2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <linux/module.h>
47 #include <linux/types.h>
48 #include <linux/kernel.h>
50 #include <linux/string.h>
51 #include <linux/errno.h>
52 #include <linux/highmem.h>
53 #include <linux/slab.h>
55 #include <linux/socket.h>
56 #include <linux/sockios.h>
58 #include <linux/inet.h>
59 #include <linux/netdevice.h>
60 #include <linux/etherdevice.h>
61 #include <linux/proc_fs.h>
62 #include <linux/stat.h>
63 #include <linux/init.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
70 #include <linux/skbuff.h>
74 #include <net/checksum.h>
75 #include <net/inetpeer.h>
76 #include <linux/igmp.h>
77 #include <linux/netfilter_ipv4.h>
78 #include <linux/netfilter_bridge.h>
79 #include <linux/mroute.h>
80 #include <linux/netlink.h>
81 #include <linux/tcp.h>
83 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
84 EXPORT_SYMBOL(sysctl_ip_default_ttl
);
86 /* Generate a checksum for an outgoing IP datagram. */
87 __inline__
void ip_send_check(struct iphdr
*iph
)
90 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
92 EXPORT_SYMBOL(ip_send_check
);
94 int __ip_local_out(struct sk_buff
*skb
)
96 struct iphdr
*iph
= ip_hdr(skb
);
98 iph
->tot_len
= htons(skb
->len
);
100 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, skb
, NULL
,
101 skb_dst(skb
)->dev
, dst_output
);
104 int ip_local_out(struct sk_buff
*skb
)
108 err
= __ip_local_out(skb
);
109 if (likely(err
== 1))
110 err
= dst_output(skb
);
114 EXPORT_SYMBOL_GPL(ip_local_out
);
116 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
118 int ttl
= inet
->uc_ttl
;
121 ttl
= ip4_dst_hoplimit(dst
);
126 * Add an ip header to a skbuff and send it out.
129 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
130 __be32 saddr
, __be32 daddr
, struct ip_options_rcu
*opt
)
132 struct inet_sock
*inet
= inet_sk(sk
);
133 struct rtable
*rt
= skb_rtable(skb
);
136 /* Build the IP header. */
137 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->opt
.optlen
: 0));
138 skb_reset_network_header(skb
);
142 iph
->tos
= inet
->tos
;
143 if (ip_dont_fragment(sk
, &rt
->dst
))
144 iph
->frag_off
= htons(IP_DF
);
147 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
148 iph
->daddr
= (opt
&& opt
->opt
.srr
? opt
->opt
.faddr
: daddr
);
150 iph
->protocol
= sk
->sk_protocol
;
151 ip_select_ident(iph
, &rt
->dst
, sk
);
153 if (opt
&& opt
->opt
.optlen
) {
154 iph
->ihl
+= opt
->opt
.optlen
>>2;
155 ip_options_build(skb
, &opt
->opt
, daddr
, rt
, 0);
158 skb
->priority
= sk
->sk_priority
;
159 skb
->mark
= sk
->sk_mark
;
162 return ip_local_out(skb
);
164 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
166 static inline int ip_finish_output2(struct sk_buff
*skb
)
168 struct dst_entry
*dst
= skb_dst(skb
);
169 struct rtable
*rt
= (struct rtable
*)dst
;
170 struct net_device
*dev
= dst
->dev
;
171 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
172 struct neighbour
*neigh
;
175 if (rt
->rt_type
== RTN_MULTICAST
) {
176 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
177 } else if (rt
->rt_type
== RTN_BROADCAST
)
178 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
180 /* Be paranoid, rather than too clever. */
181 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
182 struct sk_buff
*skb2
;
184 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
190 skb_set_owner_w(skb2
, skb
->sk
);
196 nexthop
= (__force u32
) rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
197 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
198 if (unlikely(!neigh
))
199 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
200 if (!IS_ERR(neigh
)) {
201 int res
= dst_neigh_output(dst
, neigh
, skb
);
203 rcu_read_unlock_bh();
206 rcu_read_unlock_bh();
208 net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
214 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
216 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
218 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
219 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
222 static int ip_finish_output(struct sk_buff
*skb
)
224 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
225 /* Policy lookup after SNAT yielded a new policy */
226 if (skb_dst(skb
)->xfrm
!= NULL
) {
227 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
228 return dst_output(skb
);
231 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
232 return ip_fragment(skb
, ip_finish_output2
);
234 return ip_finish_output2(skb
);
237 int ip_mc_output(struct sk_buff
*skb
)
239 struct sock
*sk
= skb
->sk
;
240 struct rtable
*rt
= skb_rtable(skb
);
241 struct net_device
*dev
= rt
->dst
.dev
;
244 * If the indicated interface is up and running, send the packet.
246 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
249 skb
->protocol
= htons(ETH_P_IP
);
252 * Multicasts are looped back for other local users
255 if (rt
->rt_flags
&RTCF_MULTICAST
) {
257 #ifdef CONFIG_IP_MROUTE
258 /* Small optimization: do not loopback not local frames,
259 which returned after forwarding; they will be dropped
260 by ip_mr_input in any case.
261 Note, that local frames are looped back to be delivered
264 This check is duplicated in ip_mr_input at the moment.
267 ((rt
->rt_flags
& RTCF_LOCAL
) ||
268 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
271 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
273 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
274 newskb
, NULL
, newskb
->dev
,
278 /* Multicasts with ttl 0 must not go beyond the host */
280 if (ip_hdr(skb
)->ttl
== 0) {
286 if (rt
->rt_flags
&RTCF_BROADCAST
) {
287 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
289 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, newskb
,
290 NULL
, newskb
->dev
, dev_loopback_xmit
);
293 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
,
294 skb
->dev
, ip_finish_output
,
295 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
298 int ip_output(struct sk_buff
*skb
)
300 struct net_device
*dev
= skb_dst(skb
)->dev
;
302 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
305 skb
->protocol
= htons(ETH_P_IP
);
307 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
309 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
313 * copy saddr and daddr, possibly using 64bit load/stores
315 * iph->saddr = fl4->saddr;
316 * iph->daddr = fl4->daddr;
318 static void ip_copy_addrs(struct iphdr
*iph
, const struct flowi4
*fl4
)
320 BUILD_BUG_ON(offsetof(typeof(*fl4
), daddr
) !=
321 offsetof(typeof(*fl4
), saddr
) + sizeof(fl4
->saddr
));
322 memcpy(&iph
->saddr
, &fl4
->saddr
,
323 sizeof(fl4
->saddr
) + sizeof(fl4
->daddr
));
326 int ip_queue_xmit(struct sk_buff
*skb
, struct flowi
*fl
)
328 struct sock
*sk
= skb
->sk
;
329 struct inet_sock
*inet
= inet_sk(sk
);
330 struct ip_options_rcu
*inet_opt
;
336 /* Skip all of this if the packet is already routed,
337 * f.e. by something like SCTP.
340 inet_opt
= rcu_dereference(inet
->inet_opt
);
342 rt
= skb_rtable(skb
);
346 /* Make sure we can route this packet. */
347 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
351 /* Use correct destination address if we have options. */
352 daddr
= inet
->inet_daddr
;
353 if (inet_opt
&& inet_opt
->opt
.srr
)
354 daddr
= inet_opt
->opt
.faddr
;
356 /* If this fails, retransmit mechanism of transport layer will
357 * keep trying until route appears or the connection times
360 rt
= ip_route_output_ports(sock_net(sk
), fl4
, sk
,
361 daddr
, inet
->inet_saddr
,
366 sk
->sk_bound_dev_if
);
369 sk_setup_caps(sk
, &rt
->dst
);
371 skb_dst_set_noref(skb
, &rt
->dst
);
374 if (inet_opt
&& inet_opt
->opt
.is_strictroute
&& rt
->rt_uses_gateway
)
377 /* OK, we know where to send it, allocate and build IP header. */
378 skb_push(skb
, sizeof(struct iphdr
) + (inet_opt
? inet_opt
->opt
.optlen
: 0));
379 skb_reset_network_header(skb
);
381 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
382 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->local_df
)
383 iph
->frag_off
= htons(IP_DF
);
386 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
387 iph
->protocol
= sk
->sk_protocol
;
388 ip_copy_addrs(iph
, fl4
);
390 /* Transport layer set skb->h.foo itself. */
392 if (inet_opt
&& inet_opt
->opt
.optlen
) {
393 iph
->ihl
+= inet_opt
->opt
.optlen
>> 2;
394 ip_options_build(skb
, &inet_opt
->opt
, inet
->inet_daddr
, rt
, 0);
397 ip_select_ident_more(iph
, &rt
->dst
, sk
,
398 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
400 skb
->priority
= sk
->sk_priority
;
401 skb
->mark
= sk
->sk_mark
;
403 res
= ip_local_out(skb
);
409 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
411 return -EHOSTUNREACH
;
413 EXPORT_SYMBOL(ip_queue_xmit
);
416 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
418 to
->pkt_type
= from
->pkt_type
;
419 to
->priority
= from
->priority
;
420 to
->protocol
= from
->protocol
;
422 skb_dst_copy(to
, from
);
424 to
->mark
= from
->mark
;
426 /* Copy the flags to each fragment. */
427 IPCB(to
)->flags
= IPCB(from
)->flags
;
429 #ifdef CONFIG_NET_SCHED
430 to
->tc_index
= from
->tc_index
;
433 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
434 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
435 to
->nf_trace
= from
->nf_trace
;
437 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
438 to
->ipvs_property
= from
->ipvs_property
;
440 skb_copy_secmark(to
, from
);
444 * This IP datagram is too large to be sent in one piece. Break it up into
445 * smaller pieces (each of size equal to IP header plus
446 * a block of the data of the original IP data part) that will yet fit in a
447 * single device frame, and queue such a frame for sending.
450 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
454 struct net_device
*dev
;
455 struct sk_buff
*skb2
;
456 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
458 __be16 not_last_frag
;
459 struct rtable
*rt
= skb_rtable(skb
);
465 * Point into the IP datagram header.
470 if (unlikely(((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
) ||
471 (IPCB(skb
)->frag_max_size
&&
472 IPCB(skb
)->frag_max_size
> dst_mtu(&rt
->dst
)))) {
473 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
474 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
475 htonl(ip_skb_dst_mtu(skb
)));
481 * Setup starting values.
485 mtu
= dst_mtu(&rt
->dst
) - hlen
; /* Size of data space */
486 #ifdef CONFIG_BRIDGE_NETFILTER
488 mtu
-= nf_bridge_mtu_reduction(skb
);
490 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
492 /* When frag_list is given, use it. First, check its validity:
493 * some transformers could create wrong frag_list or break existing
494 * one, it is not prohibited. In this case fall back to copying.
496 * LATER: this step can be merged to real generation of fragments,
497 * we can switch to copy when see the first bad fragment.
499 if (skb_has_frag_list(skb
)) {
500 struct sk_buff
*frag
, *frag2
;
501 int first_len
= skb_pagelen(skb
);
503 if (first_len
- hlen
> mtu
||
504 ((first_len
- hlen
) & 7) ||
505 ip_is_fragment(iph
) ||
509 skb_walk_frags(skb
, frag
) {
510 /* Correct geometry. */
511 if (frag
->len
> mtu
||
512 ((frag
->len
& 7) && frag
->next
) ||
513 skb_headroom(frag
) < hlen
)
514 goto slow_path_clean
;
516 /* Partially cloned skb? */
517 if (skb_shared(frag
))
518 goto slow_path_clean
;
523 frag
->destructor
= sock_wfree
;
525 skb
->truesize
-= frag
->truesize
;
528 /* Everything is OK. Generate! */
532 frag
= skb_shinfo(skb
)->frag_list
;
533 skb_frag_list_init(skb
);
534 skb
->data_len
= first_len
- skb_headlen(skb
);
535 skb
->len
= first_len
;
536 iph
->tot_len
= htons(first_len
);
537 iph
->frag_off
= htons(IP_MF
);
541 /* Prepare header of the next frame,
542 * before previous one went down. */
544 frag
->ip_summed
= CHECKSUM_NONE
;
545 skb_reset_transport_header(frag
);
546 __skb_push(frag
, hlen
);
547 skb_reset_network_header(frag
);
548 memcpy(skb_network_header(frag
), iph
, hlen
);
550 iph
->tot_len
= htons(frag
->len
);
551 ip_copy_metadata(frag
, skb
);
553 ip_options_fragment(frag
);
554 offset
+= skb
->len
- hlen
;
555 iph
->frag_off
= htons(offset
>>3);
556 if (frag
->next
!= NULL
)
557 iph
->frag_off
|= htons(IP_MF
);
558 /* Ready, complete checksum */
565 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
575 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
584 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
588 skb_walk_frags(skb
, frag2
) {
592 frag2
->destructor
= NULL
;
593 skb
->truesize
+= frag2
->truesize
;
598 /* for offloaded checksums cleanup checksum before fragmentation */
599 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) && skb_checksum_help(skb
))
602 left
= skb
->len
- hlen
; /* Space per frame */
603 ptr
= hlen
; /* Where to start from */
605 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
606 * we need to make room for the encapsulating header
608 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->dst
.dev
, nf_bridge_pad(skb
));
611 * Fragment the datagram.
614 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
615 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
618 * Keep copying data until we run out.
623 /* IF: it doesn't fit, use 'mtu' - the data space left */
626 /* IF: we are not sending up to and including the packet end
627 then align the next start on an eight byte boundary */
635 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
636 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
642 * Set up data on packet
645 ip_copy_metadata(skb2
, skb
);
646 skb_reserve(skb2
, ll_rs
);
647 skb_put(skb2
, len
+ hlen
);
648 skb_reset_network_header(skb2
);
649 skb2
->transport_header
= skb2
->network_header
+ hlen
;
652 * Charge the memory for the fragment to any owner
657 skb_set_owner_w(skb2
, skb
->sk
);
660 * Copy the packet header into the new buffer.
663 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
666 * Copy a block of the IP datagram.
668 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
673 * Fill in the new header fields.
676 iph
->frag_off
= htons((offset
>> 3));
678 /* ANK: dirty, but effective trick. Upgrade options only if
679 * the segment to be fragmented was THE FIRST (otherwise,
680 * options are already fixed) and make it ONCE
681 * on the initial skb, so that all the following fragments
682 * will inherit fixed options.
685 ip_options_fragment(skb
);
688 * Added AC : If we are fragmenting a fragment that's not the
689 * last fragment then keep MF on each bit
691 if (left
> 0 || not_last_frag
)
692 iph
->frag_off
|= htons(IP_MF
);
697 * Put this fragment into the sending queue.
699 iph
->tot_len
= htons(len
+ hlen
);
707 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
710 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
715 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
718 EXPORT_SYMBOL(ip_fragment
);
721 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
723 struct iovec
*iov
= from
;
725 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
726 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
730 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
732 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
736 EXPORT_SYMBOL(ip_generic_getfrag
);
739 csum_page(struct page
*page
, int offset
, int copy
)
744 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
749 static inline int ip_ufo_append_data(struct sock
*sk
,
750 struct sk_buff_head
*queue
,
751 int getfrag(void *from
, char *to
, int offset
, int len
,
752 int odd
, struct sk_buff
*skb
),
753 void *from
, int length
, int hh_len
, int fragheaderlen
,
754 int transhdrlen
, int maxfraglen
, unsigned int flags
)
759 /* There is support for UDP fragmentation offload by network
760 * device, so create one single skb packet containing complete
763 if ((skb
= skb_peek_tail(queue
)) == NULL
) {
764 skb
= sock_alloc_send_skb(sk
,
765 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
766 (flags
& MSG_DONTWAIT
), &err
);
771 /* reserve space for Hardware header */
772 skb_reserve(skb
, hh_len
);
774 /* create space for UDP/IP header */
775 skb_put(skb
, fragheaderlen
+ transhdrlen
);
777 /* initialize network header pointer */
778 skb_reset_network_header(skb
);
780 /* initialize protocol header pointer */
781 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
783 skb
->ip_summed
= CHECKSUM_PARTIAL
;
786 /* specify the length of each IP datagram fragment */
787 skb_shinfo(skb
)->gso_size
= maxfraglen
- fragheaderlen
;
788 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
789 __skb_queue_tail(queue
, skb
);
792 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
793 (length
- transhdrlen
));
796 static int __ip_append_data(struct sock
*sk
,
798 struct sk_buff_head
*queue
,
799 struct inet_cork
*cork
,
800 struct page_frag
*pfrag
,
801 int getfrag(void *from
, char *to
, int offset
,
802 int len
, int odd
, struct sk_buff
*skb
),
803 void *from
, int length
, int transhdrlen
,
806 struct inet_sock
*inet
= inet_sk(sk
);
809 struct ip_options
*opt
= cork
->opt
;
816 unsigned int maxfraglen
, fragheaderlen
;
817 int csummode
= CHECKSUM_NONE
;
818 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
820 skb
= skb_peek_tail(queue
);
822 exthdrlen
= !skb
? rt
->dst
.header_len
: 0;
823 mtu
= cork
->fragsize
;
825 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
827 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
828 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
830 if (cork
->length
+ length
> 0xFFFF - fragheaderlen
) {
831 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
,
837 * transhdrlen > 0 means that this is the first fragment and we wish
838 * it won't be fragmented in the future.
841 length
+ fragheaderlen
<= mtu
&&
842 rt
->dst
.dev
->features
& NETIF_F_V4_CSUM
&&
844 csummode
= CHECKSUM_PARTIAL
;
846 cork
->length
+= length
;
847 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
848 (sk
->sk_protocol
== IPPROTO_UDP
) &&
849 (rt
->dst
.dev
->features
& NETIF_F_UFO
) && !rt
->dst
.header_len
) {
850 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
851 hh_len
, fragheaderlen
, transhdrlen
,
858 /* So, what's going on in the loop below?
860 * We use calculated fragment length to generate chained skb,
861 * each of segments is IP fragment ready for sending to network after
862 * adding appropriate IP header.
869 /* Check if the remaining data fits into current packet. */
870 copy
= mtu
- skb
->len
;
872 copy
= maxfraglen
- skb
->len
;
875 unsigned int datalen
;
876 unsigned int fraglen
;
877 unsigned int fraggap
;
878 unsigned int alloclen
;
879 struct sk_buff
*skb_prev
;
883 fraggap
= skb_prev
->len
- maxfraglen
;
888 * If remaining data exceeds the mtu,
889 * we know we need more fragment(s).
891 datalen
= length
+ fraggap
;
892 if (datalen
> mtu
- fragheaderlen
)
893 datalen
= maxfraglen
- fragheaderlen
;
894 fraglen
= datalen
+ fragheaderlen
;
896 if ((flags
& MSG_MORE
) &&
897 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
902 alloclen
+= exthdrlen
;
904 /* The last fragment gets additional space at tail.
905 * Note, with MSG_MORE we overallocate on fragments,
906 * because we have no idea what fragment will be
909 if (datalen
== length
+ fraggap
)
910 alloclen
+= rt
->dst
.trailer_len
;
913 skb
= sock_alloc_send_skb(sk
,
914 alloclen
+ hh_len
+ 15,
915 (flags
& MSG_DONTWAIT
), &err
);
918 if (atomic_read(&sk
->sk_wmem_alloc
) <=
920 skb
= sock_wmalloc(sk
,
921 alloclen
+ hh_len
+ 15, 1,
923 if (unlikely(skb
== NULL
))
926 /* only the initial fragment is
934 * Fill in the control structures
936 skb
->ip_summed
= csummode
;
938 skb_reserve(skb
, hh_len
);
939 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
942 * Find where to start putting bytes.
944 data
= skb_put(skb
, fraglen
+ exthdrlen
);
945 skb_set_network_header(skb
, exthdrlen
);
946 skb
->transport_header
= (skb
->network_header
+
948 data
+= fragheaderlen
+ exthdrlen
;
951 skb
->csum
= skb_copy_and_csum_bits(
952 skb_prev
, maxfraglen
,
953 data
+ transhdrlen
, fraggap
, 0);
954 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
957 pskb_trim_unique(skb_prev
, maxfraglen
);
960 copy
= datalen
- transhdrlen
- fraggap
;
961 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
968 length
-= datalen
- fraggap
;
971 csummode
= CHECKSUM_NONE
;
974 * Put the packet on the pending queue.
976 __skb_queue_tail(queue
, skb
);
983 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
987 if (getfrag(from
, skb_put(skb
, copy
),
988 offset
, copy
, off
, skb
) < 0) {
989 __skb_trim(skb
, off
);
994 int i
= skb_shinfo(skb
)->nr_frags
;
997 if (!sk_page_frag_refill(sk
, pfrag
))
1000 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1003 if (i
== MAX_SKB_FRAGS
)
1006 __skb_fill_page_desc(skb
, i
, pfrag
->page
,
1008 skb_shinfo(skb
)->nr_frags
= ++i
;
1009 get_page(pfrag
->page
);
1011 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1013 page_address(pfrag
->page
) + pfrag
->offset
,
1014 offset
, copy
, skb
->len
, skb
) < 0)
1017 pfrag
->offset
+= copy
;
1018 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1020 skb
->data_len
+= copy
;
1021 skb
->truesize
+= copy
;
1022 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1033 cork
->length
-= length
;
1034 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1038 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1039 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1041 struct inet_sock
*inet
= inet_sk(sk
);
1042 struct ip_options_rcu
*opt
;
1046 * setup for corking.
1050 if (cork
->opt
== NULL
) {
1051 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1053 if (unlikely(cork
->opt
== NULL
))
1056 memcpy(cork
->opt
, &opt
->opt
, sizeof(struct ip_options
) + opt
->opt
.optlen
);
1057 cork
->flags
|= IPCORK_OPT
;
1058 cork
->addr
= ipc
->addr
;
1064 * We steal reference to this route, caller should not release it
1067 cork
->fragsize
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
1068 rt
->dst
.dev
->mtu
: dst_mtu(&rt
->dst
);
1069 cork
->dst
= &rt
->dst
;
1071 cork
->tx_flags
= ipc
->tx_flags
;
1077 * ip_append_data() and ip_append_page() can make one large IP datagram
1078 * from many pieces of data. Each pieces will be holded on the socket
1079 * until ip_push_pending_frames() is called. Each piece can be a page
1082 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1083 * this interface potentially.
1085 * LATER: length must be adjusted by pad at tail, when it is required.
1087 int ip_append_data(struct sock
*sk
, struct flowi4
*fl4
,
1088 int getfrag(void *from
, char *to
, int offset
, int len
,
1089 int odd
, struct sk_buff
*skb
),
1090 void *from
, int length
, int transhdrlen
,
1091 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1094 struct inet_sock
*inet
= inet_sk(sk
);
1097 if (flags
&MSG_PROBE
)
1100 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1101 err
= ip_setup_cork(sk
, &inet
->cork
.base
, ipc
, rtp
);
1108 return __ip_append_data(sk
, fl4
, &sk
->sk_write_queue
, &inet
->cork
.base
,
1109 sk_page_frag(sk
), getfrag
,
1110 from
, length
, transhdrlen
, flags
);
1113 ssize_t
ip_append_page(struct sock
*sk
, struct flowi4
*fl4
, struct page
*page
,
1114 int offset
, size_t size
, int flags
)
1116 struct inet_sock
*inet
= inet_sk(sk
);
1117 struct sk_buff
*skb
;
1119 struct ip_options
*opt
= NULL
;
1120 struct inet_cork
*cork
;
1125 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1130 if (flags
&MSG_PROBE
)
1133 if (skb_queue_empty(&sk
->sk_write_queue
))
1136 cork
= &inet
->cork
.base
;
1137 rt
= (struct rtable
*)cork
->dst
;
1138 if (cork
->flags
& IPCORK_OPT
)
1141 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1144 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1145 mtu
= cork
->fragsize
;
1147 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1148 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1150 if (cork
->length
+ size
> 0xFFFF - fragheaderlen
) {
1151 ip_local_error(sk
, EMSGSIZE
, fl4
->daddr
, inet
->inet_dport
, mtu
);
1155 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1158 cork
->length
+= size
;
1159 if ((size
+ skb
->len
> mtu
) &&
1160 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1161 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1162 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1163 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1170 if (skb_is_gso(skb
))
1174 /* Check if the remaining data fits into current packet. */
1175 len
= mtu
- skb
->len
;
1177 len
= maxfraglen
- skb
->len
;
1180 struct sk_buff
*skb_prev
;
1184 fraggap
= skb_prev
->len
- maxfraglen
;
1186 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1187 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1188 if (unlikely(!skb
)) {
1194 * Fill in the control structures
1196 skb
->ip_summed
= CHECKSUM_NONE
;
1198 skb_reserve(skb
, hh_len
);
1201 * Find where to start putting bytes.
1203 skb_put(skb
, fragheaderlen
+ fraggap
);
1204 skb_reset_network_header(skb
);
1205 skb
->transport_header
= (skb
->network_header
+
1208 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1210 skb_transport_header(skb
),
1212 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1214 pskb_trim_unique(skb_prev
, maxfraglen
);
1218 * Put the packet on the pending queue.
1220 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1224 i
= skb_shinfo(skb
)->nr_frags
;
1227 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1228 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
-1], len
);
1229 } else if (i
< MAX_SKB_FRAGS
) {
1231 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1237 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1239 csum
= csum_page(page
, offset
, len
);
1240 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1244 skb
->data_len
+= len
;
1245 skb
->truesize
+= len
;
1246 atomic_add(len
, &sk
->sk_wmem_alloc
);
1253 cork
->length
-= size
;
1254 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1258 static void ip_cork_release(struct inet_cork
*cork
)
1260 cork
->flags
&= ~IPCORK_OPT
;
1263 dst_release(cork
->dst
);
1268 * Combined all pending IP fragments on the socket as one IP datagram
1269 * and push them out.
1271 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1273 struct sk_buff_head
*queue
,
1274 struct inet_cork
*cork
)
1276 struct sk_buff
*skb
, *tmp_skb
;
1277 struct sk_buff
**tail_skb
;
1278 struct inet_sock
*inet
= inet_sk(sk
);
1279 struct net
*net
= sock_net(sk
);
1280 struct ip_options
*opt
= NULL
;
1281 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1286 if ((skb
= __skb_dequeue(queue
)) == NULL
)
1288 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1290 /* move skb->data to ip header from ext header */
1291 if (skb
->data
< skb_network_header(skb
))
1292 __skb_pull(skb
, skb_network_offset(skb
));
1293 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1294 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1295 *tail_skb
= tmp_skb
;
1296 tail_skb
= &(tmp_skb
->next
);
1297 skb
->len
+= tmp_skb
->len
;
1298 skb
->data_len
+= tmp_skb
->len
;
1299 skb
->truesize
+= tmp_skb
->truesize
;
1300 tmp_skb
->destructor
= NULL
;
1304 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1305 * to fragment the frame generated here. No matter, what transforms
1306 * how transforms change size of the packet, it will come out.
1308 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1311 /* DF bit is set when we want to see DF on outgoing frames.
1312 * If local_df is set too, we still allow to fragment this frame
1314 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1315 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1316 ip_dont_fragment(sk
, &rt
->dst
)))
1319 if (cork
->flags
& IPCORK_OPT
)
1322 if (rt
->rt_type
== RTN_MULTICAST
)
1325 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1327 iph
= (struct iphdr
*)skb
->data
;
1330 iph
->tos
= inet
->tos
;
1333 iph
->protocol
= sk
->sk_protocol
;
1334 ip_copy_addrs(iph
, fl4
);
1335 ip_select_ident(iph
, &rt
->dst
, sk
);
1338 iph
->ihl
+= opt
->optlen
>>2;
1339 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1342 skb
->priority
= sk
->sk_priority
;
1343 skb
->mark
= sk
->sk_mark
;
1345 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1349 skb_dst_set(skb
, &rt
->dst
);
1351 if (iph
->protocol
== IPPROTO_ICMP
)
1352 icmp_out_count(net
, ((struct icmphdr
*)
1353 skb_transport_header(skb
))->type
);
1355 ip_cork_release(cork
);
1360 int ip_send_skb(struct net
*net
, struct sk_buff
*skb
)
1364 err
= ip_local_out(skb
);
1367 err
= net_xmit_errno(err
);
1369 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1375 int ip_push_pending_frames(struct sock
*sk
, struct flowi4
*fl4
)
1377 struct sk_buff
*skb
;
1379 skb
= ip_finish_skb(sk
, fl4
);
1383 /* Netfilter gets whole the not fragmented skb. */
1384 return ip_send_skb(sock_net(sk
), skb
);
1388 * Throw away all pending data on the socket.
1390 static void __ip_flush_pending_frames(struct sock
*sk
,
1391 struct sk_buff_head
*queue
,
1392 struct inet_cork
*cork
)
1394 struct sk_buff
*skb
;
1396 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1399 ip_cork_release(cork
);
1402 void ip_flush_pending_frames(struct sock
*sk
)
1404 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
.base
);
1407 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1409 int getfrag(void *from
, char *to
, int offset
,
1410 int len
, int odd
, struct sk_buff
*skb
),
1411 void *from
, int length
, int transhdrlen
,
1412 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1415 struct inet_cork cork
;
1416 struct sk_buff_head queue
;
1419 if (flags
& MSG_PROBE
)
1422 __skb_queue_head_init(&queue
);
1427 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1429 return ERR_PTR(err
);
1431 err
= __ip_append_data(sk
, fl4
, &queue
, &cork
,
1432 ¤t
->task_frag
, getfrag
,
1433 from
, length
, transhdrlen
, flags
);
1435 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1436 return ERR_PTR(err
);
1439 return __ip_make_skb(sk
, fl4
, &queue
, &cork
);
1443 * Fetch data from kernel space and fill in checksum if needed.
1445 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1446 int len
, int odd
, struct sk_buff
*skb
)
1450 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1451 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1456 * Generic function to send a packet as reply to another packet.
1457 * Used to send some TCP resets/acks so far.
1459 * Use a fake percpu inet socket to avoid false sharing and contention.
1461 static DEFINE_PER_CPU(struct inet_sock
, unicast_sock
) = {
1464 .skc_refcnt
= ATOMIC_INIT(1),
1466 .sk_wmem_alloc
= ATOMIC_INIT(1),
1467 .sk_allocation
= GFP_ATOMIC
,
1468 .sk_flags
= (1UL << SOCK_USE_WRITE_QUEUE
),
1470 .pmtudisc
= IP_PMTUDISC_WANT
,
1474 void ip_send_unicast_reply(struct net
*net
, struct sk_buff
*skb
, __be32 daddr
,
1475 __be32 saddr
, const struct ip_reply_arg
*arg
,
1478 struct ip_options_data replyopts
;
1479 struct ipcm_cookie ipc
;
1481 struct rtable
*rt
= skb_rtable(skb
);
1482 struct sk_buff
*nskb
;
1484 struct inet_sock
*inet
;
1486 if (ip_options_echo(&replyopts
.opt
.opt
, skb
))
1493 if (replyopts
.opt
.opt
.optlen
) {
1494 ipc
.opt
= &replyopts
.opt
;
1496 if (replyopts
.opt
.opt
.srr
)
1497 daddr
= replyopts
.opt
.opt
.faddr
;
1500 flowi4_init_output(&fl4
, arg
->bound_dev_if
, 0,
1502 RT_SCOPE_UNIVERSE
, ip_hdr(skb
)->protocol
,
1503 ip_reply_arg_flowi_flags(arg
),
1505 tcp_hdr(skb
)->source
, tcp_hdr(skb
)->dest
);
1506 security_skb_classify_flow(skb
, flowi4_to_flowi(&fl4
));
1507 rt
= ip_route_output_key(net
, &fl4
);
1511 inet
= &get_cpu_var(unicast_sock
);
1513 inet
->tos
= arg
->tos
;
1515 sk
->sk_priority
= skb
->priority
;
1516 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1517 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1518 sock_net_set(sk
, net
);
1519 __skb_queue_head_init(&sk
->sk_write_queue
);
1520 sk
->sk_sndbuf
= sysctl_wmem_default
;
1521 ip_append_data(sk
, &fl4
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1522 &ipc
, &rt
, MSG_DONTWAIT
);
1523 nskb
= skb_peek(&sk
->sk_write_queue
);
1525 if (arg
->csumoffset
>= 0)
1526 *((__sum16
*)skb_transport_header(nskb
) +
1527 arg
->csumoffset
) = csum_fold(csum_add(nskb
->csum
,
1529 nskb
->ip_summed
= CHECKSUM_NONE
;
1531 skb_set_queue_mapping(nskb
, skb_get_queue_mapping(skb
));
1532 ip_push_pending_frames(sk
, &fl4
);
1535 put_cpu_var(unicast_sock
);
1540 void __init
ip_init(void)
1545 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1546 igmp_mc_proc_init();