2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "async-thread.h"
40 #include "free-space-cache.h"
42 static struct extent_io_ops btree_extent_io_ops
;
43 static void end_workqueue_fn(struct btrfs_work
*work
);
44 static void free_fs_root(struct btrfs_root
*root
);
46 static atomic_t btrfs_bdi_num
= ATOMIC_INIT(0);
49 * end_io_wq structs are used to do processing in task context when an IO is
50 * complete. This is used during reads to verify checksums, and it is used
51 * by writes to insert metadata for new file extents after IO is complete.
57 struct btrfs_fs_info
*info
;
60 struct list_head list
;
61 struct btrfs_work work
;
65 * async submit bios are used to offload expensive checksumming
66 * onto the worker threads. They checksum file and metadata bios
67 * just before they are sent down the IO stack.
69 struct async_submit_bio
{
72 struct list_head list
;
73 extent_submit_bio_hook_t
*submit_bio_start
;
74 extent_submit_bio_hook_t
*submit_bio_done
;
77 unsigned long bio_flags
;
78 struct btrfs_work work
;
81 /* These are used to set the lockdep class on the extent buffer locks.
82 * The class is set by the readpage_end_io_hook after the buffer has
83 * passed csum validation but before the pages are unlocked.
85 * The lockdep class is also set by btrfs_init_new_buffer on freshly
88 * The class is based on the level in the tree block, which allows lockdep
89 * to know that lower nodes nest inside the locks of higher nodes.
91 * We also add a check to make sure the highest level of the tree is
92 * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
93 * code needs update as well.
95 #ifdef CONFIG_DEBUG_LOCK_ALLOC
96 # if BTRFS_MAX_LEVEL != 8
99 static struct lock_class_key btrfs_eb_class
[BTRFS_MAX_LEVEL
+ 1];
100 static const char *btrfs_eb_name
[BTRFS_MAX_LEVEL
+ 1] = {
110 /* highest possible level */
116 * extents on the btree inode are pretty simple, there's one extent
117 * that covers the entire device
119 static struct extent_map
*btree_get_extent(struct inode
*inode
,
120 struct page
*page
, size_t page_offset
, u64 start
, u64 len
,
123 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
124 struct extent_map
*em
;
127 read_lock(&em_tree
->lock
);
128 em
= lookup_extent_mapping(em_tree
, start
, len
);
131 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
132 read_unlock(&em_tree
->lock
);
135 read_unlock(&em_tree
->lock
);
137 em
= alloc_extent_map(GFP_NOFS
);
139 em
= ERR_PTR(-ENOMEM
);
144 em
->block_len
= (u64
)-1;
146 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
148 write_lock(&em_tree
->lock
);
149 ret
= add_extent_mapping(em_tree
, em
);
150 if (ret
== -EEXIST
) {
151 u64 failed_start
= em
->start
;
152 u64 failed_len
= em
->len
;
155 em
= lookup_extent_mapping(em_tree
, start
, len
);
159 em
= lookup_extent_mapping(em_tree
, failed_start
,
167 write_unlock(&em_tree
->lock
);
175 u32
btrfs_csum_data(struct btrfs_root
*root
, char *data
, u32 seed
, size_t len
)
177 return crc32c(seed
, data
, len
);
180 void btrfs_csum_final(u32 crc
, char *result
)
182 *(__le32
*)result
= ~cpu_to_le32(crc
);
186 * compute the csum for a btree block, and either verify it or write it
187 * into the csum field of the block.
189 static int csum_tree_block(struct btrfs_root
*root
, struct extent_buffer
*buf
,
193 btrfs_super_csum_size(&root
->fs_info
->super_copy
);
196 unsigned long cur_len
;
197 unsigned long offset
= BTRFS_CSUM_SIZE
;
198 char *map_token
= NULL
;
200 unsigned long map_start
;
201 unsigned long map_len
;
204 unsigned long inline_result
;
206 len
= buf
->len
- offset
;
208 err
= map_private_extent_buffer(buf
, offset
, 32,
210 &map_start
, &map_len
, KM_USER0
);
213 cur_len
= min(len
, map_len
- (offset
- map_start
));
214 crc
= btrfs_csum_data(root
, kaddr
+ offset
- map_start
,
218 unmap_extent_buffer(buf
, map_token
, KM_USER0
);
220 if (csum_size
> sizeof(inline_result
)) {
221 result
= kzalloc(csum_size
* sizeof(char), GFP_NOFS
);
225 result
= (char *)&inline_result
;
228 btrfs_csum_final(crc
, result
);
231 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
234 memcpy(&found
, result
, csum_size
);
236 read_extent_buffer(buf
, &val
, 0, csum_size
);
237 if (printk_ratelimit()) {
238 printk(KERN_INFO
"btrfs: %s checksum verify "
239 "failed on %llu wanted %X found %X "
241 root
->fs_info
->sb
->s_id
,
242 (unsigned long long)buf
->start
, val
, found
,
243 btrfs_header_level(buf
));
245 if (result
!= (char *)&inline_result
)
250 write_extent_buffer(buf
, result
, 0, csum_size
);
252 if (result
!= (char *)&inline_result
)
258 * we can't consider a given block up to date unless the transid of the
259 * block matches the transid in the parent node's pointer. This is how we
260 * detect blocks that either didn't get written at all or got written
261 * in the wrong place.
263 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
264 struct extent_buffer
*eb
, u64 parent_transid
)
266 struct extent_state
*cached_state
= NULL
;
269 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
272 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
273 0, &cached_state
, GFP_NOFS
);
274 if (extent_buffer_uptodate(io_tree
, eb
, cached_state
) &&
275 btrfs_header_generation(eb
) == parent_transid
) {
279 if (printk_ratelimit()) {
280 printk("parent transid verify failed on %llu wanted %llu "
282 (unsigned long long)eb
->start
,
283 (unsigned long long)parent_transid
,
284 (unsigned long long)btrfs_header_generation(eb
));
287 clear_extent_buffer_uptodate(io_tree
, eb
, &cached_state
);
289 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
290 &cached_state
, GFP_NOFS
);
295 * helper to read a given tree block, doing retries as required when
296 * the checksums don't match and we have alternate mirrors to try.
298 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
299 struct extent_buffer
*eb
,
300 u64 start
, u64 parent_transid
)
302 struct extent_io_tree
*io_tree
;
307 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
309 ret
= read_extent_buffer_pages(io_tree
, eb
, start
, 1,
310 btree_get_extent
, mirror_num
);
312 !verify_parent_transid(io_tree
, eb
, parent_transid
))
315 num_copies
= btrfs_num_copies(&root
->fs_info
->mapping_tree
,
321 if (mirror_num
> num_copies
)
328 * checksum a dirty tree block before IO. This has extra checks to make sure
329 * we only fill in the checksum field in the first page of a multi-page block
332 static int csum_dirty_buffer(struct btrfs_root
*root
, struct page
*page
)
334 struct extent_io_tree
*tree
;
335 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
339 struct extent_buffer
*eb
;
342 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
344 if (page
->private == EXTENT_PAGE_PRIVATE
)
348 len
= page
->private >> 2;
351 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
352 ret
= btree_read_extent_buffer_pages(root
, eb
, start
+ PAGE_CACHE_SIZE
,
353 btrfs_header_generation(eb
));
355 found_start
= btrfs_header_bytenr(eb
);
356 if (found_start
!= start
) {
360 if (eb
->first_page
!= page
) {
364 if (!PageUptodate(page
)) {
368 found_level
= btrfs_header_level(eb
);
370 csum_tree_block(root
, eb
, 0);
372 free_extent_buffer(eb
);
377 static int check_tree_block_fsid(struct btrfs_root
*root
,
378 struct extent_buffer
*eb
)
380 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
381 u8 fsid
[BTRFS_UUID_SIZE
];
384 read_extent_buffer(eb
, fsid
, (unsigned long)btrfs_header_fsid(eb
),
387 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
391 fs_devices
= fs_devices
->seed
;
396 #ifdef CONFIG_DEBUG_LOCK_ALLOC
397 void btrfs_set_buffer_lockdep_class(struct extent_buffer
*eb
, int level
)
399 lockdep_set_class_and_name(&eb
->lock
,
400 &btrfs_eb_class
[level
],
401 btrfs_eb_name
[level
]);
405 static int btree_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
406 struct extent_state
*state
)
408 struct extent_io_tree
*tree
;
412 struct extent_buffer
*eb
;
413 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
416 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
417 if (page
->private == EXTENT_PAGE_PRIVATE
)
422 len
= page
->private >> 2;
425 eb
= alloc_extent_buffer(tree
, start
, len
, page
, GFP_NOFS
);
427 found_start
= btrfs_header_bytenr(eb
);
428 if (found_start
!= start
) {
429 if (printk_ratelimit()) {
430 printk(KERN_INFO
"btrfs bad tree block start "
432 (unsigned long long)found_start
,
433 (unsigned long long)eb
->start
);
438 if (eb
->first_page
!= page
) {
439 printk(KERN_INFO
"btrfs bad first page %lu %lu\n",
440 eb
->first_page
->index
, page
->index
);
445 if (check_tree_block_fsid(root
, eb
)) {
446 if (printk_ratelimit()) {
447 printk(KERN_INFO
"btrfs bad fsid on block %llu\n",
448 (unsigned long long)eb
->start
);
453 found_level
= btrfs_header_level(eb
);
455 btrfs_set_buffer_lockdep_class(eb
, found_level
);
457 ret
= csum_tree_block(root
, eb
, 1);
461 end
= min_t(u64
, eb
->len
, PAGE_CACHE_SIZE
);
462 end
= eb
->start
+ end
- 1;
464 free_extent_buffer(eb
);
469 static void end_workqueue_bio(struct bio
*bio
, int err
)
471 struct end_io_wq
*end_io_wq
= bio
->bi_private
;
472 struct btrfs_fs_info
*fs_info
;
474 fs_info
= end_io_wq
->info
;
475 end_io_wq
->error
= err
;
476 end_io_wq
->work
.func
= end_workqueue_fn
;
477 end_io_wq
->work
.flags
= 0;
479 if (bio
->bi_rw
& (1 << BIO_RW
)) {
480 if (end_io_wq
->metadata
)
481 btrfs_queue_worker(&fs_info
->endio_meta_write_workers
,
484 btrfs_queue_worker(&fs_info
->endio_write_workers
,
487 if (end_io_wq
->metadata
)
488 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
491 btrfs_queue_worker(&fs_info
->endio_workers
,
496 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
499 struct end_io_wq
*end_io_wq
;
500 end_io_wq
= kmalloc(sizeof(*end_io_wq
), GFP_NOFS
);
504 end_io_wq
->private = bio
->bi_private
;
505 end_io_wq
->end_io
= bio
->bi_end_io
;
506 end_io_wq
->info
= info
;
507 end_io_wq
->error
= 0;
508 end_io_wq
->bio
= bio
;
509 end_io_wq
->metadata
= metadata
;
511 bio
->bi_private
= end_io_wq
;
512 bio
->bi_end_io
= end_workqueue_bio
;
516 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
518 unsigned long limit
= min_t(unsigned long,
519 info
->workers
.max_workers
,
520 info
->fs_devices
->open_devices
);
524 int btrfs_congested_async(struct btrfs_fs_info
*info
, int iodone
)
526 return atomic_read(&info
->nr_async_bios
) >
527 btrfs_async_submit_limit(info
);
530 static void run_one_async_start(struct btrfs_work
*work
)
532 struct btrfs_fs_info
*fs_info
;
533 struct async_submit_bio
*async
;
535 async
= container_of(work
, struct async_submit_bio
, work
);
536 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
537 async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
538 async
->mirror_num
, async
->bio_flags
);
541 static void run_one_async_done(struct btrfs_work
*work
)
543 struct btrfs_fs_info
*fs_info
;
544 struct async_submit_bio
*async
;
547 async
= container_of(work
, struct async_submit_bio
, work
);
548 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
550 limit
= btrfs_async_submit_limit(fs_info
);
551 limit
= limit
* 2 / 3;
553 atomic_dec(&fs_info
->nr_async_submits
);
555 if (atomic_read(&fs_info
->nr_async_submits
) < limit
&&
556 waitqueue_active(&fs_info
->async_submit_wait
))
557 wake_up(&fs_info
->async_submit_wait
);
559 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
560 async
->mirror_num
, async
->bio_flags
);
563 static void run_one_async_free(struct btrfs_work
*work
)
565 struct async_submit_bio
*async
;
567 async
= container_of(work
, struct async_submit_bio
, work
);
571 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
572 int rw
, struct bio
*bio
, int mirror_num
,
573 unsigned long bio_flags
,
574 extent_submit_bio_hook_t
*submit_bio_start
,
575 extent_submit_bio_hook_t
*submit_bio_done
)
577 struct async_submit_bio
*async
;
579 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
583 async
->inode
= inode
;
586 async
->mirror_num
= mirror_num
;
587 async
->submit_bio_start
= submit_bio_start
;
588 async
->submit_bio_done
= submit_bio_done
;
590 async
->work
.func
= run_one_async_start
;
591 async
->work
.ordered_func
= run_one_async_done
;
592 async
->work
.ordered_free
= run_one_async_free
;
594 async
->work
.flags
= 0;
595 async
->bio_flags
= bio_flags
;
597 atomic_inc(&fs_info
->nr_async_submits
);
599 if (rw
& (1 << BIO_RW_SYNCIO
))
600 btrfs_set_work_high_prio(&async
->work
);
602 btrfs_queue_worker(&fs_info
->workers
, &async
->work
);
604 while (atomic_read(&fs_info
->async_submit_draining
) &&
605 atomic_read(&fs_info
->nr_async_submits
)) {
606 wait_event(fs_info
->async_submit_wait
,
607 (atomic_read(&fs_info
->nr_async_submits
) == 0));
613 static int btree_csum_one_bio(struct bio
*bio
)
615 struct bio_vec
*bvec
= bio
->bi_io_vec
;
617 struct btrfs_root
*root
;
619 WARN_ON(bio
->bi_vcnt
<= 0);
620 while (bio_index
< bio
->bi_vcnt
) {
621 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
622 csum_dirty_buffer(root
, bvec
->bv_page
);
629 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
630 struct bio
*bio
, int mirror_num
,
631 unsigned long bio_flags
)
634 * when we're called for a write, we're already in the async
635 * submission context. Just jump into btrfs_map_bio
637 btree_csum_one_bio(bio
);
641 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
642 int mirror_num
, unsigned long bio_flags
)
645 * when we're called for a write, we're already in the async
646 * submission context. Just jump into btrfs_map_bio
648 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
651 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
652 int mirror_num
, unsigned long bio_flags
)
656 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
660 if (!(rw
& (1 << BIO_RW
))) {
662 * called for a read, do the setup so that checksum validation
663 * can happen in the async kernel threads
665 return btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
670 * kthread helpers are used to submit writes so that checksumming
671 * can happen in parallel across all CPUs
673 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
674 inode
, rw
, bio
, mirror_num
, 0,
675 __btree_submit_bio_start
,
676 __btree_submit_bio_done
);
679 static int btree_writepage(struct page
*page
, struct writeback_control
*wbc
)
681 struct extent_io_tree
*tree
;
682 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
683 struct extent_buffer
*eb
;
686 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
687 if (!(current
->flags
& PF_MEMALLOC
)) {
688 return extent_write_full_page(tree
, page
,
689 btree_get_extent
, wbc
);
692 redirty_page_for_writepage(wbc
, page
);
693 eb
= btrfs_find_tree_block(root
, page_offset(page
),
697 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
699 spin_lock(&root
->fs_info
->delalloc_lock
);
700 root
->fs_info
->dirty_metadata_bytes
+= PAGE_CACHE_SIZE
;
701 spin_unlock(&root
->fs_info
->delalloc_lock
);
703 free_extent_buffer(eb
);
709 static int btree_writepages(struct address_space
*mapping
,
710 struct writeback_control
*wbc
)
712 struct extent_io_tree
*tree
;
713 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
714 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
715 struct btrfs_root
*root
= BTRFS_I(mapping
->host
)->root
;
717 unsigned long thresh
= 32 * 1024 * 1024;
719 if (wbc
->for_kupdate
)
722 /* this is a bit racy, but that's ok */
723 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
724 if (num_dirty
< thresh
)
727 return extent_writepages(tree
, mapping
, btree_get_extent
, wbc
);
730 static int btree_readpage(struct file
*file
, struct page
*page
)
732 struct extent_io_tree
*tree
;
733 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
734 return extent_read_full_page(tree
, page
, btree_get_extent
);
737 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
739 struct extent_io_tree
*tree
;
740 struct extent_map_tree
*map
;
743 if (PageWriteback(page
) || PageDirty(page
))
746 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
747 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
749 ret
= try_release_extent_state(map
, tree
, page
, gfp_flags
);
753 ret
= try_release_extent_buffer(tree
, page
);
755 ClearPagePrivate(page
);
756 set_page_private(page
, 0);
757 page_cache_release(page
);
763 static void btree_invalidatepage(struct page
*page
, unsigned long offset
)
765 struct extent_io_tree
*tree
;
766 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
767 extent_invalidatepage(tree
, page
, offset
);
768 btree_releasepage(page
, GFP_NOFS
);
769 if (PagePrivate(page
)) {
770 printk(KERN_WARNING
"btrfs warning page private not zero "
771 "on page %llu\n", (unsigned long long)page_offset(page
));
772 ClearPagePrivate(page
);
773 set_page_private(page
, 0);
774 page_cache_release(page
);
778 static const struct address_space_operations btree_aops
= {
779 .readpage
= btree_readpage
,
780 .writepage
= btree_writepage
,
781 .writepages
= btree_writepages
,
782 .releasepage
= btree_releasepage
,
783 .invalidatepage
= btree_invalidatepage
,
784 .sync_page
= block_sync_page
,
787 int readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
, u32 blocksize
,
790 struct extent_buffer
*buf
= NULL
;
791 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
794 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
797 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
798 buf
, 0, 0, btree_get_extent
, 0);
799 free_extent_buffer(buf
);
803 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_root
*root
,
804 u64 bytenr
, u32 blocksize
)
806 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
807 struct extent_buffer
*eb
;
808 eb
= find_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
809 bytenr
, blocksize
, GFP_NOFS
);
813 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
814 u64 bytenr
, u32 blocksize
)
816 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
817 struct extent_buffer
*eb
;
819 eb
= alloc_extent_buffer(&BTRFS_I(btree_inode
)->io_tree
,
820 bytenr
, blocksize
, NULL
, GFP_NOFS
);
825 int btrfs_write_tree_block(struct extent_buffer
*buf
)
827 return filemap_fdatawrite_range(buf
->first_page
->mapping
, buf
->start
,
828 buf
->start
+ buf
->len
- 1);
831 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
833 return filemap_fdatawait_range(buf
->first_page
->mapping
,
834 buf
->start
, buf
->start
+ buf
->len
- 1);
837 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
838 u32 blocksize
, u64 parent_transid
)
840 struct extent_buffer
*buf
= NULL
;
841 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
842 struct extent_io_tree
*io_tree
;
845 io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
847 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
851 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
854 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
859 int clean_tree_block(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
860 struct extent_buffer
*buf
)
862 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
863 if (btrfs_header_generation(buf
) ==
864 root
->fs_info
->running_transaction
->transid
) {
865 btrfs_assert_tree_locked(buf
);
867 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
868 spin_lock(&root
->fs_info
->delalloc_lock
);
869 if (root
->fs_info
->dirty_metadata_bytes
>= buf
->len
)
870 root
->fs_info
->dirty_metadata_bytes
-= buf
->len
;
873 spin_unlock(&root
->fs_info
->delalloc_lock
);
876 /* ugh, clear_extent_buffer_dirty needs to lock the page */
877 btrfs_set_lock_blocking(buf
);
878 clear_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
884 static int __setup_root(u32 nodesize
, u32 leafsize
, u32 sectorsize
,
885 u32 stripesize
, struct btrfs_root
*root
,
886 struct btrfs_fs_info
*fs_info
,
890 root
->commit_root
= NULL
;
891 root
->sectorsize
= sectorsize
;
892 root
->nodesize
= nodesize
;
893 root
->leafsize
= leafsize
;
894 root
->stripesize
= stripesize
;
896 root
->track_dirty
= 0;
898 root
->clean_orphans
= 0;
900 root
->fs_info
= fs_info
;
901 root
->objectid
= objectid
;
902 root
->last_trans
= 0;
903 root
->highest_objectid
= 0;
906 root
->inode_tree
= RB_ROOT
;
908 INIT_LIST_HEAD(&root
->dirty_list
);
909 INIT_LIST_HEAD(&root
->orphan_list
);
910 INIT_LIST_HEAD(&root
->root_list
);
911 spin_lock_init(&root
->node_lock
);
912 spin_lock_init(&root
->list_lock
);
913 spin_lock_init(&root
->inode_lock
);
914 mutex_init(&root
->objectid_mutex
);
915 mutex_init(&root
->log_mutex
);
916 init_waitqueue_head(&root
->log_writer_wait
);
917 init_waitqueue_head(&root
->log_commit_wait
[0]);
918 init_waitqueue_head(&root
->log_commit_wait
[1]);
919 atomic_set(&root
->log_commit
[0], 0);
920 atomic_set(&root
->log_commit
[1], 0);
921 atomic_set(&root
->log_writers
, 0);
923 root
->log_transid
= 0;
924 root
->last_log_commit
= 0;
925 extent_io_tree_init(&root
->dirty_log_pages
,
926 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
928 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
929 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
930 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
931 memset(&root
->root_kobj
, 0, sizeof(root
->root_kobj
));
932 root
->defrag_trans_start
= fs_info
->generation
;
933 init_completion(&root
->kobj_unregister
);
934 root
->defrag_running
= 0;
935 root
->root_key
.objectid
= objectid
;
936 root
->anon_super
.s_root
= NULL
;
937 root
->anon_super
.s_dev
= 0;
938 INIT_LIST_HEAD(&root
->anon_super
.s_list
);
939 INIT_LIST_HEAD(&root
->anon_super
.s_instances
);
940 init_rwsem(&root
->anon_super
.s_umount
);
945 static int find_and_setup_root(struct btrfs_root
*tree_root
,
946 struct btrfs_fs_info
*fs_info
,
948 struct btrfs_root
*root
)
954 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
955 tree_root
->sectorsize
, tree_root
->stripesize
,
956 root
, fs_info
, objectid
);
957 ret
= btrfs_find_last_root(tree_root
, objectid
,
958 &root
->root_item
, &root
->root_key
);
963 generation
= btrfs_root_generation(&root
->root_item
);
964 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
965 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
966 blocksize
, generation
);
968 root
->commit_root
= btrfs_root_node(root
);
972 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
973 struct btrfs_fs_info
*fs_info
)
975 struct extent_buffer
*eb
;
976 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
985 ret
= find_first_extent_bit(&log_root_tree
->dirty_log_pages
,
986 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
990 clear_extent_bits(&log_root_tree
->dirty_log_pages
, start
, end
,
991 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
993 eb
= fs_info
->log_root_tree
->node
;
995 WARN_ON(btrfs_header_level(eb
) != 0);
996 WARN_ON(btrfs_header_nritems(eb
) != 0);
998 ret
= btrfs_free_reserved_extent(fs_info
->tree_root
,
1002 free_extent_buffer(eb
);
1003 kfree(fs_info
->log_root_tree
);
1004 fs_info
->log_root_tree
= NULL
;
1008 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1009 struct btrfs_fs_info
*fs_info
)
1011 struct btrfs_root
*root
;
1012 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1013 struct extent_buffer
*leaf
;
1015 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1017 return ERR_PTR(-ENOMEM
);
1019 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1020 tree_root
->sectorsize
, tree_root
->stripesize
,
1021 root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1023 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1024 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1025 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1027 * log trees do not get reference counted because they go away
1028 * before a real commit is actually done. They do store pointers
1029 * to file data extents, and those reference counts still get
1030 * updated (along with back refs to the log tree).
1034 leaf
= btrfs_alloc_free_block(trans
, root
, root
->leafsize
, 0,
1035 BTRFS_TREE_LOG_OBJECTID
, NULL
, 0, 0, 0);
1038 return ERR_CAST(leaf
);
1041 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1042 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1043 btrfs_set_header_generation(leaf
, trans
->transid
);
1044 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1045 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1048 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1049 (unsigned long)btrfs_header_fsid(root
->node
),
1051 btrfs_mark_buffer_dirty(root
->node
);
1052 btrfs_tree_unlock(root
->node
);
1056 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1057 struct btrfs_fs_info
*fs_info
)
1059 struct btrfs_root
*log_root
;
1061 log_root
= alloc_log_tree(trans
, fs_info
);
1062 if (IS_ERR(log_root
))
1063 return PTR_ERR(log_root
);
1064 WARN_ON(fs_info
->log_root_tree
);
1065 fs_info
->log_root_tree
= log_root
;
1069 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_root
*root
)
1072 struct btrfs_root
*log_root
;
1073 struct btrfs_inode_item
*inode_item
;
1075 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1076 if (IS_ERR(log_root
))
1077 return PTR_ERR(log_root
);
1079 log_root
->last_trans
= trans
->transid
;
1080 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1082 inode_item
= &log_root
->root_item
.inode
;
1083 inode_item
->generation
= cpu_to_le64(1);
1084 inode_item
->size
= cpu_to_le64(3);
1085 inode_item
->nlink
= cpu_to_le32(1);
1086 inode_item
->nbytes
= cpu_to_le64(root
->leafsize
);
1087 inode_item
->mode
= cpu_to_le32(S_IFDIR
| 0755);
1089 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1091 WARN_ON(root
->log_root
);
1092 root
->log_root
= log_root
;
1093 root
->log_transid
= 0;
1094 root
->last_log_commit
= 0;
1098 struct btrfs_root
*btrfs_read_fs_root_no_radix(struct btrfs_root
*tree_root
,
1099 struct btrfs_key
*location
)
1101 struct btrfs_root
*root
;
1102 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1103 struct btrfs_path
*path
;
1104 struct extent_buffer
*l
;
1109 root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1111 return ERR_PTR(-ENOMEM
);
1112 if (location
->offset
== (u64
)-1) {
1113 ret
= find_and_setup_root(tree_root
, fs_info
,
1114 location
->objectid
, root
);
1117 return ERR_PTR(ret
);
1122 __setup_root(tree_root
->nodesize
, tree_root
->leafsize
,
1123 tree_root
->sectorsize
, tree_root
->stripesize
,
1124 root
, fs_info
, location
->objectid
);
1126 path
= btrfs_alloc_path();
1128 ret
= btrfs_search_slot(NULL
, tree_root
, location
, path
, 0, 0);
1131 read_extent_buffer(l
, &root
->root_item
,
1132 btrfs_item_ptr_offset(l
, path
->slots
[0]),
1133 sizeof(root
->root_item
));
1134 memcpy(&root
->root_key
, location
, sizeof(*location
));
1136 btrfs_free_path(path
);
1140 return ERR_PTR(ret
);
1143 generation
= btrfs_root_generation(&root
->root_item
);
1144 blocksize
= btrfs_level_size(root
, btrfs_root_level(&root
->root_item
));
1145 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1146 blocksize
, generation
);
1147 root
->commit_root
= btrfs_root_node(root
);
1148 BUG_ON(!root
->node
);
1150 if (location
->objectid
!= BTRFS_TREE_LOG_OBJECTID
)
1156 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1159 struct btrfs_root
*root
;
1161 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1162 return fs_info
->tree_root
;
1163 if (root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1164 return fs_info
->extent_root
;
1166 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1167 (unsigned long)root_objectid
);
1171 struct btrfs_root
*btrfs_read_fs_root_no_name(struct btrfs_fs_info
*fs_info
,
1172 struct btrfs_key
*location
)
1174 struct btrfs_root
*root
;
1177 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1178 return fs_info
->tree_root
;
1179 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1180 return fs_info
->extent_root
;
1181 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1182 return fs_info
->chunk_root
;
1183 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1184 return fs_info
->dev_root
;
1185 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1186 return fs_info
->csum_root
;
1188 spin_lock(&fs_info
->fs_roots_radix_lock
);
1189 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1190 (unsigned long)location
->objectid
);
1191 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1195 ret
= btrfs_find_orphan_item(fs_info
->tree_root
, location
->objectid
);
1199 return ERR_PTR(ret
);
1201 root
= btrfs_read_fs_root_no_radix(fs_info
->tree_root
, location
);
1205 WARN_ON(btrfs_root_refs(&root
->root_item
) == 0);
1206 set_anon_super(&root
->anon_super
, NULL
);
1208 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1212 spin_lock(&fs_info
->fs_roots_radix_lock
);
1213 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1214 (unsigned long)root
->root_key
.objectid
,
1218 root
->clean_orphans
= 1;
1220 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1221 radix_tree_preload_end();
1223 if (ret
== -EEXIST
) {
1230 ret
= btrfs_find_dead_roots(fs_info
->tree_root
,
1231 root
->root_key
.objectid
);
1236 return ERR_PTR(ret
);
1239 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_fs_info
*fs_info
,
1240 struct btrfs_key
*location
,
1241 const char *name
, int namelen
)
1243 return btrfs_read_fs_root_no_name(fs_info
, location
);
1245 struct btrfs_root
*root
;
1248 root
= btrfs_read_fs_root_no_name(fs_info
, location
);
1255 ret
= btrfs_set_root_name(root
, name
, namelen
);
1257 free_extent_buffer(root
->node
);
1259 return ERR_PTR(ret
);
1262 ret
= btrfs_sysfs_add_root(root
);
1264 free_extent_buffer(root
->node
);
1267 return ERR_PTR(ret
);
1274 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1276 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1278 struct btrfs_device
*device
;
1279 struct backing_dev_info
*bdi
;
1281 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1284 bdi
= blk_get_backing_dev_info(device
->bdev
);
1285 if (bdi
&& bdi_congested(bdi
, bdi_bits
)) {
1294 * this unplugs every device on the box, and it is only used when page
1297 static void __unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1299 struct btrfs_device
*device
;
1300 struct btrfs_fs_info
*info
;
1302 info
= (struct btrfs_fs_info
*)bdi
->unplug_io_data
;
1303 list_for_each_entry(device
, &info
->fs_devices
->devices
, dev_list
) {
1307 bdi
= blk_get_backing_dev_info(device
->bdev
);
1308 if (bdi
->unplug_io_fn
)
1309 bdi
->unplug_io_fn(bdi
, page
);
1313 static void btrfs_unplug_io_fn(struct backing_dev_info
*bdi
, struct page
*page
)
1315 struct inode
*inode
;
1316 struct extent_map_tree
*em_tree
;
1317 struct extent_map
*em
;
1318 struct address_space
*mapping
;
1321 /* the generic O_DIRECT read code does this */
1323 __unplug_io_fn(bdi
, page
);
1328 * page->mapping may change at any time. Get a consistent copy
1329 * and use that for everything below
1332 mapping
= page
->mapping
;
1336 inode
= mapping
->host
;
1339 * don't do the expensive searching for a small number of
1342 if (BTRFS_I(inode
)->root
->fs_info
->fs_devices
->open_devices
<= 2) {
1343 __unplug_io_fn(bdi
, page
);
1347 offset
= page_offset(page
);
1349 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1350 read_lock(&em_tree
->lock
);
1351 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
1352 read_unlock(&em_tree
->lock
);
1354 __unplug_io_fn(bdi
, page
);
1358 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1359 free_extent_map(em
);
1360 __unplug_io_fn(bdi
, page
);
1363 offset
= offset
- em
->start
;
1364 btrfs_unplug_page(&BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1365 em
->block_start
+ offset
, page
);
1366 free_extent_map(em
);
1370 * If this fails, caller must call bdi_destroy() to get rid of the
1373 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1377 bdi
->name
= "btrfs";
1378 bdi
->capabilities
= BDI_CAP_MAP_COPY
;
1379 err
= bdi_init(bdi
);
1383 err
= bdi_register(bdi
, NULL
, "btrfs-%d",
1384 atomic_inc_return(&btrfs_bdi_num
));
1390 bdi
->ra_pages
= default_backing_dev_info
.ra_pages
;
1391 bdi
->unplug_io_fn
= btrfs_unplug_io_fn
;
1392 bdi
->unplug_io_data
= info
;
1393 bdi
->congested_fn
= btrfs_congested_fn
;
1394 bdi
->congested_data
= info
;
1398 static int bio_ready_for_csum(struct bio
*bio
)
1404 struct extent_io_tree
*io_tree
= NULL
;
1405 struct btrfs_fs_info
*info
= NULL
;
1406 struct bio_vec
*bvec
;
1410 bio_for_each_segment(bvec
, bio
, i
) {
1411 page
= bvec
->bv_page
;
1412 if (page
->private == EXTENT_PAGE_PRIVATE
) {
1413 length
+= bvec
->bv_len
;
1416 if (!page
->private) {
1417 length
+= bvec
->bv_len
;
1420 length
= bvec
->bv_len
;
1421 buf_len
= page
->private >> 2;
1422 start
= page_offset(page
) + bvec
->bv_offset
;
1423 io_tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
1424 info
= BTRFS_I(page
->mapping
->host
)->root
->fs_info
;
1426 /* are we fully contained in this bio? */
1427 if (buf_len
<= length
)
1430 ret
= extent_range_uptodate(io_tree
, start
+ length
,
1431 start
+ buf_len
- 1);
1436 * called by the kthread helper functions to finally call the bio end_io
1437 * functions. This is where read checksum verification actually happens
1439 static void end_workqueue_fn(struct btrfs_work
*work
)
1442 struct end_io_wq
*end_io_wq
;
1443 struct btrfs_fs_info
*fs_info
;
1446 end_io_wq
= container_of(work
, struct end_io_wq
, work
);
1447 bio
= end_io_wq
->bio
;
1448 fs_info
= end_io_wq
->info
;
1450 /* metadata bio reads are special because the whole tree block must
1451 * be checksummed at once. This makes sure the entire block is in
1452 * ram and up to date before trying to verify things. For
1453 * blocksize <= pagesize, it is basically a noop
1455 if (!(bio
->bi_rw
& (1 << BIO_RW
)) && end_io_wq
->metadata
&&
1456 !bio_ready_for_csum(bio
)) {
1457 btrfs_queue_worker(&fs_info
->endio_meta_workers
,
1461 error
= end_io_wq
->error
;
1462 bio
->bi_private
= end_io_wq
->private;
1463 bio
->bi_end_io
= end_io_wq
->end_io
;
1465 bio_endio(bio
, error
);
1468 static int cleaner_kthread(void *arg
)
1470 struct btrfs_root
*root
= arg
;
1474 if (root
->fs_info
->closing
)
1477 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1479 if (!(root
->fs_info
->sb
->s_flags
& MS_RDONLY
) &&
1480 mutex_trylock(&root
->fs_info
->cleaner_mutex
)) {
1481 btrfs_run_delayed_iputs(root
);
1482 btrfs_clean_old_snapshots(root
);
1483 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1486 if (freezing(current
)) {
1490 if (root
->fs_info
->closing
)
1492 set_current_state(TASK_INTERRUPTIBLE
);
1494 __set_current_state(TASK_RUNNING
);
1496 } while (!kthread_should_stop());
1500 static int transaction_kthread(void *arg
)
1502 struct btrfs_root
*root
= arg
;
1503 struct btrfs_trans_handle
*trans
;
1504 struct btrfs_transaction
*cur
;
1506 unsigned long delay
;
1511 if (root
->fs_info
->closing
)
1515 vfs_check_frozen(root
->fs_info
->sb
, SB_FREEZE_WRITE
);
1516 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1518 mutex_lock(&root
->fs_info
->trans_mutex
);
1519 cur
= root
->fs_info
->running_transaction
;
1521 mutex_unlock(&root
->fs_info
->trans_mutex
);
1525 now
= get_seconds();
1526 if (now
< cur
->start_time
|| now
- cur
->start_time
< 30) {
1527 mutex_unlock(&root
->fs_info
->trans_mutex
);
1531 mutex_unlock(&root
->fs_info
->trans_mutex
);
1532 trans
= btrfs_start_transaction(root
, 1);
1533 ret
= btrfs_commit_transaction(trans
, root
);
1536 wake_up_process(root
->fs_info
->cleaner_kthread
);
1537 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1539 if (freezing(current
)) {
1542 if (root
->fs_info
->closing
)
1544 set_current_state(TASK_INTERRUPTIBLE
);
1545 schedule_timeout(delay
);
1546 __set_current_state(TASK_RUNNING
);
1548 } while (!kthread_should_stop());
1552 struct btrfs_root
*open_ctree(struct super_block
*sb
,
1553 struct btrfs_fs_devices
*fs_devices
,
1563 struct btrfs_key location
;
1564 struct buffer_head
*bh
;
1565 struct btrfs_root
*extent_root
= kzalloc(sizeof(struct btrfs_root
),
1567 struct btrfs_root
*csum_root
= kzalloc(sizeof(struct btrfs_root
),
1569 struct btrfs_root
*tree_root
= kzalloc(sizeof(struct btrfs_root
),
1571 struct btrfs_fs_info
*fs_info
= kzalloc(sizeof(*fs_info
),
1573 struct btrfs_root
*chunk_root
= kzalloc(sizeof(struct btrfs_root
),
1575 struct btrfs_root
*dev_root
= kzalloc(sizeof(struct btrfs_root
),
1577 struct btrfs_root
*log_tree_root
;
1582 struct btrfs_super_block
*disk_super
;
1584 if (!extent_root
|| !tree_root
|| !fs_info
||
1585 !chunk_root
|| !dev_root
|| !csum_root
) {
1590 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
1596 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
1602 fs_info
->btree_inode
= new_inode(sb
);
1603 if (!fs_info
->btree_inode
) {
1608 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
1609 INIT_LIST_HEAD(&fs_info
->trans_list
);
1610 INIT_LIST_HEAD(&fs_info
->dead_roots
);
1611 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
1612 INIT_LIST_HEAD(&fs_info
->hashers
);
1613 INIT_LIST_HEAD(&fs_info
->delalloc_inodes
);
1614 INIT_LIST_HEAD(&fs_info
->ordered_operations
);
1615 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
1616 spin_lock_init(&fs_info
->delalloc_lock
);
1617 spin_lock_init(&fs_info
->new_trans_lock
);
1618 spin_lock_init(&fs_info
->ref_cache_lock
);
1619 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
1620 spin_lock_init(&fs_info
->delayed_iput_lock
);
1622 init_completion(&fs_info
->kobj_unregister
);
1623 fs_info
->tree_root
= tree_root
;
1624 fs_info
->extent_root
= extent_root
;
1625 fs_info
->csum_root
= csum_root
;
1626 fs_info
->chunk_root
= chunk_root
;
1627 fs_info
->dev_root
= dev_root
;
1628 fs_info
->fs_devices
= fs_devices
;
1629 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
1630 INIT_LIST_HEAD(&fs_info
->space_info
);
1631 btrfs_mapping_init(&fs_info
->mapping_tree
);
1632 atomic_set(&fs_info
->nr_async_submits
, 0);
1633 atomic_set(&fs_info
->async_delalloc_pages
, 0);
1634 atomic_set(&fs_info
->async_submit_draining
, 0);
1635 atomic_set(&fs_info
->nr_async_bios
, 0);
1637 fs_info
->max_extent
= (u64
)-1;
1638 fs_info
->max_inline
= 8192 * 1024;
1639 fs_info
->metadata_ratio
= 0;
1641 fs_info
->thread_pool_size
= min_t(unsigned long,
1642 num_online_cpus() + 2, 8);
1644 INIT_LIST_HEAD(&fs_info
->ordered_extents
);
1645 spin_lock_init(&fs_info
->ordered_extent_lock
);
1647 sb
->s_blocksize
= 4096;
1648 sb
->s_blocksize_bits
= blksize_bits(4096);
1649 sb
->s_bdi
= &fs_info
->bdi
;
1651 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
1652 fs_info
->btree_inode
->i_nlink
= 1;
1654 * we set the i_size on the btree inode to the max possible int.
1655 * the real end of the address space is determined by all of
1656 * the devices in the system
1658 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
1659 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
1660 fs_info
->btree_inode
->i_mapping
->backing_dev_info
= &fs_info
->bdi
;
1662 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
1663 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
1664 fs_info
->btree_inode
->i_mapping
,
1666 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
,
1669 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
1671 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
1672 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
1673 sizeof(struct btrfs_key
));
1674 BTRFS_I(fs_info
->btree_inode
)->dummy_inode
= 1;
1675 insert_inode_hash(fs_info
->btree_inode
);
1677 spin_lock_init(&fs_info
->block_group_cache_lock
);
1678 fs_info
->block_group_cache_tree
= RB_ROOT
;
1680 extent_io_tree_init(&fs_info
->freed_extents
[0],
1681 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1682 extent_io_tree_init(&fs_info
->freed_extents
[1],
1683 fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
1684 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
1685 fs_info
->do_barriers
= 1;
1688 mutex_init(&fs_info
->trans_mutex
);
1689 mutex_init(&fs_info
->ordered_operations_mutex
);
1690 mutex_init(&fs_info
->tree_log_mutex
);
1691 mutex_init(&fs_info
->chunk_mutex
);
1692 mutex_init(&fs_info
->transaction_kthread_mutex
);
1693 mutex_init(&fs_info
->cleaner_mutex
);
1694 mutex_init(&fs_info
->volume_mutex
);
1695 init_rwsem(&fs_info
->extent_commit_sem
);
1696 init_rwsem(&fs_info
->cleanup_work_sem
);
1697 init_rwsem(&fs_info
->subvol_sem
);
1699 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
1700 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
1702 init_waitqueue_head(&fs_info
->transaction_throttle
);
1703 init_waitqueue_head(&fs_info
->transaction_wait
);
1704 init_waitqueue_head(&fs_info
->async_submit_wait
);
1706 __setup_root(4096, 4096, 4096, 4096, tree_root
,
1707 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
1710 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
1714 memcpy(&fs_info
->super_copy
, bh
->b_data
, sizeof(fs_info
->super_copy
));
1715 memcpy(&fs_info
->super_for_commit
, &fs_info
->super_copy
,
1716 sizeof(fs_info
->super_for_commit
));
1719 memcpy(fs_info
->fsid
, fs_info
->super_copy
.fsid
, BTRFS_FSID_SIZE
);
1721 disk_super
= &fs_info
->super_copy
;
1722 if (!btrfs_super_root(disk_super
))
1725 ret
= btrfs_parse_options(tree_root
, options
);
1731 features
= btrfs_super_incompat_flags(disk_super
) &
1732 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
1734 printk(KERN_ERR
"BTRFS: couldn't mount because of "
1735 "unsupported optional features (%Lx).\n",
1736 (unsigned long long)features
);
1741 features
= btrfs_super_incompat_flags(disk_super
);
1742 if (!(features
& BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
)) {
1743 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
1744 btrfs_set_super_incompat_flags(disk_super
, features
);
1747 features
= btrfs_super_compat_ro_flags(disk_super
) &
1748 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
1749 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
1750 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
1751 "unsupported option features (%Lx).\n",
1752 (unsigned long long)features
);
1757 btrfs_init_workers(&fs_info
->generic_worker
,
1758 "genwork", 1, NULL
);
1760 btrfs_init_workers(&fs_info
->workers
, "worker",
1761 fs_info
->thread_pool_size
,
1762 &fs_info
->generic_worker
);
1764 btrfs_init_workers(&fs_info
->delalloc_workers
, "delalloc",
1765 fs_info
->thread_pool_size
,
1766 &fs_info
->generic_worker
);
1768 btrfs_init_workers(&fs_info
->submit_workers
, "submit",
1769 min_t(u64
, fs_devices
->num_devices
,
1770 fs_info
->thread_pool_size
),
1771 &fs_info
->generic_worker
);
1772 btrfs_init_workers(&fs_info
->enospc_workers
, "enospc",
1773 fs_info
->thread_pool_size
,
1774 &fs_info
->generic_worker
);
1776 /* a higher idle thresh on the submit workers makes it much more
1777 * likely that bios will be send down in a sane order to the
1780 fs_info
->submit_workers
.idle_thresh
= 64;
1782 fs_info
->workers
.idle_thresh
= 16;
1783 fs_info
->workers
.ordered
= 1;
1785 fs_info
->delalloc_workers
.idle_thresh
= 2;
1786 fs_info
->delalloc_workers
.ordered
= 1;
1788 btrfs_init_workers(&fs_info
->fixup_workers
, "fixup", 1,
1789 &fs_info
->generic_worker
);
1790 btrfs_init_workers(&fs_info
->endio_workers
, "endio",
1791 fs_info
->thread_pool_size
,
1792 &fs_info
->generic_worker
);
1793 btrfs_init_workers(&fs_info
->endio_meta_workers
, "endio-meta",
1794 fs_info
->thread_pool_size
,
1795 &fs_info
->generic_worker
);
1796 btrfs_init_workers(&fs_info
->endio_meta_write_workers
,
1797 "endio-meta-write", fs_info
->thread_pool_size
,
1798 &fs_info
->generic_worker
);
1799 btrfs_init_workers(&fs_info
->endio_write_workers
, "endio-write",
1800 fs_info
->thread_pool_size
,
1801 &fs_info
->generic_worker
);
1804 * endios are largely parallel and should have a very
1807 fs_info
->endio_workers
.idle_thresh
= 4;
1808 fs_info
->endio_meta_workers
.idle_thresh
= 4;
1810 fs_info
->endio_write_workers
.idle_thresh
= 2;
1811 fs_info
->endio_meta_write_workers
.idle_thresh
= 2;
1813 btrfs_start_workers(&fs_info
->workers
, 1);
1814 btrfs_start_workers(&fs_info
->generic_worker
, 1);
1815 btrfs_start_workers(&fs_info
->submit_workers
, 1);
1816 btrfs_start_workers(&fs_info
->delalloc_workers
, 1);
1817 btrfs_start_workers(&fs_info
->fixup_workers
, 1);
1818 btrfs_start_workers(&fs_info
->endio_workers
, 1);
1819 btrfs_start_workers(&fs_info
->endio_meta_workers
, 1);
1820 btrfs_start_workers(&fs_info
->endio_meta_write_workers
, 1);
1821 btrfs_start_workers(&fs_info
->endio_write_workers
, 1);
1822 btrfs_start_workers(&fs_info
->enospc_workers
, 1);
1824 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
1825 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
1826 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
1828 nodesize
= btrfs_super_nodesize(disk_super
);
1829 leafsize
= btrfs_super_leafsize(disk_super
);
1830 sectorsize
= btrfs_super_sectorsize(disk_super
);
1831 stripesize
= btrfs_super_stripesize(disk_super
);
1832 tree_root
->nodesize
= nodesize
;
1833 tree_root
->leafsize
= leafsize
;
1834 tree_root
->sectorsize
= sectorsize
;
1835 tree_root
->stripesize
= stripesize
;
1837 sb
->s_blocksize
= sectorsize
;
1838 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
1840 if (strncmp((char *)(&disk_super
->magic
), BTRFS_MAGIC
,
1841 sizeof(disk_super
->magic
))) {
1842 printk(KERN_INFO
"btrfs: valid FS not found on %s\n", sb
->s_id
);
1843 goto fail_sb_buffer
;
1846 mutex_lock(&fs_info
->chunk_mutex
);
1847 ret
= btrfs_read_sys_array(tree_root
);
1848 mutex_unlock(&fs_info
->chunk_mutex
);
1850 printk(KERN_WARNING
"btrfs: failed to read the system "
1851 "array on %s\n", sb
->s_id
);
1852 goto fail_sb_buffer
;
1855 blocksize
= btrfs_level_size(tree_root
,
1856 btrfs_super_chunk_root_level(disk_super
));
1857 generation
= btrfs_super_chunk_root_generation(disk_super
);
1859 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1860 chunk_root
, fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
1862 chunk_root
->node
= read_tree_block(chunk_root
,
1863 btrfs_super_chunk_root(disk_super
),
1864 blocksize
, generation
);
1865 BUG_ON(!chunk_root
->node
);
1866 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &chunk_root
->node
->bflags
)) {
1867 printk(KERN_WARNING
"btrfs: failed to read chunk root on %s\n",
1869 goto fail_chunk_root
;
1871 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
1872 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
1874 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
1875 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root
->node
),
1878 mutex_lock(&fs_info
->chunk_mutex
);
1879 ret
= btrfs_read_chunk_tree(chunk_root
);
1880 mutex_unlock(&fs_info
->chunk_mutex
);
1882 printk(KERN_WARNING
"btrfs: failed to read chunk tree on %s\n",
1884 goto fail_chunk_root
;
1887 btrfs_close_extra_devices(fs_devices
);
1889 blocksize
= btrfs_level_size(tree_root
,
1890 btrfs_super_root_level(disk_super
));
1891 generation
= btrfs_super_generation(disk_super
);
1893 tree_root
->node
= read_tree_block(tree_root
,
1894 btrfs_super_root(disk_super
),
1895 blocksize
, generation
);
1896 if (!tree_root
->node
)
1897 goto fail_chunk_root
;
1898 if (!test_bit(EXTENT_BUFFER_UPTODATE
, &tree_root
->node
->bflags
)) {
1899 printk(KERN_WARNING
"btrfs: failed to read tree root on %s\n",
1901 goto fail_tree_root
;
1903 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
1904 tree_root
->commit_root
= btrfs_root_node(tree_root
);
1906 ret
= find_and_setup_root(tree_root
, fs_info
,
1907 BTRFS_EXTENT_TREE_OBJECTID
, extent_root
);
1909 goto fail_tree_root
;
1910 extent_root
->track_dirty
= 1;
1912 ret
= find_and_setup_root(tree_root
, fs_info
,
1913 BTRFS_DEV_TREE_OBJECTID
, dev_root
);
1915 goto fail_extent_root
;
1916 dev_root
->track_dirty
= 1;
1918 ret
= find_and_setup_root(tree_root
, fs_info
,
1919 BTRFS_CSUM_TREE_OBJECTID
, csum_root
);
1923 csum_root
->track_dirty
= 1;
1925 btrfs_read_block_groups(extent_root
);
1927 fs_info
->generation
= generation
;
1928 fs_info
->last_trans_committed
= generation
;
1929 fs_info
->data_alloc_profile
= (u64
)-1;
1930 fs_info
->metadata_alloc_profile
= (u64
)-1;
1931 fs_info
->system_alloc_profile
= fs_info
->metadata_alloc_profile
;
1932 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
1934 if (IS_ERR(fs_info
->cleaner_kthread
))
1935 goto fail_csum_root
;
1937 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
1939 "btrfs-transaction");
1940 if (IS_ERR(fs_info
->transaction_kthread
))
1943 if (!btrfs_test_opt(tree_root
, SSD
) &&
1944 !btrfs_test_opt(tree_root
, NOSSD
) &&
1945 !fs_info
->fs_devices
->rotating
) {
1946 printk(KERN_INFO
"Btrfs detected SSD devices, enabling SSD "
1948 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
1951 if (btrfs_super_log_root(disk_super
) != 0) {
1952 u64 bytenr
= btrfs_super_log_root(disk_super
);
1954 if (fs_devices
->rw_devices
== 0) {
1955 printk(KERN_WARNING
"Btrfs log replay required "
1958 goto fail_trans_kthread
;
1961 btrfs_level_size(tree_root
,
1962 btrfs_super_log_root_level(disk_super
));
1964 log_tree_root
= kzalloc(sizeof(struct btrfs_root
),
1967 __setup_root(nodesize
, leafsize
, sectorsize
, stripesize
,
1968 log_tree_root
, fs_info
, BTRFS_TREE_LOG_OBJECTID
);
1970 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
1973 ret
= btrfs_recover_log_trees(log_tree_root
);
1976 if (sb
->s_flags
& MS_RDONLY
) {
1977 ret
= btrfs_commit_super(tree_root
);
1982 ret
= btrfs_find_orphan_roots(tree_root
);
1985 if (!(sb
->s_flags
& MS_RDONLY
)) {
1986 ret
= btrfs_recover_relocation(tree_root
);
1989 "btrfs: failed to recover relocation\n");
1991 goto fail_trans_kthread
;
1995 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
1996 location
.type
= BTRFS_ROOT_ITEM_KEY
;
1997 location
.offset
= (u64
)-1;
1999 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
2000 if (!fs_info
->fs_root
)
2001 goto fail_trans_kthread
;
2003 if (!(sb
->s_flags
& MS_RDONLY
)) {
2004 down_read(&fs_info
->cleanup_work_sem
);
2005 btrfs_orphan_cleanup(fs_info
->fs_root
);
2006 up_read(&fs_info
->cleanup_work_sem
);
2012 kthread_stop(fs_info
->transaction_kthread
);
2014 kthread_stop(fs_info
->cleaner_kthread
);
2017 * make sure we're done with the btree inode before we stop our
2020 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
2021 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2024 free_extent_buffer(csum_root
->node
);
2025 free_extent_buffer(csum_root
->commit_root
);
2027 free_extent_buffer(dev_root
->node
);
2028 free_extent_buffer(dev_root
->commit_root
);
2030 free_extent_buffer(extent_root
->node
);
2031 free_extent_buffer(extent_root
->commit_root
);
2033 free_extent_buffer(tree_root
->node
);
2034 free_extent_buffer(tree_root
->commit_root
);
2036 free_extent_buffer(chunk_root
->node
);
2037 free_extent_buffer(chunk_root
->commit_root
);
2039 btrfs_stop_workers(&fs_info
->generic_worker
);
2040 btrfs_stop_workers(&fs_info
->fixup_workers
);
2041 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2042 btrfs_stop_workers(&fs_info
->workers
);
2043 btrfs_stop_workers(&fs_info
->endio_workers
);
2044 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2045 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2046 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2047 btrfs_stop_workers(&fs_info
->submit_workers
);
2048 btrfs_stop_workers(&fs_info
->enospc_workers
);
2050 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
2051 iput(fs_info
->btree_inode
);
2053 btrfs_close_devices(fs_info
->fs_devices
);
2054 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2056 bdi_destroy(&fs_info
->bdi
);
2058 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2066 return ERR_PTR(err
);
2069 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
2071 char b
[BDEVNAME_SIZE
];
2074 set_buffer_uptodate(bh
);
2076 if (!buffer_eopnotsupp(bh
) && printk_ratelimit()) {
2077 printk(KERN_WARNING
"lost page write due to "
2078 "I/O error on %s\n",
2079 bdevname(bh
->b_bdev
, b
));
2081 /* note, we dont' set_buffer_write_io_error because we have
2082 * our own ways of dealing with the IO errors
2084 clear_buffer_uptodate(bh
);
2090 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
2092 struct buffer_head
*bh
;
2093 struct buffer_head
*latest
= NULL
;
2094 struct btrfs_super_block
*super
;
2099 /* we would like to check all the supers, but that would make
2100 * a btrfs mount succeed after a mkfs from a different FS.
2101 * So, we need to add a special mount option to scan for
2102 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2104 for (i
= 0; i
< 1; i
++) {
2105 bytenr
= btrfs_sb_offset(i
);
2106 if (bytenr
+ 4096 >= i_size_read(bdev
->bd_inode
))
2108 bh
= __bread(bdev
, bytenr
/ 4096, 4096);
2112 super
= (struct btrfs_super_block
*)bh
->b_data
;
2113 if (btrfs_super_bytenr(super
) != bytenr
||
2114 strncmp((char *)(&super
->magic
), BTRFS_MAGIC
,
2115 sizeof(super
->magic
))) {
2120 if (!latest
|| btrfs_super_generation(super
) > transid
) {
2123 transid
= btrfs_super_generation(super
);
2132 * this should be called twice, once with wait == 0 and
2133 * once with wait == 1. When wait == 0 is done, all the buffer heads
2134 * we write are pinned.
2136 * They are released when wait == 1 is done.
2137 * max_mirrors must be the same for both runs, and it indicates how
2138 * many supers on this one device should be written.
2140 * max_mirrors == 0 means to write them all.
2142 static int write_dev_supers(struct btrfs_device
*device
,
2143 struct btrfs_super_block
*sb
,
2144 int do_barriers
, int wait
, int max_mirrors
)
2146 struct buffer_head
*bh
;
2152 int last_barrier
= 0;
2154 if (max_mirrors
== 0)
2155 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
2157 /* make sure only the last submit_bh does a barrier */
2159 for (i
= 0; i
< max_mirrors
; i
++) {
2160 bytenr
= btrfs_sb_offset(i
);
2161 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
2162 device
->total_bytes
)
2168 for (i
= 0; i
< max_mirrors
; i
++) {
2169 bytenr
= btrfs_sb_offset(i
);
2170 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= device
->total_bytes
)
2174 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
2175 BTRFS_SUPER_INFO_SIZE
);
2178 if (!buffer_uptodate(bh
))
2181 /* drop our reference */
2184 /* drop the reference from the wait == 0 run */
2188 btrfs_set_super_bytenr(sb
, bytenr
);
2191 crc
= btrfs_csum_data(NULL
, (char *)sb
+
2192 BTRFS_CSUM_SIZE
, crc
,
2193 BTRFS_SUPER_INFO_SIZE
-
2195 btrfs_csum_final(crc
, sb
->csum
);
2198 * one reference for us, and we leave it for the
2201 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
2202 BTRFS_SUPER_INFO_SIZE
);
2203 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
2205 /* one reference for submit_bh */
2208 set_buffer_uptodate(bh
);
2210 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
2213 if (i
== last_barrier
&& do_barriers
&& device
->barriers
) {
2214 ret
= submit_bh(WRITE_BARRIER
, bh
);
2215 if (ret
== -EOPNOTSUPP
) {
2216 printk("btrfs: disabling barriers on dev %s\n",
2218 set_buffer_uptodate(bh
);
2219 device
->barriers
= 0;
2220 /* one reference for submit_bh */
2223 ret
= submit_bh(WRITE_SYNC
, bh
);
2226 ret
= submit_bh(WRITE_SYNC
, bh
);
2232 return errors
< i
? 0 : -1;
2235 int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
2237 struct list_head
*head
;
2238 struct btrfs_device
*dev
;
2239 struct btrfs_super_block
*sb
;
2240 struct btrfs_dev_item
*dev_item
;
2244 int total_errors
= 0;
2247 max_errors
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
2248 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
2250 sb
= &root
->fs_info
->super_for_commit
;
2251 dev_item
= &sb
->dev_item
;
2253 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2254 head
= &root
->fs_info
->fs_devices
->devices
;
2255 list_for_each_entry(dev
, head
, dev_list
) {
2260 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2263 btrfs_set_stack_device_generation(dev_item
, 0);
2264 btrfs_set_stack_device_type(dev_item
, dev
->type
);
2265 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
2266 btrfs_set_stack_device_total_bytes(dev_item
, dev
->total_bytes
);
2267 btrfs_set_stack_device_bytes_used(dev_item
, dev
->bytes_used
);
2268 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
2269 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
2270 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
2271 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
2272 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
2274 flags
= btrfs_super_flags(sb
);
2275 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
2277 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
2281 if (total_errors
> max_errors
) {
2282 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2288 list_for_each_entry(dev
, head
, dev_list
) {
2291 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
2294 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
2298 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
2299 if (total_errors
> max_errors
) {
2300 printk(KERN_ERR
"btrfs: %d errors while writing supers\n",
2307 int write_ctree_super(struct btrfs_trans_handle
*trans
,
2308 struct btrfs_root
*root
, int max_mirrors
)
2312 ret
= write_all_supers(root
, max_mirrors
);
2316 int btrfs_free_fs_root(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2318 spin_lock(&fs_info
->fs_roots_radix_lock
);
2319 radix_tree_delete(&fs_info
->fs_roots_radix
,
2320 (unsigned long)root
->root_key
.objectid
);
2321 spin_unlock(&fs_info
->fs_roots_radix_lock
);
2323 if (btrfs_root_refs(&root
->root_item
) == 0)
2324 synchronize_srcu(&fs_info
->subvol_srcu
);
2330 static void free_fs_root(struct btrfs_root
*root
)
2332 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
2333 if (root
->anon_super
.s_dev
) {
2334 down_write(&root
->anon_super
.s_umount
);
2335 kill_anon_super(&root
->anon_super
);
2337 free_extent_buffer(root
->node
);
2338 free_extent_buffer(root
->commit_root
);
2343 static int del_fs_roots(struct btrfs_fs_info
*fs_info
)
2346 struct btrfs_root
*gang
[8];
2349 while (!list_empty(&fs_info
->dead_roots
)) {
2350 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2351 struct btrfs_root
, root_list
);
2352 list_del(&gang
[0]->root_list
);
2354 if (gang
[0]->in_radix
) {
2355 btrfs_free_fs_root(fs_info
, gang
[0]);
2357 free_extent_buffer(gang
[0]->node
);
2358 free_extent_buffer(gang
[0]->commit_root
);
2364 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2369 for (i
= 0; i
< ret
; i
++)
2370 btrfs_free_fs_root(fs_info
, gang
[i
]);
2375 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
2377 u64 root_objectid
= 0;
2378 struct btrfs_root
*gang
[8];
2383 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2384 (void **)gang
, root_objectid
,
2389 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
2390 for (i
= 0; i
< ret
; i
++) {
2391 root_objectid
= gang
[i
]->root_key
.objectid
;
2392 btrfs_orphan_cleanup(gang
[i
]);
2399 int btrfs_commit_super(struct btrfs_root
*root
)
2401 struct btrfs_trans_handle
*trans
;
2404 mutex_lock(&root
->fs_info
->cleaner_mutex
);
2405 btrfs_run_delayed_iputs(root
);
2406 btrfs_clean_old_snapshots(root
);
2407 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
2409 /* wait until ongoing cleanup work done */
2410 down_write(&root
->fs_info
->cleanup_work_sem
);
2411 up_write(&root
->fs_info
->cleanup_work_sem
);
2413 trans
= btrfs_start_transaction(root
, 1);
2414 ret
= btrfs_commit_transaction(trans
, root
);
2416 /* run commit again to drop the original snapshot */
2417 trans
= btrfs_start_transaction(root
, 1);
2418 btrfs_commit_transaction(trans
, root
);
2419 ret
= btrfs_write_and_wait_transaction(NULL
, root
);
2422 ret
= write_ctree_super(NULL
, root
, 0);
2426 int close_ctree(struct btrfs_root
*root
)
2428 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2431 fs_info
->closing
= 1;
2434 kthread_stop(root
->fs_info
->transaction_kthread
);
2435 kthread_stop(root
->fs_info
->cleaner_kthread
);
2437 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
2438 ret
= btrfs_commit_super(root
);
2440 printk(KERN_ERR
"btrfs: commit super ret %d\n", ret
);
2443 fs_info
->closing
= 2;
2446 if (fs_info
->delalloc_bytes
) {
2447 printk(KERN_INFO
"btrfs: at unmount delalloc count %llu\n",
2448 (unsigned long long)fs_info
->delalloc_bytes
);
2450 if (fs_info
->total_ref_cache_size
) {
2451 printk(KERN_INFO
"btrfs: at umount reference cache size %llu\n",
2452 (unsigned long long)fs_info
->total_ref_cache_size
);
2455 free_extent_buffer(fs_info
->extent_root
->node
);
2456 free_extent_buffer(fs_info
->extent_root
->commit_root
);
2457 free_extent_buffer(fs_info
->tree_root
->node
);
2458 free_extent_buffer(fs_info
->tree_root
->commit_root
);
2459 free_extent_buffer(root
->fs_info
->chunk_root
->node
);
2460 free_extent_buffer(root
->fs_info
->chunk_root
->commit_root
);
2461 free_extent_buffer(root
->fs_info
->dev_root
->node
);
2462 free_extent_buffer(root
->fs_info
->dev_root
->commit_root
);
2463 free_extent_buffer(root
->fs_info
->csum_root
->node
);
2464 free_extent_buffer(root
->fs_info
->csum_root
->commit_root
);
2466 btrfs_free_block_groups(root
->fs_info
);
2468 del_fs_roots(fs_info
);
2470 iput(fs_info
->btree_inode
);
2472 btrfs_stop_workers(&fs_info
->generic_worker
);
2473 btrfs_stop_workers(&fs_info
->fixup_workers
);
2474 btrfs_stop_workers(&fs_info
->delalloc_workers
);
2475 btrfs_stop_workers(&fs_info
->workers
);
2476 btrfs_stop_workers(&fs_info
->endio_workers
);
2477 btrfs_stop_workers(&fs_info
->endio_meta_workers
);
2478 btrfs_stop_workers(&fs_info
->endio_meta_write_workers
);
2479 btrfs_stop_workers(&fs_info
->endio_write_workers
);
2480 btrfs_stop_workers(&fs_info
->submit_workers
);
2481 btrfs_stop_workers(&fs_info
->enospc_workers
);
2483 btrfs_close_devices(fs_info
->fs_devices
);
2484 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
2486 bdi_destroy(&fs_info
->bdi
);
2487 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
2489 kfree(fs_info
->extent_root
);
2490 kfree(fs_info
->tree_root
);
2491 kfree(fs_info
->chunk_root
);
2492 kfree(fs_info
->dev_root
);
2493 kfree(fs_info
->csum_root
);
2497 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
)
2500 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2502 ret
= extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2507 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
2512 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
2514 struct inode
*btree_inode
= buf
->first_page
->mapping
->host
;
2515 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode
)->io_tree
,
2519 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
2521 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2522 u64 transid
= btrfs_header_generation(buf
);
2523 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
2526 btrfs_assert_tree_locked(buf
);
2527 if (transid
!= root
->fs_info
->generation
) {
2528 printk(KERN_CRIT
"btrfs transid mismatch buffer %llu, "
2529 "found %llu running %llu\n",
2530 (unsigned long long)buf
->start
,
2531 (unsigned long long)transid
,
2532 (unsigned long long)root
->fs_info
->generation
);
2535 was_dirty
= set_extent_buffer_dirty(&BTRFS_I(btree_inode
)->io_tree
,
2538 spin_lock(&root
->fs_info
->delalloc_lock
);
2539 root
->fs_info
->dirty_metadata_bytes
+= buf
->len
;
2540 spin_unlock(&root
->fs_info
->delalloc_lock
);
2544 void btrfs_btree_balance_dirty(struct btrfs_root
*root
, unsigned long nr
)
2547 * looks as though older kernels can get into trouble with
2548 * this code, they end up stuck in balance_dirty_pages forever
2551 unsigned long thresh
= 32 * 1024 * 1024;
2553 if (current
->flags
& PF_MEMALLOC
)
2556 num_dirty
= root
->fs_info
->dirty_metadata_bytes
;
2558 if (num_dirty
> thresh
) {
2559 balance_dirty_pages_ratelimited_nr(
2560 root
->fs_info
->btree_inode
->i_mapping
, 1);
2565 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
2567 struct btrfs_root
*root
= BTRFS_I(buf
->first_page
->mapping
->host
)->root
;
2569 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
2571 set_bit(EXTENT_BUFFER_UPTODATE
, &buf
->bflags
);
2575 int btree_lock_page_hook(struct page
*page
)
2577 struct inode
*inode
= page
->mapping
->host
;
2578 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2579 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2580 struct extent_buffer
*eb
;
2582 u64 bytenr
= page_offset(page
);
2584 if (page
->private == EXTENT_PAGE_PRIVATE
)
2587 len
= page
->private >> 2;
2588 eb
= find_extent_buffer(io_tree
, bytenr
, len
, GFP_NOFS
);
2592 btrfs_tree_lock(eb
);
2593 btrfs_set_header_flag(eb
, BTRFS_HEADER_FLAG_WRITTEN
);
2595 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
2596 spin_lock(&root
->fs_info
->delalloc_lock
);
2597 if (root
->fs_info
->dirty_metadata_bytes
>= eb
->len
)
2598 root
->fs_info
->dirty_metadata_bytes
-= eb
->len
;
2601 spin_unlock(&root
->fs_info
->delalloc_lock
);
2604 btrfs_tree_unlock(eb
);
2605 free_extent_buffer(eb
);
2611 static struct extent_io_ops btree_extent_io_ops
= {
2612 .write_cache_pages_lock_hook
= btree_lock_page_hook
,
2613 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
2614 .submit_bio_hook
= btree_submit_bio_hook
,
2615 /* note we're sharing with inode.c for the merge bio hook */
2616 .merge_bio_hook
= btrfs_merge_bio_hook
,