Fix debugfs_create_dir's error checking method for arch/sh/kernel/
[linux-2.6/libata-dev.git] / arch / sh / kernel / setup.c
blob836e80d5cb9fac1805d36451a3828150d06b7f73
1 /*
2 * arch/sh/kernel/setup.c
4 * This file handles the architecture-dependent parts of initialization
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <asm/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/page.h>
35 #include <asm/elf.h>
36 #include <asm/sections.h>
37 #include <asm/irq.h>
38 #include <asm/setup.h>
39 #include <asm/clock.h>
40 #include <asm/mmu_context.h>
43 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
44 * This value will be used at the very early stage of serial setup.
45 * The bigger value means no problem.
47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
48 [0] = {
49 .type = CPU_SH_NONE,
50 .loops_per_jiffy = 10000000,
53 EXPORT_SYMBOL(cpu_data);
56 * The machine vector. First entry in .machvec.init, or clobbered by
57 * sh_mv= on the command line, prior to .machvec.init teardown.
59 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
60 EXPORT_SYMBOL(sh_mv);
62 #ifdef CONFIG_VT
63 struct screen_info screen_info;
64 #endif
66 extern int root_mountflags;
68 #define RAMDISK_IMAGE_START_MASK 0x07FF
69 #define RAMDISK_PROMPT_FLAG 0x8000
70 #define RAMDISK_LOAD_FLAG 0x4000
72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
74 static struct resource code_resource = {
75 .name = "Kernel code",
76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 static struct resource data_resource = {
80 .name = "Kernel data",
81 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
84 static struct resource bss_resource = {
85 .name = "Kernel bss",
86 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91 unsigned long memory_end = 0;
92 EXPORT_SYMBOL(memory_end);
94 static struct resource mem_resources[MAX_NUMNODES];
96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
98 static int __init early_parse_mem(char *p)
100 unsigned long size;
102 memory_start = (unsigned long)__va(__MEMORY_START);
103 size = memparse(p, &p);
105 if (size > __MEMORY_SIZE) {
106 static char msg[] __initdata = KERN_ERR
107 "Using mem= to increase the size of kernel memory "
108 "is not allowed.\n"
109 " Recompile the kernel with the correct value for "
110 "CONFIG_MEMORY_SIZE.\n";
111 printk(msg);
112 return 0;
115 memory_end = memory_start + size;
117 return 0;
119 early_param("mem", early_parse_mem);
122 * Register fully available low RAM pages with the bootmem allocator.
124 static void __init register_bootmem_low_pages(void)
126 unsigned long curr_pfn, last_pfn, pages;
129 * We are rounding up the start address of usable memory:
131 curr_pfn = PFN_UP(__MEMORY_START);
134 * ... and at the end of the usable range downwards:
136 last_pfn = PFN_DOWN(__pa(memory_end));
138 if (last_pfn > max_low_pfn)
139 last_pfn = max_low_pfn;
141 pages = last_pfn - curr_pfn;
142 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
145 #ifdef CONFIG_KEXEC
146 static void __init reserve_crashkernel(void)
148 unsigned long long free_mem;
149 unsigned long long crash_size, crash_base;
150 int ret;
152 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
154 ret = parse_crashkernel(boot_command_line, free_mem,
155 &crash_size, &crash_base);
156 if (ret == 0 && crash_size) {
157 if (crash_base <= 0) {
158 printk(KERN_INFO "crashkernel reservation failed - "
159 "you have to specify a base address\n");
160 return;
163 if (reserve_bootmem(crash_base, crash_size,
164 BOOTMEM_EXCLUSIVE) < 0) {
165 printk(KERN_INFO "crashkernel reservation failed - "
166 "memory is in use\n");
167 return;
170 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
171 "for crashkernel (System RAM: %ldMB)\n",
172 (unsigned long)(crash_size >> 20),
173 (unsigned long)(crash_base >> 20),
174 (unsigned long)(free_mem >> 20));
175 crashk_res.start = crash_base;
176 crashk_res.end = crash_base + crash_size - 1;
177 insert_resource(&iomem_resource, &crashk_res);
180 #else
181 static inline void __init reserve_crashkernel(void)
183 #endif
185 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
186 void __cpuinit calibrate_delay(void)
188 struct clk *clk = clk_get(NULL, "cpu_clk");
190 if (IS_ERR(clk))
191 panic("Need a sane CPU clock definition!");
193 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
195 printk(KERN_INFO "Calibrating delay loop (skipped)... "
196 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
197 loops_per_jiffy/(500000/HZ),
198 (loops_per_jiffy/(5000/HZ)) % 100,
199 loops_per_jiffy);
201 #endif
203 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
204 unsigned long end_pfn)
206 struct resource *res = &mem_resources[nid];
208 WARN_ON(res->name); /* max one active range per node for now */
210 res->name = "System RAM";
211 res->start = start_pfn << PAGE_SHIFT;
212 res->end = (end_pfn << PAGE_SHIFT) - 1;
213 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
214 if (request_resource(&iomem_resource, res)) {
215 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
216 start_pfn, end_pfn);
217 return;
221 * We don't know which RAM region contains kernel data,
222 * so we try it repeatedly and let the resource manager
223 * test it.
225 request_resource(res, &code_resource);
226 request_resource(res, &data_resource);
227 request_resource(res, &bss_resource);
229 add_active_range(nid, start_pfn, end_pfn);
232 void __init setup_bootmem_allocator(unsigned long free_pfn)
234 unsigned long bootmap_size;
237 * Find a proper area for the bootmem bitmap. After this
238 * bootstrap step all allocations (until the page allocator
239 * is intact) must be done via bootmem_alloc().
241 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
242 min_low_pfn, max_low_pfn);
244 __add_active_range(0, min_low_pfn, max_low_pfn);
245 register_bootmem_low_pages();
247 node_set_online(0);
250 * Reserve the kernel text and
251 * Reserve the bootmem bitmap. We do this in two steps (first step
252 * was init_bootmem()), because this catches the (definitely buggy)
253 * case of us accidentally initializing the bootmem allocator with
254 * an invalid RAM area.
256 reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
257 (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
258 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
259 BOOTMEM_DEFAULT);
262 * reserve physical page 0 - it's a special BIOS page on many boxes,
263 * enabling clean reboots, SMP operation, laptop functions.
265 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
266 BOOTMEM_DEFAULT);
268 sparse_memory_present_with_active_regions(0);
270 #ifdef CONFIG_BLK_DEV_INITRD
271 ROOT_DEV = Root_RAM0;
273 if (LOADER_TYPE && INITRD_START) {
274 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
276 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
277 reserve_bootmem(initrd_start_phys, INITRD_SIZE,
278 BOOTMEM_DEFAULT);
279 initrd_start = (unsigned long)__va(initrd_start_phys);
280 initrd_end = initrd_start + INITRD_SIZE;
281 } else {
282 printk("initrd extends beyond end of memory "
283 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
284 initrd_start_phys + INITRD_SIZE,
285 PFN_PHYS(max_low_pfn));
286 initrd_start = 0;
289 #endif
291 reserve_crashkernel();
294 #ifndef CONFIG_NEED_MULTIPLE_NODES
295 static void __init setup_memory(void)
297 unsigned long start_pfn;
300 * Partially used pages are not usable - thus
301 * we are rounding upwards:
303 start_pfn = PFN_UP(__pa(_end));
304 setup_bootmem_allocator(start_pfn);
306 #else
307 extern void __init setup_memory(void);
308 #endif
311 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
312 * is_kdump_kernel() to determine if we are booting after a panic. Hence
313 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
315 #ifdef CONFIG_CRASH_DUMP
316 /* elfcorehdr= specifies the location of elf core header
317 * stored by the crashed kernel.
319 static int __init parse_elfcorehdr(char *arg)
321 if (!arg)
322 return -EINVAL;
323 elfcorehdr_addr = memparse(arg, &arg);
324 return 0;
326 early_param("elfcorehdr", parse_elfcorehdr);
327 #endif
329 void __init setup_arch(char **cmdline_p)
331 enable_mmu();
333 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
335 printk(KERN_NOTICE "Boot params:\n"
336 "... MOUNT_ROOT_RDONLY - %08lx\n"
337 "... RAMDISK_FLAGS - %08lx\n"
338 "... ORIG_ROOT_DEV - %08lx\n"
339 "... LOADER_TYPE - %08lx\n"
340 "... INITRD_START - %08lx\n"
341 "... INITRD_SIZE - %08lx\n",
342 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
343 ORIG_ROOT_DEV, LOADER_TYPE,
344 INITRD_START, INITRD_SIZE);
346 #ifdef CONFIG_BLK_DEV_RAM
347 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
348 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
349 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
350 #endif
352 if (!MOUNT_ROOT_RDONLY)
353 root_mountflags &= ~MS_RDONLY;
354 init_mm.start_code = (unsigned long) _text;
355 init_mm.end_code = (unsigned long) _etext;
356 init_mm.end_data = (unsigned long) _edata;
357 init_mm.brk = (unsigned long) _end;
359 code_resource.start = virt_to_phys(_text);
360 code_resource.end = virt_to_phys(_etext)-1;
361 data_resource.start = virt_to_phys(_etext);
362 data_resource.end = virt_to_phys(_edata)-1;
363 bss_resource.start = virt_to_phys(__bss_start);
364 bss_resource.end = virt_to_phys(_ebss)-1;
366 memory_start = (unsigned long)__va(__MEMORY_START);
367 if (!memory_end)
368 memory_end = memory_start + __MEMORY_SIZE;
370 #ifdef CONFIG_CMDLINE_BOOL
371 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
372 #else
373 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
374 #endif
376 /* Save unparsed command line copy for /proc/cmdline */
377 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
378 *cmdline_p = command_line;
380 parse_early_param();
382 sh_mv_setup();
385 * Find the highest page frame number we have available
387 max_pfn = PFN_DOWN(__pa(memory_end));
390 * Determine low and high memory ranges:
392 max_low_pfn = max_pfn;
393 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
395 nodes_clear(node_online_map);
397 /* Setup bootmem with available RAM */
398 setup_memory();
399 sparse_init();
401 #ifdef CONFIG_DUMMY_CONSOLE
402 conswitchp = &dummy_con;
403 #endif
405 /* Perform the machine specific initialisation */
406 if (likely(sh_mv.mv_setup))
407 sh_mv.mv_setup(cmdline_p);
409 paging_init();
411 #ifdef CONFIG_SMP
412 plat_smp_setup();
413 #endif
416 static const char *cpu_name[] = {
417 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
418 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
419 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
420 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
421 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
422 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
423 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
424 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
425 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
426 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
427 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
428 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
429 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
430 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
431 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
432 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
433 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
434 [CPU_SH7366] = "SH7366", [CPU_SH_NONE] = "Unknown"
437 const char *get_cpu_subtype(struct sh_cpuinfo *c)
439 return cpu_name[c->type];
441 EXPORT_SYMBOL(get_cpu_subtype);
443 #ifdef CONFIG_PROC_FS
444 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
445 static const char *cpu_flags[] = {
446 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
447 "ptea", "llsc", "l2", "op32", NULL
450 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
452 unsigned long i;
454 seq_printf(m, "cpu flags\t:");
456 if (!c->flags) {
457 seq_printf(m, " %s\n", cpu_flags[0]);
458 return;
461 for (i = 0; cpu_flags[i]; i++)
462 if ((c->flags & (1 << i)))
463 seq_printf(m, " %s", cpu_flags[i+1]);
465 seq_printf(m, "\n");
468 static void show_cacheinfo(struct seq_file *m, const char *type,
469 struct cache_info info)
471 unsigned int cache_size;
473 cache_size = info.ways * info.sets * info.linesz;
475 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
476 type, cache_size >> 10, info.ways);
480 * Get CPU information for use by the procfs.
482 static int show_cpuinfo(struct seq_file *m, void *v)
484 struct sh_cpuinfo *c = v;
485 unsigned int cpu = c - cpu_data;
487 if (!cpu_online(cpu))
488 return 0;
490 if (cpu == 0)
491 seq_printf(m, "machine\t\t: %s\n", get_system_type());
493 seq_printf(m, "processor\t: %d\n", cpu);
494 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
495 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
496 if (c->cut_major == -1)
497 seq_printf(m, "cut\t\t: unknown\n");
498 else if (c->cut_minor == -1)
499 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
500 else
501 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
503 show_cpuflags(m, c);
505 seq_printf(m, "cache type\t: ");
508 * Check for what type of cache we have, we support both the
509 * unified cache on the SH-2 and SH-3, as well as the harvard
510 * style cache on the SH-4.
512 if (c->icache.flags & SH_CACHE_COMBINED) {
513 seq_printf(m, "unified\n");
514 show_cacheinfo(m, "cache", c->icache);
515 } else {
516 seq_printf(m, "split (harvard)\n");
517 show_cacheinfo(m, "icache", c->icache);
518 show_cacheinfo(m, "dcache", c->dcache);
521 /* Optional secondary cache */
522 if (c->flags & CPU_HAS_L2_CACHE)
523 show_cacheinfo(m, "scache", c->scache);
525 seq_printf(m, "bogomips\t: %lu.%02lu\n",
526 c->loops_per_jiffy/(500000/HZ),
527 (c->loops_per_jiffy/(5000/HZ)) % 100);
529 return 0;
532 static void *c_start(struct seq_file *m, loff_t *pos)
534 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
536 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
538 ++*pos;
539 return c_start(m, pos);
541 static void c_stop(struct seq_file *m, void *v)
544 const struct seq_operations cpuinfo_op = {
545 .start = c_start,
546 .next = c_next,
547 .stop = c_stop,
548 .show = show_cpuinfo,
550 #endif /* CONFIG_PROC_FS */
552 struct dentry *sh_debugfs_root;
554 static int __init sh_debugfs_init(void)
556 sh_debugfs_root = debugfs_create_dir("sh", NULL);
557 if (!sh_debugfs_root)
558 return -ENOMEM;
559 if (IS_ERR(sh_debugfs_root))
560 return PTR_ERR(sh_debugfs_root);
562 return 0;
564 arch_initcall(sh_debugfs_init);