2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
51 #define DRV_NAME "skge"
52 #define DRV_VERSION "1.13"
54 #define DEFAULT_TX_RING_SIZE 128
55 #define DEFAULT_RX_RING_SIZE 512
56 #define MAX_TX_RING_SIZE 1024
57 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
58 #define MAX_RX_RING_SIZE 4096
59 #define RX_COPY_THRESHOLD 128
60 #define RX_BUF_SIZE 1536
61 #define PHY_RETRIES 1000
62 #define ETH_JUMBO_MTU 9000
63 #define TX_WATCHDOG (5 * HZ)
64 #define NAPI_WEIGHT 64
68 #define SKGE_EEPROM_MAGIC 0x9933aabb
71 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
72 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
73 MODULE_LICENSE("GPL");
74 MODULE_VERSION(DRV_VERSION
);
76 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
77 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
80 static int debug
= -1; /* defaults above */
81 module_param(debug
, int, 0);
82 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
84 static DEFINE_PCI_DEVICE_TABLE(skge_id_table
) = {
85 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
87 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
88 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
89 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
90 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
91 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
92 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
93 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
94 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
95 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
98 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
100 static int skge_up(struct net_device
*dev
);
101 static int skge_down(struct net_device
*dev
);
102 static void skge_phy_reset(struct skge_port
*skge
);
103 static void skge_tx_clean(struct net_device
*dev
);
104 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
105 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
106 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
107 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
108 static void yukon_init(struct skge_hw
*hw
, int port
);
109 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
110 static void genesis_link_up(struct skge_port
*skge
);
111 static void skge_set_multicast(struct net_device
*dev
);
113 /* Avoid conditionals by using array */
114 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
115 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
116 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
117 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
118 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
119 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
121 static int skge_get_regs_len(struct net_device
*dev
)
127 * Returns copy of whole control register region
128 * Note: skip RAM address register because accessing it will
131 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
134 const struct skge_port
*skge
= netdev_priv(dev
);
135 const void __iomem
*io
= skge
->hw
->regs
;
138 memset(p
, 0, regs
->len
);
139 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
141 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
142 regs
->len
- B3_RI_WTO_R1
);
145 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
146 static u32
wol_supported(const struct skge_hw
*hw
)
148 if (hw
->chip_id
== CHIP_ID_GENESIS
)
151 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
154 return WAKE_MAGIC
| WAKE_PHY
;
157 static void skge_wol_init(struct skge_port
*skge
)
159 struct skge_hw
*hw
= skge
->hw
;
160 int port
= skge
->port
;
163 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
164 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
167 skge_write8(hw
, B0_POWER_CTRL
,
168 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
170 /* WA code for COMA mode -- clear PHY reset */
171 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
172 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
173 u32 reg
= skge_read32(hw
, B2_GP_IO
);
176 skge_write32(hw
, B2_GP_IO
, reg
);
179 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
181 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
182 GPC_ANEG_1
| GPC_RST_SET
);
184 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
186 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
187 GPC_ANEG_1
| GPC_RST_CLR
);
189 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
191 /* Force to 10/100 skge_reset will re-enable on resume */
192 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
193 (PHY_AN_100FULL
| PHY_AN_100HALF
|
194 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
196 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
197 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
198 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
199 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
202 /* Set GMAC to no flow control and auto update for speed/duplex */
203 gma_write16(hw
, port
, GM_GP_CTRL
,
204 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
205 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
207 /* Set WOL address */
208 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
209 skge
->netdev
->dev_addr
, ETH_ALEN
);
211 /* Turn on appropriate WOL control bits */
212 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
214 if (skge
->wol
& WAKE_PHY
)
215 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
217 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
219 if (skge
->wol
& WAKE_MAGIC
)
220 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
222 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
224 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
225 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
228 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
231 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
233 struct skge_port
*skge
= netdev_priv(dev
);
235 wol
->supported
= wol_supported(skge
->hw
);
236 wol
->wolopts
= skge
->wol
;
239 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
241 struct skge_port
*skge
= netdev_priv(dev
);
242 struct skge_hw
*hw
= skge
->hw
;
244 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
245 !device_can_wakeup(&hw
->pdev
->dev
))
248 skge
->wol
= wol
->wolopts
;
250 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
255 /* Determine supported/advertised modes based on hardware.
256 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
258 static u32
skge_supported_modes(const struct skge_hw
*hw
)
263 supported
= (SUPPORTED_10baseT_Half
|
264 SUPPORTED_10baseT_Full
|
265 SUPPORTED_100baseT_Half
|
266 SUPPORTED_100baseT_Full
|
267 SUPPORTED_1000baseT_Half
|
268 SUPPORTED_1000baseT_Full
|
272 if (hw
->chip_id
== CHIP_ID_GENESIS
)
273 supported
&= ~(SUPPORTED_10baseT_Half
|
274 SUPPORTED_10baseT_Full
|
275 SUPPORTED_100baseT_Half
|
276 SUPPORTED_100baseT_Full
);
278 else if (hw
->chip_id
== CHIP_ID_YUKON
)
279 supported
&= ~SUPPORTED_1000baseT_Half
;
281 supported
= (SUPPORTED_1000baseT_Full
|
282 SUPPORTED_1000baseT_Half
|
289 static int skge_get_settings(struct net_device
*dev
,
290 struct ethtool_cmd
*ecmd
)
292 struct skge_port
*skge
= netdev_priv(dev
);
293 struct skge_hw
*hw
= skge
->hw
;
295 ecmd
->transceiver
= XCVR_INTERNAL
;
296 ecmd
->supported
= skge_supported_modes(hw
);
299 ecmd
->port
= PORT_TP
;
300 ecmd
->phy_address
= hw
->phy_addr
;
302 ecmd
->port
= PORT_FIBRE
;
304 ecmd
->advertising
= skge
->advertising
;
305 ecmd
->autoneg
= skge
->autoneg
;
306 ecmd
->speed
= skge
->speed
;
307 ecmd
->duplex
= skge
->duplex
;
311 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
313 struct skge_port
*skge
= netdev_priv(dev
);
314 const struct skge_hw
*hw
= skge
->hw
;
315 u32 supported
= skge_supported_modes(hw
);
318 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
319 ecmd
->advertising
= supported
;
325 switch (ecmd
->speed
) {
327 if (ecmd
->duplex
== DUPLEX_FULL
)
328 setting
= SUPPORTED_1000baseT_Full
;
329 else if (ecmd
->duplex
== DUPLEX_HALF
)
330 setting
= SUPPORTED_1000baseT_Half
;
335 if (ecmd
->duplex
== DUPLEX_FULL
)
336 setting
= SUPPORTED_100baseT_Full
;
337 else if (ecmd
->duplex
== DUPLEX_HALF
)
338 setting
= SUPPORTED_100baseT_Half
;
344 if (ecmd
->duplex
== DUPLEX_FULL
)
345 setting
= SUPPORTED_10baseT_Full
;
346 else if (ecmd
->duplex
== DUPLEX_HALF
)
347 setting
= SUPPORTED_10baseT_Half
;
355 if ((setting
& supported
) == 0)
358 skge
->speed
= ecmd
->speed
;
359 skge
->duplex
= ecmd
->duplex
;
362 skge
->autoneg
= ecmd
->autoneg
;
363 skge
->advertising
= ecmd
->advertising
;
365 if (netif_running(dev
)) {
377 static void skge_get_drvinfo(struct net_device
*dev
,
378 struct ethtool_drvinfo
*info
)
380 struct skge_port
*skge
= netdev_priv(dev
);
382 strcpy(info
->driver
, DRV_NAME
);
383 strcpy(info
->version
, DRV_VERSION
);
384 strcpy(info
->fw_version
, "N/A");
385 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
388 static const struct skge_stat
{
389 char name
[ETH_GSTRING_LEN
];
393 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
394 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
396 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
397 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
398 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
399 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
400 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
401 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
402 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
403 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
405 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
406 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
407 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
408 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
409 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
410 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
412 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
413 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
414 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
415 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
416 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
419 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
423 return ARRAY_SIZE(skge_stats
);
429 static void skge_get_ethtool_stats(struct net_device
*dev
,
430 struct ethtool_stats
*stats
, u64
*data
)
432 struct skge_port
*skge
= netdev_priv(dev
);
434 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
435 genesis_get_stats(skge
, data
);
437 yukon_get_stats(skge
, data
);
440 /* Use hardware MIB variables for critical path statistics and
441 * transmit feedback not reported at interrupt.
442 * Other errors are accounted for in interrupt handler.
444 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
446 struct skge_port
*skge
= netdev_priv(dev
);
447 u64 data
[ARRAY_SIZE(skge_stats
)];
449 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
450 genesis_get_stats(skge
, data
);
452 yukon_get_stats(skge
, data
);
454 dev
->stats
.tx_bytes
= data
[0];
455 dev
->stats
.rx_bytes
= data
[1];
456 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
457 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
458 dev
->stats
.multicast
= data
[3] + data
[5];
459 dev
->stats
.collisions
= data
[10];
460 dev
->stats
.tx_aborted_errors
= data
[12];
465 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
471 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
472 memcpy(data
+ i
* ETH_GSTRING_LEN
,
473 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
478 static void skge_get_ring_param(struct net_device
*dev
,
479 struct ethtool_ringparam
*p
)
481 struct skge_port
*skge
= netdev_priv(dev
);
483 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
484 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
485 p
->rx_mini_max_pending
= 0;
486 p
->rx_jumbo_max_pending
= 0;
488 p
->rx_pending
= skge
->rx_ring
.count
;
489 p
->tx_pending
= skge
->tx_ring
.count
;
490 p
->rx_mini_pending
= 0;
491 p
->rx_jumbo_pending
= 0;
494 static int skge_set_ring_param(struct net_device
*dev
,
495 struct ethtool_ringparam
*p
)
497 struct skge_port
*skge
= netdev_priv(dev
);
500 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
501 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
504 skge
->rx_ring
.count
= p
->rx_pending
;
505 skge
->tx_ring
.count
= p
->tx_pending
;
507 if (netif_running(dev
)) {
517 static u32
skge_get_msglevel(struct net_device
*netdev
)
519 struct skge_port
*skge
= netdev_priv(netdev
);
520 return skge
->msg_enable
;
523 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
525 struct skge_port
*skge
= netdev_priv(netdev
);
526 skge
->msg_enable
= value
;
529 static int skge_nway_reset(struct net_device
*dev
)
531 struct skge_port
*skge
= netdev_priv(dev
);
533 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
536 skge_phy_reset(skge
);
540 static int skge_set_sg(struct net_device
*dev
, u32 data
)
542 struct skge_port
*skge
= netdev_priv(dev
);
543 struct skge_hw
*hw
= skge
->hw
;
545 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
547 return ethtool_op_set_sg(dev
, data
);
550 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
552 struct skge_port
*skge
= netdev_priv(dev
);
553 struct skge_hw
*hw
= skge
->hw
;
555 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
558 return ethtool_op_set_tx_csum(dev
, data
);
561 static u32
skge_get_rx_csum(struct net_device
*dev
)
563 struct skge_port
*skge
= netdev_priv(dev
);
565 return skge
->rx_csum
;
568 /* Only Yukon supports checksum offload. */
569 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
571 struct skge_port
*skge
= netdev_priv(dev
);
573 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
576 skge
->rx_csum
= data
;
580 static void skge_get_pauseparam(struct net_device
*dev
,
581 struct ethtool_pauseparam
*ecmd
)
583 struct skge_port
*skge
= netdev_priv(dev
);
585 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
586 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
587 ecmd
->tx_pause
= (ecmd
->rx_pause
||
588 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
590 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
593 static int skge_set_pauseparam(struct net_device
*dev
,
594 struct ethtool_pauseparam
*ecmd
)
596 struct skge_port
*skge
= netdev_priv(dev
);
597 struct ethtool_pauseparam old
;
600 skge_get_pauseparam(dev
, &old
);
602 if (ecmd
->autoneg
!= old
.autoneg
)
603 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
605 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
606 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
607 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
608 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
609 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
610 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
612 skge
->flow_control
= FLOW_MODE_NONE
;
615 if (netif_running(dev
)) {
627 /* Chip internal frequency for clock calculations */
628 static inline u32
hwkhz(const struct skge_hw
*hw
)
630 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
633 /* Chip HZ to microseconds */
634 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
636 return (ticks
* 1000) / hwkhz(hw
);
639 /* Microseconds to chip HZ */
640 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
642 return hwkhz(hw
) * usec
/ 1000;
645 static int skge_get_coalesce(struct net_device
*dev
,
646 struct ethtool_coalesce
*ecmd
)
648 struct skge_port
*skge
= netdev_priv(dev
);
649 struct skge_hw
*hw
= skge
->hw
;
650 int port
= skge
->port
;
652 ecmd
->rx_coalesce_usecs
= 0;
653 ecmd
->tx_coalesce_usecs
= 0;
655 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
656 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
657 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
659 if (msk
& rxirqmask
[port
])
660 ecmd
->rx_coalesce_usecs
= delay
;
661 if (msk
& txirqmask
[port
])
662 ecmd
->tx_coalesce_usecs
= delay
;
668 /* Note: interrupt timer is per board, but can turn on/off per port */
669 static int skge_set_coalesce(struct net_device
*dev
,
670 struct ethtool_coalesce
*ecmd
)
672 struct skge_port
*skge
= netdev_priv(dev
);
673 struct skge_hw
*hw
= skge
->hw
;
674 int port
= skge
->port
;
675 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
678 if (ecmd
->rx_coalesce_usecs
== 0)
679 msk
&= ~rxirqmask
[port
];
680 else if (ecmd
->rx_coalesce_usecs
< 25 ||
681 ecmd
->rx_coalesce_usecs
> 33333)
684 msk
|= rxirqmask
[port
];
685 delay
= ecmd
->rx_coalesce_usecs
;
688 if (ecmd
->tx_coalesce_usecs
== 0)
689 msk
&= ~txirqmask
[port
];
690 else if (ecmd
->tx_coalesce_usecs
< 25 ||
691 ecmd
->tx_coalesce_usecs
> 33333)
694 msk
|= txirqmask
[port
];
695 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
698 skge_write32(hw
, B2_IRQM_MSK
, msk
);
700 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
702 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
703 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
708 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
709 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
711 struct skge_hw
*hw
= skge
->hw
;
712 int port
= skge
->port
;
714 spin_lock_bh(&hw
->phy_lock
);
715 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
718 if (hw
->phy_type
== SK_PHY_BCOM
)
719 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
721 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
722 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
724 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
725 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
726 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
730 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
731 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
733 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
734 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
739 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
740 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
741 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
743 if (hw
->phy_type
== SK_PHY_BCOM
)
744 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
746 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
747 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
748 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
755 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
756 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
757 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
758 PHY_M_LED_MO_10(MO_LED_OFF
) |
759 PHY_M_LED_MO_100(MO_LED_OFF
) |
760 PHY_M_LED_MO_1000(MO_LED_OFF
) |
761 PHY_M_LED_MO_RX(MO_LED_OFF
));
764 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
765 PHY_M_LED_PULS_DUR(PULS_170MS
) |
766 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
770 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
771 PHY_M_LED_MO_RX(MO_LED_OFF
) |
772 (skge
->speed
== SPEED_100
?
773 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
776 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
777 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
778 PHY_M_LED_MO_DUP(MO_LED_ON
) |
779 PHY_M_LED_MO_10(MO_LED_ON
) |
780 PHY_M_LED_MO_100(MO_LED_ON
) |
781 PHY_M_LED_MO_1000(MO_LED_ON
) |
782 PHY_M_LED_MO_RX(MO_LED_ON
));
785 spin_unlock_bh(&hw
->phy_lock
);
788 /* blink LED's for finding board */
789 static int skge_phys_id(struct net_device
*dev
, u32 data
)
791 struct skge_port
*skge
= netdev_priv(dev
);
793 enum led_mode mode
= LED_MODE_TST
;
795 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
796 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
801 skge_led(skge
, mode
);
802 mode
^= LED_MODE_TST
;
804 if (msleep_interruptible(BLINK_MS
))
809 /* back to regular LED state */
810 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
815 static int skge_get_eeprom_len(struct net_device
*dev
)
817 struct skge_port
*skge
= netdev_priv(dev
);
820 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
821 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
824 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
828 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
831 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
832 } while (!(offset
& PCI_VPD_ADDR_F
));
834 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
838 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
840 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
841 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
842 offset
| PCI_VPD_ADDR_F
);
845 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
846 } while (offset
& PCI_VPD_ADDR_F
);
849 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
852 struct skge_port
*skge
= netdev_priv(dev
);
853 struct pci_dev
*pdev
= skge
->hw
->pdev
;
854 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
855 int length
= eeprom
->len
;
856 u16 offset
= eeprom
->offset
;
861 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
864 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
865 int n
= min_t(int, length
, sizeof(val
));
867 memcpy(data
, &val
, n
);
875 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
878 struct skge_port
*skge
= netdev_priv(dev
);
879 struct pci_dev
*pdev
= skge
->hw
->pdev
;
880 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
881 int length
= eeprom
->len
;
882 u16 offset
= eeprom
->offset
;
887 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
892 int n
= min_t(int, length
, sizeof(val
));
895 val
= skge_vpd_read(pdev
, cap
, offset
);
896 memcpy(&val
, data
, n
);
898 skge_vpd_write(pdev
, cap
, offset
, val
);
907 static const struct ethtool_ops skge_ethtool_ops
= {
908 .get_settings
= skge_get_settings
,
909 .set_settings
= skge_set_settings
,
910 .get_drvinfo
= skge_get_drvinfo
,
911 .get_regs_len
= skge_get_regs_len
,
912 .get_regs
= skge_get_regs
,
913 .get_wol
= skge_get_wol
,
914 .set_wol
= skge_set_wol
,
915 .get_msglevel
= skge_get_msglevel
,
916 .set_msglevel
= skge_set_msglevel
,
917 .nway_reset
= skge_nway_reset
,
918 .get_link
= ethtool_op_get_link
,
919 .get_eeprom_len
= skge_get_eeprom_len
,
920 .get_eeprom
= skge_get_eeprom
,
921 .set_eeprom
= skge_set_eeprom
,
922 .get_ringparam
= skge_get_ring_param
,
923 .set_ringparam
= skge_set_ring_param
,
924 .get_pauseparam
= skge_get_pauseparam
,
925 .set_pauseparam
= skge_set_pauseparam
,
926 .get_coalesce
= skge_get_coalesce
,
927 .set_coalesce
= skge_set_coalesce
,
928 .set_sg
= skge_set_sg
,
929 .set_tx_csum
= skge_set_tx_csum
,
930 .get_rx_csum
= skge_get_rx_csum
,
931 .set_rx_csum
= skge_set_rx_csum
,
932 .get_strings
= skge_get_strings
,
933 .phys_id
= skge_phys_id
,
934 .get_sset_count
= skge_get_sset_count
,
935 .get_ethtool_stats
= skge_get_ethtool_stats
,
939 * Allocate ring elements and chain them together
940 * One-to-one association of board descriptors with ring elements
942 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
944 struct skge_tx_desc
*d
;
945 struct skge_element
*e
;
948 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
952 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
954 if (i
== ring
->count
- 1) {
955 e
->next
= ring
->start
;
956 d
->next_offset
= base
;
959 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
962 ring
->to_use
= ring
->to_clean
= ring
->start
;
967 /* Allocate and setup a new buffer for receiving */
968 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
969 struct sk_buff
*skb
, unsigned int bufsize
)
971 struct skge_rx_desc
*rd
= e
->desc
;
974 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
978 rd
->dma_hi
= map
>> 32;
980 rd
->csum1_start
= ETH_HLEN
;
981 rd
->csum2_start
= ETH_HLEN
;
987 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
988 dma_unmap_addr_set(e
, mapaddr
, map
);
989 dma_unmap_len_set(e
, maplen
, bufsize
);
992 /* Resume receiving using existing skb,
993 * Note: DMA address is not changed by chip.
994 * MTU not changed while receiver active.
996 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
998 struct skge_rx_desc
*rd
= e
->desc
;
1001 rd
->csum2_start
= ETH_HLEN
;
1005 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1009 /* Free all buffers in receive ring, assumes receiver stopped */
1010 static void skge_rx_clean(struct skge_port
*skge
)
1012 struct skge_hw
*hw
= skge
->hw
;
1013 struct skge_ring
*ring
= &skge
->rx_ring
;
1014 struct skge_element
*e
;
1018 struct skge_rx_desc
*rd
= e
->desc
;
1021 pci_unmap_single(hw
->pdev
,
1022 dma_unmap_addr(e
, mapaddr
),
1023 dma_unmap_len(e
, maplen
),
1024 PCI_DMA_FROMDEVICE
);
1025 dev_kfree_skb(e
->skb
);
1028 } while ((e
= e
->next
) != ring
->start
);
1032 /* Allocate buffers for receive ring
1033 * For receive: to_clean is next received frame.
1035 static int skge_rx_fill(struct net_device
*dev
)
1037 struct skge_port
*skge
= netdev_priv(dev
);
1038 struct skge_ring
*ring
= &skge
->rx_ring
;
1039 struct skge_element
*e
;
1043 struct sk_buff
*skb
;
1045 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1050 skb_reserve(skb
, NET_IP_ALIGN
);
1051 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1052 } while ((e
= e
->next
) != ring
->start
);
1054 ring
->to_clean
= ring
->start
;
1058 static const char *skge_pause(enum pause_status status
)
1061 case FLOW_STAT_NONE
:
1063 case FLOW_STAT_REM_SEND
:
1065 case FLOW_STAT_LOC_SEND
:
1067 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1070 return "indeterminated";
1075 static void skge_link_up(struct skge_port
*skge
)
1077 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1078 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1080 netif_carrier_on(skge
->netdev
);
1081 netif_wake_queue(skge
->netdev
);
1083 netif_info(skge
, link
, skge
->netdev
,
1084 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1086 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1087 skge_pause(skge
->flow_status
));
1090 static void skge_link_down(struct skge_port
*skge
)
1092 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1093 netif_carrier_off(skge
->netdev
);
1094 netif_stop_queue(skge
->netdev
);
1096 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1100 static void xm_link_down(struct skge_hw
*hw
, int port
)
1102 struct net_device
*dev
= hw
->dev
[port
];
1103 struct skge_port
*skge
= netdev_priv(dev
);
1105 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1107 if (netif_carrier_ok(dev
))
1108 skge_link_down(skge
);
1111 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1115 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1116 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1118 if (hw
->phy_type
== SK_PHY_XMAC
)
1121 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1122 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1129 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1134 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1137 if (__xm_phy_read(hw
, port
, reg
, &v
))
1138 pr_warning("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1142 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1146 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1147 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1148 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1155 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1156 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1157 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1164 static void genesis_init(struct skge_hw
*hw
)
1166 /* set blink source counter */
1167 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1168 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1170 /* configure mac arbiter */
1171 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1173 /* configure mac arbiter timeout values */
1174 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1175 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1176 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1177 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1179 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1180 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1181 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1182 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1184 /* configure packet arbiter timeout */
1185 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1186 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1187 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1188 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1189 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1192 static void genesis_reset(struct skge_hw
*hw
, int port
)
1194 static const u8 zero
[8] = { 0 };
1197 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1199 /* reset the statistics module */
1200 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1201 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1202 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1203 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1204 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1206 /* disable Broadcom PHY IRQ */
1207 if (hw
->phy_type
== SK_PHY_BCOM
)
1208 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1210 xm_outhash(hw
, port
, XM_HSM
, zero
);
1212 /* Flush TX and RX fifo */
1213 reg
= xm_read32(hw
, port
, XM_MODE
);
1214 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1215 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1219 /* Convert mode to MII values */
1220 static const u16 phy_pause_map
[] = {
1221 [FLOW_MODE_NONE
] = 0,
1222 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1223 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1224 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1227 /* special defines for FIBER (88E1011S only) */
1228 static const u16 fiber_pause_map
[] = {
1229 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1230 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1231 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1232 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1236 /* Check status of Broadcom phy link */
1237 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1239 struct net_device
*dev
= hw
->dev
[port
];
1240 struct skge_port
*skge
= netdev_priv(dev
);
1243 /* read twice because of latch */
1244 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1245 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1247 if ((status
& PHY_ST_LSYNC
) == 0) {
1248 xm_link_down(hw
, port
);
1252 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1255 if (!(status
& PHY_ST_AN_OVER
))
1258 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1259 if (lpa
& PHY_B_AN_RF
) {
1260 netdev_notice(dev
, "remote fault\n");
1264 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1266 /* Check Duplex mismatch */
1267 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1268 case PHY_B_RES_1000FD
:
1269 skge
->duplex
= DUPLEX_FULL
;
1271 case PHY_B_RES_1000HD
:
1272 skge
->duplex
= DUPLEX_HALF
;
1275 netdev_notice(dev
, "duplex mismatch\n");
1279 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1280 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1281 case PHY_B_AS_PAUSE_MSK
:
1282 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1285 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1288 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1291 skge
->flow_status
= FLOW_STAT_NONE
;
1293 skge
->speed
= SPEED_1000
;
1296 if (!netif_carrier_ok(dev
))
1297 genesis_link_up(skge
);
1300 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1301 * Phy on for 100 or 10Mbit operation
1303 static void bcom_phy_init(struct skge_port
*skge
)
1305 struct skge_hw
*hw
= skge
->hw
;
1306 int port
= skge
->port
;
1308 u16 id1
, r
, ext
, ctl
;
1310 /* magic workaround patterns for Broadcom */
1311 static const struct {
1315 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1316 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1317 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1318 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1320 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1321 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1324 /* read Id from external PHY (all have the same address) */
1325 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1327 /* Optimize MDIO transfer by suppressing preamble. */
1328 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1330 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1333 case PHY_BCOM_ID1_C0
:
1335 * Workaround BCOM Errata for the C0 type.
1336 * Write magic patterns to reserved registers.
1338 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1339 xm_phy_write(hw
, port
,
1340 C0hack
[i
].reg
, C0hack
[i
].val
);
1343 case PHY_BCOM_ID1_A1
:
1345 * Workaround BCOM Errata for the A1 type.
1346 * Write magic patterns to reserved registers.
1348 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1349 xm_phy_write(hw
, port
,
1350 A1hack
[i
].reg
, A1hack
[i
].val
);
1355 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1356 * Disable Power Management after reset.
1358 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1359 r
|= PHY_B_AC_DIS_PM
;
1360 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1363 xm_read16(hw
, port
, XM_ISRC
);
1365 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1366 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1368 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1370 * Workaround BCOM Errata #1 for the C5 type.
1371 * 1000Base-T Link Acquisition Failure in Slave Mode
1372 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1374 u16 adv
= PHY_B_1000C_RD
;
1375 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1376 adv
|= PHY_B_1000C_AHD
;
1377 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1378 adv
|= PHY_B_1000C_AFD
;
1379 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1381 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1383 if (skge
->duplex
== DUPLEX_FULL
)
1384 ctl
|= PHY_CT_DUP_MD
;
1385 /* Force to slave */
1386 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1389 /* Set autonegotiation pause parameters */
1390 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1391 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1393 /* Handle Jumbo frames */
1394 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1395 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1396 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1398 ext
|= PHY_B_PEC_HIGH_LA
;
1402 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1403 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1405 /* Use link status change interrupt */
1406 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1409 static void xm_phy_init(struct skge_port
*skge
)
1411 struct skge_hw
*hw
= skge
->hw
;
1412 int port
= skge
->port
;
1415 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1416 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1417 ctrl
|= PHY_X_AN_HD
;
1418 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1419 ctrl
|= PHY_X_AN_FD
;
1421 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1423 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1425 /* Restart Auto-negotiation */
1426 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1428 /* Set DuplexMode in Config register */
1429 if (skge
->duplex
== DUPLEX_FULL
)
1430 ctrl
|= PHY_CT_DUP_MD
;
1432 * Do NOT enable Auto-negotiation here. This would hold
1433 * the link down because no IDLEs are transmitted
1437 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1439 /* Poll PHY for status changes */
1440 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1443 static int xm_check_link(struct net_device
*dev
)
1445 struct skge_port
*skge
= netdev_priv(dev
);
1446 struct skge_hw
*hw
= skge
->hw
;
1447 int port
= skge
->port
;
1450 /* read twice because of latch */
1451 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1452 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1454 if ((status
& PHY_ST_LSYNC
) == 0) {
1455 xm_link_down(hw
, port
);
1459 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1462 if (!(status
& PHY_ST_AN_OVER
))
1465 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1466 if (lpa
& PHY_B_AN_RF
) {
1467 netdev_notice(dev
, "remote fault\n");
1471 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1473 /* Check Duplex mismatch */
1474 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1476 skge
->duplex
= DUPLEX_FULL
;
1479 skge
->duplex
= DUPLEX_HALF
;
1482 netdev_notice(dev
, "duplex mismatch\n");
1486 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1487 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1488 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1489 (lpa
& PHY_X_P_SYM_MD
))
1490 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1491 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1492 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1493 /* Enable PAUSE receive, disable PAUSE transmit */
1494 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1495 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1496 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1497 /* Disable PAUSE receive, enable PAUSE transmit */
1498 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1500 skge
->flow_status
= FLOW_STAT_NONE
;
1502 skge
->speed
= SPEED_1000
;
1505 if (!netif_carrier_ok(dev
))
1506 genesis_link_up(skge
);
1510 /* Poll to check for link coming up.
1512 * Since internal PHY is wired to a level triggered pin, can't
1513 * get an interrupt when carrier is detected, need to poll for
1516 static void xm_link_timer(unsigned long arg
)
1518 struct skge_port
*skge
= (struct skge_port
*) arg
;
1519 struct net_device
*dev
= skge
->netdev
;
1520 struct skge_hw
*hw
= skge
->hw
;
1521 int port
= skge
->port
;
1523 unsigned long flags
;
1525 if (!netif_running(dev
))
1528 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1531 * Verify that the link by checking GPIO register three times.
1532 * This pin has the signal from the link_sync pin connected to it.
1534 for (i
= 0; i
< 3; i
++) {
1535 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1539 /* Re-enable interrupt to detect link down */
1540 if (xm_check_link(dev
)) {
1541 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1542 msk
&= ~XM_IS_INP_ASS
;
1543 xm_write16(hw
, port
, XM_IMSK
, msk
);
1544 xm_read16(hw
, port
, XM_ISRC
);
1547 mod_timer(&skge
->link_timer
,
1548 round_jiffies(jiffies
+ LINK_HZ
));
1550 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1553 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1555 struct net_device
*dev
= hw
->dev
[port
];
1556 struct skge_port
*skge
= netdev_priv(dev
);
1557 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1560 static const u8 zero
[6] = { 0 };
1562 for (i
= 0; i
< 10; i
++) {
1563 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1565 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1570 netdev_warn(dev
, "genesis reset failed\n");
1573 /* Unreset the XMAC. */
1574 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1577 * Perform additional initialization for external PHYs,
1578 * namely for the 1000baseTX cards that use the XMAC's
1581 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1582 /* Take external Phy out of reset */
1583 r
= skge_read32(hw
, B2_GP_IO
);
1585 r
|= GP_DIR_0
|GP_IO_0
;
1587 r
|= GP_DIR_2
|GP_IO_2
;
1589 skge_write32(hw
, B2_GP_IO
, r
);
1591 /* Enable GMII interface */
1592 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1596 switch (hw
->phy_type
) {
1601 bcom_phy_init(skge
);
1602 bcom_check_link(hw
, port
);
1605 /* Set Station Address */
1606 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1608 /* We don't use match addresses so clear */
1609 for (i
= 1; i
< 16; i
++)
1610 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1612 /* Clear MIB counters */
1613 xm_write16(hw
, port
, XM_STAT_CMD
,
1614 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1615 /* Clear two times according to Errata #3 */
1616 xm_write16(hw
, port
, XM_STAT_CMD
,
1617 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1619 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1620 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1622 /* We don't need the FCS appended to the packet. */
1623 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1625 r
|= XM_RX_BIG_PK_OK
;
1627 if (skge
->duplex
== DUPLEX_HALF
) {
1629 * If in manual half duplex mode the other side might be in
1630 * full duplex mode, so ignore if a carrier extension is not seen
1631 * on frames received
1633 r
|= XM_RX_DIS_CEXT
;
1635 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1637 /* We want short frames padded to 60 bytes. */
1638 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1640 /* Increase threshold for jumbo frames on dual port */
1641 if (hw
->ports
> 1 && jumbo
)
1642 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1644 xm_write16(hw
, port
, XM_TX_THR
, 512);
1647 * Enable the reception of all error frames. This is is
1648 * a necessary evil due to the design of the XMAC. The
1649 * XMAC's receive FIFO is only 8K in size, however jumbo
1650 * frames can be up to 9000 bytes in length. When bad
1651 * frame filtering is enabled, the XMAC's RX FIFO operates
1652 * in 'store and forward' mode. For this to work, the
1653 * entire frame has to fit into the FIFO, but that means
1654 * that jumbo frames larger than 8192 bytes will be
1655 * truncated. Disabling all bad frame filtering causes
1656 * the RX FIFO to operate in streaming mode, in which
1657 * case the XMAC will start transferring frames out of the
1658 * RX FIFO as soon as the FIFO threshold is reached.
1660 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1664 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1665 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1666 * and 'Octets Rx OK Hi Cnt Ov'.
1668 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1671 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1672 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1673 * and 'Octets Tx OK Hi Cnt Ov'.
1675 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1677 /* Configure MAC arbiter */
1678 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1680 /* configure timeout values */
1681 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1682 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1683 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1684 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1686 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1687 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1688 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1689 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1691 /* Configure Rx MAC FIFO */
1692 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1693 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1694 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1696 /* Configure Tx MAC FIFO */
1697 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1698 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1699 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1702 /* Enable frame flushing if jumbo frames used */
1703 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1705 /* enable timeout timers if normal frames */
1706 skge_write16(hw
, B3_PA_CTRL
,
1707 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1711 static void genesis_stop(struct skge_port
*skge
)
1713 struct skge_hw
*hw
= skge
->hw
;
1714 int port
= skge
->port
;
1715 unsigned retries
= 1000;
1718 /* Disable Tx and Rx */
1719 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1720 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1721 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1723 genesis_reset(hw
, port
);
1725 /* Clear Tx packet arbiter timeout IRQ */
1726 skge_write16(hw
, B3_PA_CTRL
,
1727 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1730 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1732 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1733 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1735 } while (--retries
> 0);
1737 /* For external PHYs there must be special handling */
1738 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1739 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1747 skge_write32(hw
, B2_GP_IO
, reg
);
1748 skge_read32(hw
, B2_GP_IO
);
1751 xm_write16(hw
, port
, XM_MMU_CMD
,
1752 xm_read16(hw
, port
, XM_MMU_CMD
)
1753 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1755 xm_read16(hw
, port
, XM_MMU_CMD
);
1759 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1761 struct skge_hw
*hw
= skge
->hw
;
1762 int port
= skge
->port
;
1764 unsigned long timeout
= jiffies
+ HZ
;
1766 xm_write16(hw
, port
,
1767 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1769 /* wait for update to complete */
1770 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1771 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1772 if (time_after(jiffies
, timeout
))
1777 /* special case for 64 bit octet counter */
1778 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1779 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1780 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1781 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1783 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1784 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1787 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1789 struct net_device
*dev
= hw
->dev
[port
];
1790 struct skge_port
*skge
= netdev_priv(dev
);
1791 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1793 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1794 "mac interrupt status 0x%x\n", status
);
1796 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1797 xm_link_down(hw
, port
);
1798 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1801 if (status
& XM_IS_TXF_UR
) {
1802 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1803 ++dev
->stats
.tx_fifo_errors
;
1807 static void genesis_link_up(struct skge_port
*skge
)
1809 struct skge_hw
*hw
= skge
->hw
;
1810 int port
= skge
->port
;
1814 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1817 * enabling pause frame reception is required for 1000BT
1818 * because the XMAC is not reset if the link is going down
1820 if (skge
->flow_status
== FLOW_STAT_NONE
||
1821 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1822 /* Disable Pause Frame Reception */
1823 cmd
|= XM_MMU_IGN_PF
;
1825 /* Enable Pause Frame Reception */
1826 cmd
&= ~XM_MMU_IGN_PF
;
1828 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1830 mode
= xm_read32(hw
, port
, XM_MODE
);
1831 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1832 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1834 * Configure Pause Frame Generation
1835 * Use internal and external Pause Frame Generation.
1836 * Sending pause frames is edge triggered.
1837 * Send a Pause frame with the maximum pause time if
1838 * internal oder external FIFO full condition occurs.
1839 * Send a zero pause time frame to re-start transmission.
1841 /* XM_PAUSE_DA = '010000C28001' (default) */
1842 /* XM_MAC_PTIME = 0xffff (maximum) */
1843 /* remember this value is defined in big endian (!) */
1844 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1846 mode
|= XM_PAUSE_MODE
;
1847 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1850 * disable pause frame generation is required for 1000BT
1851 * because the XMAC is not reset if the link is going down
1853 /* Disable Pause Mode in Mode Register */
1854 mode
&= ~XM_PAUSE_MODE
;
1856 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1859 xm_write32(hw
, port
, XM_MODE
, mode
);
1861 /* Turn on detection of Tx underrun */
1862 msk
= xm_read16(hw
, port
, XM_IMSK
);
1863 msk
&= ~XM_IS_TXF_UR
;
1864 xm_write16(hw
, port
, XM_IMSK
, msk
);
1866 xm_read16(hw
, port
, XM_ISRC
);
1868 /* get MMU Command Reg. */
1869 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1870 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1871 cmd
|= XM_MMU_GMII_FD
;
1874 * Workaround BCOM Errata (#10523) for all BCom Phys
1875 * Enable Power Management after link up
1877 if (hw
->phy_type
== SK_PHY_BCOM
) {
1878 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1879 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1880 & ~PHY_B_AC_DIS_PM
);
1881 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1885 xm_write16(hw
, port
, XM_MMU_CMD
,
1886 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1891 static inline void bcom_phy_intr(struct skge_port
*skge
)
1893 struct skge_hw
*hw
= skge
->hw
;
1894 int port
= skge
->port
;
1897 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1898 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1899 "phy interrupt status 0x%x\n", isrc
);
1901 if (isrc
& PHY_B_IS_PSE
)
1902 pr_err("%s: uncorrectable pair swap error\n",
1903 hw
->dev
[port
]->name
);
1905 /* Workaround BCom Errata:
1906 * enable and disable loopback mode if "NO HCD" occurs.
1908 if (isrc
& PHY_B_IS_NO_HDCL
) {
1909 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1910 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1911 ctrl
| PHY_CT_LOOP
);
1912 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1913 ctrl
& ~PHY_CT_LOOP
);
1916 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1917 bcom_check_link(hw
, port
);
1921 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1925 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1926 gma_write16(hw
, port
, GM_SMI_CTRL
,
1927 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1928 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1931 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1935 pr_warning("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1939 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1943 gma_write16(hw
, port
, GM_SMI_CTRL
,
1944 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1945 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1947 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1949 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1955 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1959 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1962 if (__gm_phy_read(hw
, port
, reg
, &v
))
1963 pr_warning("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1967 /* Marvell Phy Initialization */
1968 static void yukon_init(struct skge_hw
*hw
, int port
)
1970 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1971 u16 ctrl
, ct1000
, adv
;
1973 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1974 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1976 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1977 PHY_M_EC_MAC_S_MSK
);
1978 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1980 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1982 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1985 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1986 if (skge
->autoneg
== AUTONEG_DISABLE
)
1987 ctrl
&= ~PHY_CT_ANE
;
1989 ctrl
|= PHY_CT_RESET
;
1990 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1996 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1998 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1999 ct1000
|= PHY_M_1000C_AFD
;
2000 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2001 ct1000
|= PHY_M_1000C_AHD
;
2002 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2003 adv
|= PHY_M_AN_100_FD
;
2004 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2005 adv
|= PHY_M_AN_100_HD
;
2006 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2007 adv
|= PHY_M_AN_10_FD
;
2008 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2009 adv
|= PHY_M_AN_10_HD
;
2011 /* Set Flow-control capabilities */
2012 adv
|= phy_pause_map
[skge
->flow_control
];
2014 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2015 adv
|= PHY_M_AN_1000X_AFD
;
2016 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2017 adv
|= PHY_M_AN_1000X_AHD
;
2019 adv
|= fiber_pause_map
[skge
->flow_control
];
2022 /* Restart Auto-negotiation */
2023 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2025 /* forced speed/duplex settings */
2026 ct1000
= PHY_M_1000C_MSE
;
2028 if (skge
->duplex
== DUPLEX_FULL
)
2029 ctrl
|= PHY_CT_DUP_MD
;
2031 switch (skge
->speed
) {
2033 ctrl
|= PHY_CT_SP1000
;
2036 ctrl
|= PHY_CT_SP100
;
2040 ctrl
|= PHY_CT_RESET
;
2043 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2045 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2046 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2048 /* Enable phy interrupt on autonegotiation complete (or link up) */
2049 if (skge
->autoneg
== AUTONEG_ENABLE
)
2050 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2052 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2055 static void yukon_reset(struct skge_hw
*hw
, int port
)
2057 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2058 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2059 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2060 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2061 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2063 gma_write16(hw
, port
, GM_RX_CTRL
,
2064 gma_read16(hw
, port
, GM_RX_CTRL
)
2065 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2068 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2069 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2074 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2077 reg
= skge_read32(hw
, B2_FAR
);
2078 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2079 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2080 skge_write32(hw
, B2_FAR
, reg
);
2084 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2086 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2089 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2091 /* WA code for COMA mode -- set PHY reset */
2092 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2093 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2094 reg
= skge_read32(hw
, B2_GP_IO
);
2095 reg
|= GP_DIR_9
| GP_IO_9
;
2096 skge_write32(hw
, B2_GP_IO
, reg
);
2100 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2101 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2103 /* WA code for COMA mode -- clear PHY reset */
2104 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2105 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2106 reg
= skge_read32(hw
, B2_GP_IO
);
2109 skge_write32(hw
, B2_GP_IO
, reg
);
2112 /* Set hardware config mode */
2113 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2114 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2115 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2117 /* Clear GMC reset */
2118 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2119 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2120 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2122 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2123 reg
= GM_GPCR_AU_ALL_DIS
;
2124 gma_write16(hw
, port
, GM_GP_CTRL
,
2125 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2127 switch (skge
->speed
) {
2129 reg
&= ~GM_GPCR_SPEED_100
;
2130 reg
|= GM_GPCR_SPEED_1000
;
2133 reg
&= ~GM_GPCR_SPEED_1000
;
2134 reg
|= GM_GPCR_SPEED_100
;
2137 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2141 if (skge
->duplex
== DUPLEX_FULL
)
2142 reg
|= GM_GPCR_DUP_FULL
;
2144 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2146 switch (skge
->flow_control
) {
2147 case FLOW_MODE_NONE
:
2148 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2149 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2151 case FLOW_MODE_LOC_SEND
:
2152 /* disable Rx flow-control */
2153 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2155 case FLOW_MODE_SYMMETRIC
:
2156 case FLOW_MODE_SYM_OR_REM
:
2157 /* enable Tx & Rx flow-control */
2161 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2162 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2164 yukon_init(hw
, port
);
2167 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2168 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2170 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2171 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2172 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2174 /* transmit control */
2175 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2177 /* receive control reg: unicast + multicast + no FCS */
2178 gma_write16(hw
, port
, GM_RX_CTRL
,
2179 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2181 /* transmit flow control */
2182 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2184 /* transmit parameter */
2185 gma_write16(hw
, port
, GM_TX_PARAM
,
2186 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2187 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2188 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2190 /* configure the Serial Mode Register */
2191 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2193 | IPG_DATA_VAL(IPG_DATA_DEF
);
2195 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2196 reg
|= GM_SMOD_JUMBO_ENA
;
2198 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2200 /* physical address: used for pause frames */
2201 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2202 /* virtual address for data */
2203 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2205 /* enable interrupt mask for counter overflows */
2206 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2207 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2208 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2210 /* Initialize Mac Fifo */
2212 /* Configure Rx MAC FIFO */
2213 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2214 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2216 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2217 if (is_yukon_lite_a0(hw
))
2218 reg
&= ~GMF_RX_F_FL_ON
;
2220 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2221 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2223 * because Pause Packet Truncation in GMAC is not working
2224 * we have to increase the Flush Threshold to 64 bytes
2225 * in order to flush pause packets in Rx FIFO on Yukon-1
2227 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2229 /* Configure Tx MAC FIFO */
2230 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2231 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2234 /* Go into power down mode */
2235 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2239 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2240 ctrl
|= PHY_M_PC_POL_R_DIS
;
2241 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2243 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2244 ctrl
|= PHY_CT_RESET
;
2245 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2247 /* switch IEEE compatible power down mode on */
2248 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2249 ctrl
|= PHY_CT_PDOWN
;
2250 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2253 static void yukon_stop(struct skge_port
*skge
)
2255 struct skge_hw
*hw
= skge
->hw
;
2256 int port
= skge
->port
;
2258 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2259 yukon_reset(hw
, port
);
2261 gma_write16(hw
, port
, GM_GP_CTRL
,
2262 gma_read16(hw
, port
, GM_GP_CTRL
)
2263 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2264 gma_read16(hw
, port
, GM_GP_CTRL
);
2266 yukon_suspend(hw
, port
);
2268 /* set GPHY Control reset */
2269 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2270 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2273 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2275 struct skge_hw
*hw
= skge
->hw
;
2276 int port
= skge
->port
;
2279 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2280 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2281 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2282 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2284 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2285 data
[i
] = gma_read32(hw
, port
,
2286 skge_stats
[i
].gma_offset
);
2289 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2291 struct net_device
*dev
= hw
->dev
[port
];
2292 struct skge_port
*skge
= netdev_priv(dev
);
2293 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2295 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2296 "mac interrupt status 0x%x\n", status
);
2298 if (status
& GM_IS_RX_FF_OR
) {
2299 ++dev
->stats
.rx_fifo_errors
;
2300 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2303 if (status
& GM_IS_TX_FF_UR
) {
2304 ++dev
->stats
.tx_fifo_errors
;
2305 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2310 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2312 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2313 case PHY_M_PS_SPEED_1000
:
2315 case PHY_M_PS_SPEED_100
:
2322 static void yukon_link_up(struct skge_port
*skge
)
2324 struct skge_hw
*hw
= skge
->hw
;
2325 int port
= skge
->port
;
2328 /* Enable Transmit FIFO Underrun */
2329 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2331 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2332 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2333 reg
|= GM_GPCR_DUP_FULL
;
2336 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2337 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2339 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2343 static void yukon_link_down(struct skge_port
*skge
)
2345 struct skge_hw
*hw
= skge
->hw
;
2346 int port
= skge
->port
;
2349 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2350 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2351 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2353 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2354 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2355 ctrl
|= PHY_M_AN_ASP
;
2356 /* restore Asymmetric Pause bit */
2357 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2360 skge_link_down(skge
);
2362 yukon_init(hw
, port
);
2365 static void yukon_phy_intr(struct skge_port
*skge
)
2367 struct skge_hw
*hw
= skge
->hw
;
2368 int port
= skge
->port
;
2369 const char *reason
= NULL
;
2370 u16 istatus
, phystat
;
2372 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2373 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2375 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2376 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2378 if (istatus
& PHY_M_IS_AN_COMPL
) {
2379 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2381 reason
= "remote fault";
2385 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2386 reason
= "master/slave fault";
2390 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2391 reason
= "speed/duplex";
2395 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2396 ? DUPLEX_FULL
: DUPLEX_HALF
;
2397 skge
->speed
= yukon_speed(hw
, phystat
);
2399 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2400 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2401 case PHY_M_PS_PAUSE_MSK
:
2402 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2404 case PHY_M_PS_RX_P_EN
:
2405 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2407 case PHY_M_PS_TX_P_EN
:
2408 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2411 skge
->flow_status
= FLOW_STAT_NONE
;
2414 if (skge
->flow_status
== FLOW_STAT_NONE
||
2415 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2416 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2418 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2419 yukon_link_up(skge
);
2423 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2424 skge
->speed
= yukon_speed(hw
, phystat
);
2426 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2427 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2428 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2429 if (phystat
& PHY_M_PS_LINK_UP
)
2430 yukon_link_up(skge
);
2432 yukon_link_down(skge
);
2436 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2438 /* XXX restart autonegotiation? */
2441 static void skge_phy_reset(struct skge_port
*skge
)
2443 struct skge_hw
*hw
= skge
->hw
;
2444 int port
= skge
->port
;
2445 struct net_device
*dev
= hw
->dev
[port
];
2447 netif_stop_queue(skge
->netdev
);
2448 netif_carrier_off(skge
->netdev
);
2450 spin_lock_bh(&hw
->phy_lock
);
2451 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2452 genesis_reset(hw
, port
);
2453 genesis_mac_init(hw
, port
);
2455 yukon_reset(hw
, port
);
2456 yukon_init(hw
, port
);
2458 spin_unlock_bh(&hw
->phy_lock
);
2460 skge_set_multicast(dev
);
2463 /* Basic MII support */
2464 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2466 struct mii_ioctl_data
*data
= if_mii(ifr
);
2467 struct skge_port
*skge
= netdev_priv(dev
);
2468 struct skge_hw
*hw
= skge
->hw
;
2469 int err
= -EOPNOTSUPP
;
2471 if (!netif_running(dev
))
2472 return -ENODEV
; /* Phy still in reset */
2476 data
->phy_id
= hw
->phy_addr
;
2481 spin_lock_bh(&hw
->phy_lock
);
2482 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2483 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2485 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2486 spin_unlock_bh(&hw
->phy_lock
);
2487 data
->val_out
= val
;
2492 spin_lock_bh(&hw
->phy_lock
);
2493 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2494 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2497 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2499 spin_unlock_bh(&hw
->phy_lock
);
2505 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2511 end
= start
+ len
- 1;
2513 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2514 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2515 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2516 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2517 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2519 if (q
== Q_R1
|| q
== Q_R2
) {
2520 /* Set thresholds on receive queue's */
2521 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2523 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2526 /* Enable store & forward on Tx queue's because
2527 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2529 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2532 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2535 /* Setup Bus Memory Interface */
2536 static void skge_qset(struct skge_port
*skge
, u16 q
,
2537 const struct skge_element
*e
)
2539 struct skge_hw
*hw
= skge
->hw
;
2540 u32 watermark
= 0x600;
2541 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2543 /* optimization to reduce window on 32bit/33mhz */
2544 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2547 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2548 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2549 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2550 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2553 static int skge_up(struct net_device
*dev
)
2555 struct skge_port
*skge
= netdev_priv(dev
);
2556 struct skge_hw
*hw
= skge
->hw
;
2557 int port
= skge
->port
;
2558 u32 chunk
, ram_addr
;
2559 size_t rx_size
, tx_size
;
2562 if (!is_valid_ether_addr(dev
->dev_addr
))
2565 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2567 if (dev
->mtu
> RX_BUF_SIZE
)
2568 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2570 skge
->rx_buf_size
= RX_BUF_SIZE
;
2573 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2574 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2575 skge
->mem_size
= tx_size
+ rx_size
;
2576 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2580 BUG_ON(skge
->dma
& 7);
2582 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2583 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2588 memset(skge
->mem
, 0, skge
->mem_size
);
2590 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2594 err
= skge_rx_fill(dev
);
2598 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2599 skge
->dma
+ rx_size
);
2603 /* Initialize MAC */
2604 spin_lock_bh(&hw
->phy_lock
);
2605 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2606 genesis_mac_init(hw
, port
);
2608 yukon_mac_init(hw
, port
);
2609 spin_unlock_bh(&hw
->phy_lock
);
2611 /* Configure RAMbuffers - equally between ports and tx/rx */
2612 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2613 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2615 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2616 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2618 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2619 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2620 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2622 /* Start receiver BMU */
2624 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2625 skge_led(skge
, LED_MODE_ON
);
2627 spin_lock_irq(&hw
->hw_lock
);
2628 hw
->intr_mask
|= portmask
[port
];
2629 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2630 spin_unlock_irq(&hw
->hw_lock
);
2632 napi_enable(&skge
->napi
);
2636 skge_rx_clean(skge
);
2637 kfree(skge
->rx_ring
.start
);
2639 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2646 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2648 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2649 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2650 RB_RST_SET
|RB_DIS_OP_MD
);
2651 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2654 static int skge_down(struct net_device
*dev
)
2656 struct skge_port
*skge
= netdev_priv(dev
);
2657 struct skge_hw
*hw
= skge
->hw
;
2658 int port
= skge
->port
;
2660 if (skge
->mem
== NULL
)
2663 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2665 netif_tx_disable(dev
);
2667 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2668 del_timer_sync(&skge
->link_timer
);
2670 napi_disable(&skge
->napi
);
2671 netif_carrier_off(dev
);
2673 spin_lock_irq(&hw
->hw_lock
);
2674 hw
->intr_mask
&= ~portmask
[port
];
2675 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2676 spin_unlock_irq(&hw
->hw_lock
);
2678 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2679 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2684 /* Stop transmitter */
2685 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2686 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2687 RB_RST_SET
|RB_DIS_OP_MD
);
2690 /* Disable Force Sync bit and Enable Alloc bit */
2691 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2692 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2694 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2695 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2696 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2698 /* Reset PCI FIFO */
2699 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2700 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2702 /* Reset the RAM Buffer async Tx queue */
2703 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2705 skge_rx_stop(hw
, port
);
2707 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2708 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2709 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2711 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2712 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2715 skge_led(skge
, LED_MODE_OFF
);
2717 netif_tx_lock_bh(dev
);
2719 netif_tx_unlock_bh(dev
);
2721 skge_rx_clean(skge
);
2723 kfree(skge
->rx_ring
.start
);
2724 kfree(skge
->tx_ring
.start
);
2725 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2730 static inline int skge_avail(const struct skge_ring
*ring
)
2733 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2734 + (ring
->to_clean
- ring
->to_use
) - 1;
2737 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2738 struct net_device
*dev
)
2740 struct skge_port
*skge
= netdev_priv(dev
);
2741 struct skge_hw
*hw
= skge
->hw
;
2742 struct skge_element
*e
;
2743 struct skge_tx_desc
*td
;
2748 if (skb_padto(skb
, ETH_ZLEN
))
2749 return NETDEV_TX_OK
;
2751 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2752 return NETDEV_TX_BUSY
;
2754 e
= skge
->tx_ring
.to_use
;
2756 BUG_ON(td
->control
& BMU_OWN
);
2758 len
= skb_headlen(skb
);
2759 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2760 dma_unmap_addr_set(e
, mapaddr
, map
);
2761 dma_unmap_len_set(e
, maplen
, len
);
2764 td
->dma_hi
= map
>> 32;
2766 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2767 const int offset
= skb_checksum_start_offset(skb
);
2769 /* This seems backwards, but it is what the sk98lin
2770 * does. Looks like hardware is wrong?
2772 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2773 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2774 control
= BMU_TCP_CHECK
;
2776 control
= BMU_UDP_CHECK
;
2779 td
->csum_start
= offset
;
2780 td
->csum_write
= offset
+ skb
->csum_offset
;
2782 control
= BMU_CHECK
;
2784 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2785 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2787 struct skge_tx_desc
*tf
= td
;
2789 control
|= BMU_STFWD
;
2790 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2791 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2793 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2794 frag
->size
, PCI_DMA_TODEVICE
);
2799 BUG_ON(tf
->control
& BMU_OWN
);
2802 tf
->dma_hi
= (u64
) map
>> 32;
2803 dma_unmap_addr_set(e
, mapaddr
, map
);
2804 dma_unmap_len_set(e
, maplen
, frag
->size
);
2806 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2808 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2810 /* Make sure all the descriptors written */
2812 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2815 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2817 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2818 "tx queued, slot %td, len %d\n",
2819 e
- skge
->tx_ring
.start
, skb
->len
);
2821 skge
->tx_ring
.to_use
= e
->next
;
2824 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2825 netdev_dbg(dev
, "transmit queue full\n");
2826 netif_stop_queue(dev
);
2829 return NETDEV_TX_OK
;
2833 /* Free resources associated with this reing element */
2834 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2837 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2839 /* skb header vs. fragment */
2840 if (control
& BMU_STF
)
2841 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2842 dma_unmap_len(e
, maplen
),
2845 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2846 dma_unmap_len(e
, maplen
),
2849 if (control
& BMU_EOF
) {
2850 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
2851 "tx done slot %td\n", e
- skge
->tx_ring
.start
);
2853 dev_kfree_skb(e
->skb
);
2857 /* Free all buffers in transmit ring */
2858 static void skge_tx_clean(struct net_device
*dev
)
2860 struct skge_port
*skge
= netdev_priv(dev
);
2861 struct skge_element
*e
;
2863 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2864 struct skge_tx_desc
*td
= e
->desc
;
2865 skge_tx_free(skge
, e
, td
->control
);
2869 skge
->tx_ring
.to_clean
= e
;
2872 static void skge_tx_timeout(struct net_device
*dev
)
2874 struct skge_port
*skge
= netdev_priv(dev
);
2876 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2878 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2880 netif_wake_queue(dev
);
2883 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2887 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2890 if (!netif_running(dev
)) {
2906 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2908 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2912 crc
= ether_crc_le(ETH_ALEN
, addr
);
2914 filter
[bit
/8] |= 1 << (bit
%8);
2917 static void genesis_set_multicast(struct net_device
*dev
)
2919 struct skge_port
*skge
= netdev_priv(dev
);
2920 struct skge_hw
*hw
= skge
->hw
;
2921 int port
= skge
->port
;
2922 struct netdev_hw_addr
*ha
;
2926 mode
= xm_read32(hw
, port
, XM_MODE
);
2927 mode
|= XM_MD_ENA_HASH
;
2928 if (dev
->flags
& IFF_PROMISC
)
2929 mode
|= XM_MD_ENA_PROM
;
2931 mode
&= ~XM_MD_ENA_PROM
;
2933 if (dev
->flags
& IFF_ALLMULTI
)
2934 memset(filter
, 0xff, sizeof(filter
));
2936 memset(filter
, 0, sizeof(filter
));
2938 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2939 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2940 genesis_add_filter(filter
, pause_mc_addr
);
2942 netdev_for_each_mc_addr(ha
, dev
)
2943 genesis_add_filter(filter
, ha
->addr
);
2946 xm_write32(hw
, port
, XM_MODE
, mode
);
2947 xm_outhash(hw
, port
, XM_HSM
, filter
);
2950 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2952 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2953 filter
[bit
/8] |= 1 << (bit
%8);
2956 static void yukon_set_multicast(struct net_device
*dev
)
2958 struct skge_port
*skge
= netdev_priv(dev
);
2959 struct skge_hw
*hw
= skge
->hw
;
2960 int port
= skge
->port
;
2961 struct netdev_hw_addr
*ha
;
2962 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2963 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2967 memset(filter
, 0, sizeof(filter
));
2969 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2970 reg
|= GM_RXCR_UCF_ENA
;
2972 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2973 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2974 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2975 memset(filter
, 0xff, sizeof(filter
));
2976 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2977 reg
&= ~GM_RXCR_MCF_ENA
;
2979 reg
|= GM_RXCR_MCF_ENA
;
2982 yukon_add_filter(filter
, pause_mc_addr
);
2984 netdev_for_each_mc_addr(ha
, dev
)
2985 yukon_add_filter(filter
, ha
->addr
);
2989 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2990 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2991 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2992 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2993 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2994 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2995 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2996 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2998 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3001 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3003 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3004 return status
>> XMR_FS_LEN_SHIFT
;
3006 return status
>> GMR_FS_LEN_SHIFT
;
3009 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3011 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3012 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3014 return (status
& GMR_FS_ANY_ERR
) ||
3015 (status
& GMR_FS_RX_OK
) == 0;
3018 static void skge_set_multicast(struct net_device
*dev
)
3020 struct skge_port
*skge
= netdev_priv(dev
);
3021 struct skge_hw
*hw
= skge
->hw
;
3023 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3024 genesis_set_multicast(dev
);
3026 yukon_set_multicast(dev
);
3031 /* Get receive buffer from descriptor.
3032 * Handles copy of small buffers and reallocation failures
3034 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3035 struct skge_element
*e
,
3036 u32 control
, u32 status
, u16 csum
)
3038 struct skge_port
*skge
= netdev_priv(dev
);
3039 struct sk_buff
*skb
;
3040 u16 len
= control
& BMU_BBC
;
3042 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3043 "rx slot %td status 0x%x len %d\n",
3044 e
- skge
->rx_ring
.start
, status
, len
);
3046 if (len
> skge
->rx_buf_size
)
3049 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3052 if (bad_phy_status(skge
->hw
, status
))
3055 if (phy_length(skge
->hw
, status
) != len
)
3058 if (len
< RX_COPY_THRESHOLD
) {
3059 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3063 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3064 dma_unmap_addr(e
, mapaddr
),
3065 len
, PCI_DMA_FROMDEVICE
);
3066 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3067 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3068 dma_unmap_addr(e
, mapaddr
),
3069 len
, PCI_DMA_FROMDEVICE
);
3070 skge_rx_reuse(e
, skge
->rx_buf_size
);
3072 struct sk_buff
*nskb
;
3074 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3078 pci_unmap_single(skge
->hw
->pdev
,
3079 dma_unmap_addr(e
, mapaddr
),
3080 dma_unmap_len(e
, maplen
),
3081 PCI_DMA_FROMDEVICE
);
3083 prefetch(skb
->data
);
3084 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3088 if (skge
->rx_csum
) {
3090 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3093 skb
->protocol
= eth_type_trans(skb
, dev
);
3098 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3099 "rx err, slot %td control 0x%x status 0x%x\n",
3100 e
- skge
->rx_ring
.start
, control
, status
);
3102 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3103 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3104 dev
->stats
.rx_length_errors
++;
3105 if (status
& XMR_FS_FRA_ERR
)
3106 dev
->stats
.rx_frame_errors
++;
3107 if (status
& XMR_FS_FCS_ERR
)
3108 dev
->stats
.rx_crc_errors
++;
3110 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3111 dev
->stats
.rx_length_errors
++;
3112 if (status
& GMR_FS_FRAGMENT
)
3113 dev
->stats
.rx_frame_errors
++;
3114 if (status
& GMR_FS_CRC_ERR
)
3115 dev
->stats
.rx_crc_errors
++;
3119 skge_rx_reuse(e
, skge
->rx_buf_size
);
3123 /* Free all buffers in Tx ring which are no longer owned by device */
3124 static void skge_tx_done(struct net_device
*dev
)
3126 struct skge_port
*skge
= netdev_priv(dev
);
3127 struct skge_ring
*ring
= &skge
->tx_ring
;
3128 struct skge_element
*e
;
3130 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3132 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3133 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3135 if (control
& BMU_OWN
)
3138 skge_tx_free(skge
, e
, control
);
3140 skge
->tx_ring
.to_clean
= e
;
3142 /* Can run lockless until we need to synchronize to restart queue. */
3145 if (unlikely(netif_queue_stopped(dev
) &&
3146 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3148 if (unlikely(netif_queue_stopped(dev
) &&
3149 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3150 netif_wake_queue(dev
);
3153 netif_tx_unlock(dev
);
3157 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3159 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3160 struct net_device
*dev
= skge
->netdev
;
3161 struct skge_hw
*hw
= skge
->hw
;
3162 struct skge_ring
*ring
= &skge
->rx_ring
;
3163 struct skge_element
*e
;
3168 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3170 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3171 struct skge_rx_desc
*rd
= e
->desc
;
3172 struct sk_buff
*skb
;
3176 control
= rd
->control
;
3177 if (control
& BMU_OWN
)
3180 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3182 napi_gro_receive(napi
, skb
);
3188 /* restart receiver */
3190 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3192 if (work_done
< to_do
) {
3193 unsigned long flags
;
3195 napi_gro_flush(napi
);
3196 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3197 __napi_complete(napi
);
3198 hw
->intr_mask
|= napimask
[skge
->port
];
3199 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3200 skge_read32(hw
, B0_IMSK
);
3201 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3207 /* Parity errors seem to happen when Genesis is connected to a switch
3208 * with no other ports present. Heartbeat error??
3210 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3212 struct net_device
*dev
= hw
->dev
[port
];
3214 ++dev
->stats
.tx_heartbeat_errors
;
3216 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3217 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3220 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3221 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3222 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3223 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3226 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3228 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3229 genesis_mac_intr(hw
, port
);
3231 yukon_mac_intr(hw
, port
);
3234 /* Handle device specific framing and timeout interrupts */
3235 static void skge_error_irq(struct skge_hw
*hw
)
3237 struct pci_dev
*pdev
= hw
->pdev
;
3238 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3240 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3241 /* clear xmac errors */
3242 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3243 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3244 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3245 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3247 /* Timestamp (unused) overflow */
3248 if (hwstatus
& IS_IRQ_TIST_OV
)
3249 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3252 if (hwstatus
& IS_RAM_RD_PAR
) {
3253 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3254 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3257 if (hwstatus
& IS_RAM_WR_PAR
) {
3258 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3259 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3262 if (hwstatus
& IS_M1_PAR_ERR
)
3263 skge_mac_parity(hw
, 0);
3265 if (hwstatus
& IS_M2_PAR_ERR
)
3266 skge_mac_parity(hw
, 1);
3268 if (hwstatus
& IS_R1_PAR_ERR
) {
3269 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3271 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3274 if (hwstatus
& IS_R2_PAR_ERR
) {
3275 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3277 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3280 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3281 u16 pci_status
, pci_cmd
;
3283 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3284 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3286 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3287 pci_cmd
, pci_status
);
3289 /* Write the error bits back to clear them. */
3290 pci_status
&= PCI_STATUS_ERROR_BITS
;
3291 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3292 pci_write_config_word(pdev
, PCI_COMMAND
,
3293 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3294 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3295 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3297 /* if error still set then just ignore it */
3298 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3299 if (hwstatus
& IS_IRQ_STAT
) {
3300 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3301 hw
->intr_mask
&= ~IS_HW_ERR
;
3307 * Interrupt from PHY are handled in tasklet (softirq)
3308 * because accessing phy registers requires spin wait which might
3309 * cause excess interrupt latency.
3311 static void skge_extirq(unsigned long arg
)
3313 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3316 for (port
= 0; port
< hw
->ports
; port
++) {
3317 struct net_device
*dev
= hw
->dev
[port
];
3319 if (netif_running(dev
)) {
3320 struct skge_port
*skge
= netdev_priv(dev
);
3322 spin_lock(&hw
->phy_lock
);
3323 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3324 yukon_phy_intr(skge
);
3325 else if (hw
->phy_type
== SK_PHY_BCOM
)
3326 bcom_phy_intr(skge
);
3327 spin_unlock(&hw
->phy_lock
);
3331 spin_lock_irq(&hw
->hw_lock
);
3332 hw
->intr_mask
|= IS_EXT_REG
;
3333 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3334 skge_read32(hw
, B0_IMSK
);
3335 spin_unlock_irq(&hw
->hw_lock
);
3338 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3340 struct skge_hw
*hw
= dev_id
;
3344 spin_lock(&hw
->hw_lock
);
3345 /* Reading this register masks IRQ */
3346 status
= skge_read32(hw
, B0_SP_ISRC
);
3347 if (status
== 0 || status
== ~0)
3351 status
&= hw
->intr_mask
;
3352 if (status
& IS_EXT_REG
) {
3353 hw
->intr_mask
&= ~IS_EXT_REG
;
3354 tasklet_schedule(&hw
->phy_task
);
3357 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3358 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3359 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3360 napi_schedule(&skge
->napi
);
3363 if (status
& IS_PA_TO_TX1
)
3364 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3366 if (status
& IS_PA_TO_RX1
) {
3367 ++hw
->dev
[0]->stats
.rx_over_errors
;
3368 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3372 if (status
& IS_MAC1
)
3373 skge_mac_intr(hw
, 0);
3376 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3378 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3379 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3380 napi_schedule(&skge
->napi
);
3383 if (status
& IS_PA_TO_RX2
) {
3384 ++hw
->dev
[1]->stats
.rx_over_errors
;
3385 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3388 if (status
& IS_PA_TO_TX2
)
3389 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3391 if (status
& IS_MAC2
)
3392 skge_mac_intr(hw
, 1);
3395 if (status
& IS_HW_ERR
)
3398 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3399 skge_read32(hw
, B0_IMSK
);
3401 spin_unlock(&hw
->hw_lock
);
3403 return IRQ_RETVAL(handled
);
3406 #ifdef CONFIG_NET_POLL_CONTROLLER
3407 static void skge_netpoll(struct net_device
*dev
)
3409 struct skge_port
*skge
= netdev_priv(dev
);
3411 disable_irq(dev
->irq
);
3412 skge_intr(dev
->irq
, skge
->hw
);
3413 enable_irq(dev
->irq
);
3417 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3419 struct skge_port
*skge
= netdev_priv(dev
);
3420 struct skge_hw
*hw
= skge
->hw
;
3421 unsigned port
= skge
->port
;
3422 const struct sockaddr
*addr
= p
;
3425 if (!is_valid_ether_addr(addr
->sa_data
))
3426 return -EADDRNOTAVAIL
;
3428 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3430 if (!netif_running(dev
)) {
3431 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3432 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3435 spin_lock_bh(&hw
->phy_lock
);
3436 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3437 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3439 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3440 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3442 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3443 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3445 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3446 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3449 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3450 spin_unlock_bh(&hw
->phy_lock
);
3456 static const struct {
3460 { CHIP_ID_GENESIS
, "Genesis" },
3461 { CHIP_ID_YUKON
, "Yukon" },
3462 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3463 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3466 static const char *skge_board_name(const struct skge_hw
*hw
)
3469 static char buf
[16];
3471 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3472 if (skge_chips
[i
].id
== hw
->chip_id
)
3473 return skge_chips
[i
].name
;
3475 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3481 * Setup the board data structure, but don't bring up
3484 static int skge_reset(struct skge_hw
*hw
)
3487 u16 ctst
, pci_status
;
3488 u8 t8
, mac_cfg
, pmd_type
;
3491 ctst
= skge_read16(hw
, B0_CTST
);
3494 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3495 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3497 /* clear PCI errors, if any */
3498 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3499 skge_write8(hw
, B2_TST_CTRL2
, 0);
3501 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3502 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3503 pci_status
| PCI_STATUS_ERROR_BITS
);
3504 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3505 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3507 /* restore CLK_RUN bits (for Yukon-Lite) */
3508 skge_write16(hw
, B0_CTST
,
3509 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3511 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3512 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3513 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3514 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3516 switch (hw
->chip_id
) {
3517 case CHIP_ID_GENESIS
:
3518 switch (hw
->phy_type
) {
3520 hw
->phy_addr
= PHY_ADDR_XMAC
;
3523 hw
->phy_addr
= PHY_ADDR_BCOM
;
3526 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3533 case CHIP_ID_YUKON_LITE
:
3534 case CHIP_ID_YUKON_LP
:
3535 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3538 hw
->phy_addr
= PHY_ADDR_MARV
;
3542 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3547 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3548 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3549 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3551 /* read the adapters RAM size */
3552 t8
= skge_read8(hw
, B2_E_0
);
3553 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3555 /* special case: 4 x 64k x 36, offset = 0x80000 */
3556 hw
->ram_size
= 0x100000;
3557 hw
->ram_offset
= 0x80000;
3559 hw
->ram_size
= t8
* 512;
3561 hw
->ram_size
= 0x20000;
3563 hw
->ram_size
= t8
* 4096;
3565 hw
->intr_mask
= IS_HW_ERR
;
3567 /* Use PHY IRQ for all but fiber based Genesis board */
3568 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3569 hw
->intr_mask
|= IS_EXT_REG
;
3571 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3574 /* switch power to VCC (WA for VAUX problem) */
3575 skge_write8(hw
, B0_POWER_CTRL
,
3576 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3578 /* avoid boards with stuck Hardware error bits */
3579 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3580 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3581 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3582 hw
->intr_mask
&= ~IS_HW_ERR
;
3585 /* Clear PHY COMA */
3586 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3587 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3588 reg
&= ~PCI_PHY_COMA
;
3589 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3590 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3593 for (i
= 0; i
< hw
->ports
; i
++) {
3594 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3595 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3599 /* turn off hardware timer (unused) */
3600 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3601 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3602 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3604 /* enable the Tx Arbiters */
3605 for (i
= 0; i
< hw
->ports
; i
++)
3606 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3608 /* Initialize ram interface */
3609 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3611 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3612 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3613 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3614 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3615 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3616 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3617 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3618 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3619 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3620 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3621 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3622 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3624 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3626 /* Set interrupt moderation for Transmit only
3627 * Receive interrupts avoided by NAPI
3629 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3630 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3631 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3633 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3635 for (i
= 0; i
< hw
->ports
; i
++) {
3636 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3637 genesis_reset(hw
, i
);
3646 #ifdef CONFIG_SKGE_DEBUG
3648 static struct dentry
*skge_debug
;
3650 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3652 struct net_device
*dev
= seq
->private;
3653 const struct skge_port
*skge
= netdev_priv(dev
);
3654 const struct skge_hw
*hw
= skge
->hw
;
3655 const struct skge_element
*e
;
3657 if (!netif_running(dev
))
3660 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3661 skge_read32(hw
, B0_IMSK
));
3663 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3664 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3665 const struct skge_tx_desc
*t
= e
->desc
;
3666 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3667 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3668 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3671 seq_printf(seq
, "\nRx Ring:\n");
3672 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3673 const struct skge_rx_desc
*r
= e
->desc
;
3675 if (r
->control
& BMU_OWN
)
3678 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3679 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3680 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3686 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3688 return single_open(file
, skge_debug_show
, inode
->i_private
);
3691 static const struct file_operations skge_debug_fops
= {
3692 .owner
= THIS_MODULE
,
3693 .open
= skge_debug_open
,
3695 .llseek
= seq_lseek
,
3696 .release
= single_release
,
3700 * Use network device events to create/remove/rename
3701 * debugfs file entries
3703 static int skge_device_event(struct notifier_block
*unused
,
3704 unsigned long event
, void *ptr
)
3706 struct net_device
*dev
= ptr
;
3707 struct skge_port
*skge
;
3710 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3713 skge
= netdev_priv(dev
);
3715 case NETDEV_CHANGENAME
:
3716 if (skge
->debugfs
) {
3717 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3718 skge_debug
, dev
->name
);
3722 netdev_info(dev
, "rename failed\n");
3723 debugfs_remove(skge
->debugfs
);
3728 case NETDEV_GOING_DOWN
:
3729 if (skge
->debugfs
) {
3730 debugfs_remove(skge
->debugfs
);
3731 skge
->debugfs
= NULL
;
3736 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3739 if (!d
|| IS_ERR(d
))
3740 netdev_info(dev
, "debugfs create failed\n");
3750 static struct notifier_block skge_notifier
= {
3751 .notifier_call
= skge_device_event
,
3755 static __init
void skge_debug_init(void)
3759 ent
= debugfs_create_dir("skge", NULL
);
3760 if (!ent
|| IS_ERR(ent
)) {
3761 pr_info("debugfs create directory failed\n");
3766 register_netdevice_notifier(&skge_notifier
);
3769 static __exit
void skge_debug_cleanup(void)
3772 unregister_netdevice_notifier(&skge_notifier
);
3773 debugfs_remove(skge_debug
);
3779 #define skge_debug_init()
3780 #define skge_debug_cleanup()
3783 static const struct net_device_ops skge_netdev_ops
= {
3784 .ndo_open
= skge_up
,
3785 .ndo_stop
= skge_down
,
3786 .ndo_start_xmit
= skge_xmit_frame
,
3787 .ndo_do_ioctl
= skge_ioctl
,
3788 .ndo_get_stats
= skge_get_stats
,
3789 .ndo_tx_timeout
= skge_tx_timeout
,
3790 .ndo_change_mtu
= skge_change_mtu
,
3791 .ndo_validate_addr
= eth_validate_addr
,
3792 .ndo_set_multicast_list
= skge_set_multicast
,
3793 .ndo_set_mac_address
= skge_set_mac_address
,
3794 #ifdef CONFIG_NET_POLL_CONTROLLER
3795 .ndo_poll_controller
= skge_netpoll
,
3800 /* Initialize network device */
3801 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3804 struct skge_port
*skge
;
3805 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3808 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3812 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3813 dev
->netdev_ops
= &skge_netdev_ops
;
3814 dev
->ethtool_ops
= &skge_ethtool_ops
;
3815 dev
->watchdog_timeo
= TX_WATCHDOG
;
3816 dev
->irq
= hw
->pdev
->irq
;
3819 dev
->features
|= NETIF_F_HIGHDMA
;
3821 skge
= netdev_priv(dev
);
3822 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3825 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3827 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3828 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3830 /* Auto speed and flow control */
3831 skge
->autoneg
= AUTONEG_ENABLE
;
3832 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3835 skge
->advertising
= skge_supported_modes(hw
);
3837 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3838 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3839 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3842 hw
->dev
[port
] = dev
;
3846 /* Only used for Genesis XMAC */
3847 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3849 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3850 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3853 dev
->features
|= NETIF_F_GRO
;
3855 /* read the mac address */
3856 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3857 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3859 /* device is off until link detection */
3860 netif_carrier_off(dev
);
3865 static void __devinit
skge_show_addr(struct net_device
*dev
)
3867 const struct skge_port
*skge
= netdev_priv(dev
);
3869 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3872 static int only_32bit_dma
;
3874 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3875 const struct pci_device_id
*ent
)
3877 struct net_device
*dev
, *dev1
;
3879 int err
, using_dac
= 0;
3881 err
= pci_enable_device(pdev
);
3883 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3887 err
= pci_request_regions(pdev
, DRV_NAME
);
3889 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3890 goto err_out_disable_pdev
;
3893 pci_set_master(pdev
);
3895 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3897 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3898 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3900 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3904 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3905 goto err_out_free_regions
;
3909 /* byte swap descriptors in hardware */
3913 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3914 reg
|= PCI_REV_DESC
;
3915 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3920 /* space for skge@pci:0000:04:00.0 */
3921 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3922 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3924 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3925 goto err_out_free_regions
;
3927 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3930 spin_lock_init(&hw
->hw_lock
);
3931 spin_lock_init(&hw
->phy_lock
);
3932 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3934 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3936 dev_err(&pdev
->dev
, "cannot map device registers\n");
3937 goto err_out_free_hw
;
3940 err
= skge_reset(hw
);
3942 goto err_out_iounmap
;
3944 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3946 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3947 skge_board_name(hw
), hw
->chip_rev
);
3949 dev
= skge_devinit(hw
, 0, using_dac
);
3951 goto err_out_led_off
;
3953 /* Some motherboards are broken and has zero in ROM. */
3954 if (!is_valid_ether_addr(dev
->dev_addr
))
3955 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3957 err
= register_netdev(dev
);
3959 dev_err(&pdev
->dev
, "cannot register net device\n");
3960 goto err_out_free_netdev
;
3963 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, hw
->irq_name
, hw
);
3965 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3966 dev
->name
, pdev
->irq
);
3967 goto err_out_unregister
;
3969 skge_show_addr(dev
);
3971 if (hw
->ports
> 1) {
3972 dev1
= skge_devinit(hw
, 1, using_dac
);
3973 if (dev1
&& register_netdev(dev1
) == 0)
3974 skge_show_addr(dev1
);
3976 /* Failure to register second port need not be fatal */
3977 dev_warn(&pdev
->dev
, "register of second port failed\n");
3984 pci_set_drvdata(pdev
, hw
);
3989 unregister_netdev(dev
);
3990 err_out_free_netdev
:
3993 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3998 err_out_free_regions
:
3999 pci_release_regions(pdev
);
4000 err_out_disable_pdev
:
4001 pci_disable_device(pdev
);
4002 pci_set_drvdata(pdev
, NULL
);
4007 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4009 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4010 struct net_device
*dev0
, *dev1
;
4017 unregister_netdev(dev1
);
4019 unregister_netdev(dev0
);
4021 tasklet_disable(&hw
->phy_task
);
4023 spin_lock_irq(&hw
->hw_lock
);
4025 skge_write32(hw
, B0_IMSK
, 0);
4026 skge_read32(hw
, B0_IMSK
);
4027 spin_unlock_irq(&hw
->hw_lock
);
4029 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4030 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4032 free_irq(pdev
->irq
, hw
);
4033 pci_release_regions(pdev
);
4034 pci_disable_device(pdev
);
4041 pci_set_drvdata(pdev
, NULL
);
4045 static int skge_suspend(struct device
*dev
)
4047 struct pci_dev
*pdev
= to_pci_dev(dev
);
4048 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4054 for (i
= 0; i
< hw
->ports
; i
++) {
4055 struct net_device
*dev
= hw
->dev
[i
];
4056 struct skge_port
*skge
= netdev_priv(dev
);
4058 if (netif_running(dev
))
4062 skge_wol_init(skge
);
4065 skge_write32(hw
, B0_IMSK
, 0);
4070 static int skge_resume(struct device
*dev
)
4072 struct pci_dev
*pdev
= to_pci_dev(dev
);
4073 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4079 err
= skge_reset(hw
);
4083 for (i
= 0; i
< hw
->ports
; i
++) {
4084 struct net_device
*dev
= hw
->dev
[i
];
4086 if (netif_running(dev
)) {
4090 netdev_err(dev
, "could not up: %d\n", err
);
4100 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4101 #define SKGE_PM_OPS (&skge_pm_ops)
4105 #define SKGE_PM_OPS NULL
4108 static void skge_shutdown(struct pci_dev
*pdev
)
4110 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4116 for (i
= 0; i
< hw
->ports
; i
++) {
4117 struct net_device
*dev
= hw
->dev
[i
];
4118 struct skge_port
*skge
= netdev_priv(dev
);
4121 skge_wol_init(skge
);
4124 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4125 pci_set_power_state(pdev
, PCI_D3hot
);
4128 static struct pci_driver skge_driver
= {
4130 .id_table
= skge_id_table
,
4131 .probe
= skge_probe
,
4132 .remove
= __devexit_p(skge_remove
),
4133 .shutdown
= skge_shutdown
,
4134 .driver
.pm
= SKGE_PM_OPS
,
4137 static struct dmi_system_id skge_32bit_dma_boards
[] = {
4139 .ident
= "Gigabyte nForce boards",
4141 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4142 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4148 static int __init
skge_init_module(void)
4150 if (dmi_check_system(skge_32bit_dma_boards
))
4153 return pci_register_driver(&skge_driver
);
4156 static void __exit
skge_cleanup_module(void)
4158 pci_unregister_driver(&skge_driver
);
4159 skge_debug_cleanup();
4162 module_init(skge_init_module
);
4163 module_exit(skge_cleanup_module
);