workqueue: don't use WQ_HIGHPRI for unbound workqueues
[linux-2.6/libata-dev.git] / kernel / workqueue.c
blob27637c284cb9a03df5f77a3b5c42cad9970e989b
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
83 /* call for help after 10ms
84 (min two ticks) */
85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
86 CREATE_COOLDOWN = HZ, /* time to breath after fail */
87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
90 * Rescue workers are used only on emergencies and shared by
91 * all cpus. Give -20.
93 RESCUER_NICE_LEVEL = -20,
97 * Structure fields follow one of the following exclusion rules.
99 * I: Modifiable by initialization/destruction paths and read-only for
100 * everyone else.
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
105 * L: gcwq->lock protected. Access with gcwq->lock held.
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
112 * F: wq->flush_mutex protected.
114 * W: workqueue_lock protected.
117 struct global_cwq;
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
123 struct worker {
124 /* on idle list while idle, on busy hash table while busy */
125 union {
126 struct list_head entry; /* L: while idle */
127 struct hlist_node hentry; /* L: while busy */
130 struct work_struct *current_work; /* L: work being processed */
131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 struct list_head scheduled; /* L: scheduled works */
133 struct task_struct *task; /* I: worker task */
134 struct global_cwq *gcwq; /* I: the associated gcwq */
135 /* 64 bytes boundary on 64bit, 32 on 32bit */
136 unsigned long last_active; /* L: last active timestamp */
137 unsigned int flags; /* X: flags */
138 int id; /* I: worker id */
139 struct work_struct rebind_work; /* L: rebind worker to cpu */
143 * Global per-cpu workqueue. There's one and only one for each cpu
144 * and all works are queued and processed here regardless of their
145 * target workqueues.
147 struct global_cwq {
148 spinlock_t lock; /* the gcwq lock */
149 struct list_head worklist; /* L: list of pending works */
150 unsigned int cpu; /* I: the associated cpu */
151 unsigned int flags; /* L: GCWQ_* flags */
153 int nr_workers; /* L: total number of workers */
154 int nr_idle; /* L: currently idle ones */
156 /* workers are chained either in the idle_list or busy_hash */
157 struct list_head idle_list; /* X: list of idle workers */
158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
159 /* L: hash of busy workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
164 struct ida worker_ida; /* L: for worker IDs */
166 struct task_struct *trustee; /* L: for gcwq shutdown */
167 unsigned int trustee_state; /* L: trustee state */
168 wait_queue_head_t trustee_wait; /* trustee wait */
169 struct worker *first_idle; /* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
174 * work_struct->data are used for flags and thus cwqs need to be
175 * aligned at two's power of the number of flag bits.
177 struct cpu_workqueue_struct {
178 struct global_cwq *gcwq; /* I: the associated gcwq */
179 struct workqueue_struct *wq; /* I: the owning workqueue */
180 int work_color; /* L: current color */
181 int flush_color; /* L: flushing color */
182 int nr_in_flight[WORK_NR_COLORS];
183 /* L: nr of in_flight works */
184 int nr_active; /* L: nr of active works */
185 int max_active; /* L: max active works */
186 struct list_head delayed_works; /* L: delayed works */
190 * Structure used to wait for workqueue flush.
192 struct wq_flusher {
193 struct list_head list; /* F: list of flushers */
194 int flush_color; /* F: flush color waiting for */
195 struct completion done; /* flush completion */
199 * All cpumasks are assumed to be always set on UP and thus can't be
200 * used to determine whether there's something to be done.
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask) \
205 cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask) free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp) true
216 #define free_mayday_mask(mask) do { } while (0)
217 #endif
220 * The externally visible workqueue abstraction is an array of
221 * per-CPU workqueues:
223 struct workqueue_struct {
224 unsigned int flags; /* W: WQ_* flags */
225 union {
226 struct cpu_workqueue_struct __percpu *pcpu;
227 struct cpu_workqueue_struct *single;
228 unsigned long v;
229 } cpu_wq; /* I: cwq's */
230 struct list_head list; /* W: list of all workqueues */
232 struct mutex flush_mutex; /* protects wq flushing */
233 int work_color; /* F: current work color */
234 int flush_color; /* F: current flush color */
235 atomic_t nr_cwqs_to_flush; /* flush in progress */
236 struct wq_flusher *first_flusher; /* F: first flusher */
237 struct list_head flusher_queue; /* F: flush waiters */
238 struct list_head flusher_overflow; /* F: flush overflow list */
240 mayday_mask_t mayday_mask; /* cpus requesting rescue */
241 struct worker *rescuer; /* I: rescue worker */
243 int nr_drainers; /* W: drain in progress */
244 int saved_max_active; /* W: saved cwq max_active */
245 #ifdef CONFIG_LOCKDEP
246 struct lockdep_map lockdep_map;
247 #endif
248 char name[]; /* I: workqueue name */
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 struct workqueue_struct *system_freezable_wq __read_mostly;
256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
257 EXPORT_SYMBOL_GPL(system_wq);
258 EXPORT_SYMBOL_GPL(system_long_wq);
259 EXPORT_SYMBOL_GPL(system_nrt_wq);
260 EXPORT_SYMBOL_GPL(system_unbound_wq);
261 EXPORT_SYMBOL_GPL(system_freezable_wq);
262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
264 #define CREATE_TRACE_POINTS
265 #include <trace/events/workqueue.h>
267 #define for_each_busy_worker(worker, i, pos, gcwq) \
268 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
269 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 unsigned int sw)
274 if (cpu < nr_cpu_ids) {
275 if (sw & 1) {
276 cpu = cpumask_next(cpu, mask);
277 if (cpu < nr_cpu_ids)
278 return cpu;
280 if (sw & 2)
281 return WORK_CPU_UNBOUND;
283 return WORK_CPU_NONE;
286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 struct workqueue_struct *wq)
289 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
293 * CPU iterators
295 * An extra gcwq is defined for an invalid cpu number
296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297 * specific CPU. The following iterators are similar to
298 * for_each_*_cpu() iterators but also considers the unbound gcwq.
300 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
301 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
302 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
303 * WORK_CPU_UNBOUND for unbound workqueues
305 #define for_each_gcwq_cpu(cpu) \
306 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
307 (cpu) < WORK_CPU_NONE; \
308 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
310 #define for_each_online_gcwq_cpu(cpu) \
311 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
312 (cpu) < WORK_CPU_NONE; \
313 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
315 #define for_each_cwq_cpu(cpu, wq) \
316 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
317 (cpu) < WORK_CPU_NONE; \
318 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
320 #ifdef CONFIG_DEBUG_OBJECTS_WORK
322 static struct debug_obj_descr work_debug_descr;
324 static void *work_debug_hint(void *addr)
326 return ((struct work_struct *) addr)->func;
330 * fixup_init is called when:
331 * - an active object is initialized
333 static int work_fixup_init(void *addr, enum debug_obj_state state)
335 struct work_struct *work = addr;
337 switch (state) {
338 case ODEBUG_STATE_ACTIVE:
339 cancel_work_sync(work);
340 debug_object_init(work, &work_debug_descr);
341 return 1;
342 default:
343 return 0;
348 * fixup_activate is called when:
349 * - an active object is activated
350 * - an unknown object is activated (might be a statically initialized object)
352 static int work_fixup_activate(void *addr, enum debug_obj_state state)
354 struct work_struct *work = addr;
356 switch (state) {
358 case ODEBUG_STATE_NOTAVAILABLE:
360 * This is not really a fixup. The work struct was
361 * statically initialized. We just make sure that it
362 * is tracked in the object tracker.
364 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
365 debug_object_init(work, &work_debug_descr);
366 debug_object_activate(work, &work_debug_descr);
367 return 0;
369 WARN_ON_ONCE(1);
370 return 0;
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
375 default:
376 return 0;
381 * fixup_free is called when:
382 * - an active object is freed
384 static int work_fixup_free(void *addr, enum debug_obj_state state)
386 struct work_struct *work = addr;
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 cancel_work_sync(work);
391 debug_object_free(work, &work_debug_descr);
392 return 1;
393 default:
394 return 0;
398 static struct debug_obj_descr work_debug_descr = {
399 .name = "work_struct",
400 .debug_hint = work_debug_hint,
401 .fixup_init = work_fixup_init,
402 .fixup_activate = work_fixup_activate,
403 .fixup_free = work_fixup_free,
406 static inline void debug_work_activate(struct work_struct *work)
408 debug_object_activate(work, &work_debug_descr);
411 static inline void debug_work_deactivate(struct work_struct *work)
413 debug_object_deactivate(work, &work_debug_descr);
416 void __init_work(struct work_struct *work, int onstack)
418 if (onstack)
419 debug_object_init_on_stack(work, &work_debug_descr);
420 else
421 debug_object_init(work, &work_debug_descr);
423 EXPORT_SYMBOL_GPL(__init_work);
425 void destroy_work_on_stack(struct work_struct *work)
427 debug_object_free(work, &work_debug_descr);
429 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
431 #else
432 static inline void debug_work_activate(struct work_struct *work) { }
433 static inline void debug_work_deactivate(struct work_struct *work) { }
434 #endif
436 /* Serializes the accesses to the list of workqueues. */
437 static DEFINE_SPINLOCK(workqueue_lock);
438 static LIST_HEAD(workqueues);
439 static bool workqueue_freezing; /* W: have wqs started freezing? */
442 * The almighty global cpu workqueues. nr_running is the only field
443 * which is expected to be used frequently by other cpus via
444 * try_to_wake_up(). Put it in a separate cacheline.
446 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
450 * Global cpu workqueue and nr_running counter for unbound gcwq. The
451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452 * workers have WORKER_UNBOUND set.
454 static struct global_cwq unbound_global_cwq;
455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
457 static int worker_thread(void *__worker);
459 static struct global_cwq *get_gcwq(unsigned int cpu)
461 if (cpu != WORK_CPU_UNBOUND)
462 return &per_cpu(global_cwq, cpu);
463 else
464 return &unbound_global_cwq;
467 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
469 if (cpu != WORK_CPU_UNBOUND)
470 return &per_cpu(gcwq_nr_running, cpu);
471 else
472 return &unbound_gcwq_nr_running;
475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 struct workqueue_struct *wq)
478 if (!(wq->flags & WQ_UNBOUND)) {
479 if (likely(cpu < nr_cpu_ids))
480 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
481 } else if (likely(cpu == WORK_CPU_UNBOUND))
482 return wq->cpu_wq.single;
483 return NULL;
486 static unsigned int work_color_to_flags(int color)
488 return color << WORK_STRUCT_COLOR_SHIFT;
491 static int get_work_color(struct work_struct *work)
493 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
494 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
497 static int work_next_color(int color)
499 return (color + 1) % WORK_NR_COLORS;
503 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
504 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
505 * cleared and the work data contains the cpu number it was last on.
507 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
508 * cwq, cpu or clear work->data. These functions should only be
509 * called while the work is owned - ie. while the PENDING bit is set.
511 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
512 * corresponding to a work. gcwq is available once the work has been
513 * queued anywhere after initialization. cwq is available only from
514 * queueing until execution starts.
516 static inline void set_work_data(struct work_struct *work, unsigned long data,
517 unsigned long flags)
519 BUG_ON(!work_pending(work));
520 atomic_long_set(&work->data, data | flags | work_static(work));
523 static void set_work_cwq(struct work_struct *work,
524 struct cpu_workqueue_struct *cwq,
525 unsigned long extra_flags)
527 set_work_data(work, (unsigned long)cwq,
528 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
531 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
533 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
536 static void clear_work_data(struct work_struct *work)
538 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
541 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
543 unsigned long data = atomic_long_read(&work->data);
545 if (data & WORK_STRUCT_CWQ)
546 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
547 else
548 return NULL;
551 static struct global_cwq *get_work_gcwq(struct work_struct *work)
553 unsigned long data = atomic_long_read(&work->data);
554 unsigned int cpu;
556 if (data & WORK_STRUCT_CWQ)
557 return ((struct cpu_workqueue_struct *)
558 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
560 cpu = data >> WORK_STRUCT_FLAG_BITS;
561 if (cpu == WORK_CPU_NONE)
562 return NULL;
564 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
565 return get_gcwq(cpu);
569 * Policy functions. These define the policies on how the global
570 * worker pool is managed. Unless noted otherwise, these functions
571 * assume that they're being called with gcwq->lock held.
574 static bool __need_more_worker(struct global_cwq *gcwq)
576 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
577 gcwq->flags & GCWQ_HIGHPRI_PENDING;
581 * Need to wake up a worker? Called from anything but currently
582 * running workers.
584 * Note that, because unbound workers never contribute to nr_running, this
585 * function will always return %true for unbound gcwq as long as the
586 * worklist isn't empty.
588 static bool need_more_worker(struct global_cwq *gcwq)
590 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
593 /* Can I start working? Called from busy but !running workers. */
594 static bool may_start_working(struct global_cwq *gcwq)
596 return gcwq->nr_idle;
599 /* Do I need to keep working? Called from currently running workers. */
600 static bool keep_working(struct global_cwq *gcwq)
602 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
604 return !list_empty(&gcwq->worklist) &&
605 (atomic_read(nr_running) <= 1 ||
606 gcwq->flags & GCWQ_HIGHPRI_PENDING);
609 /* Do we need a new worker? Called from manager. */
610 static bool need_to_create_worker(struct global_cwq *gcwq)
612 return need_more_worker(gcwq) && !may_start_working(gcwq);
615 /* Do I need to be the manager? */
616 static bool need_to_manage_workers(struct global_cwq *gcwq)
618 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
621 /* Do we have too many workers and should some go away? */
622 static bool too_many_workers(struct global_cwq *gcwq)
624 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
625 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
626 int nr_busy = gcwq->nr_workers - nr_idle;
628 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
632 * Wake up functions.
635 /* Return the first worker. Safe with preemption disabled */
636 static struct worker *first_worker(struct global_cwq *gcwq)
638 if (unlikely(list_empty(&gcwq->idle_list)))
639 return NULL;
641 return list_first_entry(&gcwq->idle_list, struct worker, entry);
645 * wake_up_worker - wake up an idle worker
646 * @gcwq: gcwq to wake worker for
648 * Wake up the first idle worker of @gcwq.
650 * CONTEXT:
651 * spin_lock_irq(gcwq->lock).
653 static void wake_up_worker(struct global_cwq *gcwq)
655 struct worker *worker = first_worker(gcwq);
657 if (likely(worker))
658 wake_up_process(worker->task);
662 * wq_worker_waking_up - a worker is waking up
663 * @task: task waking up
664 * @cpu: CPU @task is waking up to
666 * This function is called during try_to_wake_up() when a worker is
667 * being awoken.
669 * CONTEXT:
670 * spin_lock_irq(rq->lock)
672 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
674 struct worker *worker = kthread_data(task);
676 if (!(worker->flags & WORKER_NOT_RUNNING))
677 atomic_inc(get_gcwq_nr_running(cpu));
681 * wq_worker_sleeping - a worker is going to sleep
682 * @task: task going to sleep
683 * @cpu: CPU in question, must be the current CPU number
685 * This function is called during schedule() when a busy worker is
686 * going to sleep. Worker on the same cpu can be woken up by
687 * returning pointer to its task.
689 * CONTEXT:
690 * spin_lock_irq(rq->lock)
692 * RETURNS:
693 * Worker task on @cpu to wake up, %NULL if none.
695 struct task_struct *wq_worker_sleeping(struct task_struct *task,
696 unsigned int cpu)
698 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
699 struct global_cwq *gcwq = get_gcwq(cpu);
700 atomic_t *nr_running = get_gcwq_nr_running(cpu);
702 if (worker->flags & WORKER_NOT_RUNNING)
703 return NULL;
705 /* this can only happen on the local cpu */
706 BUG_ON(cpu != raw_smp_processor_id());
709 * The counterpart of the following dec_and_test, implied mb,
710 * worklist not empty test sequence is in insert_work().
711 * Please read comment there.
713 * NOT_RUNNING is clear. This means that trustee is not in
714 * charge and we're running on the local cpu w/ rq lock held
715 * and preemption disabled, which in turn means that none else
716 * could be manipulating idle_list, so dereferencing idle_list
717 * without gcwq lock is safe.
719 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
720 to_wakeup = first_worker(gcwq);
721 return to_wakeup ? to_wakeup->task : NULL;
725 * worker_set_flags - set worker flags and adjust nr_running accordingly
726 * @worker: self
727 * @flags: flags to set
728 * @wakeup: wakeup an idle worker if necessary
730 * Set @flags in @worker->flags and adjust nr_running accordingly. If
731 * nr_running becomes zero and @wakeup is %true, an idle worker is
732 * woken up.
734 * CONTEXT:
735 * spin_lock_irq(gcwq->lock)
737 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
738 bool wakeup)
740 struct global_cwq *gcwq = worker->gcwq;
742 WARN_ON_ONCE(worker->task != current);
745 * If transitioning into NOT_RUNNING, adjust nr_running and
746 * wake up an idle worker as necessary if requested by
747 * @wakeup.
749 if ((flags & WORKER_NOT_RUNNING) &&
750 !(worker->flags & WORKER_NOT_RUNNING)) {
751 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
753 if (wakeup) {
754 if (atomic_dec_and_test(nr_running) &&
755 !list_empty(&gcwq->worklist))
756 wake_up_worker(gcwq);
757 } else
758 atomic_dec(nr_running);
761 worker->flags |= flags;
765 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
766 * @worker: self
767 * @flags: flags to clear
769 * Clear @flags in @worker->flags and adjust nr_running accordingly.
771 * CONTEXT:
772 * spin_lock_irq(gcwq->lock)
774 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
776 struct global_cwq *gcwq = worker->gcwq;
777 unsigned int oflags = worker->flags;
779 WARN_ON_ONCE(worker->task != current);
781 worker->flags &= ~flags;
784 * If transitioning out of NOT_RUNNING, increment nr_running. Note
785 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
786 * of multiple flags, not a single flag.
788 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
789 if (!(worker->flags & WORKER_NOT_RUNNING))
790 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
794 * busy_worker_head - return the busy hash head for a work
795 * @gcwq: gcwq of interest
796 * @work: work to be hashed
798 * Return hash head of @gcwq for @work.
800 * CONTEXT:
801 * spin_lock_irq(gcwq->lock).
803 * RETURNS:
804 * Pointer to the hash head.
806 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
807 struct work_struct *work)
809 const int base_shift = ilog2(sizeof(struct work_struct));
810 unsigned long v = (unsigned long)work;
812 /* simple shift and fold hash, do we need something better? */
813 v >>= base_shift;
814 v += v >> BUSY_WORKER_HASH_ORDER;
815 v &= BUSY_WORKER_HASH_MASK;
817 return &gcwq->busy_hash[v];
821 * __find_worker_executing_work - find worker which is executing a work
822 * @gcwq: gcwq of interest
823 * @bwh: hash head as returned by busy_worker_head()
824 * @work: work to find worker for
826 * Find a worker which is executing @work on @gcwq. @bwh should be
827 * the hash head obtained by calling busy_worker_head() with the same
828 * work.
830 * CONTEXT:
831 * spin_lock_irq(gcwq->lock).
833 * RETURNS:
834 * Pointer to worker which is executing @work if found, NULL
835 * otherwise.
837 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
838 struct hlist_head *bwh,
839 struct work_struct *work)
841 struct worker *worker;
842 struct hlist_node *tmp;
844 hlist_for_each_entry(worker, tmp, bwh, hentry)
845 if (worker->current_work == work)
846 return worker;
847 return NULL;
851 * find_worker_executing_work - find worker which is executing a work
852 * @gcwq: gcwq of interest
853 * @work: work to find worker for
855 * Find a worker which is executing @work on @gcwq. This function is
856 * identical to __find_worker_executing_work() except that this
857 * function calculates @bwh itself.
859 * CONTEXT:
860 * spin_lock_irq(gcwq->lock).
862 * RETURNS:
863 * Pointer to worker which is executing @work if found, NULL
864 * otherwise.
866 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
867 struct work_struct *work)
869 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
870 work);
874 * gcwq_determine_ins_pos - find insertion position
875 * @gcwq: gcwq of interest
876 * @cwq: cwq a work is being queued for
878 * A work for @cwq is about to be queued on @gcwq, determine insertion
879 * position for the work. If @cwq is for HIGHPRI wq, the work is
880 * queued at the head of the queue but in FIFO order with respect to
881 * other HIGHPRI works; otherwise, at the end of the queue. This
882 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
883 * there are HIGHPRI works pending.
885 * CONTEXT:
886 * spin_lock_irq(gcwq->lock).
888 * RETURNS:
889 * Pointer to inserstion position.
891 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
892 struct cpu_workqueue_struct *cwq)
894 struct work_struct *twork;
896 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
897 return &gcwq->worklist;
899 list_for_each_entry(twork, &gcwq->worklist, entry) {
900 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
902 if (!(tcwq->wq->flags & WQ_HIGHPRI))
903 break;
906 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
907 return &twork->entry;
911 * insert_work - insert a work into gcwq
912 * @cwq: cwq @work belongs to
913 * @work: work to insert
914 * @head: insertion point
915 * @extra_flags: extra WORK_STRUCT_* flags to set
917 * Insert @work which belongs to @cwq into @gcwq after @head.
918 * @extra_flags is or'd to work_struct flags.
920 * CONTEXT:
921 * spin_lock_irq(gcwq->lock).
923 static void insert_work(struct cpu_workqueue_struct *cwq,
924 struct work_struct *work, struct list_head *head,
925 unsigned int extra_flags)
927 struct global_cwq *gcwq = cwq->gcwq;
929 /* we own @work, set data and link */
930 set_work_cwq(work, cwq, extra_flags);
933 * Ensure that we get the right work->data if we see the
934 * result of list_add() below, see try_to_grab_pending().
936 smp_wmb();
938 list_add_tail(&work->entry, head);
941 * Ensure either worker_sched_deactivated() sees the above
942 * list_add_tail() or we see zero nr_running to avoid workers
943 * lying around lazily while there are works to be processed.
945 smp_mb();
947 if (__need_more_worker(gcwq))
948 wake_up_worker(gcwq);
952 * Test whether @work is being queued from another work executing on the
953 * same workqueue. This is rather expensive and should only be used from
954 * cold paths.
956 static bool is_chained_work(struct workqueue_struct *wq)
958 unsigned long flags;
959 unsigned int cpu;
961 for_each_gcwq_cpu(cpu) {
962 struct global_cwq *gcwq = get_gcwq(cpu);
963 struct worker *worker;
964 struct hlist_node *pos;
965 int i;
967 spin_lock_irqsave(&gcwq->lock, flags);
968 for_each_busy_worker(worker, i, pos, gcwq) {
969 if (worker->task != current)
970 continue;
971 spin_unlock_irqrestore(&gcwq->lock, flags);
973 * I'm @worker, no locking necessary. See if @work
974 * is headed to the same workqueue.
976 return worker->current_cwq->wq == wq;
978 spin_unlock_irqrestore(&gcwq->lock, flags);
980 return false;
983 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
984 struct work_struct *work)
986 struct global_cwq *gcwq;
987 struct cpu_workqueue_struct *cwq;
988 struct list_head *worklist;
989 unsigned int work_flags;
990 unsigned long flags;
992 debug_work_activate(work);
994 /* if dying, only works from the same workqueue are allowed */
995 if (unlikely(wq->flags & WQ_DRAINING) &&
996 WARN_ON_ONCE(!is_chained_work(wq)))
997 return;
999 /* determine gcwq to use */
1000 if (!(wq->flags & WQ_UNBOUND)) {
1001 struct global_cwq *last_gcwq;
1003 if (unlikely(cpu == WORK_CPU_UNBOUND))
1004 cpu = raw_smp_processor_id();
1007 * It's multi cpu. If @wq is non-reentrant and @work
1008 * was previously on a different cpu, it might still
1009 * be running there, in which case the work needs to
1010 * be queued on that cpu to guarantee non-reentrance.
1012 gcwq = get_gcwq(cpu);
1013 if (wq->flags & WQ_NON_REENTRANT &&
1014 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1015 struct worker *worker;
1017 spin_lock_irqsave(&last_gcwq->lock, flags);
1019 worker = find_worker_executing_work(last_gcwq, work);
1021 if (worker && worker->current_cwq->wq == wq)
1022 gcwq = last_gcwq;
1023 else {
1024 /* meh... not running there, queue here */
1025 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1026 spin_lock_irqsave(&gcwq->lock, flags);
1028 } else
1029 spin_lock_irqsave(&gcwq->lock, flags);
1030 } else {
1031 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1032 spin_lock_irqsave(&gcwq->lock, flags);
1035 /* gcwq determined, get cwq and queue */
1036 cwq = get_cwq(gcwq->cpu, wq);
1037 trace_workqueue_queue_work(cpu, cwq, work);
1039 if (WARN_ON(!list_empty(&work->entry))) {
1040 spin_unlock_irqrestore(&gcwq->lock, flags);
1041 return;
1044 cwq->nr_in_flight[cwq->work_color]++;
1045 work_flags = work_color_to_flags(cwq->work_color);
1047 if (likely(cwq->nr_active < cwq->max_active)) {
1048 trace_workqueue_activate_work(work);
1049 cwq->nr_active++;
1050 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1051 } else {
1052 work_flags |= WORK_STRUCT_DELAYED;
1053 worklist = &cwq->delayed_works;
1056 insert_work(cwq, work, worklist, work_flags);
1058 spin_unlock_irqrestore(&gcwq->lock, flags);
1062 * queue_work - queue work on a workqueue
1063 * @wq: workqueue to use
1064 * @work: work to queue
1066 * Returns 0 if @work was already on a queue, non-zero otherwise.
1068 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1069 * it can be processed by another CPU.
1071 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1073 int ret;
1075 ret = queue_work_on(get_cpu(), wq, work);
1076 put_cpu();
1078 return ret;
1080 EXPORT_SYMBOL_GPL(queue_work);
1083 * queue_work_on - queue work on specific cpu
1084 * @cpu: CPU number to execute work on
1085 * @wq: workqueue to use
1086 * @work: work to queue
1088 * Returns 0 if @work was already on a queue, non-zero otherwise.
1090 * We queue the work to a specific CPU, the caller must ensure it
1091 * can't go away.
1094 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1096 int ret = 0;
1098 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1099 __queue_work(cpu, wq, work);
1100 ret = 1;
1102 return ret;
1104 EXPORT_SYMBOL_GPL(queue_work_on);
1106 static void delayed_work_timer_fn(unsigned long __data)
1108 struct delayed_work *dwork = (struct delayed_work *)__data;
1109 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1111 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1115 * queue_delayed_work - queue work on a workqueue after delay
1116 * @wq: workqueue to use
1117 * @dwork: delayable work to queue
1118 * @delay: number of jiffies to wait before queueing
1120 * Returns 0 if @work was already on a queue, non-zero otherwise.
1122 int queue_delayed_work(struct workqueue_struct *wq,
1123 struct delayed_work *dwork, unsigned long delay)
1125 if (delay == 0)
1126 return queue_work(wq, &dwork->work);
1128 return queue_delayed_work_on(-1, wq, dwork, delay);
1130 EXPORT_SYMBOL_GPL(queue_delayed_work);
1133 * queue_delayed_work_on - queue work on specific CPU after delay
1134 * @cpu: CPU number to execute work on
1135 * @wq: workqueue to use
1136 * @dwork: work to queue
1137 * @delay: number of jiffies to wait before queueing
1139 * Returns 0 if @work was already on a queue, non-zero otherwise.
1141 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1142 struct delayed_work *dwork, unsigned long delay)
1144 int ret = 0;
1145 struct timer_list *timer = &dwork->timer;
1146 struct work_struct *work = &dwork->work;
1148 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1149 unsigned int lcpu;
1151 BUG_ON(timer_pending(timer));
1152 BUG_ON(!list_empty(&work->entry));
1154 timer_stats_timer_set_start_info(&dwork->timer);
1157 * This stores cwq for the moment, for the timer_fn.
1158 * Note that the work's gcwq is preserved to allow
1159 * reentrance detection for delayed works.
1161 if (!(wq->flags & WQ_UNBOUND)) {
1162 struct global_cwq *gcwq = get_work_gcwq(work);
1164 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1165 lcpu = gcwq->cpu;
1166 else
1167 lcpu = raw_smp_processor_id();
1168 } else
1169 lcpu = WORK_CPU_UNBOUND;
1171 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1173 timer->expires = jiffies + delay;
1174 timer->data = (unsigned long)dwork;
1175 timer->function = delayed_work_timer_fn;
1177 if (unlikely(cpu >= 0))
1178 add_timer_on(timer, cpu);
1179 else
1180 add_timer(timer);
1181 ret = 1;
1183 return ret;
1185 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1188 * worker_enter_idle - enter idle state
1189 * @worker: worker which is entering idle state
1191 * @worker is entering idle state. Update stats and idle timer if
1192 * necessary.
1194 * LOCKING:
1195 * spin_lock_irq(gcwq->lock).
1197 static void worker_enter_idle(struct worker *worker)
1199 struct global_cwq *gcwq = worker->gcwq;
1201 BUG_ON(worker->flags & WORKER_IDLE);
1202 BUG_ON(!list_empty(&worker->entry) &&
1203 (worker->hentry.next || worker->hentry.pprev));
1205 /* can't use worker_set_flags(), also called from start_worker() */
1206 worker->flags |= WORKER_IDLE;
1207 gcwq->nr_idle++;
1208 worker->last_active = jiffies;
1210 /* idle_list is LIFO */
1211 list_add(&worker->entry, &gcwq->idle_list);
1213 if (likely(!(worker->flags & WORKER_ROGUE))) {
1214 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1215 mod_timer(&gcwq->idle_timer,
1216 jiffies + IDLE_WORKER_TIMEOUT);
1217 } else
1218 wake_up_all(&gcwq->trustee_wait);
1221 * Sanity check nr_running. Because trustee releases gcwq->lock
1222 * between setting %WORKER_ROGUE and zapping nr_running, the
1223 * warning may trigger spuriously. Check iff trustee is idle.
1225 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1226 gcwq->nr_workers == gcwq->nr_idle &&
1227 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1231 * worker_leave_idle - leave idle state
1232 * @worker: worker which is leaving idle state
1234 * @worker is leaving idle state. Update stats.
1236 * LOCKING:
1237 * spin_lock_irq(gcwq->lock).
1239 static void worker_leave_idle(struct worker *worker)
1241 struct global_cwq *gcwq = worker->gcwq;
1243 BUG_ON(!(worker->flags & WORKER_IDLE));
1244 worker_clr_flags(worker, WORKER_IDLE);
1245 gcwq->nr_idle--;
1246 list_del_init(&worker->entry);
1250 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1251 * @worker: self
1253 * Works which are scheduled while the cpu is online must at least be
1254 * scheduled to a worker which is bound to the cpu so that if they are
1255 * flushed from cpu callbacks while cpu is going down, they are
1256 * guaranteed to execute on the cpu.
1258 * This function is to be used by rogue workers and rescuers to bind
1259 * themselves to the target cpu and may race with cpu going down or
1260 * coming online. kthread_bind() can't be used because it may put the
1261 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1262 * verbatim as it's best effort and blocking and gcwq may be
1263 * [dis]associated in the meantime.
1265 * This function tries set_cpus_allowed() and locks gcwq and verifies
1266 * the binding against GCWQ_DISASSOCIATED which is set during
1267 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1268 * idle state or fetches works without dropping lock, it can guarantee
1269 * the scheduling requirement described in the first paragraph.
1271 * CONTEXT:
1272 * Might sleep. Called without any lock but returns with gcwq->lock
1273 * held.
1275 * RETURNS:
1276 * %true if the associated gcwq is online (@worker is successfully
1277 * bound), %false if offline.
1279 static bool worker_maybe_bind_and_lock(struct worker *worker)
1280 __acquires(&gcwq->lock)
1282 struct global_cwq *gcwq = worker->gcwq;
1283 struct task_struct *task = worker->task;
1285 while (true) {
1287 * The following call may fail, succeed or succeed
1288 * without actually migrating the task to the cpu if
1289 * it races with cpu hotunplug operation. Verify
1290 * against GCWQ_DISASSOCIATED.
1292 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1293 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1295 spin_lock_irq(&gcwq->lock);
1296 if (gcwq->flags & GCWQ_DISASSOCIATED)
1297 return false;
1298 if (task_cpu(task) == gcwq->cpu &&
1299 cpumask_equal(&current->cpus_allowed,
1300 get_cpu_mask(gcwq->cpu)))
1301 return true;
1302 spin_unlock_irq(&gcwq->lock);
1305 * We've raced with CPU hot[un]plug. Give it a breather
1306 * and retry migration. cond_resched() is required here;
1307 * otherwise, we might deadlock against cpu_stop trying to
1308 * bring down the CPU on non-preemptive kernel.
1310 cpu_relax();
1311 cond_resched();
1316 * Function for worker->rebind_work used to rebind rogue busy workers
1317 * to the associated cpu which is coming back online. This is
1318 * scheduled by cpu up but can race with other cpu hotplug operations
1319 * and may be executed twice without intervening cpu down.
1321 static void worker_rebind_fn(struct work_struct *work)
1323 struct worker *worker = container_of(work, struct worker, rebind_work);
1324 struct global_cwq *gcwq = worker->gcwq;
1326 if (worker_maybe_bind_and_lock(worker))
1327 worker_clr_flags(worker, WORKER_REBIND);
1329 spin_unlock_irq(&gcwq->lock);
1332 static struct worker *alloc_worker(void)
1334 struct worker *worker;
1336 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1337 if (worker) {
1338 INIT_LIST_HEAD(&worker->entry);
1339 INIT_LIST_HEAD(&worker->scheduled);
1340 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1341 /* on creation a worker is in !idle && prep state */
1342 worker->flags = WORKER_PREP;
1344 return worker;
1348 * create_worker - create a new workqueue worker
1349 * @gcwq: gcwq the new worker will belong to
1350 * @bind: whether to set affinity to @cpu or not
1352 * Create a new worker which is bound to @gcwq. The returned worker
1353 * can be started by calling start_worker() or destroyed using
1354 * destroy_worker().
1356 * CONTEXT:
1357 * Might sleep. Does GFP_KERNEL allocations.
1359 * RETURNS:
1360 * Pointer to the newly created worker.
1362 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1364 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1365 struct worker *worker = NULL;
1366 int id = -1;
1368 spin_lock_irq(&gcwq->lock);
1369 while (ida_get_new(&gcwq->worker_ida, &id)) {
1370 spin_unlock_irq(&gcwq->lock);
1371 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1372 goto fail;
1373 spin_lock_irq(&gcwq->lock);
1375 spin_unlock_irq(&gcwq->lock);
1377 worker = alloc_worker();
1378 if (!worker)
1379 goto fail;
1381 worker->gcwq = gcwq;
1382 worker->id = id;
1384 if (!on_unbound_cpu)
1385 worker->task = kthread_create_on_node(worker_thread,
1386 worker,
1387 cpu_to_node(gcwq->cpu),
1388 "kworker/%u:%d", gcwq->cpu, id);
1389 else
1390 worker->task = kthread_create(worker_thread, worker,
1391 "kworker/u:%d", id);
1392 if (IS_ERR(worker->task))
1393 goto fail;
1396 * A rogue worker will become a regular one if CPU comes
1397 * online later on. Make sure every worker has
1398 * PF_THREAD_BOUND set.
1400 if (bind && !on_unbound_cpu)
1401 kthread_bind(worker->task, gcwq->cpu);
1402 else {
1403 worker->task->flags |= PF_THREAD_BOUND;
1404 if (on_unbound_cpu)
1405 worker->flags |= WORKER_UNBOUND;
1408 return worker;
1409 fail:
1410 if (id >= 0) {
1411 spin_lock_irq(&gcwq->lock);
1412 ida_remove(&gcwq->worker_ida, id);
1413 spin_unlock_irq(&gcwq->lock);
1415 kfree(worker);
1416 return NULL;
1420 * start_worker - start a newly created worker
1421 * @worker: worker to start
1423 * Make the gcwq aware of @worker and start it.
1425 * CONTEXT:
1426 * spin_lock_irq(gcwq->lock).
1428 static void start_worker(struct worker *worker)
1430 worker->flags |= WORKER_STARTED;
1431 worker->gcwq->nr_workers++;
1432 worker_enter_idle(worker);
1433 wake_up_process(worker->task);
1437 * destroy_worker - destroy a workqueue worker
1438 * @worker: worker to be destroyed
1440 * Destroy @worker and adjust @gcwq stats accordingly.
1442 * CONTEXT:
1443 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1445 static void destroy_worker(struct worker *worker)
1447 struct global_cwq *gcwq = worker->gcwq;
1448 int id = worker->id;
1450 /* sanity check frenzy */
1451 BUG_ON(worker->current_work);
1452 BUG_ON(!list_empty(&worker->scheduled));
1454 if (worker->flags & WORKER_STARTED)
1455 gcwq->nr_workers--;
1456 if (worker->flags & WORKER_IDLE)
1457 gcwq->nr_idle--;
1459 list_del_init(&worker->entry);
1460 worker->flags |= WORKER_DIE;
1462 spin_unlock_irq(&gcwq->lock);
1464 kthread_stop(worker->task);
1465 kfree(worker);
1467 spin_lock_irq(&gcwq->lock);
1468 ida_remove(&gcwq->worker_ida, id);
1471 static void idle_worker_timeout(unsigned long __gcwq)
1473 struct global_cwq *gcwq = (void *)__gcwq;
1475 spin_lock_irq(&gcwq->lock);
1477 if (too_many_workers(gcwq)) {
1478 struct worker *worker;
1479 unsigned long expires;
1481 /* idle_list is kept in LIFO order, check the last one */
1482 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1483 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1485 if (time_before(jiffies, expires))
1486 mod_timer(&gcwq->idle_timer, expires);
1487 else {
1488 /* it's been idle for too long, wake up manager */
1489 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1490 wake_up_worker(gcwq);
1494 spin_unlock_irq(&gcwq->lock);
1497 static bool send_mayday(struct work_struct *work)
1499 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1500 struct workqueue_struct *wq = cwq->wq;
1501 unsigned int cpu;
1503 if (!(wq->flags & WQ_RESCUER))
1504 return false;
1506 /* mayday mayday mayday */
1507 cpu = cwq->gcwq->cpu;
1508 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1509 if (cpu == WORK_CPU_UNBOUND)
1510 cpu = 0;
1511 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1512 wake_up_process(wq->rescuer->task);
1513 return true;
1516 static void gcwq_mayday_timeout(unsigned long __gcwq)
1518 struct global_cwq *gcwq = (void *)__gcwq;
1519 struct work_struct *work;
1521 spin_lock_irq(&gcwq->lock);
1523 if (need_to_create_worker(gcwq)) {
1525 * We've been trying to create a new worker but
1526 * haven't been successful. We might be hitting an
1527 * allocation deadlock. Send distress signals to
1528 * rescuers.
1530 list_for_each_entry(work, &gcwq->worklist, entry)
1531 send_mayday(work);
1534 spin_unlock_irq(&gcwq->lock);
1536 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1540 * maybe_create_worker - create a new worker if necessary
1541 * @gcwq: gcwq to create a new worker for
1543 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1544 * have at least one idle worker on return from this function. If
1545 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1546 * sent to all rescuers with works scheduled on @gcwq to resolve
1547 * possible allocation deadlock.
1549 * On return, need_to_create_worker() is guaranteed to be false and
1550 * may_start_working() true.
1552 * LOCKING:
1553 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1554 * multiple times. Does GFP_KERNEL allocations. Called only from
1555 * manager.
1557 * RETURNS:
1558 * false if no action was taken and gcwq->lock stayed locked, true
1559 * otherwise.
1561 static bool maybe_create_worker(struct global_cwq *gcwq)
1562 __releases(&gcwq->lock)
1563 __acquires(&gcwq->lock)
1565 if (!need_to_create_worker(gcwq))
1566 return false;
1567 restart:
1568 spin_unlock_irq(&gcwq->lock);
1570 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1571 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1573 while (true) {
1574 struct worker *worker;
1576 worker = create_worker(gcwq, true);
1577 if (worker) {
1578 del_timer_sync(&gcwq->mayday_timer);
1579 spin_lock_irq(&gcwq->lock);
1580 start_worker(worker);
1581 BUG_ON(need_to_create_worker(gcwq));
1582 return true;
1585 if (!need_to_create_worker(gcwq))
1586 break;
1588 __set_current_state(TASK_INTERRUPTIBLE);
1589 schedule_timeout(CREATE_COOLDOWN);
1591 if (!need_to_create_worker(gcwq))
1592 break;
1595 del_timer_sync(&gcwq->mayday_timer);
1596 spin_lock_irq(&gcwq->lock);
1597 if (need_to_create_worker(gcwq))
1598 goto restart;
1599 return true;
1603 * maybe_destroy_worker - destroy workers which have been idle for a while
1604 * @gcwq: gcwq to destroy workers for
1606 * Destroy @gcwq workers which have been idle for longer than
1607 * IDLE_WORKER_TIMEOUT.
1609 * LOCKING:
1610 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1611 * multiple times. Called only from manager.
1613 * RETURNS:
1614 * false if no action was taken and gcwq->lock stayed locked, true
1615 * otherwise.
1617 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1619 bool ret = false;
1621 while (too_many_workers(gcwq)) {
1622 struct worker *worker;
1623 unsigned long expires;
1625 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1626 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1628 if (time_before(jiffies, expires)) {
1629 mod_timer(&gcwq->idle_timer, expires);
1630 break;
1633 destroy_worker(worker);
1634 ret = true;
1637 return ret;
1641 * manage_workers - manage worker pool
1642 * @worker: self
1644 * Assume the manager role and manage gcwq worker pool @worker belongs
1645 * to. At any given time, there can be only zero or one manager per
1646 * gcwq. The exclusion is handled automatically by this function.
1648 * The caller can safely start processing works on false return. On
1649 * true return, it's guaranteed that need_to_create_worker() is false
1650 * and may_start_working() is true.
1652 * CONTEXT:
1653 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1654 * multiple times. Does GFP_KERNEL allocations.
1656 * RETURNS:
1657 * false if no action was taken and gcwq->lock stayed locked, true if
1658 * some action was taken.
1660 static bool manage_workers(struct worker *worker)
1662 struct global_cwq *gcwq = worker->gcwq;
1663 bool ret = false;
1665 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1666 return ret;
1668 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1669 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1672 * Destroy and then create so that may_start_working() is true
1673 * on return.
1675 ret |= maybe_destroy_workers(gcwq);
1676 ret |= maybe_create_worker(gcwq);
1678 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1681 * The trustee might be waiting to take over the manager
1682 * position, tell it we're done.
1684 if (unlikely(gcwq->trustee))
1685 wake_up_all(&gcwq->trustee_wait);
1687 return ret;
1691 * move_linked_works - move linked works to a list
1692 * @work: start of series of works to be scheduled
1693 * @head: target list to append @work to
1694 * @nextp: out paramter for nested worklist walking
1696 * Schedule linked works starting from @work to @head. Work series to
1697 * be scheduled starts at @work and includes any consecutive work with
1698 * WORK_STRUCT_LINKED set in its predecessor.
1700 * If @nextp is not NULL, it's updated to point to the next work of
1701 * the last scheduled work. This allows move_linked_works() to be
1702 * nested inside outer list_for_each_entry_safe().
1704 * CONTEXT:
1705 * spin_lock_irq(gcwq->lock).
1707 static void move_linked_works(struct work_struct *work, struct list_head *head,
1708 struct work_struct **nextp)
1710 struct work_struct *n;
1713 * Linked worklist will always end before the end of the list,
1714 * use NULL for list head.
1716 list_for_each_entry_safe_from(work, n, NULL, entry) {
1717 list_move_tail(&work->entry, head);
1718 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1719 break;
1723 * If we're already inside safe list traversal and have moved
1724 * multiple works to the scheduled queue, the next position
1725 * needs to be updated.
1727 if (nextp)
1728 *nextp = n;
1731 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1733 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1734 struct work_struct, entry);
1735 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1737 trace_workqueue_activate_work(work);
1738 move_linked_works(work, pos, NULL);
1739 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1740 cwq->nr_active++;
1744 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1745 * @cwq: cwq of interest
1746 * @color: color of work which left the queue
1747 * @delayed: for a delayed work
1749 * A work either has completed or is removed from pending queue,
1750 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1752 * CONTEXT:
1753 * spin_lock_irq(gcwq->lock).
1755 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1756 bool delayed)
1758 /* ignore uncolored works */
1759 if (color == WORK_NO_COLOR)
1760 return;
1762 cwq->nr_in_flight[color]--;
1764 if (!delayed) {
1765 cwq->nr_active--;
1766 if (!list_empty(&cwq->delayed_works)) {
1767 /* one down, submit a delayed one */
1768 if (cwq->nr_active < cwq->max_active)
1769 cwq_activate_first_delayed(cwq);
1773 /* is flush in progress and are we at the flushing tip? */
1774 if (likely(cwq->flush_color != color))
1775 return;
1777 /* are there still in-flight works? */
1778 if (cwq->nr_in_flight[color])
1779 return;
1781 /* this cwq is done, clear flush_color */
1782 cwq->flush_color = -1;
1785 * If this was the last cwq, wake up the first flusher. It
1786 * will handle the rest.
1788 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1789 complete(&cwq->wq->first_flusher->done);
1793 * process_one_work - process single work
1794 * @worker: self
1795 * @work: work to process
1797 * Process @work. This function contains all the logics necessary to
1798 * process a single work including synchronization against and
1799 * interaction with other workers on the same cpu, queueing and
1800 * flushing. As long as context requirement is met, any worker can
1801 * call this function to process a work.
1803 * CONTEXT:
1804 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1806 static void process_one_work(struct worker *worker, struct work_struct *work)
1807 __releases(&gcwq->lock)
1808 __acquires(&gcwq->lock)
1810 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1811 struct global_cwq *gcwq = cwq->gcwq;
1812 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1813 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1814 work_func_t f = work->func;
1815 int work_color;
1816 struct worker *collision;
1817 #ifdef CONFIG_LOCKDEP
1819 * It is permissible to free the struct work_struct from
1820 * inside the function that is called from it, this we need to
1821 * take into account for lockdep too. To avoid bogus "held
1822 * lock freed" warnings as well as problems when looking into
1823 * work->lockdep_map, make a copy and use that here.
1825 struct lockdep_map lockdep_map;
1827 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1828 #endif
1830 * A single work shouldn't be executed concurrently by
1831 * multiple workers on a single cpu. Check whether anyone is
1832 * already processing the work. If so, defer the work to the
1833 * currently executing one.
1835 collision = __find_worker_executing_work(gcwq, bwh, work);
1836 if (unlikely(collision)) {
1837 move_linked_works(work, &collision->scheduled, NULL);
1838 return;
1841 /* claim and process */
1842 debug_work_deactivate(work);
1843 hlist_add_head(&worker->hentry, bwh);
1844 worker->current_work = work;
1845 worker->current_cwq = cwq;
1846 work_color = get_work_color(work);
1848 /* record the current cpu number in the work data and dequeue */
1849 set_work_cpu(work, gcwq->cpu);
1850 list_del_init(&work->entry);
1853 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1854 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1856 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1857 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1858 struct work_struct, entry);
1860 if (!list_empty(&gcwq->worklist) &&
1861 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1862 wake_up_worker(gcwq);
1863 else
1864 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1868 * CPU intensive works don't participate in concurrency
1869 * management. They're the scheduler's responsibility.
1871 if (unlikely(cpu_intensive))
1872 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1875 * Unbound gcwq isn't concurrency managed and work items should be
1876 * executed ASAP. Wake up another worker if necessary.
1878 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(gcwq))
1879 wake_up_worker(gcwq);
1881 spin_unlock_irq(&gcwq->lock);
1883 work_clear_pending(work);
1884 lock_map_acquire_read(&cwq->wq->lockdep_map);
1885 lock_map_acquire(&lockdep_map);
1886 trace_workqueue_execute_start(work);
1887 f(work);
1889 * While we must be careful to not use "work" after this, the trace
1890 * point will only record its address.
1892 trace_workqueue_execute_end(work);
1893 lock_map_release(&lockdep_map);
1894 lock_map_release(&cwq->wq->lockdep_map);
1896 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1897 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1898 "%s/0x%08x/%d\n",
1899 current->comm, preempt_count(), task_pid_nr(current));
1900 printk(KERN_ERR " last function: ");
1901 print_symbol("%s\n", (unsigned long)f);
1902 debug_show_held_locks(current);
1903 dump_stack();
1906 spin_lock_irq(&gcwq->lock);
1908 /* clear cpu intensive status */
1909 if (unlikely(cpu_intensive))
1910 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1912 /* we're done with it, release */
1913 hlist_del_init(&worker->hentry);
1914 worker->current_work = NULL;
1915 worker->current_cwq = NULL;
1916 cwq_dec_nr_in_flight(cwq, work_color, false);
1920 * process_scheduled_works - process scheduled works
1921 * @worker: self
1923 * Process all scheduled works. Please note that the scheduled list
1924 * may change while processing a work, so this function repeatedly
1925 * fetches a work from the top and executes it.
1927 * CONTEXT:
1928 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1929 * multiple times.
1931 static void process_scheduled_works(struct worker *worker)
1933 while (!list_empty(&worker->scheduled)) {
1934 struct work_struct *work = list_first_entry(&worker->scheduled,
1935 struct work_struct, entry);
1936 process_one_work(worker, work);
1941 * worker_thread - the worker thread function
1942 * @__worker: self
1944 * The gcwq worker thread function. There's a single dynamic pool of
1945 * these per each cpu. These workers process all works regardless of
1946 * their specific target workqueue. The only exception is works which
1947 * belong to workqueues with a rescuer which will be explained in
1948 * rescuer_thread().
1950 static int worker_thread(void *__worker)
1952 struct worker *worker = __worker;
1953 struct global_cwq *gcwq = worker->gcwq;
1955 /* tell the scheduler that this is a workqueue worker */
1956 worker->task->flags |= PF_WQ_WORKER;
1957 woke_up:
1958 spin_lock_irq(&gcwq->lock);
1960 /* DIE can be set only while we're idle, checking here is enough */
1961 if (worker->flags & WORKER_DIE) {
1962 spin_unlock_irq(&gcwq->lock);
1963 worker->task->flags &= ~PF_WQ_WORKER;
1964 return 0;
1967 worker_leave_idle(worker);
1968 recheck:
1969 /* no more worker necessary? */
1970 if (!need_more_worker(gcwq))
1971 goto sleep;
1973 /* do we need to manage? */
1974 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1975 goto recheck;
1978 * ->scheduled list can only be filled while a worker is
1979 * preparing to process a work or actually processing it.
1980 * Make sure nobody diddled with it while I was sleeping.
1982 BUG_ON(!list_empty(&worker->scheduled));
1985 * When control reaches this point, we're guaranteed to have
1986 * at least one idle worker or that someone else has already
1987 * assumed the manager role.
1989 worker_clr_flags(worker, WORKER_PREP);
1991 do {
1992 struct work_struct *work =
1993 list_first_entry(&gcwq->worklist,
1994 struct work_struct, entry);
1996 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1997 /* optimization path, not strictly necessary */
1998 process_one_work(worker, work);
1999 if (unlikely(!list_empty(&worker->scheduled)))
2000 process_scheduled_works(worker);
2001 } else {
2002 move_linked_works(work, &worker->scheduled, NULL);
2003 process_scheduled_works(worker);
2005 } while (keep_working(gcwq));
2007 worker_set_flags(worker, WORKER_PREP, false);
2008 sleep:
2009 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
2010 goto recheck;
2013 * gcwq->lock is held and there's no work to process and no
2014 * need to manage, sleep. Workers are woken up only while
2015 * holding gcwq->lock or from local cpu, so setting the
2016 * current state before releasing gcwq->lock is enough to
2017 * prevent losing any event.
2019 worker_enter_idle(worker);
2020 __set_current_state(TASK_INTERRUPTIBLE);
2021 spin_unlock_irq(&gcwq->lock);
2022 schedule();
2023 goto woke_up;
2027 * rescuer_thread - the rescuer thread function
2028 * @__wq: the associated workqueue
2030 * Workqueue rescuer thread function. There's one rescuer for each
2031 * workqueue which has WQ_RESCUER set.
2033 * Regular work processing on a gcwq may block trying to create a new
2034 * worker which uses GFP_KERNEL allocation which has slight chance of
2035 * developing into deadlock if some works currently on the same queue
2036 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2037 * the problem rescuer solves.
2039 * When such condition is possible, the gcwq summons rescuers of all
2040 * workqueues which have works queued on the gcwq and let them process
2041 * those works so that forward progress can be guaranteed.
2043 * This should happen rarely.
2045 static int rescuer_thread(void *__wq)
2047 struct workqueue_struct *wq = __wq;
2048 struct worker *rescuer = wq->rescuer;
2049 struct list_head *scheduled = &rescuer->scheduled;
2050 bool is_unbound = wq->flags & WQ_UNBOUND;
2051 unsigned int cpu;
2053 set_user_nice(current, RESCUER_NICE_LEVEL);
2054 repeat:
2055 set_current_state(TASK_INTERRUPTIBLE);
2057 if (kthread_should_stop())
2058 return 0;
2061 * See whether any cpu is asking for help. Unbounded
2062 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2064 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2065 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2066 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2067 struct global_cwq *gcwq = cwq->gcwq;
2068 struct work_struct *work, *n;
2070 __set_current_state(TASK_RUNNING);
2071 mayday_clear_cpu(cpu, wq->mayday_mask);
2073 /* migrate to the target cpu if possible */
2074 rescuer->gcwq = gcwq;
2075 worker_maybe_bind_and_lock(rescuer);
2078 * Slurp in all works issued via this workqueue and
2079 * process'em.
2081 BUG_ON(!list_empty(&rescuer->scheduled));
2082 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2083 if (get_work_cwq(work) == cwq)
2084 move_linked_works(work, scheduled, &n);
2086 process_scheduled_works(rescuer);
2089 * Leave this gcwq. If keep_working() is %true, notify a
2090 * regular worker; otherwise, we end up with 0 concurrency
2091 * and stalling the execution.
2093 if (keep_working(gcwq))
2094 wake_up_worker(gcwq);
2096 spin_unlock_irq(&gcwq->lock);
2099 schedule();
2100 goto repeat;
2103 struct wq_barrier {
2104 struct work_struct work;
2105 struct completion done;
2108 static void wq_barrier_func(struct work_struct *work)
2110 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2111 complete(&barr->done);
2115 * insert_wq_barrier - insert a barrier work
2116 * @cwq: cwq to insert barrier into
2117 * @barr: wq_barrier to insert
2118 * @target: target work to attach @barr to
2119 * @worker: worker currently executing @target, NULL if @target is not executing
2121 * @barr is linked to @target such that @barr is completed only after
2122 * @target finishes execution. Please note that the ordering
2123 * guarantee is observed only with respect to @target and on the local
2124 * cpu.
2126 * Currently, a queued barrier can't be canceled. This is because
2127 * try_to_grab_pending() can't determine whether the work to be
2128 * grabbed is at the head of the queue and thus can't clear LINKED
2129 * flag of the previous work while there must be a valid next work
2130 * after a work with LINKED flag set.
2132 * Note that when @worker is non-NULL, @target may be modified
2133 * underneath us, so we can't reliably determine cwq from @target.
2135 * CONTEXT:
2136 * spin_lock_irq(gcwq->lock).
2138 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2139 struct wq_barrier *barr,
2140 struct work_struct *target, struct worker *worker)
2142 struct list_head *head;
2143 unsigned int linked = 0;
2146 * debugobject calls are safe here even with gcwq->lock locked
2147 * as we know for sure that this will not trigger any of the
2148 * checks and call back into the fixup functions where we
2149 * might deadlock.
2151 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2152 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2153 init_completion(&barr->done);
2156 * If @target is currently being executed, schedule the
2157 * barrier to the worker; otherwise, put it after @target.
2159 if (worker)
2160 head = worker->scheduled.next;
2161 else {
2162 unsigned long *bits = work_data_bits(target);
2164 head = target->entry.next;
2165 /* there can already be other linked works, inherit and set */
2166 linked = *bits & WORK_STRUCT_LINKED;
2167 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2170 debug_work_activate(&barr->work);
2171 insert_work(cwq, &barr->work, head,
2172 work_color_to_flags(WORK_NO_COLOR) | linked);
2176 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2177 * @wq: workqueue being flushed
2178 * @flush_color: new flush color, < 0 for no-op
2179 * @work_color: new work color, < 0 for no-op
2181 * Prepare cwqs for workqueue flushing.
2183 * If @flush_color is non-negative, flush_color on all cwqs should be
2184 * -1. If no cwq has in-flight commands at the specified color, all
2185 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2186 * has in flight commands, its cwq->flush_color is set to
2187 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2188 * wakeup logic is armed and %true is returned.
2190 * The caller should have initialized @wq->first_flusher prior to
2191 * calling this function with non-negative @flush_color. If
2192 * @flush_color is negative, no flush color update is done and %false
2193 * is returned.
2195 * If @work_color is non-negative, all cwqs should have the same
2196 * work_color which is previous to @work_color and all will be
2197 * advanced to @work_color.
2199 * CONTEXT:
2200 * mutex_lock(wq->flush_mutex).
2202 * RETURNS:
2203 * %true if @flush_color >= 0 and there's something to flush. %false
2204 * otherwise.
2206 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2207 int flush_color, int work_color)
2209 bool wait = false;
2210 unsigned int cpu;
2212 if (flush_color >= 0) {
2213 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2214 atomic_set(&wq->nr_cwqs_to_flush, 1);
2217 for_each_cwq_cpu(cpu, wq) {
2218 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2219 struct global_cwq *gcwq = cwq->gcwq;
2221 spin_lock_irq(&gcwq->lock);
2223 if (flush_color >= 0) {
2224 BUG_ON(cwq->flush_color != -1);
2226 if (cwq->nr_in_flight[flush_color]) {
2227 cwq->flush_color = flush_color;
2228 atomic_inc(&wq->nr_cwqs_to_flush);
2229 wait = true;
2233 if (work_color >= 0) {
2234 BUG_ON(work_color != work_next_color(cwq->work_color));
2235 cwq->work_color = work_color;
2238 spin_unlock_irq(&gcwq->lock);
2241 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2242 complete(&wq->first_flusher->done);
2244 return wait;
2248 * flush_workqueue - ensure that any scheduled work has run to completion.
2249 * @wq: workqueue to flush
2251 * Forces execution of the workqueue and blocks until its completion.
2252 * This is typically used in driver shutdown handlers.
2254 * We sleep until all works which were queued on entry have been handled,
2255 * but we are not livelocked by new incoming ones.
2257 void flush_workqueue(struct workqueue_struct *wq)
2259 struct wq_flusher this_flusher = {
2260 .list = LIST_HEAD_INIT(this_flusher.list),
2261 .flush_color = -1,
2262 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2264 int next_color;
2266 lock_map_acquire(&wq->lockdep_map);
2267 lock_map_release(&wq->lockdep_map);
2269 mutex_lock(&wq->flush_mutex);
2272 * Start-to-wait phase
2274 next_color = work_next_color(wq->work_color);
2276 if (next_color != wq->flush_color) {
2278 * Color space is not full. The current work_color
2279 * becomes our flush_color and work_color is advanced
2280 * by one.
2282 BUG_ON(!list_empty(&wq->flusher_overflow));
2283 this_flusher.flush_color = wq->work_color;
2284 wq->work_color = next_color;
2286 if (!wq->first_flusher) {
2287 /* no flush in progress, become the first flusher */
2288 BUG_ON(wq->flush_color != this_flusher.flush_color);
2290 wq->first_flusher = &this_flusher;
2292 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2293 wq->work_color)) {
2294 /* nothing to flush, done */
2295 wq->flush_color = next_color;
2296 wq->first_flusher = NULL;
2297 goto out_unlock;
2299 } else {
2300 /* wait in queue */
2301 BUG_ON(wq->flush_color == this_flusher.flush_color);
2302 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2303 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2305 } else {
2307 * Oops, color space is full, wait on overflow queue.
2308 * The next flush completion will assign us
2309 * flush_color and transfer to flusher_queue.
2311 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2314 mutex_unlock(&wq->flush_mutex);
2316 wait_for_completion(&this_flusher.done);
2319 * Wake-up-and-cascade phase
2321 * First flushers are responsible for cascading flushes and
2322 * handling overflow. Non-first flushers can simply return.
2324 if (wq->first_flusher != &this_flusher)
2325 return;
2327 mutex_lock(&wq->flush_mutex);
2329 /* we might have raced, check again with mutex held */
2330 if (wq->first_flusher != &this_flusher)
2331 goto out_unlock;
2333 wq->first_flusher = NULL;
2335 BUG_ON(!list_empty(&this_flusher.list));
2336 BUG_ON(wq->flush_color != this_flusher.flush_color);
2338 while (true) {
2339 struct wq_flusher *next, *tmp;
2341 /* complete all the flushers sharing the current flush color */
2342 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2343 if (next->flush_color != wq->flush_color)
2344 break;
2345 list_del_init(&next->list);
2346 complete(&next->done);
2349 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2350 wq->flush_color != work_next_color(wq->work_color));
2352 /* this flush_color is finished, advance by one */
2353 wq->flush_color = work_next_color(wq->flush_color);
2355 /* one color has been freed, handle overflow queue */
2356 if (!list_empty(&wq->flusher_overflow)) {
2358 * Assign the same color to all overflowed
2359 * flushers, advance work_color and append to
2360 * flusher_queue. This is the start-to-wait
2361 * phase for these overflowed flushers.
2363 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2364 tmp->flush_color = wq->work_color;
2366 wq->work_color = work_next_color(wq->work_color);
2368 list_splice_tail_init(&wq->flusher_overflow,
2369 &wq->flusher_queue);
2370 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2373 if (list_empty(&wq->flusher_queue)) {
2374 BUG_ON(wq->flush_color != wq->work_color);
2375 break;
2379 * Need to flush more colors. Make the next flusher
2380 * the new first flusher and arm cwqs.
2382 BUG_ON(wq->flush_color == wq->work_color);
2383 BUG_ON(wq->flush_color != next->flush_color);
2385 list_del_init(&next->list);
2386 wq->first_flusher = next;
2388 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2389 break;
2392 * Meh... this color is already done, clear first
2393 * flusher and repeat cascading.
2395 wq->first_flusher = NULL;
2398 out_unlock:
2399 mutex_unlock(&wq->flush_mutex);
2401 EXPORT_SYMBOL_GPL(flush_workqueue);
2404 * drain_workqueue - drain a workqueue
2405 * @wq: workqueue to drain
2407 * Wait until the workqueue becomes empty. While draining is in progress,
2408 * only chain queueing is allowed. IOW, only currently pending or running
2409 * work items on @wq can queue further work items on it. @wq is flushed
2410 * repeatedly until it becomes empty. The number of flushing is detemined
2411 * by the depth of chaining and should be relatively short. Whine if it
2412 * takes too long.
2414 void drain_workqueue(struct workqueue_struct *wq)
2416 unsigned int flush_cnt = 0;
2417 unsigned int cpu;
2420 * __queue_work() needs to test whether there are drainers, is much
2421 * hotter than drain_workqueue() and already looks at @wq->flags.
2422 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2424 spin_lock(&workqueue_lock);
2425 if (!wq->nr_drainers++)
2426 wq->flags |= WQ_DRAINING;
2427 spin_unlock(&workqueue_lock);
2428 reflush:
2429 flush_workqueue(wq);
2431 for_each_cwq_cpu(cpu, wq) {
2432 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2433 bool drained;
2435 spin_lock_irq(&cwq->gcwq->lock);
2436 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2437 spin_unlock_irq(&cwq->gcwq->lock);
2439 if (drained)
2440 continue;
2442 if (++flush_cnt == 10 ||
2443 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2444 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2445 wq->name, flush_cnt);
2446 goto reflush;
2449 spin_lock(&workqueue_lock);
2450 if (!--wq->nr_drainers)
2451 wq->flags &= ~WQ_DRAINING;
2452 spin_unlock(&workqueue_lock);
2454 EXPORT_SYMBOL_GPL(drain_workqueue);
2456 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2457 bool wait_executing)
2459 struct worker *worker = NULL;
2460 struct global_cwq *gcwq;
2461 struct cpu_workqueue_struct *cwq;
2463 might_sleep();
2464 gcwq = get_work_gcwq(work);
2465 if (!gcwq)
2466 return false;
2468 spin_lock_irq(&gcwq->lock);
2469 if (!list_empty(&work->entry)) {
2471 * See the comment near try_to_grab_pending()->smp_rmb().
2472 * If it was re-queued to a different gcwq under us, we
2473 * are not going to wait.
2475 smp_rmb();
2476 cwq = get_work_cwq(work);
2477 if (unlikely(!cwq || gcwq != cwq->gcwq))
2478 goto already_gone;
2479 } else if (wait_executing) {
2480 worker = find_worker_executing_work(gcwq, work);
2481 if (!worker)
2482 goto already_gone;
2483 cwq = worker->current_cwq;
2484 } else
2485 goto already_gone;
2487 insert_wq_barrier(cwq, barr, work, worker);
2488 spin_unlock_irq(&gcwq->lock);
2491 * If @max_active is 1 or rescuer is in use, flushing another work
2492 * item on the same workqueue may lead to deadlock. Make sure the
2493 * flusher is not running on the same workqueue by verifying write
2494 * access.
2496 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2497 lock_map_acquire(&cwq->wq->lockdep_map);
2498 else
2499 lock_map_acquire_read(&cwq->wq->lockdep_map);
2500 lock_map_release(&cwq->wq->lockdep_map);
2502 return true;
2503 already_gone:
2504 spin_unlock_irq(&gcwq->lock);
2505 return false;
2509 * flush_work - wait for a work to finish executing the last queueing instance
2510 * @work: the work to flush
2512 * Wait until @work has finished execution. This function considers
2513 * only the last queueing instance of @work. If @work has been
2514 * enqueued across different CPUs on a non-reentrant workqueue or on
2515 * multiple workqueues, @work might still be executing on return on
2516 * some of the CPUs from earlier queueing.
2518 * If @work was queued only on a non-reentrant, ordered or unbound
2519 * workqueue, @work is guaranteed to be idle on return if it hasn't
2520 * been requeued since flush started.
2522 * RETURNS:
2523 * %true if flush_work() waited for the work to finish execution,
2524 * %false if it was already idle.
2526 bool flush_work(struct work_struct *work)
2528 struct wq_barrier barr;
2530 lock_map_acquire(&work->lockdep_map);
2531 lock_map_release(&work->lockdep_map);
2533 if (start_flush_work(work, &barr, true)) {
2534 wait_for_completion(&barr.done);
2535 destroy_work_on_stack(&barr.work);
2536 return true;
2537 } else
2538 return false;
2540 EXPORT_SYMBOL_GPL(flush_work);
2542 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2544 struct wq_barrier barr;
2545 struct worker *worker;
2547 spin_lock_irq(&gcwq->lock);
2549 worker = find_worker_executing_work(gcwq, work);
2550 if (unlikely(worker))
2551 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2553 spin_unlock_irq(&gcwq->lock);
2555 if (unlikely(worker)) {
2556 wait_for_completion(&barr.done);
2557 destroy_work_on_stack(&barr.work);
2558 return true;
2559 } else
2560 return false;
2563 static bool wait_on_work(struct work_struct *work)
2565 bool ret = false;
2566 int cpu;
2568 might_sleep();
2570 lock_map_acquire(&work->lockdep_map);
2571 lock_map_release(&work->lockdep_map);
2573 for_each_gcwq_cpu(cpu)
2574 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2575 return ret;
2579 * flush_work_sync - wait until a work has finished execution
2580 * @work: the work to flush
2582 * Wait until @work has finished execution. On return, it's
2583 * guaranteed that all queueing instances of @work which happened
2584 * before this function is called are finished. In other words, if
2585 * @work hasn't been requeued since this function was called, @work is
2586 * guaranteed to be idle on return.
2588 * RETURNS:
2589 * %true if flush_work_sync() waited for the work to finish execution,
2590 * %false if it was already idle.
2592 bool flush_work_sync(struct work_struct *work)
2594 struct wq_barrier barr;
2595 bool pending, waited;
2597 /* we'll wait for executions separately, queue barr only if pending */
2598 pending = start_flush_work(work, &barr, false);
2600 /* wait for executions to finish */
2601 waited = wait_on_work(work);
2603 /* wait for the pending one */
2604 if (pending) {
2605 wait_for_completion(&barr.done);
2606 destroy_work_on_stack(&barr.work);
2609 return pending || waited;
2611 EXPORT_SYMBOL_GPL(flush_work_sync);
2614 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2615 * so this work can't be re-armed in any way.
2617 static int try_to_grab_pending(struct work_struct *work)
2619 struct global_cwq *gcwq;
2620 int ret = -1;
2622 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2623 return 0;
2626 * The queueing is in progress, or it is already queued. Try to
2627 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2629 gcwq = get_work_gcwq(work);
2630 if (!gcwq)
2631 return ret;
2633 spin_lock_irq(&gcwq->lock);
2634 if (!list_empty(&work->entry)) {
2636 * This work is queued, but perhaps we locked the wrong gcwq.
2637 * In that case we must see the new value after rmb(), see
2638 * insert_work()->wmb().
2640 smp_rmb();
2641 if (gcwq == get_work_gcwq(work)) {
2642 debug_work_deactivate(work);
2643 list_del_init(&work->entry);
2644 cwq_dec_nr_in_flight(get_work_cwq(work),
2645 get_work_color(work),
2646 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2647 ret = 1;
2650 spin_unlock_irq(&gcwq->lock);
2652 return ret;
2655 static bool __cancel_work_timer(struct work_struct *work,
2656 struct timer_list* timer)
2658 int ret;
2660 do {
2661 ret = (timer && likely(del_timer(timer)));
2662 if (!ret)
2663 ret = try_to_grab_pending(work);
2664 wait_on_work(work);
2665 } while (unlikely(ret < 0));
2667 clear_work_data(work);
2668 return ret;
2672 * cancel_work_sync - cancel a work and wait for it to finish
2673 * @work: the work to cancel
2675 * Cancel @work and wait for its execution to finish. This function
2676 * can be used even if the work re-queues itself or migrates to
2677 * another workqueue. On return from this function, @work is
2678 * guaranteed to be not pending or executing on any CPU.
2680 * cancel_work_sync(&delayed_work->work) must not be used for
2681 * delayed_work's. Use cancel_delayed_work_sync() instead.
2683 * The caller must ensure that the workqueue on which @work was last
2684 * queued can't be destroyed before this function returns.
2686 * RETURNS:
2687 * %true if @work was pending, %false otherwise.
2689 bool cancel_work_sync(struct work_struct *work)
2691 return __cancel_work_timer(work, NULL);
2693 EXPORT_SYMBOL_GPL(cancel_work_sync);
2696 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2697 * @dwork: the delayed work to flush
2699 * Delayed timer is cancelled and the pending work is queued for
2700 * immediate execution. Like flush_work(), this function only
2701 * considers the last queueing instance of @dwork.
2703 * RETURNS:
2704 * %true if flush_work() waited for the work to finish execution,
2705 * %false if it was already idle.
2707 bool flush_delayed_work(struct delayed_work *dwork)
2709 if (del_timer_sync(&dwork->timer))
2710 __queue_work(raw_smp_processor_id(),
2711 get_work_cwq(&dwork->work)->wq, &dwork->work);
2712 return flush_work(&dwork->work);
2714 EXPORT_SYMBOL(flush_delayed_work);
2717 * flush_delayed_work_sync - wait for a dwork to finish
2718 * @dwork: the delayed work to flush
2720 * Delayed timer is cancelled and the pending work is queued for
2721 * execution immediately. Other than timer handling, its behavior
2722 * is identical to flush_work_sync().
2724 * RETURNS:
2725 * %true if flush_work_sync() waited for the work to finish execution,
2726 * %false if it was already idle.
2728 bool flush_delayed_work_sync(struct delayed_work *dwork)
2730 if (del_timer_sync(&dwork->timer))
2731 __queue_work(raw_smp_processor_id(),
2732 get_work_cwq(&dwork->work)->wq, &dwork->work);
2733 return flush_work_sync(&dwork->work);
2735 EXPORT_SYMBOL(flush_delayed_work_sync);
2738 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2739 * @dwork: the delayed work cancel
2741 * This is cancel_work_sync() for delayed works.
2743 * RETURNS:
2744 * %true if @dwork was pending, %false otherwise.
2746 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2748 return __cancel_work_timer(&dwork->work, &dwork->timer);
2750 EXPORT_SYMBOL(cancel_delayed_work_sync);
2753 * schedule_work - put work task in global workqueue
2754 * @work: job to be done
2756 * Returns zero if @work was already on the kernel-global workqueue and
2757 * non-zero otherwise.
2759 * This puts a job in the kernel-global workqueue if it was not already
2760 * queued and leaves it in the same position on the kernel-global
2761 * workqueue otherwise.
2763 int schedule_work(struct work_struct *work)
2765 return queue_work(system_wq, work);
2767 EXPORT_SYMBOL(schedule_work);
2770 * schedule_work_on - put work task on a specific cpu
2771 * @cpu: cpu to put the work task on
2772 * @work: job to be done
2774 * This puts a job on a specific cpu
2776 int schedule_work_on(int cpu, struct work_struct *work)
2778 return queue_work_on(cpu, system_wq, work);
2780 EXPORT_SYMBOL(schedule_work_on);
2783 * schedule_delayed_work - put work task in global workqueue after delay
2784 * @dwork: job to be done
2785 * @delay: number of jiffies to wait or 0 for immediate execution
2787 * After waiting for a given time this puts a job in the kernel-global
2788 * workqueue.
2790 int schedule_delayed_work(struct delayed_work *dwork,
2791 unsigned long delay)
2793 return queue_delayed_work(system_wq, dwork, delay);
2795 EXPORT_SYMBOL(schedule_delayed_work);
2798 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2799 * @cpu: cpu to use
2800 * @dwork: job to be done
2801 * @delay: number of jiffies to wait
2803 * After waiting for a given time this puts a job in the kernel-global
2804 * workqueue on the specified CPU.
2806 int schedule_delayed_work_on(int cpu,
2807 struct delayed_work *dwork, unsigned long delay)
2809 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2811 EXPORT_SYMBOL(schedule_delayed_work_on);
2814 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2815 * @func: the function to call
2817 * schedule_on_each_cpu() executes @func on each online CPU using the
2818 * system workqueue and blocks until all CPUs have completed.
2819 * schedule_on_each_cpu() is very slow.
2821 * RETURNS:
2822 * 0 on success, -errno on failure.
2824 int schedule_on_each_cpu(work_func_t func)
2826 int cpu;
2827 struct work_struct __percpu *works;
2829 works = alloc_percpu(struct work_struct);
2830 if (!works)
2831 return -ENOMEM;
2833 get_online_cpus();
2835 for_each_online_cpu(cpu) {
2836 struct work_struct *work = per_cpu_ptr(works, cpu);
2838 INIT_WORK(work, func);
2839 schedule_work_on(cpu, work);
2842 for_each_online_cpu(cpu)
2843 flush_work(per_cpu_ptr(works, cpu));
2845 put_online_cpus();
2846 free_percpu(works);
2847 return 0;
2851 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2853 * Forces execution of the kernel-global workqueue and blocks until its
2854 * completion.
2856 * Think twice before calling this function! It's very easy to get into
2857 * trouble if you don't take great care. Either of the following situations
2858 * will lead to deadlock:
2860 * One of the work items currently on the workqueue needs to acquire
2861 * a lock held by your code or its caller.
2863 * Your code is running in the context of a work routine.
2865 * They will be detected by lockdep when they occur, but the first might not
2866 * occur very often. It depends on what work items are on the workqueue and
2867 * what locks they need, which you have no control over.
2869 * In most situations flushing the entire workqueue is overkill; you merely
2870 * need to know that a particular work item isn't queued and isn't running.
2871 * In such cases you should use cancel_delayed_work_sync() or
2872 * cancel_work_sync() instead.
2874 void flush_scheduled_work(void)
2876 flush_workqueue(system_wq);
2878 EXPORT_SYMBOL(flush_scheduled_work);
2881 * execute_in_process_context - reliably execute the routine with user context
2882 * @fn: the function to execute
2883 * @ew: guaranteed storage for the execute work structure (must
2884 * be available when the work executes)
2886 * Executes the function immediately if process context is available,
2887 * otherwise schedules the function for delayed execution.
2889 * Returns: 0 - function was executed
2890 * 1 - function was scheduled for execution
2892 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2894 if (!in_interrupt()) {
2895 fn(&ew->work);
2896 return 0;
2899 INIT_WORK(&ew->work, fn);
2900 schedule_work(&ew->work);
2902 return 1;
2904 EXPORT_SYMBOL_GPL(execute_in_process_context);
2906 int keventd_up(void)
2908 return system_wq != NULL;
2911 static int alloc_cwqs(struct workqueue_struct *wq)
2914 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2915 * Make sure that the alignment isn't lower than that of
2916 * unsigned long long.
2918 const size_t size = sizeof(struct cpu_workqueue_struct);
2919 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2920 __alignof__(unsigned long long));
2922 if (!(wq->flags & WQ_UNBOUND))
2923 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2924 else {
2925 void *ptr;
2928 * Allocate enough room to align cwq and put an extra
2929 * pointer at the end pointing back to the originally
2930 * allocated pointer which will be used for free.
2932 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2933 if (ptr) {
2934 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2935 *(void **)(wq->cpu_wq.single + 1) = ptr;
2939 /* just in case, make sure it's actually aligned */
2940 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2941 return wq->cpu_wq.v ? 0 : -ENOMEM;
2944 static void free_cwqs(struct workqueue_struct *wq)
2946 if (!(wq->flags & WQ_UNBOUND))
2947 free_percpu(wq->cpu_wq.pcpu);
2948 else if (wq->cpu_wq.single) {
2949 /* the pointer to free is stored right after the cwq */
2950 kfree(*(void **)(wq->cpu_wq.single + 1));
2954 static int wq_clamp_max_active(int max_active, unsigned int flags,
2955 const char *name)
2957 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2959 if (max_active < 1 || max_active > lim)
2960 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2961 "is out of range, clamping between %d and %d\n",
2962 max_active, name, 1, lim);
2964 return clamp_val(max_active, 1, lim);
2967 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2968 unsigned int flags,
2969 int max_active,
2970 struct lock_class_key *key,
2971 const char *lock_name, ...)
2973 va_list args, args1;
2974 struct workqueue_struct *wq;
2975 unsigned int cpu;
2976 size_t namelen;
2978 /* determine namelen, allocate wq and format name */
2979 va_start(args, lock_name);
2980 va_copy(args1, args);
2981 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2983 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2984 if (!wq)
2985 goto err;
2987 vsnprintf(wq->name, namelen, fmt, args1);
2988 va_end(args);
2989 va_end(args1);
2992 * Workqueues which may be used during memory reclaim should
2993 * have a rescuer to guarantee forward progress.
2995 if (flags & WQ_MEM_RECLAIM)
2996 flags |= WQ_RESCUER;
2998 max_active = max_active ?: WQ_DFL_ACTIVE;
2999 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3001 /* init wq */
3002 wq->flags = flags;
3003 wq->saved_max_active = max_active;
3004 mutex_init(&wq->flush_mutex);
3005 atomic_set(&wq->nr_cwqs_to_flush, 0);
3006 INIT_LIST_HEAD(&wq->flusher_queue);
3007 INIT_LIST_HEAD(&wq->flusher_overflow);
3009 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3010 INIT_LIST_HEAD(&wq->list);
3012 if (alloc_cwqs(wq) < 0)
3013 goto err;
3015 for_each_cwq_cpu(cpu, wq) {
3016 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3017 struct global_cwq *gcwq = get_gcwq(cpu);
3019 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3020 cwq->gcwq = gcwq;
3021 cwq->wq = wq;
3022 cwq->flush_color = -1;
3023 cwq->max_active = max_active;
3024 INIT_LIST_HEAD(&cwq->delayed_works);
3027 if (flags & WQ_RESCUER) {
3028 struct worker *rescuer;
3030 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3031 goto err;
3033 wq->rescuer = rescuer = alloc_worker();
3034 if (!rescuer)
3035 goto err;
3037 rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3038 wq->name);
3039 if (IS_ERR(rescuer->task))
3040 goto err;
3042 rescuer->task->flags |= PF_THREAD_BOUND;
3043 wake_up_process(rescuer->task);
3047 * workqueue_lock protects global freeze state and workqueues
3048 * list. Grab it, set max_active accordingly and add the new
3049 * workqueue to workqueues list.
3051 spin_lock(&workqueue_lock);
3053 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3054 for_each_cwq_cpu(cpu, wq)
3055 get_cwq(cpu, wq)->max_active = 0;
3057 list_add(&wq->list, &workqueues);
3059 spin_unlock(&workqueue_lock);
3061 return wq;
3062 err:
3063 if (wq) {
3064 free_cwqs(wq);
3065 free_mayday_mask(wq->mayday_mask);
3066 kfree(wq->rescuer);
3067 kfree(wq);
3069 return NULL;
3071 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3074 * destroy_workqueue - safely terminate a workqueue
3075 * @wq: target workqueue
3077 * Safely destroy a workqueue. All work currently pending will be done first.
3079 void destroy_workqueue(struct workqueue_struct *wq)
3081 unsigned int cpu;
3083 /* drain it before proceeding with destruction */
3084 drain_workqueue(wq);
3087 * wq list is used to freeze wq, remove from list after
3088 * flushing is complete in case freeze races us.
3090 spin_lock(&workqueue_lock);
3091 list_del(&wq->list);
3092 spin_unlock(&workqueue_lock);
3094 /* sanity check */
3095 for_each_cwq_cpu(cpu, wq) {
3096 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3097 int i;
3099 for (i = 0; i < WORK_NR_COLORS; i++)
3100 BUG_ON(cwq->nr_in_flight[i]);
3101 BUG_ON(cwq->nr_active);
3102 BUG_ON(!list_empty(&cwq->delayed_works));
3105 if (wq->flags & WQ_RESCUER) {
3106 kthread_stop(wq->rescuer->task);
3107 free_mayday_mask(wq->mayday_mask);
3108 kfree(wq->rescuer);
3111 free_cwqs(wq);
3112 kfree(wq);
3114 EXPORT_SYMBOL_GPL(destroy_workqueue);
3117 * workqueue_set_max_active - adjust max_active of a workqueue
3118 * @wq: target workqueue
3119 * @max_active: new max_active value.
3121 * Set max_active of @wq to @max_active.
3123 * CONTEXT:
3124 * Don't call from IRQ context.
3126 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3128 unsigned int cpu;
3130 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3132 spin_lock(&workqueue_lock);
3134 wq->saved_max_active = max_active;
3136 for_each_cwq_cpu(cpu, wq) {
3137 struct global_cwq *gcwq = get_gcwq(cpu);
3139 spin_lock_irq(&gcwq->lock);
3141 if (!(wq->flags & WQ_FREEZABLE) ||
3142 !(gcwq->flags & GCWQ_FREEZING))
3143 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3145 spin_unlock_irq(&gcwq->lock);
3148 spin_unlock(&workqueue_lock);
3150 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3153 * workqueue_congested - test whether a workqueue is congested
3154 * @cpu: CPU in question
3155 * @wq: target workqueue
3157 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3158 * no synchronization around this function and the test result is
3159 * unreliable and only useful as advisory hints or for debugging.
3161 * RETURNS:
3162 * %true if congested, %false otherwise.
3164 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3166 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3168 return !list_empty(&cwq->delayed_works);
3170 EXPORT_SYMBOL_GPL(workqueue_congested);
3173 * work_cpu - return the last known associated cpu for @work
3174 * @work: the work of interest
3176 * RETURNS:
3177 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3179 unsigned int work_cpu(struct work_struct *work)
3181 struct global_cwq *gcwq = get_work_gcwq(work);
3183 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3185 EXPORT_SYMBOL_GPL(work_cpu);
3188 * work_busy - test whether a work is currently pending or running
3189 * @work: the work to be tested
3191 * Test whether @work is currently pending or running. There is no
3192 * synchronization around this function and the test result is
3193 * unreliable and only useful as advisory hints or for debugging.
3194 * Especially for reentrant wqs, the pending state might hide the
3195 * running state.
3197 * RETURNS:
3198 * OR'd bitmask of WORK_BUSY_* bits.
3200 unsigned int work_busy(struct work_struct *work)
3202 struct global_cwq *gcwq = get_work_gcwq(work);
3203 unsigned long flags;
3204 unsigned int ret = 0;
3206 if (!gcwq)
3207 return false;
3209 spin_lock_irqsave(&gcwq->lock, flags);
3211 if (work_pending(work))
3212 ret |= WORK_BUSY_PENDING;
3213 if (find_worker_executing_work(gcwq, work))
3214 ret |= WORK_BUSY_RUNNING;
3216 spin_unlock_irqrestore(&gcwq->lock, flags);
3218 return ret;
3220 EXPORT_SYMBOL_GPL(work_busy);
3223 * CPU hotplug.
3225 * There are two challenges in supporting CPU hotplug. Firstly, there
3226 * are a lot of assumptions on strong associations among work, cwq and
3227 * gcwq which make migrating pending and scheduled works very
3228 * difficult to implement without impacting hot paths. Secondly,
3229 * gcwqs serve mix of short, long and very long running works making
3230 * blocked draining impractical.
3232 * This is solved by allowing a gcwq to be detached from CPU, running
3233 * it with unbound (rogue) workers and allowing it to be reattached
3234 * later if the cpu comes back online. A separate thread is created
3235 * to govern a gcwq in such state and is called the trustee of the
3236 * gcwq.
3238 * Trustee states and their descriptions.
3240 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3241 * new trustee is started with this state.
3243 * IN_CHARGE Once started, trustee will enter this state after
3244 * assuming the manager role and making all existing
3245 * workers rogue. DOWN_PREPARE waits for trustee to
3246 * enter this state. After reaching IN_CHARGE, trustee
3247 * tries to execute the pending worklist until it's empty
3248 * and the state is set to BUTCHER, or the state is set
3249 * to RELEASE.
3251 * BUTCHER Command state which is set by the cpu callback after
3252 * the cpu has went down. Once this state is set trustee
3253 * knows that there will be no new works on the worklist
3254 * and once the worklist is empty it can proceed to
3255 * killing idle workers.
3257 * RELEASE Command state which is set by the cpu callback if the
3258 * cpu down has been canceled or it has come online
3259 * again. After recognizing this state, trustee stops
3260 * trying to drain or butcher and clears ROGUE, rebinds
3261 * all remaining workers back to the cpu and releases
3262 * manager role.
3264 * DONE Trustee will enter this state after BUTCHER or RELEASE
3265 * is complete.
3267 * trustee CPU draining
3268 * took over down complete
3269 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3270 * | | ^
3271 * | CPU is back online v return workers |
3272 * ----------------> RELEASE --------------
3276 * trustee_wait_event_timeout - timed event wait for trustee
3277 * @cond: condition to wait for
3278 * @timeout: timeout in jiffies
3280 * wait_event_timeout() for trustee to use. Handles locking and
3281 * checks for RELEASE request.
3283 * CONTEXT:
3284 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3285 * multiple times. To be used by trustee.
3287 * RETURNS:
3288 * Positive indicating left time if @cond is satisfied, 0 if timed
3289 * out, -1 if canceled.
3291 #define trustee_wait_event_timeout(cond, timeout) ({ \
3292 long __ret = (timeout); \
3293 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3294 __ret) { \
3295 spin_unlock_irq(&gcwq->lock); \
3296 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3297 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3298 __ret); \
3299 spin_lock_irq(&gcwq->lock); \
3301 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3305 * trustee_wait_event - event wait for trustee
3306 * @cond: condition to wait for
3308 * wait_event() for trustee to use. Automatically handles locking and
3309 * checks for CANCEL request.
3311 * CONTEXT:
3312 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3313 * multiple times. To be used by trustee.
3315 * RETURNS:
3316 * 0 if @cond is satisfied, -1 if canceled.
3318 #define trustee_wait_event(cond) ({ \
3319 long __ret1; \
3320 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3321 __ret1 < 0 ? -1 : 0; \
3324 static int __cpuinit trustee_thread(void *__gcwq)
3326 struct global_cwq *gcwq = __gcwq;
3327 struct worker *worker;
3328 struct work_struct *work;
3329 struct hlist_node *pos;
3330 long rc;
3331 int i;
3333 BUG_ON(gcwq->cpu != smp_processor_id());
3335 spin_lock_irq(&gcwq->lock);
3337 * Claim the manager position and make all workers rogue.
3338 * Trustee must be bound to the target cpu and can't be
3339 * cancelled.
3341 BUG_ON(gcwq->cpu != smp_processor_id());
3342 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3343 BUG_ON(rc < 0);
3345 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3347 list_for_each_entry(worker, &gcwq->idle_list, entry)
3348 worker->flags |= WORKER_ROGUE;
3350 for_each_busy_worker(worker, i, pos, gcwq)
3351 worker->flags |= WORKER_ROGUE;
3354 * Call schedule() so that we cross rq->lock and thus can
3355 * guarantee sched callbacks see the rogue flag. This is
3356 * necessary as scheduler callbacks may be invoked from other
3357 * cpus.
3359 spin_unlock_irq(&gcwq->lock);
3360 schedule();
3361 spin_lock_irq(&gcwq->lock);
3364 * Sched callbacks are disabled now. Zap nr_running. After
3365 * this, nr_running stays zero and need_more_worker() and
3366 * keep_working() are always true as long as the worklist is
3367 * not empty.
3369 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3371 spin_unlock_irq(&gcwq->lock);
3372 del_timer_sync(&gcwq->idle_timer);
3373 spin_lock_irq(&gcwq->lock);
3376 * We're now in charge. Notify and proceed to drain. We need
3377 * to keep the gcwq running during the whole CPU down
3378 * procedure as other cpu hotunplug callbacks may need to
3379 * flush currently running tasks.
3381 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3382 wake_up_all(&gcwq->trustee_wait);
3385 * The original cpu is in the process of dying and may go away
3386 * anytime now. When that happens, we and all workers would
3387 * be migrated to other cpus. Try draining any left work. We
3388 * want to get it over with ASAP - spam rescuers, wake up as
3389 * many idlers as necessary and create new ones till the
3390 * worklist is empty. Note that if the gcwq is frozen, there
3391 * may be frozen works in freezable cwqs. Don't declare
3392 * completion while frozen.
3394 while (gcwq->nr_workers != gcwq->nr_idle ||
3395 gcwq->flags & GCWQ_FREEZING ||
3396 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3397 int nr_works = 0;
3399 list_for_each_entry(work, &gcwq->worklist, entry) {
3400 send_mayday(work);
3401 nr_works++;
3404 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3405 if (!nr_works--)
3406 break;
3407 wake_up_process(worker->task);
3410 if (need_to_create_worker(gcwq)) {
3411 spin_unlock_irq(&gcwq->lock);
3412 worker = create_worker(gcwq, false);
3413 spin_lock_irq(&gcwq->lock);
3414 if (worker) {
3415 worker->flags |= WORKER_ROGUE;
3416 start_worker(worker);
3420 /* give a breather */
3421 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3422 break;
3426 * Either all works have been scheduled and cpu is down, or
3427 * cpu down has already been canceled. Wait for and butcher
3428 * all workers till we're canceled.
3430 do {
3431 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3432 while (!list_empty(&gcwq->idle_list))
3433 destroy_worker(list_first_entry(&gcwq->idle_list,
3434 struct worker, entry));
3435 } while (gcwq->nr_workers && rc >= 0);
3438 * At this point, either draining has completed and no worker
3439 * is left, or cpu down has been canceled or the cpu is being
3440 * brought back up. There shouldn't be any idle one left.
3441 * Tell the remaining busy ones to rebind once it finishes the
3442 * currently scheduled works by scheduling the rebind_work.
3444 WARN_ON(!list_empty(&gcwq->idle_list));
3446 for_each_busy_worker(worker, i, pos, gcwq) {
3447 struct work_struct *rebind_work = &worker->rebind_work;
3450 * Rebind_work may race with future cpu hotplug
3451 * operations. Use a separate flag to mark that
3452 * rebinding is scheduled.
3454 worker->flags |= WORKER_REBIND;
3455 worker->flags &= ~WORKER_ROGUE;
3457 /* queue rebind_work, wq doesn't matter, use the default one */
3458 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3459 work_data_bits(rebind_work)))
3460 continue;
3462 debug_work_activate(rebind_work);
3463 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3464 worker->scheduled.next,
3465 work_color_to_flags(WORK_NO_COLOR));
3468 /* relinquish manager role */
3469 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3471 /* notify completion */
3472 gcwq->trustee = NULL;
3473 gcwq->trustee_state = TRUSTEE_DONE;
3474 wake_up_all(&gcwq->trustee_wait);
3475 spin_unlock_irq(&gcwq->lock);
3476 return 0;
3480 * wait_trustee_state - wait for trustee to enter the specified state
3481 * @gcwq: gcwq the trustee of interest belongs to
3482 * @state: target state to wait for
3484 * Wait for the trustee to reach @state. DONE is already matched.
3486 * CONTEXT:
3487 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3488 * multiple times. To be used by cpu_callback.
3490 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3491 __releases(&gcwq->lock)
3492 __acquires(&gcwq->lock)
3494 if (!(gcwq->trustee_state == state ||
3495 gcwq->trustee_state == TRUSTEE_DONE)) {
3496 spin_unlock_irq(&gcwq->lock);
3497 __wait_event(gcwq->trustee_wait,
3498 gcwq->trustee_state == state ||
3499 gcwq->trustee_state == TRUSTEE_DONE);
3500 spin_lock_irq(&gcwq->lock);
3504 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3505 unsigned long action,
3506 void *hcpu)
3508 unsigned int cpu = (unsigned long)hcpu;
3509 struct global_cwq *gcwq = get_gcwq(cpu);
3510 struct task_struct *new_trustee = NULL;
3511 struct worker *uninitialized_var(new_worker);
3512 unsigned long flags;
3514 action &= ~CPU_TASKS_FROZEN;
3516 switch (action) {
3517 case CPU_DOWN_PREPARE:
3518 new_trustee = kthread_create(trustee_thread, gcwq,
3519 "workqueue_trustee/%d\n", cpu);
3520 if (IS_ERR(new_trustee))
3521 return notifier_from_errno(PTR_ERR(new_trustee));
3522 kthread_bind(new_trustee, cpu);
3523 /* fall through */
3524 case CPU_UP_PREPARE:
3525 BUG_ON(gcwq->first_idle);
3526 new_worker = create_worker(gcwq, false);
3527 if (!new_worker) {
3528 if (new_trustee)
3529 kthread_stop(new_trustee);
3530 return NOTIFY_BAD;
3534 /* some are called w/ irq disabled, don't disturb irq status */
3535 spin_lock_irqsave(&gcwq->lock, flags);
3537 switch (action) {
3538 case CPU_DOWN_PREPARE:
3539 /* initialize trustee and tell it to acquire the gcwq */
3540 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3541 gcwq->trustee = new_trustee;
3542 gcwq->trustee_state = TRUSTEE_START;
3543 wake_up_process(gcwq->trustee);
3544 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3545 /* fall through */
3546 case CPU_UP_PREPARE:
3547 BUG_ON(gcwq->first_idle);
3548 gcwq->first_idle = new_worker;
3549 break;
3551 case CPU_DYING:
3553 * Before this, the trustee and all workers except for
3554 * the ones which are still executing works from
3555 * before the last CPU down must be on the cpu. After
3556 * this, they'll all be diasporas.
3558 gcwq->flags |= GCWQ_DISASSOCIATED;
3559 break;
3561 case CPU_POST_DEAD:
3562 gcwq->trustee_state = TRUSTEE_BUTCHER;
3563 /* fall through */
3564 case CPU_UP_CANCELED:
3565 destroy_worker(gcwq->first_idle);
3566 gcwq->first_idle = NULL;
3567 break;
3569 case CPU_DOWN_FAILED:
3570 case CPU_ONLINE:
3571 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3572 if (gcwq->trustee_state != TRUSTEE_DONE) {
3573 gcwq->trustee_state = TRUSTEE_RELEASE;
3574 wake_up_process(gcwq->trustee);
3575 wait_trustee_state(gcwq, TRUSTEE_DONE);
3579 * Trustee is done and there might be no worker left.
3580 * Put the first_idle in and request a real manager to
3581 * take a look.
3583 spin_unlock_irq(&gcwq->lock);
3584 kthread_bind(gcwq->first_idle->task, cpu);
3585 spin_lock_irq(&gcwq->lock);
3586 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3587 start_worker(gcwq->first_idle);
3588 gcwq->first_idle = NULL;
3589 break;
3592 spin_unlock_irqrestore(&gcwq->lock, flags);
3594 return notifier_from_errno(0);
3597 #ifdef CONFIG_SMP
3599 struct work_for_cpu {
3600 struct completion completion;
3601 long (*fn)(void *);
3602 void *arg;
3603 long ret;
3606 static int do_work_for_cpu(void *_wfc)
3608 struct work_for_cpu *wfc = _wfc;
3609 wfc->ret = wfc->fn(wfc->arg);
3610 complete(&wfc->completion);
3611 return 0;
3615 * work_on_cpu - run a function in user context on a particular cpu
3616 * @cpu: the cpu to run on
3617 * @fn: the function to run
3618 * @arg: the function arg
3620 * This will return the value @fn returns.
3621 * It is up to the caller to ensure that the cpu doesn't go offline.
3622 * The caller must not hold any locks which would prevent @fn from completing.
3624 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3626 struct task_struct *sub_thread;
3627 struct work_for_cpu wfc = {
3628 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3629 .fn = fn,
3630 .arg = arg,
3633 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3634 if (IS_ERR(sub_thread))
3635 return PTR_ERR(sub_thread);
3636 kthread_bind(sub_thread, cpu);
3637 wake_up_process(sub_thread);
3638 wait_for_completion(&wfc.completion);
3639 return wfc.ret;
3641 EXPORT_SYMBOL_GPL(work_on_cpu);
3642 #endif /* CONFIG_SMP */
3644 #ifdef CONFIG_FREEZER
3647 * freeze_workqueues_begin - begin freezing workqueues
3649 * Start freezing workqueues. After this function returns, all freezable
3650 * workqueues will queue new works to their frozen_works list instead of
3651 * gcwq->worklist.
3653 * CONTEXT:
3654 * Grabs and releases workqueue_lock and gcwq->lock's.
3656 void freeze_workqueues_begin(void)
3658 unsigned int cpu;
3660 spin_lock(&workqueue_lock);
3662 BUG_ON(workqueue_freezing);
3663 workqueue_freezing = true;
3665 for_each_gcwq_cpu(cpu) {
3666 struct global_cwq *gcwq = get_gcwq(cpu);
3667 struct workqueue_struct *wq;
3669 spin_lock_irq(&gcwq->lock);
3671 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3672 gcwq->flags |= GCWQ_FREEZING;
3674 list_for_each_entry(wq, &workqueues, list) {
3675 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3677 if (cwq && wq->flags & WQ_FREEZABLE)
3678 cwq->max_active = 0;
3681 spin_unlock_irq(&gcwq->lock);
3684 spin_unlock(&workqueue_lock);
3688 * freeze_workqueues_busy - are freezable workqueues still busy?
3690 * Check whether freezing is complete. This function must be called
3691 * between freeze_workqueues_begin() and thaw_workqueues().
3693 * CONTEXT:
3694 * Grabs and releases workqueue_lock.
3696 * RETURNS:
3697 * %true if some freezable workqueues are still busy. %false if freezing
3698 * is complete.
3700 bool freeze_workqueues_busy(void)
3702 unsigned int cpu;
3703 bool busy = false;
3705 spin_lock(&workqueue_lock);
3707 BUG_ON(!workqueue_freezing);
3709 for_each_gcwq_cpu(cpu) {
3710 struct workqueue_struct *wq;
3712 * nr_active is monotonically decreasing. It's safe
3713 * to peek without lock.
3715 list_for_each_entry(wq, &workqueues, list) {
3716 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3718 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3719 continue;
3721 BUG_ON(cwq->nr_active < 0);
3722 if (cwq->nr_active) {
3723 busy = true;
3724 goto out_unlock;
3728 out_unlock:
3729 spin_unlock(&workqueue_lock);
3730 return busy;
3734 * thaw_workqueues - thaw workqueues
3736 * Thaw workqueues. Normal queueing is restored and all collected
3737 * frozen works are transferred to their respective gcwq worklists.
3739 * CONTEXT:
3740 * Grabs and releases workqueue_lock and gcwq->lock's.
3742 void thaw_workqueues(void)
3744 unsigned int cpu;
3746 spin_lock(&workqueue_lock);
3748 if (!workqueue_freezing)
3749 goto out_unlock;
3751 for_each_gcwq_cpu(cpu) {
3752 struct global_cwq *gcwq = get_gcwq(cpu);
3753 struct workqueue_struct *wq;
3755 spin_lock_irq(&gcwq->lock);
3757 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3758 gcwq->flags &= ~GCWQ_FREEZING;
3760 list_for_each_entry(wq, &workqueues, list) {
3761 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3763 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3764 continue;
3766 /* restore max_active and repopulate worklist */
3767 cwq->max_active = wq->saved_max_active;
3769 while (!list_empty(&cwq->delayed_works) &&
3770 cwq->nr_active < cwq->max_active)
3771 cwq_activate_first_delayed(cwq);
3774 wake_up_worker(gcwq);
3776 spin_unlock_irq(&gcwq->lock);
3779 workqueue_freezing = false;
3780 out_unlock:
3781 spin_unlock(&workqueue_lock);
3783 #endif /* CONFIG_FREEZER */
3785 static int __init init_workqueues(void)
3787 unsigned int cpu;
3788 int i;
3790 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3792 /* initialize gcwqs */
3793 for_each_gcwq_cpu(cpu) {
3794 struct global_cwq *gcwq = get_gcwq(cpu);
3796 spin_lock_init(&gcwq->lock);
3797 INIT_LIST_HEAD(&gcwq->worklist);
3798 gcwq->cpu = cpu;
3799 gcwq->flags |= GCWQ_DISASSOCIATED;
3801 INIT_LIST_HEAD(&gcwq->idle_list);
3802 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3803 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3805 init_timer_deferrable(&gcwq->idle_timer);
3806 gcwq->idle_timer.function = idle_worker_timeout;
3807 gcwq->idle_timer.data = (unsigned long)gcwq;
3809 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3810 (unsigned long)gcwq);
3812 ida_init(&gcwq->worker_ida);
3814 gcwq->trustee_state = TRUSTEE_DONE;
3815 init_waitqueue_head(&gcwq->trustee_wait);
3818 /* create the initial worker */
3819 for_each_online_gcwq_cpu(cpu) {
3820 struct global_cwq *gcwq = get_gcwq(cpu);
3821 struct worker *worker;
3823 if (cpu != WORK_CPU_UNBOUND)
3824 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3825 worker = create_worker(gcwq, true);
3826 BUG_ON(!worker);
3827 spin_lock_irq(&gcwq->lock);
3828 start_worker(worker);
3829 spin_unlock_irq(&gcwq->lock);
3832 system_wq = alloc_workqueue("events", 0, 0);
3833 system_long_wq = alloc_workqueue("events_long", 0, 0);
3834 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3835 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3836 WQ_UNBOUND_MAX_ACTIVE);
3837 system_freezable_wq = alloc_workqueue("events_freezable",
3838 WQ_FREEZABLE, 0);
3839 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3840 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3841 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3842 !system_unbound_wq || !system_freezable_wq ||
3843 !system_nrt_freezable_wq);
3844 return 0;
3846 early_initcall(init_workqueues);