2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
24 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
26 struct memblock memblock __initdata_memblock
= {
27 .memory
.regions
= memblock_memory_init_regions
,
28 .memory
.cnt
= 1, /* empty dummy entry */
29 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
31 .reserved
.regions
= memblock_reserved_init_regions
,
32 .reserved
.cnt
= 1, /* empty dummy entry */
33 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
35 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
38 int memblock_debug __initdata_memblock
;
39 static int memblock_can_resize __initdata_memblock
;
41 /* inline so we don't get a warning when pr_debug is compiled out */
42 static inline const char *memblock_type_name(struct memblock_type
*type
)
44 if (type
== &memblock
.memory
)
46 else if (type
== &memblock
.reserved
)
52 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
55 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
59 * Address comparison utilities
61 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
62 phys_addr_t base2
, phys_addr_t size2
)
64 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
67 static long __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
68 phys_addr_t base
, phys_addr_t size
)
72 for (i
= 0; i
< type
->cnt
; i
++) {
73 phys_addr_t rgnbase
= type
->regions
[i
].base
;
74 phys_addr_t rgnsize
= type
->regions
[i
].size
;
75 if (memblock_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
79 return (i
< type
->cnt
) ? i
: -1;
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
90 * Find @size free area aligned to @align in the specified range and node.
93 * Found address on success, %0 on failure.
95 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t start
,
96 phys_addr_t end
, phys_addr_t size
,
97 phys_addr_t align
, int nid
)
99 phys_addr_t this_start
, this_end
, cand
;
102 /* align @size to avoid excessive fragmentation on reserved array */
103 size
= round_up(size
, align
);
106 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
107 end
= memblock
.current_limit
;
109 /* adjust @start to avoid underflow and allocating the first page */
110 start
= max3(start
, size
, (phys_addr_t
)PAGE_SIZE
);
111 end
= max(start
, end
);
113 for_each_free_mem_range_reverse(i
, nid
, &this_start
, &this_end
, NULL
) {
114 this_start
= clamp(this_start
, start
, end
);
115 this_end
= clamp(this_end
, start
, end
);
117 cand
= round_down(this_end
- size
, align
);
118 if (cand
>= this_start
)
125 * memblock_find_in_range - find free area in given range
126 * @start: start of candidate range
127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128 * @size: size of free area to find
129 * @align: alignment of free area to find
131 * Find @size free area aligned to @align in the specified range.
134 * Found address on success, %0 on failure.
136 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
137 phys_addr_t end
, phys_addr_t size
,
140 return memblock_find_in_range_node(start
, end
, size
, align
,
145 * Free memblock.reserved.regions
147 int __init_memblock
memblock_free_reserved_regions(void)
149 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
152 return memblock_free(__pa(memblock
.reserved
.regions
),
153 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
157 * Reserve memblock.reserved.regions
159 int __init_memblock
memblock_reserve_reserved_regions(void)
161 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
164 return memblock_reserve(__pa(memblock
.reserved
.regions
),
165 sizeof(struct memblock_region
) * memblock
.reserved
.max
);
168 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
170 type
->total_size
-= type
->regions
[r
].size
;
171 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
172 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
175 /* Special case for empty arrays */
176 if (type
->cnt
== 0) {
177 WARN_ON(type
->total_size
!= 0);
179 type
->regions
[0].base
= 0;
180 type
->regions
[0].size
= 0;
181 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
185 static int __init_memblock
memblock_double_array(struct memblock_type
*type
)
187 struct memblock_region
*new_array
, *old_array
;
188 phys_addr_t old_size
, new_size
, addr
;
189 int use_slab
= slab_is_available();
191 /* We don't allow resizing until we know about the reserved regions
192 * of memory that aren't suitable for allocation
194 if (!memblock_can_resize
)
197 /* Calculate new doubled size */
198 old_size
= type
->max
* sizeof(struct memblock_region
);
199 new_size
= old_size
<< 1;
201 /* Try to find some space for it.
203 * WARNING: We assume that either slab_is_available() and we use it or
204 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 * when bootmem is currently active (unless bootmem itself is implemented
206 * on top of MEMBLOCK which isn't the case yet)
208 * This should however not be an issue for now, as we currently only
209 * call into MEMBLOCK while it's still active, or much later when slab is
210 * active for memory hotplug operations
213 new_array
= kmalloc(new_size
, GFP_KERNEL
);
214 addr
= new_array
? __pa(new_array
) : 0;
216 addr
= memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE
, new_size
, sizeof(phys_addr_t
));
218 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
219 memblock_type_name(type
), type
->max
, type
->max
* 2);
222 new_array
= __va(addr
);
224 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
225 memblock_type_name(type
), type
->max
* 2, (u64
)addr
, (u64
)addr
+ new_size
- 1);
227 /* Found space, we now need to move the array over before
228 * we add the reserved region since it may be our reserved
229 * array itself that is full.
231 memcpy(new_array
, type
->regions
, old_size
);
232 memset(new_array
+ type
->max
, 0, old_size
);
233 old_array
= type
->regions
;
234 type
->regions
= new_array
;
237 /* If we use SLAB that's it, we are done */
241 /* Add the new reserved region now. Should not fail ! */
242 BUG_ON(memblock_reserve(addr
, new_size
));
244 /* If the array wasn't our static init one, then free it. We only do
245 * that before SLAB is available as later on, we don't know whether
246 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
249 if (old_array
!= memblock_memory_init_regions
&&
250 old_array
!= memblock_reserved_init_regions
)
251 memblock_free(__pa(old_array
), old_size
);
257 * memblock_merge_regions - merge neighboring compatible regions
258 * @type: memblock type to scan
260 * Scan @type and merge neighboring compatible regions.
262 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
266 /* cnt never goes below 1 */
267 while (i
< type
->cnt
- 1) {
268 struct memblock_region
*this = &type
->regions
[i
];
269 struct memblock_region
*next
= &type
->regions
[i
+ 1];
271 if (this->base
+ this->size
!= next
->base
||
272 memblock_get_region_node(this) !=
273 memblock_get_region_node(next
)) {
274 BUG_ON(this->base
+ this->size
> next
->base
);
279 this->size
+= next
->size
;
280 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 1)) * sizeof(*next
));
286 * memblock_insert_region - insert new memblock region
287 * @type: memblock type to insert into
288 * @idx: index for the insertion point
289 * @base: base address of the new region
290 * @size: size of the new region
292 * Insert new memblock region [@base,@base+@size) into @type at @idx.
293 * @type must already have extra room to accomodate the new region.
295 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
296 int idx
, phys_addr_t base
,
297 phys_addr_t size
, int nid
)
299 struct memblock_region
*rgn
= &type
->regions
[idx
];
301 BUG_ON(type
->cnt
>= type
->max
);
302 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
305 memblock_set_region_node(rgn
, nid
);
307 type
->total_size
+= size
;
311 * memblock_add_region - add new memblock region
312 * @type: memblock type to add new region into
313 * @base: base address of the new region
314 * @size: size of the new region
315 * @nid: nid of the new region
317 * Add new memblock region [@base,@base+@size) into @type. The new region
318 * is allowed to overlap with existing ones - overlaps don't affect already
319 * existing regions. @type is guaranteed to be minimal (all neighbouring
320 * compatible regions are merged) after the addition.
323 * 0 on success, -errno on failure.
325 static int __init_memblock
memblock_add_region(struct memblock_type
*type
,
326 phys_addr_t base
, phys_addr_t size
, int nid
)
329 phys_addr_t obase
= base
;
330 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
333 /* special case for empty array */
334 if (type
->regions
[0].size
== 0) {
335 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
336 type
->regions
[0].base
= base
;
337 type
->regions
[0].size
= size
;
338 memblock_set_region_node(&type
->regions
[0], nid
);
339 type
->total_size
= size
;
344 * The following is executed twice. Once with %false @insert and
345 * then with %true. The first counts the number of regions needed
346 * to accomodate the new area. The second actually inserts them.
351 for (i
= 0; i
< type
->cnt
; i
++) {
352 struct memblock_region
*rgn
= &type
->regions
[i
];
353 phys_addr_t rbase
= rgn
->base
;
354 phys_addr_t rend
= rbase
+ rgn
->size
;
361 * @rgn overlaps. If it separates the lower part of new
362 * area, insert that portion.
367 memblock_insert_region(type
, i
++, base
,
370 /* area below @rend is dealt with, forget about it */
371 base
= min(rend
, end
);
374 /* insert the remaining portion */
378 memblock_insert_region(type
, i
, base
, end
- base
, nid
);
382 * If this was the first round, resize array and repeat for actual
383 * insertions; otherwise, merge and return.
386 while (type
->cnt
+ nr_new
> type
->max
)
387 if (memblock_double_array(type
) < 0)
392 memblock_merge_regions(type
);
397 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
400 return memblock_add_region(&memblock
.memory
, base
, size
, nid
);
403 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
405 return memblock_add_region(&memblock
.memory
, base
, size
, MAX_NUMNODES
);
409 * memblock_isolate_range - isolate given range into disjoint memblocks
410 * @type: memblock type to isolate range for
411 * @base: base of range to isolate
412 * @size: size of range to isolate
413 * @start_rgn: out parameter for the start of isolated region
414 * @end_rgn: out parameter for the end of isolated region
416 * Walk @type and ensure that regions don't cross the boundaries defined by
417 * [@base,@base+@size). Crossing regions are split at the boundaries,
418 * which may create at most two more regions. The index of the first
419 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
422 * 0 on success, -errno on failure.
424 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
425 phys_addr_t base
, phys_addr_t size
,
426 int *start_rgn
, int *end_rgn
)
428 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
431 *start_rgn
= *end_rgn
= 0;
433 /* we'll create at most two more regions */
434 while (type
->cnt
+ 2 > type
->max
)
435 if (memblock_double_array(type
) < 0)
438 for (i
= 0; i
< type
->cnt
; i
++) {
439 struct memblock_region
*rgn
= &type
->regions
[i
];
440 phys_addr_t rbase
= rgn
->base
;
441 phys_addr_t rend
= rbase
+ rgn
->size
;
450 * @rgn intersects from below. Split and continue
451 * to process the next region - the new top half.
454 rgn
->size
-= base
- rbase
;
455 type
->total_size
-= base
- rbase
;
456 memblock_insert_region(type
, i
, rbase
, base
- rbase
,
457 memblock_get_region_node(rgn
));
458 } else if (rend
> end
) {
460 * @rgn intersects from above. Split and redo the
461 * current region - the new bottom half.
464 rgn
->size
-= end
- rbase
;
465 type
->total_size
-= end
- rbase
;
466 memblock_insert_region(type
, i
--, rbase
, end
- rbase
,
467 memblock_get_region_node(rgn
));
469 /* @rgn is fully contained, record it */
479 static int __init_memblock
__memblock_remove(struct memblock_type
*type
,
480 phys_addr_t base
, phys_addr_t size
)
482 int start_rgn
, end_rgn
;
485 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
489 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
490 memblock_remove_region(type
, i
);
494 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
496 return __memblock_remove(&memblock
.memory
, base
, size
);
499 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
501 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
502 (unsigned long long)base
,
503 (unsigned long long)base
+ size
,
506 return __memblock_remove(&memblock
.reserved
, base
, size
);
509 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
511 struct memblock_type
*_rgn
= &memblock
.reserved
;
513 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
514 (unsigned long long)base
,
515 (unsigned long long)base
+ size
,
519 return memblock_add_region(_rgn
, base
, size
, MAX_NUMNODES
);
523 * __next_free_mem_range - next function for for_each_free_mem_range()
524 * @idx: pointer to u64 loop variable
525 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
526 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
527 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
528 * @p_nid: ptr to int for nid of the range, can be %NULL
530 * Find the first free area from *@idx which matches @nid, fill the out
531 * parameters, and update *@idx for the next iteration. The lower 32bit of
532 * *@idx contains index into memory region and the upper 32bit indexes the
533 * areas before each reserved region. For example, if reserved regions
534 * look like the following,
536 * 0:[0-16), 1:[32-48), 2:[128-130)
538 * The upper 32bit indexes the following regions.
540 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
542 * As both region arrays are sorted, the function advances the two indices
543 * in lockstep and returns each intersection.
545 void __init_memblock
__next_free_mem_range(u64
*idx
, int nid
,
546 phys_addr_t
*out_start
,
547 phys_addr_t
*out_end
, int *out_nid
)
549 struct memblock_type
*mem
= &memblock
.memory
;
550 struct memblock_type
*rsv
= &memblock
.reserved
;
551 int mi
= *idx
& 0xffffffff;
554 for ( ; mi
< mem
->cnt
; mi
++) {
555 struct memblock_region
*m
= &mem
->regions
[mi
];
556 phys_addr_t m_start
= m
->base
;
557 phys_addr_t m_end
= m
->base
+ m
->size
;
559 /* only memory regions are associated with nodes, check it */
560 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
563 /* scan areas before each reservation for intersection */
564 for ( ; ri
< rsv
->cnt
+ 1; ri
++) {
565 struct memblock_region
*r
= &rsv
->regions
[ri
];
566 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
567 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
569 /* if ri advanced past mi, break out to advance mi */
570 if (r_start
>= m_end
)
572 /* if the two regions intersect, we're done */
573 if (m_start
< r_end
) {
575 *out_start
= max(m_start
, r_start
);
577 *out_end
= min(m_end
, r_end
);
579 *out_nid
= memblock_get_region_node(m
);
581 * The region which ends first is advanced
582 * for the next iteration.
588 *idx
= (u32
)mi
| (u64
)ri
<< 32;
594 /* signal end of iteration */
599 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
600 * @idx: pointer to u64 loop variable
601 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
602 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
603 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
604 * @p_nid: ptr to int for nid of the range, can be %NULL
606 * Reverse of __next_free_mem_range().
608 void __init_memblock
__next_free_mem_range_rev(u64
*idx
, int nid
,
609 phys_addr_t
*out_start
,
610 phys_addr_t
*out_end
, int *out_nid
)
612 struct memblock_type
*mem
= &memblock
.memory
;
613 struct memblock_type
*rsv
= &memblock
.reserved
;
614 int mi
= *idx
& 0xffffffff;
617 if (*idx
== (u64
)ULLONG_MAX
) {
622 for ( ; mi
>= 0; mi
--) {
623 struct memblock_region
*m
= &mem
->regions
[mi
];
624 phys_addr_t m_start
= m
->base
;
625 phys_addr_t m_end
= m
->base
+ m
->size
;
627 /* only memory regions are associated with nodes, check it */
628 if (nid
!= MAX_NUMNODES
&& nid
!= memblock_get_region_node(m
))
631 /* scan areas before each reservation for intersection */
632 for ( ; ri
>= 0; ri
--) {
633 struct memblock_region
*r
= &rsv
->regions
[ri
];
634 phys_addr_t r_start
= ri
? r
[-1].base
+ r
[-1].size
: 0;
635 phys_addr_t r_end
= ri
< rsv
->cnt
? r
->base
: ULLONG_MAX
;
637 /* if ri advanced past mi, break out to advance mi */
638 if (r_end
<= m_start
)
640 /* if the two regions intersect, we're done */
641 if (m_end
> r_start
) {
643 *out_start
= max(m_start
, r_start
);
645 *out_end
= min(m_end
, r_end
);
647 *out_nid
= memblock_get_region_node(m
);
649 if (m_start
>= r_start
)
653 *idx
= (u32
)mi
| (u64
)ri
<< 32;
662 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
664 * Common iterator interface used to define for_each_mem_range().
666 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
667 unsigned long *out_start_pfn
,
668 unsigned long *out_end_pfn
, int *out_nid
)
670 struct memblock_type
*type
= &memblock
.memory
;
671 struct memblock_region
*r
;
673 while (++*idx
< type
->cnt
) {
674 r
= &type
->regions
[*idx
];
676 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
678 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
681 if (*idx
>= type
->cnt
) {
687 *out_start_pfn
= PFN_UP(r
->base
);
689 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
695 * memblock_set_node - set node ID on memblock regions
696 * @base: base of area to set node ID for
697 * @size: size of area to set node ID for
698 * @nid: node ID to set
700 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
701 * Regions which cross the area boundaries are split as necessary.
704 * 0 on success, -errno on failure.
706 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
709 struct memblock_type
*type
= &memblock
.memory
;
710 int start_rgn
, end_rgn
;
713 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
717 for (i
= start_rgn
; i
< end_rgn
; i
++)
718 type
->regions
[i
].nid
= nid
;
720 memblock_merge_regions(type
);
723 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
725 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
726 phys_addr_t align
, phys_addr_t max_addr
,
731 found
= memblock_find_in_range_node(0, max_addr
, size
, align
, nid
);
732 if (found
&& !memblock_reserve(found
, size
))
738 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
740 return memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
743 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
745 return memblock_alloc_base_nid(size
, align
, max_addr
, MAX_NUMNODES
);
748 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
752 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
755 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
756 (unsigned long long) size
, (unsigned long long) max_addr
);
761 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
763 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
766 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
768 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
772 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
777 * Remaining API functions
780 phys_addr_t __init
memblock_phys_mem_size(void)
782 return memblock
.memory
.total_size
;
786 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
788 return memblock
.memory
.regions
[0].base
;
791 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
793 int idx
= memblock
.memory
.cnt
- 1;
795 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
798 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
801 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
806 /* find out max address */
807 for (i
= 0; i
< memblock
.memory
.cnt
; i
++) {
808 struct memblock_region
*r
= &memblock
.memory
.regions
[i
];
810 if (limit
<= r
->size
) {
811 max_addr
= r
->base
+ limit
;
817 /* truncate both memory and reserved regions */
818 __memblock_remove(&memblock
.memory
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
819 __memblock_remove(&memblock
.reserved
, max_addr
, (phys_addr_t
)ULLONG_MAX
);
822 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
824 unsigned int left
= 0, right
= type
->cnt
;
827 unsigned int mid
= (right
+ left
) / 2;
829 if (addr
< type
->regions
[mid
].base
)
831 else if (addr
>= (type
->regions
[mid
].base
+
832 type
->regions
[mid
].size
))
836 } while (left
< right
);
840 int __init
memblock_is_reserved(phys_addr_t addr
)
842 return memblock_search(&memblock
.reserved
, addr
) != -1;
845 int __init_memblock
memblock_is_memory(phys_addr_t addr
)
847 return memblock_search(&memblock
.memory
, addr
) != -1;
850 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
852 int idx
= memblock_search(&memblock
.memory
, base
);
853 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
857 return memblock
.memory
.regions
[idx
].base
<= base
&&
858 (memblock
.memory
.regions
[idx
].base
+
859 memblock
.memory
.regions
[idx
].size
) >= end
;
862 int __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
864 memblock_cap_size(base
, &size
);
865 return memblock_overlaps_region(&memblock
.reserved
, base
, size
) >= 0;
869 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
871 memblock
.current_limit
= limit
;
874 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
876 unsigned long long base
, size
;
879 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
881 for (i
= 0; i
< type
->cnt
; i
++) {
882 struct memblock_region
*rgn
= &type
->regions
[i
];
883 char nid_buf
[32] = "";
887 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
888 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
889 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
890 memblock_get_region_node(rgn
));
892 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
893 name
, i
, base
, base
+ size
- 1, size
, nid_buf
);
897 void __init_memblock
__memblock_dump_all(void)
899 pr_info("MEMBLOCK configuration:\n");
900 pr_info(" memory size = %#llx reserved size = %#llx\n",
901 (unsigned long long)memblock
.memory
.total_size
,
902 (unsigned long long)memblock
.reserved
.total_size
);
904 memblock_dump(&memblock
.memory
, "memory");
905 memblock_dump(&memblock
.reserved
, "reserved");
908 void __init
memblock_allow_resize(void)
910 memblock_can_resize
= 1;
913 static int __init
early_memblock(char *p
)
915 if (p
&& strstr(p
, "debug"))
919 early_param("memblock", early_memblock
);
921 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
923 static int memblock_debug_show(struct seq_file
*m
, void *private)
925 struct memblock_type
*type
= m
->private;
926 struct memblock_region
*reg
;
929 for (i
= 0; i
< type
->cnt
; i
++) {
930 reg
= &type
->regions
[i
];
931 seq_printf(m
, "%4d: ", i
);
932 if (sizeof(phys_addr_t
) == 4)
933 seq_printf(m
, "0x%08lx..0x%08lx\n",
934 (unsigned long)reg
->base
,
935 (unsigned long)(reg
->base
+ reg
->size
- 1));
937 seq_printf(m
, "0x%016llx..0x%016llx\n",
938 (unsigned long long)reg
->base
,
939 (unsigned long long)(reg
->base
+ reg
->size
- 1));
945 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
947 return single_open(file
, memblock_debug_show
, inode
->i_private
);
950 static const struct file_operations memblock_debug_fops
= {
951 .open
= memblock_debug_open
,
954 .release
= single_release
,
957 static int __init
memblock_init_debugfs(void)
959 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
962 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
963 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
967 __initcall(memblock_init_debugfs
);
969 #endif /* CONFIG_DEBUG_FS */