Merge git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6/libata-dev.git] / kernel / exit.c
blob346616c0092cfe3993fbcfb9b7f36d0d02986fb2
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct * tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 * If we are the last child process in a pid namespace to be
77 * reaped, notify the reaper sleeping zap_pid_ns_processes().
79 if (IS_ENABLED(CONFIG_PID_NS)) {
80 struct task_struct *parent = p->real_parent;
82 if ((task_active_pid_ns(parent)->child_reaper == parent) &&
83 list_empty(&parent->children) &&
84 (parent->flags & PF_EXITING))
85 wake_up_process(parent);
88 list_del_rcu(&p->thread_group);
92 * This function expects the tasklist_lock write-locked.
94 static void __exit_signal(struct task_struct *tsk)
96 struct signal_struct *sig = tsk->signal;
97 bool group_dead = thread_group_leader(tsk);
98 struct sighand_struct *sighand;
99 struct tty_struct *uninitialized_var(tty);
101 sighand = rcu_dereference_check(tsk->sighand,
102 lockdep_tasklist_lock_is_held());
103 spin_lock(&sighand->siglock);
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 tty = sig->tty;
109 sig->tty = NULL;
110 } else {
112 * This can only happen if the caller is de_thread().
113 * FIXME: this is the temporary hack, we should teach
114 * posix-cpu-timers to handle this case correctly.
116 if (unlikely(has_group_leader_pid(tsk)))
117 posix_cpu_timers_exit_group(tsk);
120 * If there is any task waiting for the group exit
121 * then notify it:
123 if (sig->notify_count > 0 && !--sig->notify_count)
124 wake_up_process(sig->group_exit_task);
126 if (tsk == sig->curr_target)
127 sig->curr_target = next_thread(tsk);
129 * Accumulate here the counters for all threads but the
130 * group leader as they die, so they can be added into
131 * the process-wide totals when those are taken.
132 * The group leader stays around as a zombie as long
133 * as there are other threads. When it gets reaped,
134 * the exit.c code will add its counts into these totals.
135 * We won't ever get here for the group leader, since it
136 * will have been the last reference on the signal_struct.
138 sig->utime += tsk->utime;
139 sig->stime += tsk->stime;
140 sig->gtime += tsk->gtime;
141 sig->min_flt += tsk->min_flt;
142 sig->maj_flt += tsk->maj_flt;
143 sig->nvcsw += tsk->nvcsw;
144 sig->nivcsw += tsk->nivcsw;
145 sig->inblock += task_io_get_inblock(tsk);
146 sig->oublock += task_io_get_oublock(tsk);
147 task_io_accounting_add(&sig->ioac, &tsk->ioac);
148 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
151 sig->nr_threads--;
152 __unhash_process(tsk, group_dead);
155 * Do this under ->siglock, we can race with another thread
156 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
158 flush_sigqueue(&tsk->pending);
159 tsk->sighand = NULL;
160 spin_unlock(&sighand->siglock);
162 __cleanup_sighand(sighand);
163 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
164 if (group_dead) {
165 flush_sigqueue(&sig->shared_pending);
166 tty_kref_put(tty);
170 static void delayed_put_task_struct(struct rcu_head *rhp)
172 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
174 perf_event_delayed_put(tsk);
175 trace_sched_process_free(tsk);
176 put_task_struct(tsk);
180 void release_task(struct task_struct * p)
182 struct task_struct *leader;
183 int zap_leader;
184 repeat:
185 /* don't need to get the RCU readlock here - the process is dead and
186 * can't be modifying its own credentials. But shut RCU-lockdep up */
187 rcu_read_lock();
188 atomic_dec(&__task_cred(p)->user->processes);
189 rcu_read_unlock();
191 proc_flush_task(p);
193 write_lock_irq(&tasklist_lock);
194 ptrace_release_task(p);
195 __exit_signal(p);
198 * If we are the last non-leader member of the thread
199 * group, and the leader is zombie, then notify the
200 * group leader's parent process. (if it wants notification.)
202 zap_leader = 0;
203 leader = p->group_leader;
204 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
206 * If we were the last child thread and the leader has
207 * exited already, and the leader's parent ignores SIGCHLD,
208 * then we are the one who should release the leader.
210 zap_leader = do_notify_parent(leader, leader->exit_signal);
211 if (zap_leader)
212 leader->exit_state = EXIT_DEAD;
215 write_unlock_irq(&tasklist_lock);
216 release_thread(p);
217 call_rcu(&p->rcu, delayed_put_task_struct);
219 p = leader;
220 if (unlikely(zap_leader))
221 goto repeat;
225 * This checks not only the pgrp, but falls back on the pid if no
226 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
227 * without this...
229 * The caller must hold rcu lock or the tasklist lock.
231 struct pid *session_of_pgrp(struct pid *pgrp)
233 struct task_struct *p;
234 struct pid *sid = NULL;
236 p = pid_task(pgrp, PIDTYPE_PGID);
237 if (p == NULL)
238 p = pid_task(pgrp, PIDTYPE_PID);
239 if (p != NULL)
240 sid = task_session(p);
242 return sid;
246 * Determine if a process group is "orphaned", according to the POSIX
247 * definition in 2.2.2.52. Orphaned process groups are not to be affected
248 * by terminal-generated stop signals. Newly orphaned process groups are
249 * to receive a SIGHUP and a SIGCONT.
251 * "I ask you, have you ever known what it is to be an orphan?"
253 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
255 struct task_struct *p;
257 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
258 if ((p == ignored_task) ||
259 (p->exit_state && thread_group_empty(p)) ||
260 is_global_init(p->real_parent))
261 continue;
263 if (task_pgrp(p->real_parent) != pgrp &&
264 task_session(p->real_parent) == task_session(p))
265 return 0;
266 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
268 return 1;
271 int is_current_pgrp_orphaned(void)
273 int retval;
275 read_lock(&tasklist_lock);
276 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
277 read_unlock(&tasklist_lock);
279 return retval;
282 static bool has_stopped_jobs(struct pid *pgrp)
284 struct task_struct *p;
286 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
287 if (p->signal->flags & SIGNAL_STOP_STOPPED)
288 return true;
289 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return false;
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
314 ignored_task = NULL;
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 static void reparent_to_kthreadd(void)
339 write_lock_irq(&tasklist_lock);
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
362 void __set_special_pids(struct pid *pid)
364 struct task_struct *curr = current->group_leader;
366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid);
369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid);
373 static void set_special_pids(struct pid *pid)
375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock);
381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
384 int allow_signal(int sig)
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
389 spin_lock_irq(&current->sighand->siglock);
390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(&current->blocked, sig);
393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped.
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
403 EXPORT_SYMBOL(allow_signal);
405 int disallow_signal(int sig)
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock);
414 return 0;
417 EXPORT_SYMBOL(disallow_signal);
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
424 void daemonize(const char *name, ...)
426 va_list args;
427 sigset_t blocked;
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
438 exit_mm(current);
440 * We don't want to get frozen, in case system-wide hibernation
441 * or suspend transition begins right now.
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
457 /* Become as one with the init task */
459 daemonize_fs_struct();
460 daemonize_descriptors();
462 reparent_to_kthreadd();
465 EXPORT_SYMBOL(daemonize);
467 #ifdef CONFIG_MM_OWNER
469 * A task is exiting. If it owned this mm, find a new owner for the mm.
471 void mm_update_next_owner(struct mm_struct *mm)
473 struct task_struct *c, *g, *p = current;
475 retry:
477 * If the exiting or execing task is not the owner, it's
478 * someone else's problem.
480 if (mm->owner != p)
481 return;
483 * The current owner is exiting/execing and there are no other
484 * candidates. Do not leave the mm pointing to a possibly
485 * freed task structure.
487 if (atomic_read(&mm->mm_users) <= 1) {
488 mm->owner = NULL;
489 return;
492 read_lock(&tasklist_lock);
494 * Search in the children
496 list_for_each_entry(c, &p->children, sibling) {
497 if (c->mm == mm)
498 goto assign_new_owner;
502 * Search in the siblings
504 list_for_each_entry(c, &p->real_parent->children, sibling) {
505 if (c->mm == mm)
506 goto assign_new_owner;
510 * Search through everything else. We should not get
511 * here often
513 do_each_thread(g, c) {
514 if (c->mm == mm)
515 goto assign_new_owner;
516 } while_each_thread(g, c);
518 read_unlock(&tasklist_lock);
520 * We found no owner yet mm_users > 1: this implies that we are
521 * most likely racing with swapoff (try_to_unuse()) or /proc or
522 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
524 mm->owner = NULL;
525 return;
527 assign_new_owner:
528 BUG_ON(c == p);
529 get_task_struct(c);
531 * The task_lock protects c->mm from changing.
532 * We always want mm->owner->mm == mm
534 task_lock(c);
536 * Delay read_unlock() till we have the task_lock()
537 * to ensure that c does not slip away underneath us
539 read_unlock(&tasklist_lock);
540 if (c->mm != mm) {
541 task_unlock(c);
542 put_task_struct(c);
543 goto retry;
545 mm->owner = c;
546 task_unlock(c);
547 put_task_struct(c);
549 #endif /* CONFIG_MM_OWNER */
552 * Turn us into a lazy TLB process if we
553 * aren't already..
555 static void exit_mm(struct task_struct * tsk)
557 struct mm_struct *mm = tsk->mm;
558 struct core_state *core_state;
560 mm_release(tsk, mm);
561 if (!mm)
562 return;
563 sync_mm_rss(mm);
565 * Serialize with any possible pending coredump.
566 * We must hold mmap_sem around checking core_state
567 * and clearing tsk->mm. The core-inducing thread
568 * will increment ->nr_threads for each thread in the
569 * group with ->mm != NULL.
571 down_read(&mm->mmap_sem);
572 core_state = mm->core_state;
573 if (core_state) {
574 struct core_thread self;
575 up_read(&mm->mmap_sem);
577 self.task = tsk;
578 self.next = xchg(&core_state->dumper.next, &self);
580 * Implies mb(), the result of xchg() must be visible
581 * to core_state->dumper.
583 if (atomic_dec_and_test(&core_state->nr_threads))
584 complete(&core_state->startup);
586 for (;;) {
587 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
588 if (!self.task) /* see coredump_finish() */
589 break;
590 schedule();
592 __set_task_state(tsk, TASK_RUNNING);
593 down_read(&mm->mmap_sem);
595 atomic_inc(&mm->mm_count);
596 BUG_ON(mm != tsk->active_mm);
597 /* more a memory barrier than a real lock */
598 task_lock(tsk);
599 tsk->mm = NULL;
600 up_read(&mm->mmap_sem);
601 enter_lazy_tlb(mm, current);
602 task_unlock(tsk);
603 mm_update_next_owner(mm);
604 mmput(mm);
608 * When we die, we re-parent all our children, and try to:
609 * 1. give them to another thread in our thread group, if such a member exists
610 * 2. give it to the first ancestor process which prctl'd itself as a
611 * child_subreaper for its children (like a service manager)
612 * 3. give it to the init process (PID 1) in our pid namespace
614 static struct task_struct *find_new_reaper(struct task_struct *father)
615 __releases(&tasklist_lock)
616 __acquires(&tasklist_lock)
618 struct pid_namespace *pid_ns = task_active_pid_ns(father);
619 struct task_struct *thread;
621 thread = father;
622 while_each_thread(father, thread) {
623 if (thread->flags & PF_EXITING)
624 continue;
625 if (unlikely(pid_ns->child_reaper == father))
626 pid_ns->child_reaper = thread;
627 return thread;
630 if (unlikely(pid_ns->child_reaper == father)) {
631 write_unlock_irq(&tasklist_lock);
632 if (unlikely(pid_ns == &init_pid_ns)) {
633 panic("Attempted to kill init! exitcode=0x%08x\n",
634 father->signal->group_exit_code ?:
635 father->exit_code);
638 zap_pid_ns_processes(pid_ns);
639 write_lock_irq(&tasklist_lock);
640 } else if (father->signal->has_child_subreaper) {
641 struct task_struct *reaper;
644 * Find the first ancestor marked as child_subreaper.
645 * Note that the code below checks same_thread_group(reaper,
646 * pid_ns->child_reaper). This is what we need to DTRT in a
647 * PID namespace. However we still need the check above, see
648 * http://marc.info/?l=linux-kernel&m=131385460420380
650 for (reaper = father->real_parent;
651 reaper != &init_task;
652 reaper = reaper->real_parent) {
653 if (same_thread_group(reaper, pid_ns->child_reaper))
654 break;
655 if (!reaper->signal->is_child_subreaper)
656 continue;
657 thread = reaper;
658 do {
659 if (!(thread->flags & PF_EXITING))
660 return reaper;
661 } while_each_thread(reaper, thread);
665 return pid_ns->child_reaper;
669 * Any that need to be release_task'd are put on the @dead list.
671 static void reparent_leader(struct task_struct *father, struct task_struct *p,
672 struct list_head *dead)
674 list_move_tail(&p->sibling, &p->real_parent->children);
676 if (p->exit_state == EXIT_DEAD)
677 return;
679 * If this is a threaded reparent there is no need to
680 * notify anyone anything has happened.
682 if (same_thread_group(p->real_parent, father))
683 return;
685 /* We don't want people slaying init. */
686 p->exit_signal = SIGCHLD;
688 /* If it has exited notify the new parent about this child's death. */
689 if (!p->ptrace &&
690 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
691 if (do_notify_parent(p, p->exit_signal)) {
692 p->exit_state = EXIT_DEAD;
693 list_move_tail(&p->sibling, dead);
697 kill_orphaned_pgrp(p, father);
700 static void forget_original_parent(struct task_struct *father)
702 struct task_struct *p, *n, *reaper;
703 LIST_HEAD(dead_children);
705 write_lock_irq(&tasklist_lock);
707 * Note that exit_ptrace() and find_new_reaper() might
708 * drop tasklist_lock and reacquire it.
710 exit_ptrace(father);
711 reaper = find_new_reaper(father);
713 list_for_each_entry_safe(p, n, &father->children, sibling) {
714 struct task_struct *t = p;
715 do {
716 t->real_parent = reaper;
717 if (t->parent == father) {
718 BUG_ON(t->ptrace);
719 t->parent = t->real_parent;
721 if (t->pdeath_signal)
722 group_send_sig_info(t->pdeath_signal,
723 SEND_SIG_NOINFO, t);
724 } while_each_thread(p, t);
725 reparent_leader(father, p, &dead_children);
727 write_unlock_irq(&tasklist_lock);
729 BUG_ON(!list_empty(&father->children));
731 list_for_each_entry_safe(p, n, &dead_children, sibling) {
732 list_del_init(&p->sibling);
733 release_task(p);
738 * Send signals to all our closest relatives so that they know
739 * to properly mourn us..
741 static void exit_notify(struct task_struct *tsk, int group_dead)
743 bool autoreap;
746 * This does two things:
748 * A. Make init inherit all the child processes
749 * B. Check to see if any process groups have become orphaned
750 * as a result of our exiting, and if they have any stopped
751 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
753 forget_original_parent(tsk);
754 exit_task_namespaces(tsk);
756 write_lock_irq(&tasklist_lock);
757 if (group_dead)
758 kill_orphaned_pgrp(tsk->group_leader, NULL);
760 if (unlikely(tsk->ptrace)) {
761 int sig = thread_group_leader(tsk) &&
762 thread_group_empty(tsk) &&
763 !ptrace_reparented(tsk) ?
764 tsk->exit_signal : SIGCHLD;
765 autoreap = do_notify_parent(tsk, sig);
766 } else if (thread_group_leader(tsk)) {
767 autoreap = thread_group_empty(tsk) &&
768 do_notify_parent(tsk, tsk->exit_signal);
769 } else {
770 autoreap = true;
773 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
775 /* mt-exec, de_thread() is waiting for group leader */
776 if (unlikely(tsk->signal->notify_count < 0))
777 wake_up_process(tsk->signal->group_exit_task);
778 write_unlock_irq(&tasklist_lock);
780 /* If the process is dead, release it - nobody will wait for it */
781 if (autoreap)
782 release_task(tsk);
785 #ifdef CONFIG_DEBUG_STACK_USAGE
786 static void check_stack_usage(void)
788 static DEFINE_SPINLOCK(low_water_lock);
789 static int lowest_to_date = THREAD_SIZE;
790 unsigned long free;
792 free = stack_not_used(current);
794 if (free >= lowest_to_date)
795 return;
797 spin_lock(&low_water_lock);
798 if (free < lowest_to_date) {
799 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
800 "%lu bytes left\n",
801 current->comm, task_pid_nr(current), free);
802 lowest_to_date = free;
804 spin_unlock(&low_water_lock);
806 #else
807 static inline void check_stack_usage(void) {}
808 #endif
810 void do_exit(long code)
812 struct task_struct *tsk = current;
813 int group_dead;
815 profile_task_exit(tsk);
817 WARN_ON(blk_needs_flush_plug(tsk));
819 if (unlikely(in_interrupt()))
820 panic("Aiee, killing interrupt handler!");
821 if (unlikely(!tsk->pid))
822 panic("Attempted to kill the idle task!");
825 * If do_exit is called because this processes oopsed, it's possible
826 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
827 * continuing. Amongst other possible reasons, this is to prevent
828 * mm_release()->clear_child_tid() from writing to a user-controlled
829 * kernel address.
831 set_fs(USER_DS);
833 ptrace_event(PTRACE_EVENT_EXIT, code);
835 validate_creds_for_do_exit(tsk);
838 * We're taking recursive faults here in do_exit. Safest is to just
839 * leave this task alone and wait for reboot.
841 if (unlikely(tsk->flags & PF_EXITING)) {
842 printk(KERN_ALERT
843 "Fixing recursive fault but reboot is needed!\n");
845 * We can do this unlocked here. The futex code uses
846 * this flag just to verify whether the pi state
847 * cleanup has been done or not. In the worst case it
848 * loops once more. We pretend that the cleanup was
849 * done as there is no way to return. Either the
850 * OWNER_DIED bit is set by now or we push the blocked
851 * task into the wait for ever nirwana as well.
853 tsk->flags |= PF_EXITPIDONE;
854 set_current_state(TASK_UNINTERRUPTIBLE);
855 schedule();
858 exit_signals(tsk); /* sets PF_EXITING */
860 * tsk->flags are checked in the futex code to protect against
861 * an exiting task cleaning up the robust pi futexes.
863 smp_mb();
864 raw_spin_unlock_wait(&tsk->pi_lock);
866 if (unlikely(in_atomic()))
867 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
868 current->comm, task_pid_nr(current),
869 preempt_count());
871 acct_update_integrals(tsk);
872 /* sync mm's RSS info before statistics gathering */
873 if (tsk->mm)
874 sync_mm_rss(tsk->mm);
875 group_dead = atomic_dec_and_test(&tsk->signal->live);
876 if (group_dead) {
877 hrtimer_cancel(&tsk->signal->real_timer);
878 exit_itimers(tsk->signal);
879 if (tsk->mm)
880 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
882 acct_collect(code, group_dead);
883 if (group_dead)
884 tty_audit_exit();
885 audit_free(tsk);
887 tsk->exit_code = code;
888 taskstats_exit(tsk, group_dead);
890 exit_mm(tsk);
892 if (group_dead)
893 acct_process();
894 trace_sched_process_exit(tsk);
896 exit_sem(tsk);
897 exit_shm(tsk);
898 exit_files(tsk);
899 exit_fs(tsk);
900 exit_task_work(tsk);
901 check_stack_usage();
902 exit_thread();
905 * Flush inherited counters to the parent - before the parent
906 * gets woken up by child-exit notifications.
908 * because of cgroup mode, must be called before cgroup_exit()
910 perf_event_exit_task(tsk);
912 cgroup_exit(tsk, 1);
914 if (group_dead)
915 disassociate_ctty(1);
917 module_put(task_thread_info(tsk)->exec_domain->module);
919 proc_exit_connector(tsk);
922 * FIXME: do that only when needed, using sched_exit tracepoint
924 ptrace_put_breakpoints(tsk);
926 exit_notify(tsk, group_dead);
927 #ifdef CONFIG_NUMA
928 task_lock(tsk);
929 mpol_put(tsk->mempolicy);
930 tsk->mempolicy = NULL;
931 task_unlock(tsk);
932 #endif
933 #ifdef CONFIG_FUTEX
934 if (unlikely(current->pi_state_cache))
935 kfree(current->pi_state_cache);
936 #endif
938 * Make sure we are holding no locks:
940 debug_check_no_locks_held(tsk);
942 * We can do this unlocked here. The futex code uses this flag
943 * just to verify whether the pi state cleanup has been done
944 * or not. In the worst case it loops once more.
946 tsk->flags |= PF_EXITPIDONE;
948 if (tsk->io_context)
949 exit_io_context(tsk);
951 if (tsk->splice_pipe)
952 __free_pipe_info(tsk->splice_pipe);
954 if (tsk->task_frag.page)
955 put_page(tsk->task_frag.page);
957 validate_creds_for_do_exit(tsk);
959 preempt_disable();
960 if (tsk->nr_dirtied)
961 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
962 exit_rcu();
965 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
966 * when the following two conditions become true.
967 * - There is race condition of mmap_sem (It is acquired by
968 * exit_mm()), and
969 * - SMI occurs before setting TASK_RUNINNG.
970 * (or hypervisor of virtual machine switches to other guest)
971 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
973 * To avoid it, we have to wait for releasing tsk->pi_lock which
974 * is held by try_to_wake_up()
976 smp_mb();
977 raw_spin_unlock_wait(&tsk->pi_lock);
979 /* causes final put_task_struct in finish_task_switch(). */
980 tsk->state = TASK_DEAD;
981 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
982 schedule();
983 BUG();
984 /* Avoid "noreturn function does return". */
985 for (;;)
986 cpu_relax(); /* For when BUG is null */
989 EXPORT_SYMBOL_GPL(do_exit);
991 void complete_and_exit(struct completion *comp, long code)
993 if (comp)
994 complete(comp);
996 do_exit(code);
999 EXPORT_SYMBOL(complete_and_exit);
1001 SYSCALL_DEFINE1(exit, int, error_code)
1003 do_exit((error_code&0xff)<<8);
1007 * Take down every thread in the group. This is called by fatal signals
1008 * as well as by sys_exit_group (below).
1010 void
1011 do_group_exit(int exit_code)
1013 struct signal_struct *sig = current->signal;
1015 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1017 if (signal_group_exit(sig))
1018 exit_code = sig->group_exit_code;
1019 else if (!thread_group_empty(current)) {
1020 struct sighand_struct *const sighand = current->sighand;
1021 spin_lock_irq(&sighand->siglock);
1022 if (signal_group_exit(sig))
1023 /* Another thread got here before we took the lock. */
1024 exit_code = sig->group_exit_code;
1025 else {
1026 sig->group_exit_code = exit_code;
1027 sig->flags = SIGNAL_GROUP_EXIT;
1028 zap_other_threads(current);
1030 spin_unlock_irq(&sighand->siglock);
1033 do_exit(exit_code);
1034 /* NOTREACHED */
1038 * this kills every thread in the thread group. Note that any externally
1039 * wait4()-ing process will get the correct exit code - even if this
1040 * thread is not the thread group leader.
1042 SYSCALL_DEFINE1(exit_group, int, error_code)
1044 do_group_exit((error_code & 0xff) << 8);
1045 /* NOTREACHED */
1046 return 0;
1049 struct wait_opts {
1050 enum pid_type wo_type;
1051 int wo_flags;
1052 struct pid *wo_pid;
1054 struct siginfo __user *wo_info;
1055 int __user *wo_stat;
1056 struct rusage __user *wo_rusage;
1058 wait_queue_t child_wait;
1059 int notask_error;
1062 static inline
1063 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1065 if (type != PIDTYPE_PID)
1066 task = task->group_leader;
1067 return task->pids[type].pid;
1070 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1072 return wo->wo_type == PIDTYPE_MAX ||
1073 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1076 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1078 if (!eligible_pid(wo, p))
1079 return 0;
1080 /* Wait for all children (clone and not) if __WALL is set;
1081 * otherwise, wait for clone children *only* if __WCLONE is
1082 * set; otherwise, wait for non-clone children *only*. (Note:
1083 * A "clone" child here is one that reports to its parent
1084 * using a signal other than SIGCHLD.) */
1085 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1086 && !(wo->wo_flags & __WALL))
1087 return 0;
1089 return 1;
1092 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1093 pid_t pid, uid_t uid, int why, int status)
1095 struct siginfo __user *infop;
1096 int retval = wo->wo_rusage
1097 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1099 put_task_struct(p);
1100 infop = wo->wo_info;
1101 if (infop) {
1102 if (!retval)
1103 retval = put_user(SIGCHLD, &infop->si_signo);
1104 if (!retval)
1105 retval = put_user(0, &infop->si_errno);
1106 if (!retval)
1107 retval = put_user((short)why, &infop->si_code);
1108 if (!retval)
1109 retval = put_user(pid, &infop->si_pid);
1110 if (!retval)
1111 retval = put_user(uid, &infop->si_uid);
1112 if (!retval)
1113 retval = put_user(status, &infop->si_status);
1115 if (!retval)
1116 retval = pid;
1117 return retval;
1121 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1122 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1123 * the lock and this task is uninteresting. If we return nonzero, we have
1124 * released the lock and the system call should return.
1126 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1128 unsigned long state;
1129 int retval, status, traced;
1130 pid_t pid = task_pid_vnr(p);
1131 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1132 struct siginfo __user *infop;
1134 if (!likely(wo->wo_flags & WEXITED))
1135 return 0;
1137 if (unlikely(wo->wo_flags & WNOWAIT)) {
1138 int exit_code = p->exit_code;
1139 int why;
1141 get_task_struct(p);
1142 read_unlock(&tasklist_lock);
1143 if ((exit_code & 0x7f) == 0) {
1144 why = CLD_EXITED;
1145 status = exit_code >> 8;
1146 } else {
1147 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1148 status = exit_code & 0x7f;
1150 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1154 * Try to move the task's state to DEAD
1155 * only one thread is allowed to do this:
1157 state = xchg(&p->exit_state, EXIT_DEAD);
1158 if (state != EXIT_ZOMBIE) {
1159 BUG_ON(state != EXIT_DEAD);
1160 return 0;
1163 traced = ptrace_reparented(p);
1165 * It can be ptraced but not reparented, check
1166 * thread_group_leader() to filter out sub-threads.
1168 if (likely(!traced) && thread_group_leader(p)) {
1169 struct signal_struct *psig;
1170 struct signal_struct *sig;
1171 unsigned long maxrss;
1172 cputime_t tgutime, tgstime;
1175 * The resource counters for the group leader are in its
1176 * own task_struct. Those for dead threads in the group
1177 * are in its signal_struct, as are those for the child
1178 * processes it has previously reaped. All these
1179 * accumulate in the parent's signal_struct c* fields.
1181 * We don't bother to take a lock here to protect these
1182 * p->signal fields, because they are only touched by
1183 * __exit_signal, which runs with tasklist_lock
1184 * write-locked anyway, and so is excluded here. We do
1185 * need to protect the access to parent->signal fields,
1186 * as other threads in the parent group can be right
1187 * here reaping other children at the same time.
1189 * We use thread_group_times() to get times for the thread
1190 * group, which consolidates times for all threads in the
1191 * group including the group leader.
1193 thread_group_times(p, &tgutime, &tgstime);
1194 spin_lock_irq(&p->real_parent->sighand->siglock);
1195 psig = p->real_parent->signal;
1196 sig = p->signal;
1197 psig->cutime += tgutime + sig->cutime;
1198 psig->cstime += tgstime + sig->cstime;
1199 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1200 psig->cmin_flt +=
1201 p->min_flt + sig->min_flt + sig->cmin_flt;
1202 psig->cmaj_flt +=
1203 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1204 psig->cnvcsw +=
1205 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1206 psig->cnivcsw +=
1207 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1208 psig->cinblock +=
1209 task_io_get_inblock(p) +
1210 sig->inblock + sig->cinblock;
1211 psig->coublock +=
1212 task_io_get_oublock(p) +
1213 sig->oublock + sig->coublock;
1214 maxrss = max(sig->maxrss, sig->cmaxrss);
1215 if (psig->cmaxrss < maxrss)
1216 psig->cmaxrss = maxrss;
1217 task_io_accounting_add(&psig->ioac, &p->ioac);
1218 task_io_accounting_add(&psig->ioac, &sig->ioac);
1219 spin_unlock_irq(&p->real_parent->sighand->siglock);
1223 * Now we are sure this task is interesting, and no other
1224 * thread can reap it because we set its state to EXIT_DEAD.
1226 read_unlock(&tasklist_lock);
1228 retval = wo->wo_rusage
1229 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1230 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1231 ? p->signal->group_exit_code : p->exit_code;
1232 if (!retval && wo->wo_stat)
1233 retval = put_user(status, wo->wo_stat);
1235 infop = wo->wo_info;
1236 if (!retval && infop)
1237 retval = put_user(SIGCHLD, &infop->si_signo);
1238 if (!retval && infop)
1239 retval = put_user(0, &infop->si_errno);
1240 if (!retval && infop) {
1241 int why;
1243 if ((status & 0x7f) == 0) {
1244 why = CLD_EXITED;
1245 status >>= 8;
1246 } else {
1247 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1248 status &= 0x7f;
1250 retval = put_user((short)why, &infop->si_code);
1251 if (!retval)
1252 retval = put_user(status, &infop->si_status);
1254 if (!retval && infop)
1255 retval = put_user(pid, &infop->si_pid);
1256 if (!retval && infop)
1257 retval = put_user(uid, &infop->si_uid);
1258 if (!retval)
1259 retval = pid;
1261 if (traced) {
1262 write_lock_irq(&tasklist_lock);
1263 /* We dropped tasklist, ptracer could die and untrace */
1264 ptrace_unlink(p);
1266 * If this is not a sub-thread, notify the parent.
1267 * If parent wants a zombie, don't release it now.
1269 if (thread_group_leader(p) &&
1270 !do_notify_parent(p, p->exit_signal)) {
1271 p->exit_state = EXIT_ZOMBIE;
1272 p = NULL;
1274 write_unlock_irq(&tasklist_lock);
1276 if (p != NULL)
1277 release_task(p);
1279 return retval;
1282 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1284 if (ptrace) {
1285 if (task_is_stopped_or_traced(p) &&
1286 !(p->jobctl & JOBCTL_LISTENING))
1287 return &p->exit_code;
1288 } else {
1289 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1290 return &p->signal->group_exit_code;
1292 return NULL;
1296 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1297 * @wo: wait options
1298 * @ptrace: is the wait for ptrace
1299 * @p: task to wait for
1301 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1303 * CONTEXT:
1304 * read_lock(&tasklist_lock), which is released if return value is
1305 * non-zero. Also, grabs and releases @p->sighand->siglock.
1307 * RETURNS:
1308 * 0 if wait condition didn't exist and search for other wait conditions
1309 * should continue. Non-zero return, -errno on failure and @p's pid on
1310 * success, implies that tasklist_lock is released and wait condition
1311 * search should terminate.
1313 static int wait_task_stopped(struct wait_opts *wo,
1314 int ptrace, struct task_struct *p)
1316 struct siginfo __user *infop;
1317 int retval, exit_code, *p_code, why;
1318 uid_t uid = 0; /* unneeded, required by compiler */
1319 pid_t pid;
1322 * Traditionally we see ptrace'd stopped tasks regardless of options.
1324 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1325 return 0;
1327 if (!task_stopped_code(p, ptrace))
1328 return 0;
1330 exit_code = 0;
1331 spin_lock_irq(&p->sighand->siglock);
1333 p_code = task_stopped_code(p, ptrace);
1334 if (unlikely(!p_code))
1335 goto unlock_sig;
1337 exit_code = *p_code;
1338 if (!exit_code)
1339 goto unlock_sig;
1341 if (!unlikely(wo->wo_flags & WNOWAIT))
1342 *p_code = 0;
1344 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1345 unlock_sig:
1346 spin_unlock_irq(&p->sighand->siglock);
1347 if (!exit_code)
1348 return 0;
1351 * Now we are pretty sure this task is interesting.
1352 * Make sure it doesn't get reaped out from under us while we
1353 * give up the lock and then examine it below. We don't want to
1354 * keep holding onto the tasklist_lock while we call getrusage and
1355 * possibly take page faults for user memory.
1357 get_task_struct(p);
1358 pid = task_pid_vnr(p);
1359 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1360 read_unlock(&tasklist_lock);
1362 if (unlikely(wo->wo_flags & WNOWAIT))
1363 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1365 retval = wo->wo_rusage
1366 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1367 if (!retval && wo->wo_stat)
1368 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1370 infop = wo->wo_info;
1371 if (!retval && infop)
1372 retval = put_user(SIGCHLD, &infop->si_signo);
1373 if (!retval && infop)
1374 retval = put_user(0, &infop->si_errno);
1375 if (!retval && infop)
1376 retval = put_user((short)why, &infop->si_code);
1377 if (!retval && infop)
1378 retval = put_user(exit_code, &infop->si_status);
1379 if (!retval && infop)
1380 retval = put_user(pid, &infop->si_pid);
1381 if (!retval && infop)
1382 retval = put_user(uid, &infop->si_uid);
1383 if (!retval)
1384 retval = pid;
1385 put_task_struct(p);
1387 BUG_ON(!retval);
1388 return retval;
1392 * Handle do_wait work for one task in a live, non-stopped state.
1393 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1394 * the lock and this task is uninteresting. If we return nonzero, we have
1395 * released the lock and the system call should return.
1397 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1399 int retval;
1400 pid_t pid;
1401 uid_t uid;
1403 if (!unlikely(wo->wo_flags & WCONTINUED))
1404 return 0;
1406 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1407 return 0;
1409 spin_lock_irq(&p->sighand->siglock);
1410 /* Re-check with the lock held. */
1411 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1412 spin_unlock_irq(&p->sighand->siglock);
1413 return 0;
1415 if (!unlikely(wo->wo_flags & WNOWAIT))
1416 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1417 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1418 spin_unlock_irq(&p->sighand->siglock);
1420 pid = task_pid_vnr(p);
1421 get_task_struct(p);
1422 read_unlock(&tasklist_lock);
1424 if (!wo->wo_info) {
1425 retval = wo->wo_rusage
1426 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1427 put_task_struct(p);
1428 if (!retval && wo->wo_stat)
1429 retval = put_user(0xffff, wo->wo_stat);
1430 if (!retval)
1431 retval = pid;
1432 } else {
1433 retval = wait_noreap_copyout(wo, p, pid, uid,
1434 CLD_CONTINUED, SIGCONT);
1435 BUG_ON(retval == 0);
1438 return retval;
1442 * Consider @p for a wait by @parent.
1444 * -ECHILD should be in ->notask_error before the first call.
1445 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1446 * Returns zero if the search for a child should continue;
1447 * then ->notask_error is 0 if @p is an eligible child,
1448 * or another error from security_task_wait(), or still -ECHILD.
1450 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1451 struct task_struct *p)
1453 int ret = eligible_child(wo, p);
1454 if (!ret)
1455 return ret;
1457 ret = security_task_wait(p);
1458 if (unlikely(ret < 0)) {
1460 * If we have not yet seen any eligible child,
1461 * then let this error code replace -ECHILD.
1462 * A permission error will give the user a clue
1463 * to look for security policy problems, rather
1464 * than for mysterious wait bugs.
1466 if (wo->notask_error)
1467 wo->notask_error = ret;
1468 return 0;
1471 /* dead body doesn't have much to contribute */
1472 if (unlikely(p->exit_state == EXIT_DEAD)) {
1474 * But do not ignore this task until the tracer does
1475 * wait_task_zombie()->do_notify_parent().
1477 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1478 wo->notask_error = 0;
1479 return 0;
1482 /* slay zombie? */
1483 if (p->exit_state == EXIT_ZOMBIE) {
1485 * A zombie ptracee is only visible to its ptracer.
1486 * Notification and reaping will be cascaded to the real
1487 * parent when the ptracer detaches.
1489 if (likely(!ptrace) && unlikely(p->ptrace)) {
1490 /* it will become visible, clear notask_error */
1491 wo->notask_error = 0;
1492 return 0;
1495 /* we don't reap group leaders with subthreads */
1496 if (!delay_group_leader(p))
1497 return wait_task_zombie(wo, p);
1500 * Allow access to stopped/continued state via zombie by
1501 * falling through. Clearing of notask_error is complex.
1503 * When !@ptrace:
1505 * If WEXITED is set, notask_error should naturally be
1506 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1507 * so, if there are live subthreads, there are events to
1508 * wait for. If all subthreads are dead, it's still safe
1509 * to clear - this function will be called again in finite
1510 * amount time once all the subthreads are released and
1511 * will then return without clearing.
1513 * When @ptrace:
1515 * Stopped state is per-task and thus can't change once the
1516 * target task dies. Only continued and exited can happen.
1517 * Clear notask_error if WCONTINUED | WEXITED.
1519 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1520 wo->notask_error = 0;
1521 } else {
1523 * If @p is ptraced by a task in its real parent's group,
1524 * hide group stop/continued state when looking at @p as
1525 * the real parent; otherwise, a single stop can be
1526 * reported twice as group and ptrace stops.
1528 * If a ptracer wants to distinguish the two events for its
1529 * own children, it should create a separate process which
1530 * takes the role of real parent.
1532 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1533 return 0;
1536 * @p is alive and it's gonna stop, continue or exit, so
1537 * there always is something to wait for.
1539 wo->notask_error = 0;
1543 * Wait for stopped. Depending on @ptrace, different stopped state
1544 * is used and the two don't interact with each other.
1546 ret = wait_task_stopped(wo, ptrace, p);
1547 if (ret)
1548 return ret;
1551 * Wait for continued. There's only one continued state and the
1552 * ptracer can consume it which can confuse the real parent. Don't
1553 * use WCONTINUED from ptracer. You don't need or want it.
1555 return wait_task_continued(wo, p);
1559 * Do the work of do_wait() for one thread in the group, @tsk.
1561 * -ECHILD should be in ->notask_error before the first call.
1562 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1563 * Returns zero if the search for a child should continue; then
1564 * ->notask_error is 0 if there were any eligible children,
1565 * or another error from security_task_wait(), or still -ECHILD.
1567 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1569 struct task_struct *p;
1571 list_for_each_entry(p, &tsk->children, sibling) {
1572 int ret = wait_consider_task(wo, 0, p);
1573 if (ret)
1574 return ret;
1577 return 0;
1580 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1582 struct task_struct *p;
1584 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1585 int ret = wait_consider_task(wo, 1, p);
1586 if (ret)
1587 return ret;
1590 return 0;
1593 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1594 int sync, void *key)
1596 struct wait_opts *wo = container_of(wait, struct wait_opts,
1597 child_wait);
1598 struct task_struct *p = key;
1600 if (!eligible_pid(wo, p))
1601 return 0;
1603 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1604 return 0;
1606 return default_wake_function(wait, mode, sync, key);
1609 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1611 __wake_up_sync_key(&parent->signal->wait_chldexit,
1612 TASK_INTERRUPTIBLE, 1, p);
1615 static long do_wait(struct wait_opts *wo)
1617 struct task_struct *tsk;
1618 int retval;
1620 trace_sched_process_wait(wo->wo_pid);
1622 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1623 wo->child_wait.private = current;
1624 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1625 repeat:
1627 * If there is nothing that can match our critiera just get out.
1628 * We will clear ->notask_error to zero if we see any child that
1629 * might later match our criteria, even if we are not able to reap
1630 * it yet.
1632 wo->notask_error = -ECHILD;
1633 if ((wo->wo_type < PIDTYPE_MAX) &&
1634 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1635 goto notask;
1637 set_current_state(TASK_INTERRUPTIBLE);
1638 read_lock(&tasklist_lock);
1639 tsk = current;
1640 do {
1641 retval = do_wait_thread(wo, tsk);
1642 if (retval)
1643 goto end;
1645 retval = ptrace_do_wait(wo, tsk);
1646 if (retval)
1647 goto end;
1649 if (wo->wo_flags & __WNOTHREAD)
1650 break;
1651 } while_each_thread(current, tsk);
1652 read_unlock(&tasklist_lock);
1654 notask:
1655 retval = wo->notask_error;
1656 if (!retval && !(wo->wo_flags & WNOHANG)) {
1657 retval = -ERESTARTSYS;
1658 if (!signal_pending(current)) {
1659 schedule();
1660 goto repeat;
1663 end:
1664 __set_current_state(TASK_RUNNING);
1665 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1666 return retval;
1669 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1670 infop, int, options, struct rusage __user *, ru)
1672 struct wait_opts wo;
1673 struct pid *pid = NULL;
1674 enum pid_type type;
1675 long ret;
1677 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1678 return -EINVAL;
1679 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1680 return -EINVAL;
1682 switch (which) {
1683 case P_ALL:
1684 type = PIDTYPE_MAX;
1685 break;
1686 case P_PID:
1687 type = PIDTYPE_PID;
1688 if (upid <= 0)
1689 return -EINVAL;
1690 break;
1691 case P_PGID:
1692 type = PIDTYPE_PGID;
1693 if (upid <= 0)
1694 return -EINVAL;
1695 break;
1696 default:
1697 return -EINVAL;
1700 if (type < PIDTYPE_MAX)
1701 pid = find_get_pid(upid);
1703 wo.wo_type = type;
1704 wo.wo_pid = pid;
1705 wo.wo_flags = options;
1706 wo.wo_info = infop;
1707 wo.wo_stat = NULL;
1708 wo.wo_rusage = ru;
1709 ret = do_wait(&wo);
1711 if (ret > 0) {
1712 ret = 0;
1713 } else if (infop) {
1715 * For a WNOHANG return, clear out all the fields
1716 * we would set so the user can easily tell the
1717 * difference.
1719 if (!ret)
1720 ret = put_user(0, &infop->si_signo);
1721 if (!ret)
1722 ret = put_user(0, &infop->si_errno);
1723 if (!ret)
1724 ret = put_user(0, &infop->si_code);
1725 if (!ret)
1726 ret = put_user(0, &infop->si_pid);
1727 if (!ret)
1728 ret = put_user(0, &infop->si_uid);
1729 if (!ret)
1730 ret = put_user(0, &infop->si_status);
1733 put_pid(pid);
1735 /* avoid REGPARM breakage on x86: */
1736 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1737 return ret;
1740 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1741 int, options, struct rusage __user *, ru)
1743 struct wait_opts wo;
1744 struct pid *pid = NULL;
1745 enum pid_type type;
1746 long ret;
1748 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1749 __WNOTHREAD|__WCLONE|__WALL))
1750 return -EINVAL;
1752 if (upid == -1)
1753 type = PIDTYPE_MAX;
1754 else if (upid < 0) {
1755 type = PIDTYPE_PGID;
1756 pid = find_get_pid(-upid);
1757 } else if (upid == 0) {
1758 type = PIDTYPE_PGID;
1759 pid = get_task_pid(current, PIDTYPE_PGID);
1760 } else /* upid > 0 */ {
1761 type = PIDTYPE_PID;
1762 pid = find_get_pid(upid);
1765 wo.wo_type = type;
1766 wo.wo_pid = pid;
1767 wo.wo_flags = options | WEXITED;
1768 wo.wo_info = NULL;
1769 wo.wo_stat = stat_addr;
1770 wo.wo_rusage = ru;
1771 ret = do_wait(&wo);
1772 put_pid(pid);
1774 /* avoid REGPARM breakage on x86: */
1775 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1776 return ret;
1779 #ifdef __ARCH_WANT_SYS_WAITPID
1782 * sys_waitpid() remains for compatibility. waitpid() should be
1783 * implemented by calling sys_wait4() from libc.a.
1785 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1787 return sys_wait4(pid, stat_addr, options, NULL);
1790 #endif