (!value || (seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
54 return -EINVAL;
56 if ((seg | reg) <= 255) {
57 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
58 mode = 0;
59 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
60 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
61 mode = 1;
62 } else {
63 return -EINVAL;
66 result = ia64_sal_pci_config_read(addr, mode, len, &data);
67 if (result != 0)
68 return -EINVAL;
70 *value = (u32) data;
71 return 0;
74 int raw_pci_write(unsigned int seg, unsigned int bus, unsigned int devfn,
75 int reg, int len, u32 value)
77 u64 addr;
78 int mode, result;
80 if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))
81 return -EINVAL;
83 if ((seg | reg) <= 255) {
84 addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);
85 mode = 0;
86 } else if (sal_revision >= SAL_VERSION_CODE(3,2)) {
87 addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);
88 mode = 1;
89 } else {
90 return -EINVAL;
92 result = ia64_sal_pci_config_write(addr, mode, len, value);
93 if (result != 0)
94 return -EINVAL;
95 return 0;
98 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
99 int size, u32 *value)
101 return raw_pci_read(pci_domain_nr(bus), bus->number,
102 devfn, where, size, value);
105 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
106 int size, u32 value)
108 return raw_pci_write(pci_domain_nr(bus), bus->number,
109 devfn, where, size, value);
112 struct pci_ops pci_root_ops = {
113 .read = pci_read,
114 .write = pci_write,
117 /* Called by ACPI when it finds a new root bus. */
119 static struct pci_controller *alloc_pci_controller(int seg)
121 struct pci_controller *controller;
123 controller = kzalloc(sizeof(*controller), GFP_KERNEL);
124 if (!controller)
125 return NULL;
127 controller->segment = seg;
128 controller->node = -1;
129 return controller;
132 struct pci_root_info {
133 struct acpi_device *bridge;
134 struct pci_controller *controller;
135 struct list_head resources;
136 char *name;
139 static unsigned int
140 new_space (u64 phys_base, int sparse)
142 u64 mmio_base;
143 int i;
145 if (phys_base == 0)
146 return 0; /* legacy I/O port space */
148 mmio_base = (u64) ioremap(phys_base, 0);
149 for (i = 0; i < num_io_spaces; i++)
150 if (io_space[i].mmio_base == mmio_base &&
151 io_space[i].sparse == sparse)
152 return i;
154 if (num_io_spaces == MAX_IO_SPACES) {
155 printk(KERN_ERR "PCI: Too many IO port spaces "
156 "(MAX_IO_SPACES=%lu)\n", MAX_IO_SPACES);
157 return ~0;
160 i = num_io_spaces++;
161 io_space[i].mmio_base = mmio_base;
162 io_space[i].sparse = sparse;
164 return i;
167 static u64 add_io_space(struct pci_root_info *info,
168 struct acpi_resource_address64 *addr)
170 struct resource *resource;
171 char *name;
172 unsigned long base, min, max, base_port;
173 unsigned int sparse = 0, space_nr, len;
175 resource = kzalloc(sizeof(*resource), GFP_KERNEL);
176 if (!resource) {
177 printk(KERN_ERR "PCI: No memory for %s I/O port space\n",
178 info->name);
179 goto out;
182 len = strlen(info->name) + 32;
183 name = kzalloc(len, GFP_KERNEL);
184 if (!name) {
185 printk(KERN_ERR "PCI: No memory for %s I/O port space name\n",
186 info->name);
187 goto free_resource;
190 min = addr->minimum;
191 max = min + addr->address_length - 1;
192 if (addr->info.io.translation_type == ACPI_SPARSE_TRANSLATION)
193 sparse = 1;
195 space_nr = new_space(addr->translation_offset, sparse);
196 if (space_nr == ~0)
197 goto free_name;
199 base = __pa(io_space[space_nr].mmio_base);
200 base_port = IO_SPACE_BASE(space_nr);
201 snprintf(name, len, "%s I/O Ports %08lx-%08lx", info->name,
202 base_port + min, base_port + max);
205 * The SDM guarantees the legacy 0-64K space is sparse, but if the
206 * mapping is done by the processor (not the bridge), ACPI may not
207 * mark it as sparse.
209 if (space_nr == 0)
210 sparse = 1;
212 resource->name = name;
213 resource->flags = IORESOURCE_MEM;
214 resource->start = base + (sparse ? IO_SPACE_SPARSE_ENCODING(min) : min);
215 resource->end = base + (sparse ? IO_SPACE_SPARSE_ENCODING(max) : max);
216 insert_resource(&iomem_resource, resource);
218 return base_port;
220 free_name:
221 kfree(name);
222 free_resource:
223 kfree(resource);
224 out:
225 return ~0;
228 static acpi_status resource_to_window(struct acpi_resource *resource,
229 struct acpi_resource_address64 *addr)
231 acpi_status status;
234 * We're only interested in _CRS descriptors that are
235 * - address space descriptors for memory or I/O space
236 * - non-zero size
237 * - producers, i.e., the address space is routed downstream,
238 * not consumed by the bridge itself
240 status = acpi_resource_to_address64(resource, addr);
241 if (ACPI_SUCCESS(status) &&
242 (addr->resource_type == ACPI_MEMORY_RANGE ||
243 addr->resource_type == ACPI_IO_RANGE) &&
244 addr->address_length &&
245 addr->producer_consumer == ACPI_PRODUCER)
246 return AE_OK;
248 return AE_ERROR;
251 static acpi_status count_window(struct acpi_resource *resource, void *data)
253 unsigned int *windows = (unsigned int *) data;
254 struct acpi_resource_address64 addr;
255 acpi_status status;
257 status = resource_to_window(resource, &addr);
258 if (ACPI_SUCCESS(status))
259 (*windows)++;
261 return AE_OK;
264 static acpi_status add_window(struct acpi_resource *res, void *data)
266 struct pci_root_info *info = data;
267 struct pci_window *window;
268 struct acpi_resource_address64 addr;
269 acpi_status status;
270 unsigned long flags, offset = 0;
271 struct resource *root;
273 /* Return AE_OK for non-window resources to keep scanning for more */
274 status = resource_to_window(res, &addr);
275 if (!ACPI_SUCCESS(status))
276 return AE_OK;
278 if (addr.resource_type == ACPI_MEMORY_RANGE) {
279 flags = IORESOURCE_MEM;
280 root = &iomem_resource;
281 offset = addr.translation_offset;
282 } else if (addr.resource_type == ACPI_IO_RANGE) {
283 flags = IORESOURCE_IO;
284 root = &ioport_resource;
285 offset = add_io_space(info, &addr);
286 if (offset == ~0)
287 return AE_OK;
288 } else
289 return AE_OK;
291 window = &info->controller->window[info->controller->windows++];
292 window->resource.name = info->name;
293 window->resource.flags = flags;
294 window->resource.start = addr.minimum + offset;
295 window->resource.end = window->resource.start + addr.address_length - 1;
296 window->offset = offset;
298 if (insert_resource(root, &window->resource)) {
299 dev_err(&info->bridge->dev,
300 "can't allocate host bridge window %pR\n",
301 &window->resource);
302 } else {
303 if (offset)
304 dev_info(&info->bridge->dev, "host bridge window %pR "
305 "(PCI address [%#llx-%#llx])\n",
306 &window->resource,
307 window->resource.start - offset,
308 window->resource.end - offset);
309 else
310 dev_info(&info->bridge->dev,
311 "host bridge window %pR\n",
312 &window->resource);
315 /* HP's firmware has a hack to work around a Windows bug.
316 * Ignore these tiny memory ranges */
317 if (!((window->resource.flags & IORESOURCE_MEM) &&
318 (window->resource.end - window->resource.start < 16)))
319 pci_add_resource_offset(&info->resources, &window->resource,
320 window->offset);
322 return AE_OK;
325 struct pci_bus *pci_acpi_scan_root(struct acpi_pci_root *root)
327 struct acpi_device *device = root->device;
328 int domain = root->segment;
329 int bus = root->secondary.start;
330 struct pci_controller *controller;
331 unsigned int windows = 0;
332 struct pci_root_info info;
333 struct pci_bus *pbus;
334 char *name;
335 int pxm;
337 controller = alloc_pci_controller(domain);
338 if (!controller)
339 goto out1;
341 controller->acpi_handle = device->handle;
343 pxm = acpi_get_pxm(controller->acpi_handle);
344 #ifdef CONFIG_NUMA
345 if (pxm >= 0)
346 controller->node = pxm_to_node(pxm);
347 #endif
349 INIT_LIST_HEAD(&info.resources);
350 /* insert busn resource at first */
351 pci_add_resource(&info.resources, &root->secondary);
352 acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window,
353 &windows);
354 if (windows) {
355 controller->window =
356 kzalloc_node(sizeof(*controller->window) * windows,
357 GFP_KERNEL, controller->node);
358 if (!controller->window)
359 goto out2;
361 name = kmalloc(16, GFP_KERNEL);
362 if (!name)
363 goto out3;
365 sprintf(name, "PCI Bus %04x:%02x", domain, bus);
366 info.bridge = device;
367 info.controller = controller;
368 info.name = name;
369 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
370 add_window, &info);
373 * See arch/x86/pci/acpi.c.
374 * The desired pci bus might already be scanned in a quirk. We
375 * should handle the case here, but it appears that IA64 hasn't
376 * such quirk. So we just ignore the case now.
378 pbus = pci_create_root_bus(NULL, bus, &pci_root_ops, controller,
379 &info.resources);
380 if (!pbus) {
381 pci_free_resource_list(&info.resources);
382 return NULL;
385 pci_scan_child_bus(pbus);
386 return pbus;
388 out3:
389 kfree(controller->window);
390 out2:
391 kfree(controller);
392 out1:
393 return NULL;
396 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
398 struct pci_controller *controller = bridge->bus->sysdata;
400 ACPI_HANDLE_SET(&bridge->dev, controller->acpi_handle);
401 return 0;
404 static int is_valid_resource(struct pci_dev *dev, int idx)
406 unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
407 struct resource *devr = &dev->resource[idx], *busr;
409 if (!dev->bus)
410 return 0;
412 pci_bus_for_each_resource(dev->bus, busr, i) {
413 if (!busr || ((busr->flags ^ devr->flags) & type_mask))
414 continue;
415 if ((devr->start) && (devr->start >= busr->start) &&
416 (devr->end <= busr->end))
417 return 1;
419 return 0;
422 static void pcibios_fixup_resources(struct pci_dev *dev, int start, int limit)
424 int i;
426 for (i = start; i < limit; i++) {
427 if (!dev->resource[i].flags)
428 continue;
429 if ((is_valid_resource(dev, i)))
430 pci_claim_resource(dev, i);
434 void pcibios_fixup_device_resources(struct pci_dev *dev)
436 pcibios_fixup_resources(dev, 0, PCI_BRIDGE_RESOURCES);
438 EXPORT_SYMBOL_GPL(pcibios_fixup_device_resources);
440 static void pcibios_fixup_bridge_resources(struct pci_dev *dev)
442 pcibios_fixup_resources(dev, PCI_BRIDGE_RESOURCES, PCI_NUM_RESOURCES);
446 * Called after each bus is probed, but before its children are examined.
448 void pcibios_fixup_bus(struct pci_bus *b)
450 struct pci_dev *dev;
452 if (b->self) {
453 pci_read_bridge_bases(b);
454 pcibios_fixup_bridge_resources(b->self);
456 list_for_each_entry(dev, &b->devices, bus_list)
457 pcibios_fixup_device_resources(dev);
458 platform_pci_fixup_bus(b);
461 void pcibios_set_master (struct pci_dev *dev)
463 /* No special bus mastering setup handling */
467 pcibios_enable_device (struct pci_dev *dev, int mask)
469 int ret;
471 ret = pci_enable_resources(dev, mask);
472 if (ret < 0)
473 return ret;
475 if (!dev->msi_enabled)
476 return acpi_pci_irq_enable(dev);
477 return 0;
480 void
481 pcibios_disable_device (struct pci_dev *dev)
483 BUG_ON(atomic_read(&dev->enable_cnt));
484 if (!dev->msi_enabled)
485 acpi_pci_irq_disable(dev);
488 resource_size_t
489 pcibios_align_resource (void *data, const struct resource *res,
490 resource_size_t size, resource_size_t align)
492 return res->start;
496 pci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,
497 enum pci_mmap_state mmap_state, int write_combine)
499 unsigned long size = vma->vm_end - vma->vm_start;
500 pgprot_t prot;
503 * I/O space cannot be accessed via normal processor loads and
504 * stores on this platform.
506 if (mmap_state == pci_mmap_io)
508 * XXX we could relax this for I/O spaces for which ACPI
509 * indicates that the space is 1-to-1 mapped. But at the
510 * moment, we don't support multiple PCI address spaces and
511 * the legacy I/O space is not 1-to-1 mapped, so this is moot.
513 return -EINVAL;
515 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
516 return -EINVAL;
518 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
519 vma->vm_page_prot);
522 * If the user requested WC, the kernel uses UC or WC for this region,
523 * and the chipset supports WC, we can use WC. Otherwise, we have to
524 * use the same attribute the kernel uses.
526 if (write_combine &&
527 ((pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_UC ||
528 (pgprot_val(prot) & _PAGE_MA_MASK) == _PAGE_MA_WC) &&
529 efi_range_is_wc(vma->vm_start, vma->vm_end - vma->vm_start))
530 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
531 else
532 vma->vm_page_prot = prot;
534 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
535 vma->vm_end - vma->vm_start, vma->vm_page_prot))
536 return -EAGAIN;
538 return 0;
542 * ia64_pci_get_legacy_mem - generic legacy mem routine
543 * @bus: bus to get legacy memory base address for
545 * Find the base of legacy memory for @bus. This is typically the first
546 * megabyte of bus address space for @bus or is simply 0 on platforms whose
547 * chipsets support legacy I/O and memory routing. Returns the base address
548 * or an error pointer if an error occurred.
550 * This is the ia64 generic version of this routine. Other platforms
551 * are free to override it with a machine vector.
553 char *ia64_pci_get_legacy_mem(struct pci_bus *bus)
555 return (char *)__IA64_UNCACHED_OFFSET;
559 * pci_mmap_legacy_page_range - map legacy memory space to userland
560 * @bus: bus whose legacy space we're mapping
561 * @vma: vma passed in by mmap
563 * Map legacy memory space for this device back to userspace using a machine
564 * vector to get the base address.
567 pci_mmap_legacy_page_range(struct pci_bus *bus, struct vm_area_struct *vma,
568 enum pci_mmap_state mmap_state)
570 unsigned long size = vma->vm_end - vma->vm_start;
571 pgprot_t prot;
572 char *addr;
574 /* We only support mmap'ing of legacy memory space */
575 if (mmap_state != pci_mmap_mem)
576 return -ENOSYS;
579 * Avoid attribute aliasing. See Documentation/ia64/aliasing.txt
580 * for more details.
582 if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
583 return -EINVAL;
584 prot = phys_mem_access_prot(NULL, vma->vm_pgoff, size,
585 vma->vm_page_prot);
587 addr = pci_get_legacy_mem(bus);
588 if (IS_ERR(addr))
589 return PTR_ERR(addr);
591 vma->vm_pgoff += (unsigned long)addr >> PAGE_SHIFT;
592 vma->vm_page_prot = prot;
594 if (remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
595 size, vma->vm_page_prot))
596 return -EAGAIN;
598 return 0;
602 * ia64_pci_legacy_read - read from legacy I/O space
603 * @bus: bus to read
604 * @port: legacy port value
605 * @val: caller allocated storage for returned value
606 * @size: number of bytes to read
608 * Simply reads @size bytes from @port and puts the result in @val.
610 * Again, this (and the write routine) are generic versions that can be
611 * overridden by the platform. This is necessary on platforms that don't
612 * support legacy I/O routing or that hard fail on legacy I/O timeouts.
614 int ia64_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
616 int ret = size;
618 switch (size) {
619 case 1:
620 *val = inb(port);
621 break;
622 case 2:
623 *val = inw(port);
624 break;
625 case 4:
626 *val = inl(port);
627 break;
628 default:
629 ret = -EINVAL;
630 break;
633 return ret;
637 * ia64_pci_legacy_write - perform a legacy I/O write
638 * @bus: bus pointer
639 * @port: port to write
640 * @val: value to write
641 * @size: number of bytes to write from @val
643 * Simply writes @size bytes of @val to @port.
645 int ia64_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
647 int ret = size;
649 switch (size) {
650 case 1:
651 outb(val, port);
652 break;
653 case 2:
654 outw(val, port);
655 break;
656 case 4:
657 outl(val, port);
658 break;
659 default:
660 ret = -EINVAL;
661 break;
664 return ret;
668 * set_pci_cacheline_size - determine cacheline size for PCI devices
670 * We want to use the line-size of the outer-most cache. We assume
671 * that this line-size is the same for all CPUs.
673 * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info().
675 static void __init set_pci_dfl_cacheline_size(void)
677 unsigned long levels, unique_caches;
678 long status;
679 pal_cache_config_info_t cci;
681 status = ia64_pal_cache_summary(&levels, &unique_caches);
682 if (status != 0) {
683 printk(KERN_ERR "%s: ia64_pal_cache_summary() failed "
684 "(status=%ld)\n", __func__, status);
685 return;
688 status = ia64_pal_cache_config_info(levels - 1,
689 /* cache_type (data_or_unified)= */ 2, &cci);
690 if (status != 0) {
691 printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed "
692 "(status=%ld)\n", __func__, status);
693 return;
695 pci_dfl_cache_line_size = (1 << cci.pcci_line_size) / 4;
698 u64 ia64_dma_get_required_mask(struct device *dev)
700 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
701 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
702 u64 mask;
704 if (!high_totalram) {
705 /* convert to mask just covering totalram */
706 low_totalram = (1 << (fls(low_totalram) - 1));
707 low_totalram += low_totalram - 1;
708 mask = low_totalram;
709 } else {
710 high_totalram = (1 << (fls(high_totalram) - 1));
711 high_totalram += high_totalram - 1;
712 mask = (((u64)high_totalram) << 32) + 0xffffffff;
714 return mask;
716 EXPORT_SYMBOL_GPL(ia64_dma_get_required_mask);
718 u64 dma_get_required_mask(struct device *dev)
720 return platform_dma_get_required_mask(dev);
722 EXPORT_SYMBOL_GPL(dma_get_required_mask);
724 static int __init pcibios_init(void)
726 set_pci_dfl_cacheline_size();
727 return 0;
730 subsys_initcall(pcibios_init);