Merge branches 'topic/asoc', 'topic/misc-fixes', 'topic/ps3-csbits' and 'topic/stagin...
[linux-2.6/libata-dev.git] / drivers / ieee1394 / sbp2.c
blobc52f6e6e8af2a8bacac026e4f9974652ee794661
1 /*
2 * sbp2.c - SBP-2 protocol driver for IEEE-1394
4 * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5 * jamesg@filanet.com (JSG)
7 * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software Foundation,
21 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
25 * Brief Description:
27 * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28 * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29 * driver. It also registers as a SCSI lower-level driver in order to accept
30 * SCSI commands for transport using SBP-2.
32 * You may access any attached SBP-2 (usually storage devices) as regular
33 * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
35 * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36 * specification and for where to purchase the official standard.
38 * TODO:
39 * - look into possible improvements of the SCSI error handlers
40 * - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41 * - handle Logical_Unit_Number.ordered
42 * - handle src == 1 in status blocks
43 * - reimplement the DMA mapping in absence of physical DMA so that
44 * bus_to_virt is no longer required
45 * - debug the handling of absent physical DMA
46 * - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47 * (this is easy but depends on the previous two TODO items)
48 * - make the parameter serialize_io configurable per device
49 * - move all requests to fetch agent registers into non-atomic context,
50 * replace all usages of sbp2util_node_write_no_wait by true transactions
51 * Grep for inline FIXME comments below.
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
105 * Module load parameter definitions
109 * Change max_speed on module load if you have a bad IEEE-1394
110 * controller that has trouble running 2KB packets at 400mb.
112 * NOTE: On certain OHCI parts I have seen short packets on async transmit
113 * (probably due to PCI latency/throughput issues with the part). You can
114 * bump down the speed if you are running into problems.
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119 "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
122 * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123 * This is and always has been buggy in multiple subtle ways. See above TODOs.
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128 "(default = Y, faster but buggy = N)");
131 * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132 * command can transfer at most. Please note that some older SBP-2 bridge
133 * chips are broken for transfers greater or equal to 128KB, therefore
134 * max_sectors used to be a safe 255 sectors for many years. We now have a
135 * default of 0 here which means that we let the SCSI stack choose a limit.
137 * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138 * module parameter or in the sbp2_workarounds_table[], will override the
139 * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140 * bridge chip which becomes known to need the 255 sectors limit.
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145 "(default = 0 = use SCSI stack's default)");
148 * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149 * do an exclusive login, as it's generally unsafe to have two hosts
150 * talking to a single sbp2 device at the same time (filesystem coherency,
151 * etc.). If you're running an sbp2 device that supports multiple logins,
152 * and you're either running read-only filesystems or some sort of special
153 * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154 * File System, or Lustre, then set exclusive_login to zero.
156 * So far only bridges from Oxford Semiconductor are known to support
157 * concurrent logins. Depending on firmware, four or two concurrent logins
158 * are possible on OXFW911 and newer Oxsemi bridges.
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163 "(default = Y, use N for concurrent initiators)");
166 * If any of the following workarounds is required for your device to work,
167 * please submit the kernel messages logged by sbp2 to the linux1394-devel
168 * mailing list.
170 * - 128kB max transfer
171 * Limit transfer size. Necessary for some old bridges.
173 * - 36 byte inquiry
174 * When scsi_mod probes the device, let the inquiry command look like that
175 * from MS Windows.
177 * - skip mode page 8
178 * Suppress sending of mode_sense for mode page 8 if the device pretends to
179 * support the SCSI Primary Block commands instead of Reduced Block Commands.
181 * - fix capacity
182 * Tell sd_mod to correct the last sector number reported by read_capacity.
183 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
184 * Don't use this with devices which don't have this bug.
186 * - delay inquiry
187 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
189 * - power condition
190 * Set the power condition field in the START STOP UNIT commands sent by
191 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192 * Some disks need this to spin down or to resume properly.
194 * - override internal blacklist
195 * Instead of adding to the built-in blacklist, use only the workarounds
196 * specified in the module load parameter.
197 * Useful if a blacklist entry interfered with a non-broken device.
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
204 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207 ", set power condition in start stop unit = "
208 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210 ", or a combination)");
213 * This influences the format of the sysfs attribute
214 * /sys/bus/scsi/devices/.../ieee1394_id.
216 * The default format is like in older kernels: %016Lx:%d:%d
217 * It contains the target's EUI-64, a number given to the logical unit by
218 * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
220 * The long format is: %016Lx:%06x:%04x
221 * It contains the target's EUI-64, the unit directory's directory_ID as per
222 * IEEE 1212 clause 7.7.19, and the LUN. This format comes closest to the
223 * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224 * Architecture Model) rev.2 to 4 annex A. Therefore and because it is
225 * independent of the implementation of the ieee1394 nodemgr, the longer format
226 * is recommended for future use.
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231 "(default = backwards-compatible = N, SAM-conforming = Y)");
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
238 * Globals
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242 void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251 u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254 struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
263 static struct hpsb_highlevel sbp2_highlevel = {
264 .name = SBP2_DEVICE_NAME,
265 .host_reset = sbp2_host_reset,
268 static struct hpsb_address_ops sbp2_ops = {
269 .write = sbp2_handle_status_write
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274 u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276 size_t, u16);
278 static struct hpsb_address_ops sbp2_physdma_ops = {
279 .read = sbp2_handle_physdma_read,
280 .write = sbp2_handle_physdma_write,
282 #endif
286 * Interface to driver core and IEEE 1394 core
288 static struct ieee1394_device_id sbp2_id_table[] = {
290 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292 .version = SBP2_SW_VERSION_ENTRY & 0xffffff},
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
301 static struct hpsb_protocol_driver sbp2_driver = {
302 .name = SBP2_DEVICE_NAME,
303 .id_table = sbp2_id_table,
304 .update = sbp2_update,
305 .driver = {
306 .probe = sbp2_probe,
307 .remove = sbp2_remove,
313 * Interface to SCSI core
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316 void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323 struct device_attribute *, char *);
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328 &dev_attr_ieee1394_id,
329 NULL
332 static struct scsi_host_template sbp2_shost_template = {
333 .module = THIS_MODULE,
334 .name = "SBP-2 IEEE-1394",
335 .proc_name = SBP2_DEVICE_NAME,
336 .queuecommand = sbp2scsi_queuecommand,
337 .eh_abort_handler = sbp2scsi_abort,
338 .eh_device_reset_handler = sbp2scsi_reset,
339 .slave_alloc = sbp2scsi_slave_alloc,
340 .slave_configure = sbp2scsi_slave_configure,
341 .slave_destroy = sbp2scsi_slave_destroy,
342 .this_id = -1,
343 .sg_tablesize = SG_ALL,
344 .use_clustering = ENABLE_CLUSTERING,
345 .cmd_per_lun = SBP2_MAX_CMDS,
346 .can_queue = SBP2_MAX_CMDS,
347 .sdev_attrs = sbp2_sysfs_sdev_attrs,
350 /* for match-all entries in sbp2_workarounds_table */
351 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
354 * List of devices with known bugs.
356 * The firmware_revision field, masked with 0xffff00, is the best indicator
357 * for the type of bridge chip of a device. It yields a few false positives
358 * but this did not break correctly behaving devices so far.
360 static const struct {
361 u32 firmware_revision;
362 u32 model_id;
363 unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366 .firmware_revision = 0x002800,
367 .model_id = 0x001010,
368 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
369 SBP2_WORKAROUND_MODE_SENSE_8 |
370 SBP2_WORKAROUND_POWER_CONDITION,
372 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373 .firmware_revision = 0x002800,
374 .model_id = 0x000000,
375 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
376 SBP2_WORKAROUND_POWER_CONDITION,
378 /* Initio bridges, actually only needed for some older ones */ {
379 .firmware_revision = 0x000200,
380 .model_id = SBP2_ROM_VALUE_WILDCARD,
381 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
383 /* PL-3507 bridge with Prolific firmware */ {
384 .firmware_revision = 0x012800,
385 .model_id = SBP2_ROM_VALUE_WILDCARD,
386 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
388 /* Symbios bridge */ {
389 .firmware_revision = 0xa0b800,
390 .model_id = SBP2_ROM_VALUE_WILDCARD,
391 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
393 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394 .firmware_revision = 0x002600,
395 .model_id = SBP2_ROM_VALUE_WILDCARD,
396 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
398 /* iPod 4th generation */ {
399 .firmware_revision = 0x0a2700,
400 .model_id = 0x000021,
401 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
403 /* iPod mini */ {
404 .firmware_revision = 0x0a2700,
405 .model_id = 0x000023,
406 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
408 /* iPod Photo */ {
409 .firmware_revision = 0x0a2700,
410 .model_id = 0x00007e,
411 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
415 /**************************************
416 * General utility functions
417 **************************************/
419 #ifndef __BIG_ENDIAN
421 * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
423 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
425 u32 *temp = buffer;
427 for (length = (length >> 2); length--; )
428 temp[length] = be32_to_cpu(temp[length]);
432 * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
434 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
436 u32 *temp = buffer;
438 for (length = (length >> 2); length--; )
439 temp[length] = cpu_to_be32(temp[length]);
441 #else /* BIG_ENDIAN */
442 /* Why waste the cpu cycles? */
443 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
444 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
445 #endif
447 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
450 * Waits for completion of an SBP-2 access request.
451 * Returns nonzero if timed out or prematurely interrupted.
453 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
455 long leftover;
457 leftover = wait_event_interruptible_timeout(
458 sbp2_access_wq, lu->access_complete, timeout);
459 lu->access_complete = 0;
460 return leftover <= 0;
463 static void sbp2_free_packet(void *packet)
465 hpsb_free_tlabel(packet);
466 hpsb_free_packet(packet);
470 * This is much like hpsb_node_write(), except it ignores the response
471 * subaction and returns immediately. Can be used from atomic context.
473 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
474 quadlet_t *buf, size_t len)
476 struct hpsb_packet *packet;
478 packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
479 if (!packet)
480 return -ENOMEM;
482 hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
483 hpsb_node_fill_packet(ne, packet);
484 if (hpsb_send_packet(packet) < 0) {
485 sbp2_free_packet(packet);
486 return -EIO;
488 return 0;
491 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
492 quadlet_t *data, size_t len)
494 /* There is a small window after a bus reset within which the node
495 * entry's generation is current but the reconnect wasn't completed. */
496 if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
497 return;
499 if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
500 data, len))
501 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
503 /* Now accept new SCSI commands, unless a bus reset happended during
504 * hpsb_node_write. */
505 if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
506 scsi_unblock_requests(lu->shost);
509 static void sbp2util_write_orb_pointer(struct work_struct *work)
511 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
512 quadlet_t data[2];
514 data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
515 data[1] = lu->last_orb_dma;
516 sbp2util_cpu_to_be32_buffer(data, 8);
517 sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
520 static void sbp2util_write_doorbell(struct work_struct *work)
522 struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
524 sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
527 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
529 struct sbp2_command_info *cmd;
530 struct device *dmadev = lu->hi->host->device.parent;
531 int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
533 for (i = 0; i < orbs; i++) {
534 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
535 if (!cmd)
536 goto failed_alloc;
538 cmd->command_orb_dma =
539 dma_map_single(dmadev, &cmd->command_orb,
540 sizeof(struct sbp2_command_orb),
541 DMA_TO_DEVICE);
542 if (dma_mapping_error(dmadev, cmd->command_orb_dma))
543 goto failed_orb;
545 cmd->sge_dma =
546 dma_map_single(dmadev, &cmd->scatter_gather_element,
547 sizeof(cmd->scatter_gather_element),
548 DMA_TO_DEVICE);
549 if (dma_mapping_error(dmadev, cmd->sge_dma))
550 goto failed_sge;
552 INIT_LIST_HEAD(&cmd->list);
553 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
555 return 0;
557 failed_sge:
558 dma_unmap_single(dmadev, cmd->command_orb_dma,
559 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
560 failed_orb:
561 kfree(cmd);
562 failed_alloc:
563 return -ENOMEM;
566 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
567 struct hpsb_host *host)
569 struct list_head *lh, *next;
570 struct sbp2_command_info *cmd;
571 unsigned long flags;
573 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
574 if (!list_empty(&lu->cmd_orb_completed))
575 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
576 cmd = list_entry(lh, struct sbp2_command_info, list);
577 dma_unmap_single(host->device.parent,
578 cmd->command_orb_dma,
579 sizeof(struct sbp2_command_orb),
580 DMA_TO_DEVICE);
581 dma_unmap_single(host->device.parent, cmd->sge_dma,
582 sizeof(cmd->scatter_gather_element),
583 DMA_TO_DEVICE);
584 kfree(cmd);
586 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
587 return;
591 * Finds the sbp2_command for a given outstanding command ORB.
592 * Only looks at the in-use list.
594 static struct sbp2_command_info *sbp2util_find_command_for_orb(
595 struct sbp2_lu *lu, dma_addr_t orb)
597 struct sbp2_command_info *cmd;
598 unsigned long flags;
600 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
601 if (!list_empty(&lu->cmd_orb_inuse))
602 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
603 if (cmd->command_orb_dma == orb) {
604 spin_unlock_irqrestore(
605 &lu->cmd_orb_lock, flags);
606 return cmd;
608 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
609 return NULL;
613 * Finds the sbp2_command for a given outstanding SCpnt.
614 * Only looks at the in-use list.
615 * Must be called with lu->cmd_orb_lock held.
617 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
618 struct sbp2_lu *lu, void *SCpnt)
620 struct sbp2_command_info *cmd;
622 if (!list_empty(&lu->cmd_orb_inuse))
623 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
624 if (cmd->Current_SCpnt == SCpnt)
625 return cmd;
626 return NULL;
629 static struct sbp2_command_info *sbp2util_allocate_command_orb(
630 struct sbp2_lu *lu,
631 struct scsi_cmnd *Current_SCpnt,
632 void (*Current_done)(struct scsi_cmnd *))
634 struct list_head *lh;
635 struct sbp2_command_info *cmd = NULL;
636 unsigned long flags;
638 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
639 if (!list_empty(&lu->cmd_orb_completed)) {
640 lh = lu->cmd_orb_completed.next;
641 list_del(lh);
642 cmd = list_entry(lh, struct sbp2_command_info, list);
643 cmd->Current_done = Current_done;
644 cmd->Current_SCpnt = Current_SCpnt;
645 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
646 } else
647 SBP2_ERR("%s: no orbs available", __func__);
648 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
649 return cmd;
653 * Unmaps the DMAs of a command and moves the command to the completed ORB list.
654 * Must be called with lu->cmd_orb_lock held.
656 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
657 struct sbp2_command_info *cmd)
659 if (scsi_sg_count(cmd->Current_SCpnt))
660 dma_unmap_sg(lu->ud->ne->host->device.parent,
661 scsi_sglist(cmd->Current_SCpnt),
662 scsi_sg_count(cmd->Current_SCpnt),
663 cmd->Current_SCpnt->sc_data_direction);
664 list_move_tail(&cmd->list, &lu->cmd_orb_completed);
668 * Is lu valid? Is the 1394 node still present?
670 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
672 return lu && lu->ne && !lu->ne->in_limbo;
675 /*********************************************
676 * IEEE-1394 core driver stack related section
677 *********************************************/
679 static int sbp2_probe(struct device *dev)
681 struct unit_directory *ud;
682 struct sbp2_lu *lu;
684 ud = container_of(dev, struct unit_directory, device);
686 /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
687 * instead. */
688 if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
689 return -ENODEV;
691 lu = sbp2_alloc_device(ud);
692 if (!lu)
693 return -ENOMEM;
695 sbp2_parse_unit_directory(lu, ud);
696 return sbp2_start_device(lu);
699 static int sbp2_remove(struct device *dev)
701 struct unit_directory *ud;
702 struct sbp2_lu *lu;
703 struct scsi_device *sdev;
705 ud = container_of(dev, struct unit_directory, device);
706 lu = ud->device.driver_data;
707 if (!lu)
708 return 0;
710 if (lu->shost) {
711 /* Get rid of enqueued commands if there is no chance to
712 * send them. */
713 if (!sbp2util_node_is_available(lu))
714 sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
715 /* scsi_remove_device() may trigger shutdown functions of SCSI
716 * highlevel drivers which would deadlock if blocked. */
717 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
718 scsi_unblock_requests(lu->shost);
720 sdev = lu->sdev;
721 if (sdev) {
722 lu->sdev = NULL;
723 scsi_remove_device(sdev);
726 sbp2_logout_device(lu);
727 sbp2_remove_device(lu);
729 return 0;
732 static int sbp2_update(struct unit_directory *ud)
734 struct sbp2_lu *lu = ud->device.driver_data;
736 if (sbp2_reconnect_device(lu) != 0) {
738 * Reconnect failed. If another bus reset happened,
739 * let nodemgr proceed and call sbp2_update again later
740 * (or sbp2_remove if this node went away).
742 if (!hpsb_node_entry_valid(lu->ne))
743 return 0;
745 * Or the target rejected the reconnect because we weren't
746 * fast enough. Try a regular login, but first log out
747 * just in case of any weirdness.
749 sbp2_logout_device(lu);
751 if (sbp2_login_device(lu) != 0) {
752 if (!hpsb_node_entry_valid(lu->ne))
753 return 0;
755 /* Maybe another initiator won the login. */
756 SBP2_ERR("Failed to reconnect to sbp2 device!");
757 return -EBUSY;
761 sbp2_set_busy_timeout(lu);
762 sbp2_agent_reset(lu, 1);
763 sbp2_max_speed_and_size(lu);
765 /* Complete any pending commands with busy (so they get retried)
766 * and remove them from our queue. */
767 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
769 /* Accept new commands unless there was another bus reset in the
770 * meantime. */
771 if (hpsb_node_entry_valid(lu->ne)) {
772 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
773 scsi_unblock_requests(lu->shost);
775 return 0;
778 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
780 struct sbp2_fwhost_info *hi;
781 struct Scsi_Host *shost = NULL;
782 struct sbp2_lu *lu = NULL;
783 unsigned long flags;
785 lu = kzalloc(sizeof(*lu), GFP_KERNEL);
786 if (!lu) {
787 SBP2_ERR("failed to create lu");
788 goto failed_alloc;
791 lu->ne = ud->ne;
792 lu->ud = ud;
793 lu->speed_code = IEEE1394_SPEED_100;
794 lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
795 lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
796 INIT_LIST_HEAD(&lu->cmd_orb_inuse);
797 INIT_LIST_HEAD(&lu->cmd_orb_completed);
798 INIT_LIST_HEAD(&lu->lu_list);
799 spin_lock_init(&lu->cmd_orb_lock);
800 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
801 INIT_WORK(&lu->protocol_work, NULL);
803 ud->device.driver_data = lu;
805 hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
806 if (!hi) {
807 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
808 sizeof(*hi));
809 if (!hi) {
810 SBP2_ERR("failed to allocate hostinfo");
811 goto failed_alloc;
813 hi->host = ud->ne->host;
814 INIT_LIST_HEAD(&hi->logical_units);
816 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
817 /* Handle data movement if physical dma is not
818 * enabled or not supported on host controller */
819 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
820 &sbp2_physdma_ops,
821 0x0ULL, 0xfffffffcULL)) {
822 SBP2_ERR("failed to register lower 4GB address range");
823 goto failed_alloc;
825 #endif
828 if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
829 BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
830 SBP2_MAX_SEG_SIZE));
832 /* Prevent unloading of the 1394 host */
833 if (!try_module_get(hi->host->driver->owner)) {
834 SBP2_ERR("failed to get a reference on 1394 host driver");
835 goto failed_alloc;
838 lu->hi = hi;
840 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
841 list_add_tail(&lu->lu_list, &hi->logical_units);
842 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
844 /* Register the status FIFO address range. We could use the same FIFO
845 * for targets at different nodes. However we need different FIFOs per
846 * target in order to support multi-unit devices.
847 * The FIFO is located out of the local host controller's physical range
848 * but, if possible, within the posted write area. Status writes will
849 * then be performed as unified transactions. This slightly reduces
850 * bandwidth usage, and some Prolific based devices seem to require it.
852 lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
853 &sbp2_highlevel, ud->ne->host, &sbp2_ops,
854 sizeof(struct sbp2_status_block), sizeof(quadlet_t),
855 ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
856 if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
857 SBP2_ERR("failed to allocate status FIFO address range");
858 goto failed_alloc;
861 shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
862 if (!shost) {
863 SBP2_ERR("failed to register scsi host");
864 goto failed_alloc;
867 shost->hostdata[0] = (unsigned long)lu;
869 if (!scsi_add_host(shost, &ud->device)) {
870 lu->shost = shost;
871 return lu;
874 SBP2_ERR("failed to add scsi host");
875 scsi_host_put(shost);
877 failed_alloc:
878 sbp2_remove_device(lu);
879 return NULL;
882 static void sbp2_host_reset(struct hpsb_host *host)
884 struct sbp2_fwhost_info *hi;
885 struct sbp2_lu *lu;
886 unsigned long flags;
888 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
889 if (!hi)
890 return;
892 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
893 list_for_each_entry(lu, &hi->logical_units, lu_list)
894 if (likely(atomic_read(&lu->state) !=
895 SBP2LU_STATE_IN_SHUTDOWN)) {
896 atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
897 scsi_block_requests(lu->shost);
899 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
902 static int sbp2_start_device(struct sbp2_lu *lu)
904 struct sbp2_fwhost_info *hi = lu->hi;
905 int error;
907 lu->login_response = dma_alloc_coherent(hi->host->device.parent,
908 sizeof(struct sbp2_login_response),
909 &lu->login_response_dma, GFP_KERNEL);
910 if (!lu->login_response)
911 goto alloc_fail;
913 lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
914 sizeof(struct sbp2_query_logins_orb),
915 &lu->query_logins_orb_dma, GFP_KERNEL);
916 if (!lu->query_logins_orb)
917 goto alloc_fail;
919 lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
920 sizeof(struct sbp2_query_logins_response),
921 &lu->query_logins_response_dma, GFP_KERNEL);
922 if (!lu->query_logins_response)
923 goto alloc_fail;
925 lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
926 sizeof(struct sbp2_reconnect_orb),
927 &lu->reconnect_orb_dma, GFP_KERNEL);
928 if (!lu->reconnect_orb)
929 goto alloc_fail;
931 lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
932 sizeof(struct sbp2_logout_orb),
933 &lu->logout_orb_dma, GFP_KERNEL);
934 if (!lu->logout_orb)
935 goto alloc_fail;
937 lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
938 sizeof(struct sbp2_login_orb),
939 &lu->login_orb_dma, GFP_KERNEL);
940 if (!lu->login_orb)
941 goto alloc_fail;
943 if (sbp2util_create_command_orb_pool(lu))
944 goto alloc_fail;
946 /* Wait a second before trying to log in. Previously logged in
947 * initiators need a chance to reconnect. */
948 if (msleep_interruptible(1000)) {
949 sbp2_remove_device(lu);
950 return -EINTR;
953 if (sbp2_login_device(lu)) {
954 sbp2_remove_device(lu);
955 return -EBUSY;
958 sbp2_set_busy_timeout(lu);
959 sbp2_agent_reset(lu, 1);
960 sbp2_max_speed_and_size(lu);
962 if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
963 ssleep(SBP2_INQUIRY_DELAY);
965 error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
966 if (error) {
967 SBP2_ERR("scsi_add_device failed");
968 sbp2_logout_device(lu);
969 sbp2_remove_device(lu);
970 return error;
973 return 0;
975 alloc_fail:
976 SBP2_ERR("Could not allocate memory for lu");
977 sbp2_remove_device(lu);
978 return -ENOMEM;
981 static void sbp2_remove_device(struct sbp2_lu *lu)
983 struct sbp2_fwhost_info *hi;
984 unsigned long flags;
986 if (!lu)
987 return;
988 hi = lu->hi;
989 if (!hi)
990 goto no_hi;
992 if (lu->shost) {
993 scsi_remove_host(lu->shost);
994 scsi_host_put(lu->shost);
996 flush_scheduled_work();
997 sbp2util_remove_command_orb_pool(lu, hi->host);
999 write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1000 list_del(&lu->lu_list);
1001 write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1003 if (lu->login_response)
1004 dma_free_coherent(hi->host->device.parent,
1005 sizeof(struct sbp2_login_response),
1006 lu->login_response,
1007 lu->login_response_dma);
1008 if (lu->login_orb)
1009 dma_free_coherent(hi->host->device.parent,
1010 sizeof(struct sbp2_login_orb),
1011 lu->login_orb,
1012 lu->login_orb_dma);
1013 if (lu->reconnect_orb)
1014 dma_free_coherent(hi->host->device.parent,
1015 sizeof(struct sbp2_reconnect_orb),
1016 lu->reconnect_orb,
1017 lu->reconnect_orb_dma);
1018 if (lu->logout_orb)
1019 dma_free_coherent(hi->host->device.parent,
1020 sizeof(struct sbp2_logout_orb),
1021 lu->logout_orb,
1022 lu->logout_orb_dma);
1023 if (lu->query_logins_orb)
1024 dma_free_coherent(hi->host->device.parent,
1025 sizeof(struct sbp2_query_logins_orb),
1026 lu->query_logins_orb,
1027 lu->query_logins_orb_dma);
1028 if (lu->query_logins_response)
1029 dma_free_coherent(hi->host->device.parent,
1030 sizeof(struct sbp2_query_logins_response),
1031 lu->query_logins_response,
1032 lu->query_logins_response_dma);
1034 if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1035 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1036 lu->status_fifo_addr);
1038 lu->ud->device.driver_data = NULL;
1040 module_put(hi->host->driver->owner);
1041 no_hi:
1042 kfree(lu);
1045 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1047 * Deal with write requests on adapters which do not support physical DMA or
1048 * have it switched off.
1050 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1051 int destid, quadlet_t *data, u64 addr,
1052 size_t length, u16 flags)
1054 memcpy(bus_to_virt((u32) addr), data, length);
1055 return RCODE_COMPLETE;
1059 * Deal with read requests on adapters which do not support physical DMA or
1060 * have it switched off.
1062 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1063 quadlet_t *data, u64 addr, size_t length,
1064 u16 flags)
1066 memcpy(data, bus_to_virt((u32) addr), length);
1067 return RCODE_COMPLETE;
1069 #endif
1071 /**************************************
1072 * SBP-2 protocol related section
1073 **************************************/
1075 static int sbp2_query_logins(struct sbp2_lu *lu)
1077 struct sbp2_fwhost_info *hi = lu->hi;
1078 quadlet_t data[2];
1079 int max_logins;
1080 int active_logins;
1082 lu->query_logins_orb->reserved1 = 0x0;
1083 lu->query_logins_orb->reserved2 = 0x0;
1085 lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1086 lu->query_logins_orb->query_response_hi =
1087 ORB_SET_NODE_ID(hi->host->node_id);
1088 lu->query_logins_orb->lun_misc =
1089 ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1090 lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1091 lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1093 lu->query_logins_orb->reserved_resp_length =
1094 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1095 sizeof(struct sbp2_query_logins_response));
1097 lu->query_logins_orb->status_fifo_hi =
1098 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1099 lu->query_logins_orb->status_fifo_lo =
1100 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1102 sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1103 sizeof(struct sbp2_query_logins_orb));
1105 memset(lu->query_logins_response, 0,
1106 sizeof(struct sbp2_query_logins_response));
1108 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1109 data[1] = lu->query_logins_orb_dma;
1110 sbp2util_cpu_to_be32_buffer(data, 8);
1112 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1114 if (sbp2util_access_timeout(lu, 2*HZ)) {
1115 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1116 return -EIO;
1119 if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1120 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1121 return -EIO;
1124 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1125 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1126 return -EIO;
1129 sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1130 sizeof(struct sbp2_query_logins_response));
1132 max_logins = RESPONSE_GET_MAX_LOGINS(
1133 lu->query_logins_response->length_max_logins);
1134 SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1136 active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1137 lu->query_logins_response->length_max_logins);
1138 SBP2_INFO("Number of active logins: %d", active_logins);
1140 if (active_logins >= max_logins) {
1141 return -EIO;
1144 return 0;
1147 static int sbp2_login_device(struct sbp2_lu *lu)
1149 struct sbp2_fwhost_info *hi = lu->hi;
1150 quadlet_t data[2];
1152 if (!lu->login_orb)
1153 return -EIO;
1155 if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1156 SBP2_INFO("Device does not support any more concurrent logins");
1157 return -EIO;
1160 /* assume no password */
1161 lu->login_orb->password_hi = 0;
1162 lu->login_orb->password_lo = 0;
1164 lu->login_orb->login_response_lo = lu->login_response_dma;
1165 lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1166 lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1168 /* one second reconnect time */
1169 lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1170 lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1171 lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1172 lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1174 lu->login_orb->passwd_resp_lengths =
1175 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1177 lu->login_orb->status_fifo_hi =
1178 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1179 lu->login_orb->status_fifo_lo =
1180 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1182 sbp2util_cpu_to_be32_buffer(lu->login_orb,
1183 sizeof(struct sbp2_login_orb));
1185 memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1187 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1188 data[1] = lu->login_orb_dma;
1189 sbp2util_cpu_to_be32_buffer(data, 8);
1191 hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1193 /* wait up to 20 seconds for login status */
1194 if (sbp2util_access_timeout(lu, 20*HZ)) {
1195 SBP2_ERR("Error logging into SBP-2 device - timed out");
1196 return -EIO;
1199 /* make sure that the returned status matches the login ORB */
1200 if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1201 SBP2_ERR("Error logging into SBP-2 device - timed out");
1202 return -EIO;
1205 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1206 SBP2_ERR("Error logging into SBP-2 device - failed");
1207 return -EIO;
1210 sbp2util_cpu_to_be32_buffer(lu->login_response,
1211 sizeof(struct sbp2_login_response));
1212 lu->command_block_agent_addr =
1213 ((u64)lu->login_response->command_block_agent_hi) << 32;
1214 lu->command_block_agent_addr |=
1215 ((u64)lu->login_response->command_block_agent_lo);
1216 lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1218 SBP2_INFO("Logged into SBP-2 device");
1219 return 0;
1222 static int sbp2_logout_device(struct sbp2_lu *lu)
1224 struct sbp2_fwhost_info *hi = lu->hi;
1225 quadlet_t data[2];
1226 int error;
1228 lu->logout_orb->reserved1 = 0x0;
1229 lu->logout_orb->reserved2 = 0x0;
1230 lu->logout_orb->reserved3 = 0x0;
1231 lu->logout_orb->reserved4 = 0x0;
1233 lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1234 lu->logout_orb->login_ID_misc |=
1235 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1236 lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1238 lu->logout_orb->reserved5 = 0x0;
1239 lu->logout_orb->status_fifo_hi =
1240 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1241 lu->logout_orb->status_fifo_lo =
1242 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1244 sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1245 sizeof(struct sbp2_logout_orb));
1247 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1248 data[1] = lu->logout_orb_dma;
1249 sbp2util_cpu_to_be32_buffer(data, 8);
1251 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1252 if (error)
1253 return error;
1255 /* wait up to 1 second for the device to complete logout */
1256 if (sbp2util_access_timeout(lu, HZ))
1257 return -EIO;
1259 SBP2_INFO("Logged out of SBP-2 device");
1260 return 0;
1263 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1265 struct sbp2_fwhost_info *hi = lu->hi;
1266 quadlet_t data[2];
1267 int error;
1269 lu->reconnect_orb->reserved1 = 0x0;
1270 lu->reconnect_orb->reserved2 = 0x0;
1271 lu->reconnect_orb->reserved3 = 0x0;
1272 lu->reconnect_orb->reserved4 = 0x0;
1274 lu->reconnect_orb->login_ID_misc =
1275 ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1276 lu->reconnect_orb->login_ID_misc |=
1277 ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1278 lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1280 lu->reconnect_orb->reserved5 = 0x0;
1281 lu->reconnect_orb->status_fifo_hi =
1282 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1283 lu->reconnect_orb->status_fifo_lo =
1284 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1286 sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1287 sizeof(struct sbp2_reconnect_orb));
1289 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1290 data[1] = lu->reconnect_orb_dma;
1291 sbp2util_cpu_to_be32_buffer(data, 8);
1293 error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1294 if (error)
1295 return error;
1297 /* wait up to 1 second for reconnect status */
1298 if (sbp2util_access_timeout(lu, HZ)) {
1299 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1300 return -EIO;
1303 /* make sure that the returned status matches the reconnect ORB */
1304 if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1305 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1306 return -EIO;
1309 if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1310 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1311 return -EIO;
1314 SBP2_INFO("Reconnected to SBP-2 device");
1315 return 0;
1319 * Set the target node's Single Phase Retry limit. Affects the target's retry
1320 * behaviour if our node is too busy to accept requests.
1322 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1324 quadlet_t data;
1326 data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1327 if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1328 SBP2_ERR("%s error", __func__);
1329 return 0;
1332 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1333 struct unit_directory *ud)
1335 struct csr1212_keyval *kv;
1336 struct csr1212_dentry *dentry;
1337 u64 management_agent_addr;
1338 u32 unit_characteristics, firmware_revision;
1339 unsigned workarounds;
1340 int i;
1342 management_agent_addr = 0;
1343 unit_characteristics = 0;
1344 firmware_revision = 0;
1346 csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1347 switch (kv->key.id) {
1348 case CSR1212_KV_ID_DEPENDENT_INFO:
1349 if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1350 management_agent_addr =
1351 CSR1212_REGISTER_SPACE_BASE +
1352 (kv->value.csr_offset << 2);
1354 else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1355 lu->lun = ORB_SET_LUN(kv->value.immediate);
1356 break;
1358 case SBP2_UNIT_CHARACTERISTICS_KEY:
1359 /* FIXME: This is ignored so far.
1360 * See SBP-2 clause 7.4.8. */
1361 unit_characteristics = kv->value.immediate;
1362 break;
1364 case SBP2_FIRMWARE_REVISION_KEY:
1365 firmware_revision = kv->value.immediate;
1366 break;
1368 default:
1369 /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1370 * Its "ordered" bit has consequences for command ORB
1371 * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1372 break;
1376 workarounds = sbp2_default_workarounds;
1378 if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1379 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1380 if (sbp2_workarounds_table[i].firmware_revision !=
1381 SBP2_ROM_VALUE_WILDCARD &&
1382 sbp2_workarounds_table[i].firmware_revision !=
1383 (firmware_revision & 0xffff00))
1384 continue;
1385 if (sbp2_workarounds_table[i].model_id !=
1386 SBP2_ROM_VALUE_WILDCARD &&
1387 sbp2_workarounds_table[i].model_id != ud->model_id)
1388 continue;
1389 workarounds |= sbp2_workarounds_table[i].workarounds;
1390 break;
1393 if (workarounds)
1394 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1395 "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1396 " model_id 0x%06x)",
1397 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1398 workarounds, firmware_revision,
1399 ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1400 ud->model_id);
1402 /* We would need one SCSI host template for each target to adjust
1403 * max_sectors on the fly, therefore warn only. */
1404 if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1405 (sbp2_max_sectors * 512) > (128 * 1024))
1406 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1407 "max transfer size. WARNING: Current max_sectors "
1408 "setting is larger than 128KB (%d sectors)",
1409 NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1410 sbp2_max_sectors);
1412 /* If this is a logical unit directory entry, process the parent
1413 * to get the values. */
1414 if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1415 struct unit_directory *parent_ud = container_of(
1416 ud->device.parent, struct unit_directory, device);
1417 sbp2_parse_unit_directory(lu, parent_ud);
1418 } else {
1419 lu->management_agent_addr = management_agent_addr;
1420 lu->workarounds = workarounds;
1421 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1422 lu->lun = ORB_SET_LUN(ud->lun);
1426 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1429 * This function is called in order to determine the max speed and packet
1430 * size we can use in our ORBs. Note, that we (the driver and host) only
1431 * initiate the transaction. The SBP-2 device actually transfers the data
1432 * (by reading from the DMA area we tell it). This means that the SBP-2
1433 * device decides the actual maximum data it can transfer. We just tell it
1434 * the speed that it needs to use, and the max_rec the host supports, and
1435 * it takes care of the rest.
1437 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1439 struct sbp2_fwhost_info *hi = lu->hi;
1440 u8 payload;
1442 lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1444 if (lu->speed_code > sbp2_max_speed) {
1445 lu->speed_code = sbp2_max_speed;
1446 SBP2_INFO("Reducing speed to %s",
1447 hpsb_speedto_str[sbp2_max_speed]);
1450 /* Payload size is the lesser of what our speed supports and what
1451 * our host supports. */
1452 payload = min(sbp2_speedto_max_payload[lu->speed_code],
1453 (u8) (hi->host->csr.max_rec - 1));
1455 /* If physical DMA is off, work around limitation in ohci1394:
1456 * packet size must not exceed PAGE_SIZE */
1457 if (lu->ne->host->low_addr_space < (1ULL << 32))
1458 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1459 payload)
1460 payload--;
1462 SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1463 NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1464 hpsb_speedto_str[lu->speed_code],
1465 SBP2_PAYLOAD_TO_BYTES(payload));
1467 lu->max_payload_size = payload;
1468 return 0;
1471 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1473 quadlet_t data;
1474 u64 addr;
1475 int retval;
1476 unsigned long flags;
1478 /* flush lu->protocol_work */
1479 if (wait)
1480 flush_scheduled_work();
1482 data = ntohl(SBP2_AGENT_RESET_DATA);
1483 addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1485 if (wait)
1486 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1487 else
1488 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1490 if (retval < 0) {
1491 SBP2_ERR("hpsb_node_write failed.\n");
1492 return -EIO;
1495 /* make sure that the ORB_POINTER is written on next command */
1496 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1497 lu->last_orb = NULL;
1498 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1500 return 0;
1503 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1504 struct sbp2_fwhost_info *hi,
1505 struct sbp2_command_info *cmd,
1506 unsigned int sg_count,
1507 struct scatterlist *sg,
1508 u32 orb_direction,
1509 enum dma_data_direction dma_dir)
1511 struct device *dmadev = hi->host->device.parent;
1512 struct sbp2_unrestricted_page_table *pt;
1513 int i, n;
1515 n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1516 if (n == 0)
1517 return -ENOMEM;
1519 orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1520 orb->misc |= ORB_SET_DIRECTION(orb_direction);
1522 /* special case if only one element (and less than 64KB in size) */
1523 if (n == 1) {
1524 orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1525 orb->data_descriptor_lo = sg_dma_address(sg);
1526 } else {
1527 pt = &cmd->scatter_gather_element[0];
1529 dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1530 sizeof(cmd->scatter_gather_element),
1531 DMA_TO_DEVICE);
1533 for_each_sg(sg, sg, n, i) {
1534 pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1535 pt[i].low = cpu_to_be32(sg_dma_address(sg));
1538 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1539 ORB_SET_DATA_SIZE(n);
1540 orb->data_descriptor_lo = cmd->sge_dma;
1542 dma_sync_single_for_device(dmadev, cmd->sge_dma,
1543 sizeof(cmd->scatter_gather_element),
1544 DMA_TO_DEVICE);
1546 return 0;
1549 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1550 struct sbp2_command_info *cmd,
1551 struct scsi_cmnd *SCpnt)
1553 struct device *dmadev = lu->hi->host->device.parent;
1554 struct sbp2_command_orb *orb = &cmd->command_orb;
1555 unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1556 enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1557 u32 orb_direction;
1558 int ret;
1560 dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1561 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1563 * Set-up our command ORB.
1565 * NOTE: We're doing unrestricted page tables (s/g), as this is
1566 * best performance (at least with the devices I have). This means
1567 * that data_size becomes the number of s/g elements, and
1568 * page_size should be zero (for unrestricted).
1570 orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1571 orb->next_ORB_lo = 0x0;
1572 orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1573 orb->misc |= ORB_SET_SPEED(lu->speed_code);
1574 orb->misc |= ORB_SET_NOTIFY(1);
1576 if (dma_dir == DMA_NONE)
1577 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1578 else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1579 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1580 else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1581 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1582 else {
1583 SBP2_INFO("Falling back to DMA_NONE");
1584 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1587 /* set up our page table stuff */
1588 if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1589 orb->data_descriptor_hi = 0x0;
1590 orb->data_descriptor_lo = 0x0;
1591 orb->misc |= ORB_SET_DIRECTION(1);
1592 ret = 0;
1593 } else {
1594 ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1595 scsi_sg_count(SCpnt),
1596 scsi_sglist(SCpnt),
1597 orb_direction, dma_dir);
1599 sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1601 memset(orb->cdb, 0, sizeof(orb->cdb));
1602 memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1604 dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1605 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1606 return ret;
1609 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1610 struct sbp2_command_info *cmd)
1612 struct sbp2_fwhost_info *hi = lu->hi;
1613 struct sbp2_command_orb *last_orb;
1614 dma_addr_t last_orb_dma;
1615 u64 addr = lu->command_block_agent_addr;
1616 quadlet_t data[2];
1617 size_t length;
1618 unsigned long flags;
1620 /* check to see if there are any previous orbs to use */
1621 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1622 last_orb = lu->last_orb;
1623 last_orb_dma = lu->last_orb_dma;
1624 if (!last_orb) {
1626 * last_orb == NULL means: We know that the target's fetch agent
1627 * is not active right now.
1629 addr += SBP2_ORB_POINTER_OFFSET;
1630 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1631 data[1] = cmd->command_orb_dma;
1632 sbp2util_cpu_to_be32_buffer(data, 8);
1633 length = 8;
1634 } else {
1636 * last_orb != NULL means: We know that the target's fetch agent
1637 * is (very probably) not dead or in reset state right now.
1638 * We have an ORB already sent that we can append a new one to.
1639 * The target's fetch agent may or may not have read this
1640 * previous ORB yet.
1642 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1643 sizeof(struct sbp2_command_orb),
1644 DMA_TO_DEVICE);
1645 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1646 wmb();
1647 /* Tells hardware that this pointer is valid */
1648 last_orb->next_ORB_hi = 0;
1649 dma_sync_single_for_device(hi->host->device.parent,
1650 last_orb_dma,
1651 sizeof(struct sbp2_command_orb),
1652 DMA_TO_DEVICE);
1653 addr += SBP2_DOORBELL_OFFSET;
1654 data[0] = 0;
1655 length = 4;
1657 lu->last_orb = &cmd->command_orb;
1658 lu->last_orb_dma = cmd->command_orb_dma;
1659 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1661 if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1663 * sbp2util_node_write_no_wait failed. We certainly ran out
1664 * of transaction labels, perhaps just because there were no
1665 * context switches which gave khpsbpkt a chance to collect
1666 * free tlabels. Try again in non-atomic context. If necessary,
1667 * the workqueue job will sleep to guaranteedly get a tlabel.
1668 * We do not accept new commands until the job is over.
1670 scsi_block_requests(lu->shost);
1671 PREPARE_WORK(&lu->protocol_work,
1672 last_orb ? sbp2util_write_doorbell:
1673 sbp2util_write_orb_pointer);
1674 schedule_work(&lu->protocol_work);
1678 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1679 void (*done)(struct scsi_cmnd *))
1681 struct sbp2_command_info *cmd;
1683 cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1684 if (!cmd)
1685 return -EIO;
1687 if (sbp2_create_command_orb(lu, cmd, SCpnt))
1688 return -ENOMEM;
1690 sbp2_link_orb_command(lu, cmd);
1691 return 0;
1695 * Translates SBP-2 status into SCSI sense data for check conditions
1697 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1698 unchar *sense_data)
1700 /* OK, it's pretty ugly... ;-) */
1701 sense_data[0] = 0x70;
1702 sense_data[1] = 0x0;
1703 sense_data[2] = sbp2_status[9];
1704 sense_data[3] = sbp2_status[12];
1705 sense_data[4] = sbp2_status[13];
1706 sense_data[5] = sbp2_status[14];
1707 sense_data[6] = sbp2_status[15];
1708 sense_data[7] = 10;
1709 sense_data[8] = sbp2_status[16];
1710 sense_data[9] = sbp2_status[17];
1711 sense_data[10] = sbp2_status[18];
1712 sense_data[11] = sbp2_status[19];
1713 sense_data[12] = sbp2_status[10];
1714 sense_data[13] = sbp2_status[11];
1715 sense_data[14] = sbp2_status[20];
1716 sense_data[15] = sbp2_status[21];
1718 return sbp2_status[8] & 0x3f;
1721 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1722 int destid, quadlet_t *data, u64 addr,
1723 size_t length, u16 fl)
1725 struct sbp2_fwhost_info *hi;
1726 struct sbp2_lu *lu = NULL, *lu_tmp;
1727 struct scsi_cmnd *SCpnt = NULL;
1728 struct sbp2_status_block *sb;
1729 u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1730 struct sbp2_command_info *cmd;
1731 unsigned long flags;
1733 if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1734 SBP2_ERR("Wrong size of status block");
1735 return RCODE_ADDRESS_ERROR;
1737 if (unlikely(!host)) {
1738 SBP2_ERR("host is NULL - this is bad!");
1739 return RCODE_ADDRESS_ERROR;
1741 hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1742 if (unlikely(!hi)) {
1743 SBP2_ERR("host info is NULL - this is bad!");
1744 return RCODE_ADDRESS_ERROR;
1747 /* Find the unit which wrote the status. */
1748 read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1749 list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1750 if (lu_tmp->ne->nodeid == nodeid &&
1751 lu_tmp->status_fifo_addr == addr) {
1752 lu = lu_tmp;
1753 break;
1756 read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1758 if (unlikely(!lu)) {
1759 SBP2_ERR("lu is NULL - device is gone?");
1760 return RCODE_ADDRESS_ERROR;
1763 /* Put response into lu status fifo buffer. The first two bytes
1764 * come in big endian bit order. Often the target writes only a
1765 * truncated status block, minimally the first two quadlets. The rest
1766 * is implied to be zeros. */
1767 sb = &lu->status_block;
1768 memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1769 memcpy(sb, data, length);
1770 sbp2util_be32_to_cpu_buffer(sb, 8);
1772 /* Ignore unsolicited status. Handle command ORB status. */
1773 if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1774 cmd = NULL;
1775 else
1776 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1777 if (cmd) {
1778 /* Grab SCSI command pointers and check status. */
1780 * FIXME: If the src field in the status is 1, the ORB DMA must
1781 * not be reused until status for a subsequent ORB is received.
1783 SCpnt = cmd->Current_SCpnt;
1784 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1785 sbp2util_mark_command_completed(lu, cmd);
1786 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1788 if (SCpnt) {
1789 u32 h = sb->ORB_offset_hi_misc;
1790 u32 r = STATUS_GET_RESP(h);
1792 if (r != RESP_STATUS_REQUEST_COMPLETE) {
1793 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1794 r, STATUS_GET_SBP_STATUS(h));
1795 scsi_status =
1796 r == RESP_STATUS_TRANSPORT_FAILURE ?
1797 SBP2_SCSI_STATUS_BUSY :
1798 SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1801 if (STATUS_GET_LEN(h) > 1)
1802 scsi_status = sbp2_status_to_sense_data(
1803 (unchar *)sb, SCpnt->sense_buffer);
1805 if (STATUS_TEST_DEAD(h))
1806 sbp2_agent_reset(lu, 0);
1809 /* Check here to see if there are no commands in-use. If there
1810 * are none, we know that the fetch agent left the active state
1811 * _and_ that we did not reactivate it yet. Therefore clear
1812 * last_orb so that next time we write directly to the
1813 * ORB_POINTER register. That way the fetch agent does not need
1814 * to refetch the next_ORB. */
1815 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1816 if (list_empty(&lu->cmd_orb_inuse))
1817 lu->last_orb = NULL;
1818 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1820 } else {
1821 /* It's probably status after a management request. */
1822 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1823 (sb->ORB_offset_lo == lu->login_orb_dma) ||
1824 (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1825 (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1826 lu->access_complete = 1;
1827 wake_up_interruptible(&sbp2_access_wq);
1831 if (SCpnt)
1832 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1833 cmd->Current_done);
1834 return RCODE_COMPLETE;
1837 /**************************************
1838 * SCSI interface related section
1839 **************************************/
1841 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1842 void (*done)(struct scsi_cmnd *))
1844 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1845 struct sbp2_fwhost_info *hi;
1846 int result = DID_NO_CONNECT << 16;
1848 if (unlikely(!sbp2util_node_is_available(lu)))
1849 goto done;
1851 hi = lu->hi;
1853 if (unlikely(!hi)) {
1854 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1855 goto done;
1858 /* Multiple units are currently represented to the SCSI core as separate
1859 * targets, not as one target with multiple LUs. Therefore return
1860 * selection time-out to any IO directed at non-zero LUNs. */
1861 if (unlikely(SCpnt->device->lun))
1862 goto done;
1864 if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1865 SBP2_ERR("Bus reset in progress - rejecting command");
1866 result = DID_BUS_BUSY << 16;
1867 goto done;
1870 /* Bidirectional commands are not yet implemented,
1871 * and unknown transfer direction not handled. */
1872 if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1873 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1874 result = DID_ERROR << 16;
1875 goto done;
1878 if (sbp2_send_command(lu, SCpnt, done)) {
1879 SBP2_ERR("Error sending SCSI command");
1880 sbp2scsi_complete_command(lu,
1881 SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1882 SCpnt, done);
1884 return 0;
1886 done:
1887 SCpnt->result = result;
1888 done(SCpnt);
1889 return 0;
1892 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1894 struct list_head *lh;
1895 struct sbp2_command_info *cmd;
1896 unsigned long flags;
1898 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1899 while (!list_empty(&lu->cmd_orb_inuse)) {
1900 lh = lu->cmd_orb_inuse.next;
1901 cmd = list_entry(lh, struct sbp2_command_info, list);
1902 sbp2util_mark_command_completed(lu, cmd);
1903 if (cmd->Current_SCpnt) {
1904 cmd->Current_SCpnt->result = status << 16;
1905 cmd->Current_done(cmd->Current_SCpnt);
1908 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1910 return;
1914 * Complete a regular SCSI command. Can be called in atomic context.
1916 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1917 struct scsi_cmnd *SCpnt,
1918 void (*done)(struct scsi_cmnd *))
1920 if (!SCpnt) {
1921 SBP2_ERR("SCpnt is NULL");
1922 return;
1925 switch (scsi_status) {
1926 case SBP2_SCSI_STATUS_GOOD:
1927 SCpnt->result = DID_OK << 16;
1928 break;
1930 case SBP2_SCSI_STATUS_BUSY:
1931 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1932 SCpnt->result = DID_BUS_BUSY << 16;
1933 break;
1935 case SBP2_SCSI_STATUS_CHECK_CONDITION:
1936 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1937 break;
1939 case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1940 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1941 SCpnt->result = DID_NO_CONNECT << 16;
1942 scsi_print_command(SCpnt);
1943 break;
1945 case SBP2_SCSI_STATUS_CONDITION_MET:
1946 case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1947 case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1948 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1949 SCpnt->result = DID_ERROR << 16;
1950 scsi_print_command(SCpnt);
1951 break;
1953 default:
1954 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1955 SCpnt->result = DID_ERROR << 16;
1958 /* If a bus reset is in progress and there was an error, complete
1959 * the command as busy so that it will get retried. */
1960 if (!hpsb_node_entry_valid(lu->ne)
1961 && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1962 SBP2_ERR("Completing command with busy (bus reset)");
1963 SCpnt->result = DID_BUS_BUSY << 16;
1966 /* Tell the SCSI stack that we're done with this command. */
1967 done(SCpnt);
1970 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1972 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1974 if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1975 return -ENODEV;
1977 lu->sdev = sdev;
1978 sdev->allow_restart = 1;
1980 /* SBP-2 requires quadlet alignment of the data buffers. */
1981 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1983 if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1984 sdev->inquiry_len = 36;
1985 return 0;
1988 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
1990 struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1992 sdev->use_10_for_rw = 1;
1994 if (sbp2_exclusive_login)
1995 sdev->manage_start_stop = 1;
1996 if (sdev->type == TYPE_ROM)
1997 sdev->use_10_for_ms = 1;
1998 if (sdev->type == TYPE_DISK &&
1999 lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2000 sdev->skip_ms_page_8 = 1;
2001 if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2002 sdev->fix_capacity = 1;
2003 if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2004 sdev->start_stop_pwr_cond = 1;
2005 if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2006 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2008 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2009 return 0;
2012 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2014 ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2015 return;
2019 * Called by scsi stack when something has really gone wrong.
2020 * Usually called when a command has timed-out for some reason.
2022 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2024 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2025 struct sbp2_command_info *cmd;
2026 unsigned long flags;
2028 SBP2_INFO("aborting sbp2 command");
2029 scsi_print_command(SCpnt);
2031 if (sbp2util_node_is_available(lu)) {
2032 sbp2_agent_reset(lu, 1);
2034 /* Return a matching command structure to the free pool. */
2035 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2036 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2037 if (cmd) {
2038 sbp2util_mark_command_completed(lu, cmd);
2039 if (cmd->Current_SCpnt) {
2040 cmd->Current_SCpnt->result = DID_ABORT << 16;
2041 cmd->Current_done(cmd->Current_SCpnt);
2044 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2046 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2049 return SUCCESS;
2053 * Called by scsi stack when something has really gone wrong.
2055 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2057 struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2059 SBP2_INFO("reset requested");
2061 if (sbp2util_node_is_available(lu)) {
2062 SBP2_INFO("generating sbp2 fetch agent reset");
2063 sbp2_agent_reset(lu, 1);
2066 return SUCCESS;
2069 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2070 struct device_attribute *attr,
2071 char *buf)
2073 struct scsi_device *sdev;
2074 struct sbp2_lu *lu;
2076 if (!(sdev = to_scsi_device(dev)))
2077 return 0;
2079 if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2080 return 0;
2082 if (sbp2_long_sysfs_ieee1394_id)
2083 return sprintf(buf, "%016Lx:%06x:%04x\n",
2084 (unsigned long long)lu->ne->guid,
2085 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2086 else
2087 return sprintf(buf, "%016Lx:%d:%d\n",
2088 (unsigned long long)lu->ne->guid,
2089 lu->ud->id, ORB_SET_LUN(lu->lun));
2092 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2093 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2094 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2095 MODULE_LICENSE("GPL");
2097 static int sbp2_module_init(void)
2099 int ret;
2101 if (sbp2_serialize_io) {
2102 sbp2_shost_template.can_queue = 1;
2103 sbp2_shost_template.cmd_per_lun = 1;
2106 sbp2_shost_template.max_sectors = sbp2_max_sectors;
2108 hpsb_register_highlevel(&sbp2_highlevel);
2109 ret = hpsb_register_protocol(&sbp2_driver);
2110 if (ret) {
2111 SBP2_ERR("Failed to register protocol");
2112 hpsb_unregister_highlevel(&sbp2_highlevel);
2113 return ret;
2115 return 0;
2118 static void __exit sbp2_module_exit(void)
2120 hpsb_unregister_protocol(&sbp2_driver);
2121 hpsb_unregister_highlevel(&sbp2_highlevel);
2124 module_init(sbp2_module_init);
2125 module_exit(sbp2_module_exit);