e1000e: correct MAC-PHY interconnect register offset for 82579
[linux-2.6/libata-dev.git] / drivers / net / e1000e / netdev.c
blob9e9164a9d4893e4bc320287b1946ec1547518d0e
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/tcp.h>
40 #include <linux/ipv6.h>
41 #include <linux/slab.h>
42 #include <net/checksum.h>
43 #include <net/ip6_checksum.h>
44 #include <linux/mii.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos_params.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
53 #include "e1000.h"
55 #define DRV_EXTRAVERSION "-k2"
57 #define DRV_VERSION "1.2.7" DRV_EXTRAVERSION
58 char e1000e_driver_name[] = "e1000e";
59 const char e1000e_driver_version[] = DRV_VERSION;
61 static const struct e1000_info *e1000_info_tbl[] = {
62 [board_82571] = &e1000_82571_info,
63 [board_82572] = &e1000_82572_info,
64 [board_82573] = &e1000_82573_info,
65 [board_82574] = &e1000_82574_info,
66 [board_82583] = &e1000_82583_info,
67 [board_80003es2lan] = &e1000_es2_info,
68 [board_ich8lan] = &e1000_ich8_info,
69 [board_ich9lan] = &e1000_ich9_info,
70 [board_ich10lan] = &e1000_ich10_info,
71 [board_pchlan] = &e1000_pch_info,
72 [board_pch2lan] = &e1000_pch2_info,
75 struct e1000_reg_info {
76 u32 ofs;
77 char *name;
80 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
81 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
82 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
83 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
84 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
86 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
87 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
88 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
89 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
90 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
92 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
94 /* General Registers */
95 {E1000_CTRL, "CTRL"},
96 {E1000_STATUS, "STATUS"},
97 {E1000_CTRL_EXT, "CTRL_EXT"},
99 /* Interrupt Registers */
100 {E1000_ICR, "ICR"},
102 /* RX Registers */
103 {E1000_RCTL, "RCTL"},
104 {E1000_RDLEN, "RDLEN"},
105 {E1000_RDH, "RDH"},
106 {E1000_RDT, "RDT"},
107 {E1000_RDTR, "RDTR"},
108 {E1000_RXDCTL(0), "RXDCTL"},
109 {E1000_ERT, "ERT"},
110 {E1000_RDBAL, "RDBAL"},
111 {E1000_RDBAH, "RDBAH"},
112 {E1000_RDFH, "RDFH"},
113 {E1000_RDFT, "RDFT"},
114 {E1000_RDFHS, "RDFHS"},
115 {E1000_RDFTS, "RDFTS"},
116 {E1000_RDFPC, "RDFPC"},
118 /* TX Registers */
119 {E1000_TCTL, "TCTL"},
120 {E1000_TDBAL, "TDBAL"},
121 {E1000_TDBAH, "TDBAH"},
122 {E1000_TDLEN, "TDLEN"},
123 {E1000_TDH, "TDH"},
124 {E1000_TDT, "TDT"},
125 {E1000_TIDV, "TIDV"},
126 {E1000_TXDCTL(0), "TXDCTL"},
127 {E1000_TADV, "TADV"},
128 {E1000_TARC(0), "TARC"},
129 {E1000_TDFH, "TDFH"},
130 {E1000_TDFT, "TDFT"},
131 {E1000_TDFHS, "TDFHS"},
132 {E1000_TDFTS, "TDFTS"},
133 {E1000_TDFPC, "TDFPC"},
135 /* List Terminator */
140 * e1000_regdump - register printout routine
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
144 int n = 0;
145 char rname[16];
146 u32 regs[8];
148 switch (reginfo->ofs) {
149 case E1000_RXDCTL(0):
150 for (n = 0; n < 2; n++)
151 regs[n] = __er32(hw, E1000_RXDCTL(n));
152 break;
153 case E1000_TXDCTL(0):
154 for (n = 0; n < 2; n++)
155 regs[n] = __er32(hw, E1000_TXDCTL(n));
156 break;
157 case E1000_TARC(0):
158 for (n = 0; n < 2; n++)
159 regs[n] = __er32(hw, E1000_TARC(n));
160 break;
161 default:
162 printk(KERN_INFO "%-15s %08x\n",
163 reginfo->name, __er32(hw, reginfo->ofs));
164 return;
167 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168 printk(KERN_INFO "%-15s ", rname);
169 for (n = 0; n < 2; n++)
170 printk(KERN_CONT "%08x ", regs[n]);
171 printk(KERN_CONT "\n");
176 * e1000e_dump - Print registers, tx-ring and rx-ring
178 static void e1000e_dump(struct e1000_adapter *adapter)
180 struct net_device *netdev = adapter->netdev;
181 struct e1000_hw *hw = &adapter->hw;
182 struct e1000_reg_info *reginfo;
183 struct e1000_ring *tx_ring = adapter->tx_ring;
184 struct e1000_tx_desc *tx_desc;
185 struct my_u0 { u64 a; u64 b; } *u0;
186 struct e1000_buffer *buffer_info;
187 struct e1000_ring *rx_ring = adapter->rx_ring;
188 union e1000_rx_desc_packet_split *rx_desc_ps;
189 struct e1000_rx_desc *rx_desc;
190 struct my_u1 { u64 a; u64 b; u64 c; u64 d; } *u1;
191 u32 staterr;
192 int i = 0;
194 if (!netif_msg_hw(adapter))
195 return;
197 /* Print netdevice Info */
198 if (netdev) {
199 dev_info(&adapter->pdev->dev, "Net device Info\n");
200 printk(KERN_INFO "Device Name state "
201 "trans_start last_rx\n");
202 printk(KERN_INFO "%-15s %016lX %016lX %016lX\n",
203 netdev->name,
204 netdev->state,
205 netdev->trans_start,
206 netdev->last_rx);
209 /* Print Registers */
210 dev_info(&adapter->pdev->dev, "Register Dump\n");
211 printk(KERN_INFO " Register Name Value\n");
212 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
213 reginfo->name; reginfo++) {
214 e1000_regdump(hw, reginfo);
217 /* Print TX Ring Summary */
218 if (!netdev || !netif_running(netdev))
219 goto exit;
221 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
222 printk(KERN_INFO "Queue [NTU] [NTC] [bi(ntc)->dma ]"
223 " leng ntw timestamp\n");
224 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
225 printk(KERN_INFO " %5d %5X %5X %016llX %04X %3X %016llX\n",
226 0, tx_ring->next_to_use, tx_ring->next_to_clean,
227 (unsigned long long)buffer_info->dma,
228 buffer_info->length,
229 buffer_info->next_to_watch,
230 (unsigned long long)buffer_info->time_stamp);
232 /* Print TX Rings */
233 if (!netif_msg_tx_done(adapter))
234 goto rx_ring_summary;
236 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
238 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
240 * Legacy Transmit Descriptor
241 * +--------------------------------------------------------------+
242 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
243 * +--------------------------------------------------------------+
244 * 8 | Special | CSS | Status | CMD | CSO | Length |
245 * +--------------------------------------------------------------+
246 * 63 48 47 36 35 32 31 24 23 16 15 0
248 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
249 * 63 48 47 40 39 32 31 16 15 8 7 0
250 * +----------------------------------------------------------------+
251 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
252 * +----------------------------------------------------------------+
253 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
254 * +----------------------------------------------------------------+
255 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
257 * Extended Data Descriptor (DTYP=0x1)
258 * +----------------------------------------------------------------+
259 * 0 | Buffer Address [63:0] |
260 * +----------------------------------------------------------------+
261 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
262 * +----------------------------------------------------------------+
263 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
265 printk(KERN_INFO "Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
266 " [bi->dma ] leng ntw timestamp bi->skb "
267 "<-- Legacy format\n");
268 printk(KERN_INFO "Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
269 " [bi->dma ] leng ntw timestamp bi->skb "
270 "<-- Ext Context format\n");
271 printk(KERN_INFO "Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
272 " [bi->dma ] leng ntw timestamp bi->skb "
273 "<-- Ext Data format\n");
274 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
275 tx_desc = E1000_TX_DESC(*tx_ring, i);
276 buffer_info = &tx_ring->buffer_info[i];
277 u0 = (struct my_u0 *)tx_desc;
278 printk(KERN_INFO "T%c[0x%03X] %016llX %016llX %016llX "
279 "%04X %3X %016llX %p",
280 (!(le64_to_cpu(u0->b) & (1<<29)) ? 'l' :
281 ((le64_to_cpu(u0->b) & (1<<20)) ? 'd' : 'c')), i,
282 (unsigned long long)le64_to_cpu(u0->a),
283 (unsigned long long)le64_to_cpu(u0->b),
284 (unsigned long long)buffer_info->dma,
285 buffer_info->length, buffer_info->next_to_watch,
286 (unsigned long long)buffer_info->time_stamp,
287 buffer_info->skb);
288 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289 printk(KERN_CONT " NTC/U\n");
290 else if (i == tx_ring->next_to_use)
291 printk(KERN_CONT " NTU\n");
292 else if (i == tx_ring->next_to_clean)
293 printk(KERN_CONT " NTC\n");
294 else
295 printk(KERN_CONT "\n");
297 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
298 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
299 16, 1, phys_to_virt(buffer_info->dma),
300 buffer_info->length, true);
303 /* Print RX Rings Summary */
304 rx_ring_summary:
305 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
306 printk(KERN_INFO "Queue [NTU] [NTC]\n");
307 printk(KERN_INFO " %5d %5X %5X\n", 0,
308 rx_ring->next_to_use, rx_ring->next_to_clean);
310 /* Print RX Rings */
311 if (!netif_msg_rx_status(adapter))
312 goto exit;
314 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
315 switch (adapter->rx_ps_pages) {
316 case 1:
317 case 2:
318 case 3:
319 /* [Extended] Packet Split Receive Descriptor Format
321 * +-----------------------------------------------------+
322 * 0 | Buffer Address 0 [63:0] |
323 * +-----------------------------------------------------+
324 * 8 | Buffer Address 1 [63:0] |
325 * +-----------------------------------------------------+
326 * 16 | Buffer Address 2 [63:0] |
327 * +-----------------------------------------------------+
328 * 24 | Buffer Address 3 [63:0] |
329 * +-----------------------------------------------------+
331 printk(KERN_INFO "R [desc] [buffer 0 63:0 ] "
332 "[buffer 1 63:0 ] "
333 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
334 "[bi->skb] <-- Ext Pkt Split format\n");
335 /* [Extended] Receive Descriptor (Write-Back) Format
337 * 63 48 47 32 31 13 12 8 7 4 3 0
338 * +------------------------------------------------------+
339 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
340 * | Checksum | Ident | | Queue | | Type |
341 * +------------------------------------------------------+
342 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
343 * +------------------------------------------------------+
344 * 63 48 47 32 31 20 19 0
346 printk(KERN_INFO "RWB[desc] [ck ipid mrqhsh] "
347 "[vl l0 ee es] "
348 "[ l3 l2 l1 hs] [reserved ] ---------------- "
349 "[bi->skb] <-- Ext Rx Write-Back format\n");
350 for (i = 0; i < rx_ring->count; i++) {
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
354 staterr =
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356 if (staterr & E1000_RXD_STAT_DD) {
357 /* Descriptor Done */
358 printk(KERN_INFO "RWB[0x%03X] %016llX "
359 "%016llX %016llX %016llX "
360 "---------------- %p", i,
361 (unsigned long long)le64_to_cpu(u1->a),
362 (unsigned long long)le64_to_cpu(u1->b),
363 (unsigned long long)le64_to_cpu(u1->c),
364 (unsigned long long)le64_to_cpu(u1->d),
365 buffer_info->skb);
366 } else {
367 printk(KERN_INFO "R [0x%03X] %016llX "
368 "%016llX %016llX %016llX %016llX %p", i,
369 (unsigned long long)le64_to_cpu(u1->a),
370 (unsigned long long)le64_to_cpu(u1->b),
371 (unsigned long long)le64_to_cpu(u1->c),
372 (unsigned long long)le64_to_cpu(u1->d),
373 (unsigned long long)buffer_info->dma,
374 buffer_info->skb);
376 if (netif_msg_pktdata(adapter))
377 print_hex_dump(KERN_INFO, "",
378 DUMP_PREFIX_ADDRESS, 16, 1,
379 phys_to_virt(buffer_info->dma),
380 adapter->rx_ps_bsize0, true);
383 if (i == rx_ring->next_to_use)
384 printk(KERN_CONT " NTU\n");
385 else if (i == rx_ring->next_to_clean)
386 printk(KERN_CONT " NTC\n");
387 else
388 printk(KERN_CONT "\n");
390 break;
391 default:
392 case 0:
393 /* Legacy Receive Descriptor Format
395 * +-----------------------------------------------------+
396 * | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
399 * +-----------------------------------------------------+
400 * 63 48 47 40 39 32 31 16 15 0
402 printk(KERN_INFO "Rl[desc] [address 63:0 ] "
403 "[vl er S cks ln] [bi->dma ] [bi->skb] "
404 "<-- Legacy format\n");
405 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
406 rx_desc = E1000_RX_DESC(*rx_ring, i);
407 buffer_info = &rx_ring->buffer_info[i];
408 u0 = (struct my_u0 *)rx_desc;
409 printk(KERN_INFO "Rl[0x%03X] %016llX %016llX "
410 "%016llX %p", i,
411 (unsigned long long)le64_to_cpu(u0->a),
412 (unsigned long long)le64_to_cpu(u0->b),
413 (unsigned long long)buffer_info->dma,
414 buffer_info->skb);
415 if (i == rx_ring->next_to_use)
416 printk(KERN_CONT " NTU\n");
417 else if (i == rx_ring->next_to_clean)
418 printk(KERN_CONT " NTC\n");
419 else
420 printk(KERN_CONT "\n");
422 if (netif_msg_pktdata(adapter))
423 print_hex_dump(KERN_INFO, "",
424 DUMP_PREFIX_ADDRESS,
425 16, 1, phys_to_virt(buffer_info->dma),
426 adapter->rx_buffer_len, true);
430 exit:
431 return;
435 * e1000_desc_unused - calculate if we have unused descriptors
437 static int e1000_desc_unused(struct e1000_ring *ring)
439 if (ring->next_to_clean > ring->next_to_use)
440 return ring->next_to_clean - ring->next_to_use - 1;
442 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
446 * e1000_receive_skb - helper function to handle Rx indications
447 * @adapter: board private structure
448 * @status: descriptor status field as written by hardware
449 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
450 * @skb: pointer to sk_buff to be indicated to stack
452 static void e1000_receive_skb(struct e1000_adapter *adapter,
453 struct net_device *netdev,
454 struct sk_buff *skb,
455 u8 status, __le16 vlan)
457 skb->protocol = eth_type_trans(skb, netdev);
459 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
460 vlan_gro_receive(&adapter->napi, adapter->vlgrp,
461 le16_to_cpu(vlan), skb);
462 else
463 napi_gro_receive(&adapter->napi, skb);
467 * e1000_rx_checksum - Receive Checksum Offload for 82543
468 * @adapter: board private structure
469 * @status_err: receive descriptor status and error fields
470 * @csum: receive descriptor csum field
471 * @sk_buff: socket buffer with received data
473 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
474 u32 csum, struct sk_buff *skb)
476 u16 status = (u16)status_err;
477 u8 errors = (u8)(status_err >> 24);
478 skb->ip_summed = CHECKSUM_NONE;
480 /* Ignore Checksum bit is set */
481 if (status & E1000_RXD_STAT_IXSM)
482 return;
483 /* TCP/UDP checksum error bit is set */
484 if (errors & E1000_RXD_ERR_TCPE) {
485 /* let the stack verify checksum errors */
486 adapter->hw_csum_err++;
487 return;
490 /* TCP/UDP Checksum has not been calculated */
491 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
492 return;
494 /* It must be a TCP or UDP packet with a valid checksum */
495 if (status & E1000_RXD_STAT_TCPCS) {
496 /* TCP checksum is good */
497 skb->ip_summed = CHECKSUM_UNNECESSARY;
498 } else {
500 * IP fragment with UDP payload
501 * Hardware complements the payload checksum, so we undo it
502 * and then put the value in host order for further stack use.
504 __sum16 sum = (__force __sum16)htons(csum);
505 skb->csum = csum_unfold(~sum);
506 skb->ip_summed = CHECKSUM_COMPLETE;
508 adapter->hw_csum_good++;
512 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
513 * @adapter: address of board private structure
515 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
516 int cleaned_count)
518 struct net_device *netdev = adapter->netdev;
519 struct pci_dev *pdev = adapter->pdev;
520 struct e1000_ring *rx_ring = adapter->rx_ring;
521 struct e1000_rx_desc *rx_desc;
522 struct e1000_buffer *buffer_info;
523 struct sk_buff *skb;
524 unsigned int i;
525 unsigned int bufsz = adapter->rx_buffer_len;
527 i = rx_ring->next_to_use;
528 buffer_info = &rx_ring->buffer_info[i];
530 while (cleaned_count--) {
531 skb = buffer_info->skb;
532 if (skb) {
533 skb_trim(skb, 0);
534 goto map_skb;
537 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
538 if (!skb) {
539 /* Better luck next round */
540 adapter->alloc_rx_buff_failed++;
541 break;
544 buffer_info->skb = skb;
545 map_skb:
546 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
547 adapter->rx_buffer_len,
548 DMA_FROM_DEVICE);
549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
550 dev_err(&pdev->dev, "RX DMA map failed\n");
551 adapter->rx_dma_failed++;
552 break;
555 rx_desc = E1000_RX_DESC(*rx_ring, i);
556 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
558 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
560 * Force memory writes to complete before letting h/w
561 * know there are new descriptors to fetch. (Only
562 * applicable for weak-ordered memory model archs,
563 * such as IA-64).
565 wmb();
566 writel(i, adapter->hw.hw_addr + rx_ring->tail);
568 i++;
569 if (i == rx_ring->count)
570 i = 0;
571 buffer_info = &rx_ring->buffer_info[i];
574 rx_ring->next_to_use = i;
578 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
579 * @adapter: address of board private structure
581 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
582 int cleaned_count)
584 struct net_device *netdev = adapter->netdev;
585 struct pci_dev *pdev = adapter->pdev;
586 union e1000_rx_desc_packet_split *rx_desc;
587 struct e1000_ring *rx_ring = adapter->rx_ring;
588 struct e1000_buffer *buffer_info;
589 struct e1000_ps_page *ps_page;
590 struct sk_buff *skb;
591 unsigned int i, j;
593 i = rx_ring->next_to_use;
594 buffer_info = &rx_ring->buffer_info[i];
596 while (cleaned_count--) {
597 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
599 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
600 ps_page = &buffer_info->ps_pages[j];
601 if (j >= adapter->rx_ps_pages) {
602 /* all unused desc entries get hw null ptr */
603 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
604 continue;
606 if (!ps_page->page) {
607 ps_page->page = alloc_page(GFP_ATOMIC);
608 if (!ps_page->page) {
609 adapter->alloc_rx_buff_failed++;
610 goto no_buffers;
612 ps_page->dma = dma_map_page(&pdev->dev,
613 ps_page->page,
614 0, PAGE_SIZE,
615 DMA_FROM_DEVICE);
616 if (dma_mapping_error(&pdev->dev,
617 ps_page->dma)) {
618 dev_err(&adapter->pdev->dev,
619 "RX DMA page map failed\n");
620 adapter->rx_dma_failed++;
621 goto no_buffers;
625 * Refresh the desc even if buffer_addrs
626 * didn't change because each write-back
627 * erases this info.
629 rx_desc->read.buffer_addr[j+1] =
630 cpu_to_le64(ps_page->dma);
633 skb = netdev_alloc_skb_ip_align(netdev,
634 adapter->rx_ps_bsize0);
636 if (!skb) {
637 adapter->alloc_rx_buff_failed++;
638 break;
641 buffer_info->skb = skb;
642 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
643 adapter->rx_ps_bsize0,
644 DMA_FROM_DEVICE);
645 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
646 dev_err(&pdev->dev, "RX DMA map failed\n");
647 adapter->rx_dma_failed++;
648 /* cleanup skb */
649 dev_kfree_skb_any(skb);
650 buffer_info->skb = NULL;
651 break;
654 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
656 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
658 * Force memory writes to complete before letting h/w
659 * know there are new descriptors to fetch. (Only
660 * applicable for weak-ordered memory model archs,
661 * such as IA-64).
663 wmb();
664 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
667 i++;
668 if (i == rx_ring->count)
669 i = 0;
670 buffer_info = &rx_ring->buffer_info[i];
673 no_buffers:
674 rx_ring->next_to_use = i;
678 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
679 * @adapter: address of board private structure
680 * @cleaned_count: number of buffers to allocate this pass
683 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
684 int cleaned_count)
686 struct net_device *netdev = adapter->netdev;
687 struct pci_dev *pdev = adapter->pdev;
688 struct e1000_rx_desc *rx_desc;
689 struct e1000_ring *rx_ring = adapter->rx_ring;
690 struct e1000_buffer *buffer_info;
691 struct sk_buff *skb;
692 unsigned int i;
693 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
695 i = rx_ring->next_to_use;
696 buffer_info = &rx_ring->buffer_info[i];
698 while (cleaned_count--) {
699 skb = buffer_info->skb;
700 if (skb) {
701 skb_trim(skb, 0);
702 goto check_page;
705 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
706 if (unlikely(!skb)) {
707 /* Better luck next round */
708 adapter->alloc_rx_buff_failed++;
709 break;
712 buffer_info->skb = skb;
713 check_page:
714 /* allocate a new page if necessary */
715 if (!buffer_info->page) {
716 buffer_info->page = alloc_page(GFP_ATOMIC);
717 if (unlikely(!buffer_info->page)) {
718 adapter->alloc_rx_buff_failed++;
719 break;
723 if (!buffer_info->dma)
724 buffer_info->dma = dma_map_page(&pdev->dev,
725 buffer_info->page, 0,
726 PAGE_SIZE,
727 DMA_FROM_DEVICE);
729 rx_desc = E1000_RX_DESC(*rx_ring, i);
730 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
732 if (unlikely(++i == rx_ring->count))
733 i = 0;
734 buffer_info = &rx_ring->buffer_info[i];
737 if (likely(rx_ring->next_to_use != i)) {
738 rx_ring->next_to_use = i;
739 if (unlikely(i-- == 0))
740 i = (rx_ring->count - 1);
742 /* Force memory writes to complete before letting h/w
743 * know there are new descriptors to fetch. (Only
744 * applicable for weak-ordered memory model archs,
745 * such as IA-64). */
746 wmb();
747 writel(i, adapter->hw.hw_addr + rx_ring->tail);
752 * e1000_clean_rx_irq - Send received data up the network stack; legacy
753 * @adapter: board private structure
755 * the return value indicates whether actual cleaning was done, there
756 * is no guarantee that everything was cleaned
758 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
759 int *work_done, int work_to_do)
761 struct net_device *netdev = adapter->netdev;
762 struct pci_dev *pdev = adapter->pdev;
763 struct e1000_hw *hw = &adapter->hw;
764 struct e1000_ring *rx_ring = adapter->rx_ring;
765 struct e1000_rx_desc *rx_desc, *next_rxd;
766 struct e1000_buffer *buffer_info, *next_buffer;
767 u32 length;
768 unsigned int i;
769 int cleaned_count = 0;
770 bool cleaned = 0;
771 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
773 i = rx_ring->next_to_clean;
774 rx_desc = E1000_RX_DESC(*rx_ring, i);
775 buffer_info = &rx_ring->buffer_info[i];
777 while (rx_desc->status & E1000_RXD_STAT_DD) {
778 struct sk_buff *skb;
779 u8 status;
781 if (*work_done >= work_to_do)
782 break;
783 (*work_done)++;
785 status = rx_desc->status;
786 skb = buffer_info->skb;
787 buffer_info->skb = NULL;
789 prefetch(skb->data - NET_IP_ALIGN);
791 i++;
792 if (i == rx_ring->count)
793 i = 0;
794 next_rxd = E1000_RX_DESC(*rx_ring, i);
795 prefetch(next_rxd);
797 next_buffer = &rx_ring->buffer_info[i];
799 cleaned = 1;
800 cleaned_count++;
801 dma_unmap_single(&pdev->dev,
802 buffer_info->dma,
803 adapter->rx_buffer_len,
804 DMA_FROM_DEVICE);
805 buffer_info->dma = 0;
807 length = le16_to_cpu(rx_desc->length);
810 * !EOP means multiple descriptors were used to store a single
811 * packet, if that's the case we need to toss it. In fact, we
812 * need to toss every packet with the EOP bit clear and the
813 * next frame that _does_ have the EOP bit set, as it is by
814 * definition only a frame fragment
816 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
817 adapter->flags2 |= FLAG2_IS_DISCARDING;
819 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
820 /* All receives must fit into a single buffer */
821 e_dbg("Receive packet consumed multiple buffers\n");
822 /* recycle */
823 buffer_info->skb = skb;
824 if (status & E1000_RXD_STAT_EOP)
825 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
826 goto next_desc;
829 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
830 /* recycle */
831 buffer_info->skb = skb;
832 goto next_desc;
835 /* adjust length to remove Ethernet CRC */
836 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
837 length -= 4;
839 total_rx_bytes += length;
840 total_rx_packets++;
843 * code added for copybreak, this should improve
844 * performance for small packets with large amounts
845 * of reassembly being done in the stack
847 if (length < copybreak) {
848 struct sk_buff *new_skb =
849 netdev_alloc_skb_ip_align(netdev, length);
850 if (new_skb) {
851 skb_copy_to_linear_data_offset(new_skb,
852 -NET_IP_ALIGN,
853 (skb->data -
854 NET_IP_ALIGN),
855 (length +
856 NET_IP_ALIGN));
857 /* save the skb in buffer_info as good */
858 buffer_info->skb = skb;
859 skb = new_skb;
861 /* else just continue with the old one */
863 /* end copybreak code */
864 skb_put(skb, length);
866 /* Receive Checksum Offload */
867 e1000_rx_checksum(adapter,
868 (u32)(status) |
869 ((u32)(rx_desc->errors) << 24),
870 le16_to_cpu(rx_desc->csum), skb);
872 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
874 next_desc:
875 rx_desc->status = 0;
877 /* return some buffers to hardware, one at a time is too slow */
878 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
879 adapter->alloc_rx_buf(adapter, cleaned_count);
880 cleaned_count = 0;
883 /* use prefetched values */
884 rx_desc = next_rxd;
885 buffer_info = next_buffer;
887 rx_ring->next_to_clean = i;
889 cleaned_count = e1000_desc_unused(rx_ring);
890 if (cleaned_count)
891 adapter->alloc_rx_buf(adapter, cleaned_count);
893 adapter->total_rx_bytes += total_rx_bytes;
894 adapter->total_rx_packets += total_rx_packets;
895 netdev->stats.rx_bytes += total_rx_bytes;
896 netdev->stats.rx_packets += total_rx_packets;
897 return cleaned;
900 static void e1000_put_txbuf(struct e1000_adapter *adapter,
901 struct e1000_buffer *buffer_info)
903 if (buffer_info->dma) {
904 if (buffer_info->mapped_as_page)
905 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
906 buffer_info->length, DMA_TO_DEVICE);
907 else
908 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
909 buffer_info->length, DMA_TO_DEVICE);
910 buffer_info->dma = 0;
912 if (buffer_info->skb) {
913 dev_kfree_skb_any(buffer_info->skb);
914 buffer_info->skb = NULL;
916 buffer_info->time_stamp = 0;
919 static void e1000_print_hw_hang(struct work_struct *work)
921 struct e1000_adapter *adapter = container_of(work,
922 struct e1000_adapter,
923 print_hang_task);
924 struct e1000_ring *tx_ring = adapter->tx_ring;
925 unsigned int i = tx_ring->next_to_clean;
926 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
927 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
928 struct e1000_hw *hw = &adapter->hw;
929 u16 phy_status, phy_1000t_status, phy_ext_status;
930 u16 pci_status;
932 e1e_rphy(hw, PHY_STATUS, &phy_status);
933 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
934 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
936 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
938 /* detected Hardware unit hang */
939 e_err("Detected Hardware Unit Hang:\n"
940 " TDH <%x>\n"
941 " TDT <%x>\n"
942 " next_to_use <%x>\n"
943 " next_to_clean <%x>\n"
944 "buffer_info[next_to_clean]:\n"
945 " time_stamp <%lx>\n"
946 " next_to_watch <%x>\n"
947 " jiffies <%lx>\n"
948 " next_to_watch.status <%x>\n"
949 "MAC Status <%x>\n"
950 "PHY Status <%x>\n"
951 "PHY 1000BASE-T Status <%x>\n"
952 "PHY Extended Status <%x>\n"
953 "PCI Status <%x>\n",
954 readl(adapter->hw.hw_addr + tx_ring->head),
955 readl(adapter->hw.hw_addr + tx_ring->tail),
956 tx_ring->next_to_use,
957 tx_ring->next_to_clean,
958 tx_ring->buffer_info[eop].time_stamp,
959 eop,
960 jiffies,
961 eop_desc->upper.fields.status,
962 er32(STATUS),
963 phy_status,
964 phy_1000t_status,
965 phy_ext_status,
966 pci_status);
970 * e1000_clean_tx_irq - Reclaim resources after transmit completes
971 * @adapter: board private structure
973 * the return value indicates whether actual cleaning was done, there
974 * is no guarantee that everything was cleaned
976 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
978 struct net_device *netdev = adapter->netdev;
979 struct e1000_hw *hw = &adapter->hw;
980 struct e1000_ring *tx_ring = adapter->tx_ring;
981 struct e1000_tx_desc *tx_desc, *eop_desc;
982 struct e1000_buffer *buffer_info;
983 unsigned int i, eop;
984 unsigned int count = 0;
985 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
987 i = tx_ring->next_to_clean;
988 eop = tx_ring->buffer_info[i].next_to_watch;
989 eop_desc = E1000_TX_DESC(*tx_ring, eop);
991 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
992 (count < tx_ring->count)) {
993 bool cleaned = false;
994 for (; !cleaned; count++) {
995 tx_desc = E1000_TX_DESC(*tx_ring, i);
996 buffer_info = &tx_ring->buffer_info[i];
997 cleaned = (i == eop);
999 if (cleaned) {
1000 total_tx_packets += buffer_info->segs;
1001 total_tx_bytes += buffer_info->bytecount;
1004 e1000_put_txbuf(adapter, buffer_info);
1005 tx_desc->upper.data = 0;
1007 i++;
1008 if (i == tx_ring->count)
1009 i = 0;
1012 if (i == tx_ring->next_to_use)
1013 break;
1014 eop = tx_ring->buffer_info[i].next_to_watch;
1015 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1018 tx_ring->next_to_clean = i;
1020 #define TX_WAKE_THRESHOLD 32
1021 if (count && netif_carrier_ok(netdev) &&
1022 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1023 /* Make sure that anybody stopping the queue after this
1024 * sees the new next_to_clean.
1026 smp_mb();
1028 if (netif_queue_stopped(netdev) &&
1029 !(test_bit(__E1000_DOWN, &adapter->state))) {
1030 netif_wake_queue(netdev);
1031 ++adapter->restart_queue;
1035 if (adapter->detect_tx_hung) {
1037 * Detect a transmit hang in hardware, this serializes the
1038 * check with the clearing of time_stamp and movement of i
1040 adapter->detect_tx_hung = 0;
1041 if (tx_ring->buffer_info[i].time_stamp &&
1042 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1043 + (adapter->tx_timeout_factor * HZ)) &&
1044 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
1045 schedule_work(&adapter->print_hang_task);
1046 netif_stop_queue(netdev);
1049 adapter->total_tx_bytes += total_tx_bytes;
1050 adapter->total_tx_packets += total_tx_packets;
1051 netdev->stats.tx_bytes += total_tx_bytes;
1052 netdev->stats.tx_packets += total_tx_packets;
1053 return (count < tx_ring->count);
1057 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1058 * @adapter: board private structure
1060 * the return value indicates whether actual cleaning was done, there
1061 * is no guarantee that everything was cleaned
1063 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1064 int *work_done, int work_to_do)
1066 struct e1000_hw *hw = &adapter->hw;
1067 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1068 struct net_device *netdev = adapter->netdev;
1069 struct pci_dev *pdev = adapter->pdev;
1070 struct e1000_ring *rx_ring = adapter->rx_ring;
1071 struct e1000_buffer *buffer_info, *next_buffer;
1072 struct e1000_ps_page *ps_page;
1073 struct sk_buff *skb;
1074 unsigned int i, j;
1075 u32 length, staterr;
1076 int cleaned_count = 0;
1077 bool cleaned = 0;
1078 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1080 i = rx_ring->next_to_clean;
1081 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1082 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1083 buffer_info = &rx_ring->buffer_info[i];
1085 while (staterr & E1000_RXD_STAT_DD) {
1086 if (*work_done >= work_to_do)
1087 break;
1088 (*work_done)++;
1089 skb = buffer_info->skb;
1091 /* in the packet split case this is header only */
1092 prefetch(skb->data - NET_IP_ALIGN);
1094 i++;
1095 if (i == rx_ring->count)
1096 i = 0;
1097 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1098 prefetch(next_rxd);
1100 next_buffer = &rx_ring->buffer_info[i];
1102 cleaned = 1;
1103 cleaned_count++;
1104 dma_unmap_single(&pdev->dev, buffer_info->dma,
1105 adapter->rx_ps_bsize0,
1106 DMA_FROM_DEVICE);
1107 buffer_info->dma = 0;
1109 /* see !EOP comment in other rx routine */
1110 if (!(staterr & E1000_RXD_STAT_EOP))
1111 adapter->flags2 |= FLAG2_IS_DISCARDING;
1113 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1114 e_dbg("Packet Split buffers didn't pick up the full "
1115 "packet\n");
1116 dev_kfree_skb_irq(skb);
1117 if (staterr & E1000_RXD_STAT_EOP)
1118 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1119 goto next_desc;
1122 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1123 dev_kfree_skb_irq(skb);
1124 goto next_desc;
1127 length = le16_to_cpu(rx_desc->wb.middle.length0);
1129 if (!length) {
1130 e_dbg("Last part of the packet spanning multiple "
1131 "descriptors\n");
1132 dev_kfree_skb_irq(skb);
1133 goto next_desc;
1136 /* Good Receive */
1137 skb_put(skb, length);
1141 * this looks ugly, but it seems compiler issues make it
1142 * more efficient than reusing j
1144 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1147 * page alloc/put takes too long and effects small packet
1148 * throughput, so unsplit small packets and save the alloc/put
1149 * only valid in softirq (napi) context to call kmap_*
1151 if (l1 && (l1 <= copybreak) &&
1152 ((length + l1) <= adapter->rx_ps_bsize0)) {
1153 u8 *vaddr;
1155 ps_page = &buffer_info->ps_pages[0];
1158 * there is no documentation about how to call
1159 * kmap_atomic, so we can't hold the mapping
1160 * very long
1162 dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1163 PAGE_SIZE, DMA_FROM_DEVICE);
1164 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1165 memcpy(skb_tail_pointer(skb), vaddr, l1);
1166 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1167 dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1168 PAGE_SIZE, DMA_FROM_DEVICE);
1170 /* remove the CRC */
1171 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1172 l1 -= 4;
1174 skb_put(skb, l1);
1175 goto copydone;
1176 } /* if */
1179 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1180 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1181 if (!length)
1182 break;
1184 ps_page = &buffer_info->ps_pages[j];
1185 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1186 DMA_FROM_DEVICE);
1187 ps_page->dma = 0;
1188 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1189 ps_page->page = NULL;
1190 skb->len += length;
1191 skb->data_len += length;
1192 skb->truesize += length;
1195 /* strip the ethernet crc, problem is we're using pages now so
1196 * this whole operation can get a little cpu intensive
1198 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1199 pskb_trim(skb, skb->len - 4);
1201 copydone:
1202 total_rx_bytes += skb->len;
1203 total_rx_packets++;
1205 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1206 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1208 if (rx_desc->wb.upper.header_status &
1209 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1210 adapter->rx_hdr_split++;
1212 e1000_receive_skb(adapter, netdev, skb,
1213 staterr, rx_desc->wb.middle.vlan);
1215 next_desc:
1216 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1217 buffer_info->skb = NULL;
1219 /* return some buffers to hardware, one at a time is too slow */
1220 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1221 adapter->alloc_rx_buf(adapter, cleaned_count);
1222 cleaned_count = 0;
1225 /* use prefetched values */
1226 rx_desc = next_rxd;
1227 buffer_info = next_buffer;
1229 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1231 rx_ring->next_to_clean = i;
1233 cleaned_count = e1000_desc_unused(rx_ring);
1234 if (cleaned_count)
1235 adapter->alloc_rx_buf(adapter, cleaned_count);
1237 adapter->total_rx_bytes += total_rx_bytes;
1238 adapter->total_rx_packets += total_rx_packets;
1239 netdev->stats.rx_bytes += total_rx_bytes;
1240 netdev->stats.rx_packets += total_rx_packets;
1241 return cleaned;
1245 * e1000_consume_page - helper function
1247 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1248 u16 length)
1250 bi->page = NULL;
1251 skb->len += length;
1252 skb->data_len += length;
1253 skb->truesize += length;
1257 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1258 * @adapter: board private structure
1260 * the return value indicates whether actual cleaning was done, there
1261 * is no guarantee that everything was cleaned
1264 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1265 int *work_done, int work_to_do)
1267 struct net_device *netdev = adapter->netdev;
1268 struct pci_dev *pdev = adapter->pdev;
1269 struct e1000_ring *rx_ring = adapter->rx_ring;
1270 struct e1000_rx_desc *rx_desc, *next_rxd;
1271 struct e1000_buffer *buffer_info, *next_buffer;
1272 u32 length;
1273 unsigned int i;
1274 int cleaned_count = 0;
1275 bool cleaned = false;
1276 unsigned int total_rx_bytes=0, total_rx_packets=0;
1278 i = rx_ring->next_to_clean;
1279 rx_desc = E1000_RX_DESC(*rx_ring, i);
1280 buffer_info = &rx_ring->buffer_info[i];
1282 while (rx_desc->status & E1000_RXD_STAT_DD) {
1283 struct sk_buff *skb;
1284 u8 status;
1286 if (*work_done >= work_to_do)
1287 break;
1288 (*work_done)++;
1290 status = rx_desc->status;
1291 skb = buffer_info->skb;
1292 buffer_info->skb = NULL;
1294 ++i;
1295 if (i == rx_ring->count)
1296 i = 0;
1297 next_rxd = E1000_RX_DESC(*rx_ring, i);
1298 prefetch(next_rxd);
1300 next_buffer = &rx_ring->buffer_info[i];
1302 cleaned = true;
1303 cleaned_count++;
1304 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1305 DMA_FROM_DEVICE);
1306 buffer_info->dma = 0;
1308 length = le16_to_cpu(rx_desc->length);
1310 /* errors is only valid for DD + EOP descriptors */
1311 if (unlikely((status & E1000_RXD_STAT_EOP) &&
1312 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
1313 /* recycle both page and skb */
1314 buffer_info->skb = skb;
1315 /* an error means any chain goes out the window
1316 * too */
1317 if (rx_ring->rx_skb_top)
1318 dev_kfree_skb(rx_ring->rx_skb_top);
1319 rx_ring->rx_skb_top = NULL;
1320 goto next_desc;
1323 #define rxtop rx_ring->rx_skb_top
1324 if (!(status & E1000_RXD_STAT_EOP)) {
1325 /* this descriptor is only the beginning (or middle) */
1326 if (!rxtop) {
1327 /* this is the beginning of a chain */
1328 rxtop = skb;
1329 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1330 0, length);
1331 } else {
1332 /* this is the middle of a chain */
1333 skb_fill_page_desc(rxtop,
1334 skb_shinfo(rxtop)->nr_frags,
1335 buffer_info->page, 0, length);
1336 /* re-use the skb, only consumed the page */
1337 buffer_info->skb = skb;
1339 e1000_consume_page(buffer_info, rxtop, length);
1340 goto next_desc;
1341 } else {
1342 if (rxtop) {
1343 /* end of the chain */
1344 skb_fill_page_desc(rxtop,
1345 skb_shinfo(rxtop)->nr_frags,
1346 buffer_info->page, 0, length);
1347 /* re-use the current skb, we only consumed the
1348 * page */
1349 buffer_info->skb = skb;
1350 skb = rxtop;
1351 rxtop = NULL;
1352 e1000_consume_page(buffer_info, skb, length);
1353 } else {
1354 /* no chain, got EOP, this buf is the packet
1355 * copybreak to save the put_page/alloc_page */
1356 if (length <= copybreak &&
1357 skb_tailroom(skb) >= length) {
1358 u8 *vaddr;
1359 vaddr = kmap_atomic(buffer_info->page,
1360 KM_SKB_DATA_SOFTIRQ);
1361 memcpy(skb_tail_pointer(skb), vaddr,
1362 length);
1363 kunmap_atomic(vaddr,
1364 KM_SKB_DATA_SOFTIRQ);
1365 /* re-use the page, so don't erase
1366 * buffer_info->page */
1367 skb_put(skb, length);
1368 } else {
1369 skb_fill_page_desc(skb, 0,
1370 buffer_info->page, 0,
1371 length);
1372 e1000_consume_page(buffer_info, skb,
1373 length);
1378 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1379 e1000_rx_checksum(adapter,
1380 (u32)(status) |
1381 ((u32)(rx_desc->errors) << 24),
1382 le16_to_cpu(rx_desc->csum), skb);
1384 /* probably a little skewed due to removing CRC */
1385 total_rx_bytes += skb->len;
1386 total_rx_packets++;
1388 /* eth type trans needs skb->data to point to something */
1389 if (!pskb_may_pull(skb, ETH_HLEN)) {
1390 e_err("pskb_may_pull failed.\n");
1391 dev_kfree_skb(skb);
1392 goto next_desc;
1395 e1000_receive_skb(adapter, netdev, skb, status,
1396 rx_desc->special);
1398 next_desc:
1399 rx_desc->status = 0;
1401 /* return some buffers to hardware, one at a time is too slow */
1402 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1403 adapter->alloc_rx_buf(adapter, cleaned_count);
1404 cleaned_count = 0;
1407 /* use prefetched values */
1408 rx_desc = next_rxd;
1409 buffer_info = next_buffer;
1411 rx_ring->next_to_clean = i;
1413 cleaned_count = e1000_desc_unused(rx_ring);
1414 if (cleaned_count)
1415 adapter->alloc_rx_buf(adapter, cleaned_count);
1417 adapter->total_rx_bytes += total_rx_bytes;
1418 adapter->total_rx_packets += total_rx_packets;
1419 netdev->stats.rx_bytes += total_rx_bytes;
1420 netdev->stats.rx_packets += total_rx_packets;
1421 return cleaned;
1425 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1426 * @adapter: board private structure
1428 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1430 struct e1000_ring *rx_ring = adapter->rx_ring;
1431 struct e1000_buffer *buffer_info;
1432 struct e1000_ps_page *ps_page;
1433 struct pci_dev *pdev = adapter->pdev;
1434 unsigned int i, j;
1436 /* Free all the Rx ring sk_buffs */
1437 for (i = 0; i < rx_ring->count; i++) {
1438 buffer_info = &rx_ring->buffer_info[i];
1439 if (buffer_info->dma) {
1440 if (adapter->clean_rx == e1000_clean_rx_irq)
1441 dma_unmap_single(&pdev->dev, buffer_info->dma,
1442 adapter->rx_buffer_len,
1443 DMA_FROM_DEVICE);
1444 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1445 dma_unmap_page(&pdev->dev, buffer_info->dma,
1446 PAGE_SIZE,
1447 DMA_FROM_DEVICE);
1448 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1449 dma_unmap_single(&pdev->dev, buffer_info->dma,
1450 adapter->rx_ps_bsize0,
1451 DMA_FROM_DEVICE);
1452 buffer_info->dma = 0;
1455 if (buffer_info->page) {
1456 put_page(buffer_info->page);
1457 buffer_info->page = NULL;
1460 if (buffer_info->skb) {
1461 dev_kfree_skb(buffer_info->skb);
1462 buffer_info->skb = NULL;
1465 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1466 ps_page = &buffer_info->ps_pages[j];
1467 if (!ps_page->page)
1468 break;
1469 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1470 DMA_FROM_DEVICE);
1471 ps_page->dma = 0;
1472 put_page(ps_page->page);
1473 ps_page->page = NULL;
1477 /* there also may be some cached data from a chained receive */
1478 if (rx_ring->rx_skb_top) {
1479 dev_kfree_skb(rx_ring->rx_skb_top);
1480 rx_ring->rx_skb_top = NULL;
1483 /* Zero out the descriptor ring */
1484 memset(rx_ring->desc, 0, rx_ring->size);
1486 rx_ring->next_to_clean = 0;
1487 rx_ring->next_to_use = 0;
1488 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1490 writel(0, adapter->hw.hw_addr + rx_ring->head);
1491 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1494 static void e1000e_downshift_workaround(struct work_struct *work)
1496 struct e1000_adapter *adapter = container_of(work,
1497 struct e1000_adapter, downshift_task);
1499 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1503 * e1000_intr_msi - Interrupt Handler
1504 * @irq: interrupt number
1505 * @data: pointer to a network interface device structure
1507 static irqreturn_t e1000_intr_msi(int irq, void *data)
1509 struct net_device *netdev = data;
1510 struct e1000_adapter *adapter = netdev_priv(netdev);
1511 struct e1000_hw *hw = &adapter->hw;
1512 u32 icr = er32(ICR);
1515 * read ICR disables interrupts using IAM
1518 if (icr & E1000_ICR_LSC) {
1519 hw->mac.get_link_status = 1;
1521 * ICH8 workaround-- Call gig speed drop workaround on cable
1522 * disconnect (LSC) before accessing any PHY registers
1524 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1525 (!(er32(STATUS) & E1000_STATUS_LU)))
1526 schedule_work(&adapter->downshift_task);
1529 * 80003ES2LAN workaround-- For packet buffer work-around on
1530 * link down event; disable receives here in the ISR and reset
1531 * adapter in watchdog
1533 if (netif_carrier_ok(netdev) &&
1534 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1535 /* disable receives */
1536 u32 rctl = er32(RCTL);
1537 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1538 adapter->flags |= FLAG_RX_RESTART_NOW;
1540 /* guard against interrupt when we're going down */
1541 if (!test_bit(__E1000_DOWN, &adapter->state))
1542 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1545 if (napi_schedule_prep(&adapter->napi)) {
1546 adapter->total_tx_bytes = 0;
1547 adapter->total_tx_packets = 0;
1548 adapter->total_rx_bytes = 0;
1549 adapter->total_rx_packets = 0;
1550 __napi_schedule(&adapter->napi);
1553 return IRQ_HANDLED;
1557 * e1000_intr - Interrupt Handler
1558 * @irq: interrupt number
1559 * @data: pointer to a network interface device structure
1561 static irqreturn_t e1000_intr(int irq, void *data)
1563 struct net_device *netdev = data;
1564 struct e1000_adapter *adapter = netdev_priv(netdev);
1565 struct e1000_hw *hw = &adapter->hw;
1566 u32 rctl, icr = er32(ICR);
1568 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1569 return IRQ_NONE; /* Not our interrupt */
1572 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1573 * not set, then the adapter didn't send an interrupt
1575 if (!(icr & E1000_ICR_INT_ASSERTED))
1576 return IRQ_NONE;
1579 * Interrupt Auto-Mask...upon reading ICR,
1580 * interrupts are masked. No need for the
1581 * IMC write
1584 if (icr & E1000_ICR_LSC) {
1585 hw->mac.get_link_status = 1;
1587 * ICH8 workaround-- Call gig speed drop workaround on cable
1588 * disconnect (LSC) before accessing any PHY registers
1590 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1591 (!(er32(STATUS) & E1000_STATUS_LU)))
1592 schedule_work(&adapter->downshift_task);
1595 * 80003ES2LAN workaround--
1596 * For packet buffer work-around on link down event;
1597 * disable receives here in the ISR and
1598 * reset adapter in watchdog
1600 if (netif_carrier_ok(netdev) &&
1601 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1602 /* disable receives */
1603 rctl = er32(RCTL);
1604 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1605 adapter->flags |= FLAG_RX_RESTART_NOW;
1607 /* guard against interrupt when we're going down */
1608 if (!test_bit(__E1000_DOWN, &adapter->state))
1609 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1612 if (napi_schedule_prep(&adapter->napi)) {
1613 adapter->total_tx_bytes = 0;
1614 adapter->total_tx_packets = 0;
1615 adapter->total_rx_bytes = 0;
1616 adapter->total_rx_packets = 0;
1617 __napi_schedule(&adapter->napi);
1620 return IRQ_HANDLED;
1623 static irqreturn_t e1000_msix_other(int irq, void *data)
1625 struct net_device *netdev = data;
1626 struct e1000_adapter *adapter = netdev_priv(netdev);
1627 struct e1000_hw *hw = &adapter->hw;
1628 u32 icr = er32(ICR);
1630 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1631 if (!test_bit(__E1000_DOWN, &adapter->state))
1632 ew32(IMS, E1000_IMS_OTHER);
1633 return IRQ_NONE;
1636 if (icr & adapter->eiac_mask)
1637 ew32(ICS, (icr & adapter->eiac_mask));
1639 if (icr & E1000_ICR_OTHER) {
1640 if (!(icr & E1000_ICR_LSC))
1641 goto no_link_interrupt;
1642 hw->mac.get_link_status = 1;
1643 /* guard against interrupt when we're going down */
1644 if (!test_bit(__E1000_DOWN, &adapter->state))
1645 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1648 no_link_interrupt:
1649 if (!test_bit(__E1000_DOWN, &adapter->state))
1650 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1652 return IRQ_HANDLED;
1656 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1658 struct net_device *netdev = data;
1659 struct e1000_adapter *adapter = netdev_priv(netdev);
1660 struct e1000_hw *hw = &adapter->hw;
1661 struct e1000_ring *tx_ring = adapter->tx_ring;
1664 adapter->total_tx_bytes = 0;
1665 adapter->total_tx_packets = 0;
1667 if (!e1000_clean_tx_irq(adapter))
1668 /* Ring was not completely cleaned, so fire another interrupt */
1669 ew32(ICS, tx_ring->ims_val);
1671 return IRQ_HANDLED;
1674 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1676 struct net_device *netdev = data;
1677 struct e1000_adapter *adapter = netdev_priv(netdev);
1679 /* Write the ITR value calculated at the end of the
1680 * previous interrupt.
1682 if (adapter->rx_ring->set_itr) {
1683 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1684 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1685 adapter->rx_ring->set_itr = 0;
1688 if (napi_schedule_prep(&adapter->napi)) {
1689 adapter->total_rx_bytes = 0;
1690 adapter->total_rx_packets = 0;
1691 __napi_schedule(&adapter->napi);
1693 return IRQ_HANDLED;
1697 * e1000_configure_msix - Configure MSI-X hardware
1699 * e1000_configure_msix sets up the hardware to properly
1700 * generate MSI-X interrupts.
1702 static void e1000_configure_msix(struct e1000_adapter *adapter)
1704 struct e1000_hw *hw = &adapter->hw;
1705 struct e1000_ring *rx_ring = adapter->rx_ring;
1706 struct e1000_ring *tx_ring = adapter->tx_ring;
1707 int vector = 0;
1708 u32 ctrl_ext, ivar = 0;
1710 adapter->eiac_mask = 0;
1712 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1713 if (hw->mac.type == e1000_82574) {
1714 u32 rfctl = er32(RFCTL);
1715 rfctl |= E1000_RFCTL_ACK_DIS;
1716 ew32(RFCTL, rfctl);
1719 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1720 /* Configure Rx vector */
1721 rx_ring->ims_val = E1000_IMS_RXQ0;
1722 adapter->eiac_mask |= rx_ring->ims_val;
1723 if (rx_ring->itr_val)
1724 writel(1000000000 / (rx_ring->itr_val * 256),
1725 hw->hw_addr + rx_ring->itr_register);
1726 else
1727 writel(1, hw->hw_addr + rx_ring->itr_register);
1728 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1730 /* Configure Tx vector */
1731 tx_ring->ims_val = E1000_IMS_TXQ0;
1732 vector++;
1733 if (tx_ring->itr_val)
1734 writel(1000000000 / (tx_ring->itr_val * 256),
1735 hw->hw_addr + tx_ring->itr_register);
1736 else
1737 writel(1, hw->hw_addr + tx_ring->itr_register);
1738 adapter->eiac_mask |= tx_ring->ims_val;
1739 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1741 /* set vector for Other Causes, e.g. link changes */
1742 vector++;
1743 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1744 if (rx_ring->itr_val)
1745 writel(1000000000 / (rx_ring->itr_val * 256),
1746 hw->hw_addr + E1000_EITR_82574(vector));
1747 else
1748 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1750 /* Cause Tx interrupts on every write back */
1751 ivar |= (1 << 31);
1753 ew32(IVAR, ivar);
1755 /* enable MSI-X PBA support */
1756 ctrl_ext = er32(CTRL_EXT);
1757 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1759 /* Auto-Mask Other interrupts upon ICR read */
1760 #define E1000_EIAC_MASK_82574 0x01F00000
1761 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1762 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1763 ew32(CTRL_EXT, ctrl_ext);
1764 e1e_flush();
1767 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1769 if (adapter->msix_entries) {
1770 pci_disable_msix(adapter->pdev);
1771 kfree(adapter->msix_entries);
1772 adapter->msix_entries = NULL;
1773 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1774 pci_disable_msi(adapter->pdev);
1775 adapter->flags &= ~FLAG_MSI_ENABLED;
1780 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1782 * Attempt to configure interrupts using the best available
1783 * capabilities of the hardware and kernel.
1785 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1787 int err;
1788 int i;
1790 switch (adapter->int_mode) {
1791 case E1000E_INT_MODE_MSIX:
1792 if (adapter->flags & FLAG_HAS_MSIX) {
1793 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1794 adapter->msix_entries = kcalloc(adapter->num_vectors,
1795 sizeof(struct msix_entry),
1796 GFP_KERNEL);
1797 if (adapter->msix_entries) {
1798 for (i = 0; i < adapter->num_vectors; i++)
1799 adapter->msix_entries[i].entry = i;
1801 err = pci_enable_msix(adapter->pdev,
1802 adapter->msix_entries,
1803 adapter->num_vectors);
1804 if (err == 0) {
1805 return;
1808 /* MSI-X failed, so fall through and try MSI */
1809 e_err("Failed to initialize MSI-X interrupts. "
1810 "Falling back to MSI interrupts.\n");
1811 e1000e_reset_interrupt_capability(adapter);
1813 adapter->int_mode = E1000E_INT_MODE_MSI;
1814 /* Fall through */
1815 case E1000E_INT_MODE_MSI:
1816 if (!pci_enable_msi(adapter->pdev)) {
1817 adapter->flags |= FLAG_MSI_ENABLED;
1818 } else {
1819 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1820 e_err("Failed to initialize MSI interrupts. Falling "
1821 "back to legacy interrupts.\n");
1823 /* Fall through */
1824 case E1000E_INT_MODE_LEGACY:
1825 /* Don't do anything; this is the system default */
1826 break;
1829 /* store the number of vectors being used */
1830 adapter->num_vectors = 1;
1834 * e1000_request_msix - Initialize MSI-X interrupts
1836 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1837 * kernel.
1839 static int e1000_request_msix(struct e1000_adapter *adapter)
1841 struct net_device *netdev = adapter->netdev;
1842 int err = 0, vector = 0;
1844 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1845 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1846 else
1847 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1848 err = request_irq(adapter->msix_entries[vector].vector,
1849 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1850 netdev);
1851 if (err)
1852 goto out;
1853 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1854 adapter->rx_ring->itr_val = adapter->itr;
1855 vector++;
1857 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1858 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1859 else
1860 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1861 err = request_irq(adapter->msix_entries[vector].vector,
1862 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1863 netdev);
1864 if (err)
1865 goto out;
1866 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1867 adapter->tx_ring->itr_val = adapter->itr;
1868 vector++;
1870 err = request_irq(adapter->msix_entries[vector].vector,
1871 e1000_msix_other, 0, netdev->name, netdev);
1872 if (err)
1873 goto out;
1875 e1000_configure_msix(adapter);
1876 return 0;
1877 out:
1878 return err;
1882 * e1000_request_irq - initialize interrupts
1884 * Attempts to configure interrupts using the best available
1885 * capabilities of the hardware and kernel.
1887 static int e1000_request_irq(struct e1000_adapter *adapter)
1889 struct net_device *netdev = adapter->netdev;
1890 int err;
1892 if (adapter->msix_entries) {
1893 err = e1000_request_msix(adapter);
1894 if (!err)
1895 return err;
1896 /* fall back to MSI */
1897 e1000e_reset_interrupt_capability(adapter);
1898 adapter->int_mode = E1000E_INT_MODE_MSI;
1899 e1000e_set_interrupt_capability(adapter);
1901 if (adapter->flags & FLAG_MSI_ENABLED) {
1902 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
1903 netdev->name, netdev);
1904 if (!err)
1905 return err;
1907 /* fall back to legacy interrupt */
1908 e1000e_reset_interrupt_capability(adapter);
1909 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1912 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
1913 netdev->name, netdev);
1914 if (err)
1915 e_err("Unable to allocate interrupt, Error: %d\n", err);
1917 return err;
1920 static void e1000_free_irq(struct e1000_adapter *adapter)
1922 struct net_device *netdev = adapter->netdev;
1924 if (adapter->msix_entries) {
1925 int vector = 0;
1927 free_irq(adapter->msix_entries[vector].vector, netdev);
1928 vector++;
1930 free_irq(adapter->msix_entries[vector].vector, netdev);
1931 vector++;
1933 /* Other Causes interrupt vector */
1934 free_irq(adapter->msix_entries[vector].vector, netdev);
1935 return;
1938 free_irq(adapter->pdev->irq, netdev);
1942 * e1000_irq_disable - Mask off interrupt generation on the NIC
1944 static void e1000_irq_disable(struct e1000_adapter *adapter)
1946 struct e1000_hw *hw = &adapter->hw;
1948 ew32(IMC, ~0);
1949 if (adapter->msix_entries)
1950 ew32(EIAC_82574, 0);
1951 e1e_flush();
1953 if (adapter->msix_entries) {
1954 int i;
1955 for (i = 0; i < adapter->num_vectors; i++)
1956 synchronize_irq(adapter->msix_entries[i].vector);
1957 } else {
1958 synchronize_irq(adapter->pdev->irq);
1963 * e1000_irq_enable - Enable default interrupt generation settings
1965 static void e1000_irq_enable(struct e1000_adapter *adapter)
1967 struct e1000_hw *hw = &adapter->hw;
1969 if (adapter->msix_entries) {
1970 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1971 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1972 } else {
1973 ew32(IMS, IMS_ENABLE_MASK);
1975 e1e_flush();
1979 * e1000_get_hw_control - get control of the h/w from f/w
1980 * @adapter: address of board private structure
1982 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1983 * For ASF and Pass Through versions of f/w this means that
1984 * the driver is loaded. For AMT version (only with 82573)
1985 * of the f/w this means that the network i/f is open.
1987 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1989 struct e1000_hw *hw = &adapter->hw;
1990 u32 ctrl_ext;
1991 u32 swsm;
1993 /* Let firmware know the driver has taken over */
1994 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1995 swsm = er32(SWSM);
1996 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1997 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1998 ctrl_ext = er32(CTRL_EXT);
1999 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2004 * e1000_release_hw_control - release control of the h/w to f/w
2005 * @adapter: address of board private structure
2007 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2008 * For ASF and Pass Through versions of f/w this means that the
2009 * driver is no longer loaded. For AMT version (only with 82573) i
2010 * of the f/w this means that the network i/f is closed.
2013 static void e1000_release_hw_control(struct e1000_adapter *adapter)
2015 struct e1000_hw *hw = &adapter->hw;
2016 u32 ctrl_ext;
2017 u32 swsm;
2019 /* Let firmware taken over control of h/w */
2020 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2021 swsm = er32(SWSM);
2022 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2023 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2024 ctrl_ext = er32(CTRL_EXT);
2025 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2030 * @e1000_alloc_ring - allocate memory for a ring structure
2032 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2033 struct e1000_ring *ring)
2035 struct pci_dev *pdev = adapter->pdev;
2037 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2038 GFP_KERNEL);
2039 if (!ring->desc)
2040 return -ENOMEM;
2042 return 0;
2046 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2047 * @adapter: board private structure
2049 * Return 0 on success, negative on failure
2051 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2053 struct e1000_ring *tx_ring = adapter->tx_ring;
2054 int err = -ENOMEM, size;
2056 size = sizeof(struct e1000_buffer) * tx_ring->count;
2057 tx_ring->buffer_info = vmalloc(size);
2058 if (!tx_ring->buffer_info)
2059 goto err;
2060 memset(tx_ring->buffer_info, 0, size);
2062 /* round up to nearest 4K */
2063 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2064 tx_ring->size = ALIGN(tx_ring->size, 4096);
2066 err = e1000_alloc_ring_dma(adapter, tx_ring);
2067 if (err)
2068 goto err;
2070 tx_ring->next_to_use = 0;
2071 tx_ring->next_to_clean = 0;
2073 return 0;
2074 err:
2075 vfree(tx_ring->buffer_info);
2076 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2077 return err;
2081 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2082 * @adapter: board private structure
2084 * Returns 0 on success, negative on failure
2086 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2088 struct e1000_ring *rx_ring = adapter->rx_ring;
2089 struct e1000_buffer *buffer_info;
2090 int i, size, desc_len, err = -ENOMEM;
2092 size = sizeof(struct e1000_buffer) * rx_ring->count;
2093 rx_ring->buffer_info = vmalloc(size);
2094 if (!rx_ring->buffer_info)
2095 goto err;
2096 memset(rx_ring->buffer_info, 0, size);
2098 for (i = 0; i < rx_ring->count; i++) {
2099 buffer_info = &rx_ring->buffer_info[i];
2100 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2101 sizeof(struct e1000_ps_page),
2102 GFP_KERNEL);
2103 if (!buffer_info->ps_pages)
2104 goto err_pages;
2107 desc_len = sizeof(union e1000_rx_desc_packet_split);
2109 /* Round up to nearest 4K */
2110 rx_ring->size = rx_ring->count * desc_len;
2111 rx_ring->size = ALIGN(rx_ring->size, 4096);
2113 err = e1000_alloc_ring_dma(adapter, rx_ring);
2114 if (err)
2115 goto err_pages;
2117 rx_ring->next_to_clean = 0;
2118 rx_ring->next_to_use = 0;
2119 rx_ring->rx_skb_top = NULL;
2121 return 0;
2123 err_pages:
2124 for (i = 0; i < rx_ring->count; i++) {
2125 buffer_info = &rx_ring->buffer_info[i];
2126 kfree(buffer_info->ps_pages);
2128 err:
2129 vfree(rx_ring->buffer_info);
2130 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2131 return err;
2135 * e1000_clean_tx_ring - Free Tx Buffers
2136 * @adapter: board private structure
2138 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2140 struct e1000_ring *tx_ring = adapter->tx_ring;
2141 struct e1000_buffer *buffer_info;
2142 unsigned long size;
2143 unsigned int i;
2145 for (i = 0; i < tx_ring->count; i++) {
2146 buffer_info = &tx_ring->buffer_info[i];
2147 e1000_put_txbuf(adapter, buffer_info);
2150 size = sizeof(struct e1000_buffer) * tx_ring->count;
2151 memset(tx_ring->buffer_info, 0, size);
2153 memset(tx_ring->desc, 0, tx_ring->size);
2155 tx_ring->next_to_use = 0;
2156 tx_ring->next_to_clean = 0;
2158 writel(0, adapter->hw.hw_addr + tx_ring->head);
2159 writel(0, adapter->hw.hw_addr + tx_ring->tail);
2163 * e1000e_free_tx_resources - Free Tx Resources per Queue
2164 * @adapter: board private structure
2166 * Free all transmit software resources
2168 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2170 struct pci_dev *pdev = adapter->pdev;
2171 struct e1000_ring *tx_ring = adapter->tx_ring;
2173 e1000_clean_tx_ring(adapter);
2175 vfree(tx_ring->buffer_info);
2176 tx_ring->buffer_info = NULL;
2178 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2179 tx_ring->dma);
2180 tx_ring->desc = NULL;
2184 * e1000e_free_rx_resources - Free Rx Resources
2185 * @adapter: board private structure
2187 * Free all receive software resources
2190 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2192 struct pci_dev *pdev = adapter->pdev;
2193 struct e1000_ring *rx_ring = adapter->rx_ring;
2194 int i;
2196 e1000_clean_rx_ring(adapter);
2198 for (i = 0; i < rx_ring->count; i++) {
2199 kfree(rx_ring->buffer_info[i].ps_pages);
2202 vfree(rx_ring->buffer_info);
2203 rx_ring->buffer_info = NULL;
2205 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2206 rx_ring->dma);
2207 rx_ring->desc = NULL;
2211 * e1000_update_itr - update the dynamic ITR value based on statistics
2212 * @adapter: pointer to adapter
2213 * @itr_setting: current adapter->itr
2214 * @packets: the number of packets during this measurement interval
2215 * @bytes: the number of bytes during this measurement interval
2217 * Stores a new ITR value based on packets and byte
2218 * counts during the last interrupt. The advantage of per interrupt
2219 * computation is faster updates and more accurate ITR for the current
2220 * traffic pattern. Constants in this function were computed
2221 * based on theoretical maximum wire speed and thresholds were set based
2222 * on testing data as well as attempting to minimize response time
2223 * while increasing bulk throughput. This functionality is controlled
2224 * by the InterruptThrottleRate module parameter.
2226 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2227 u16 itr_setting, int packets,
2228 int bytes)
2230 unsigned int retval = itr_setting;
2232 if (packets == 0)
2233 goto update_itr_done;
2235 switch (itr_setting) {
2236 case lowest_latency:
2237 /* handle TSO and jumbo frames */
2238 if (bytes/packets > 8000)
2239 retval = bulk_latency;
2240 else if ((packets < 5) && (bytes > 512)) {
2241 retval = low_latency;
2243 break;
2244 case low_latency: /* 50 usec aka 20000 ints/s */
2245 if (bytes > 10000) {
2246 /* this if handles the TSO accounting */
2247 if (bytes/packets > 8000) {
2248 retval = bulk_latency;
2249 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
2250 retval = bulk_latency;
2251 } else if ((packets > 35)) {
2252 retval = lowest_latency;
2254 } else if (bytes/packets > 2000) {
2255 retval = bulk_latency;
2256 } else if (packets <= 2 && bytes < 512) {
2257 retval = lowest_latency;
2259 break;
2260 case bulk_latency: /* 250 usec aka 4000 ints/s */
2261 if (bytes > 25000) {
2262 if (packets > 35) {
2263 retval = low_latency;
2265 } else if (bytes < 6000) {
2266 retval = low_latency;
2268 break;
2271 update_itr_done:
2272 return retval;
2275 static void e1000_set_itr(struct e1000_adapter *adapter)
2277 struct e1000_hw *hw = &adapter->hw;
2278 u16 current_itr;
2279 u32 new_itr = adapter->itr;
2281 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2282 if (adapter->link_speed != SPEED_1000) {
2283 current_itr = 0;
2284 new_itr = 4000;
2285 goto set_itr_now;
2288 adapter->tx_itr = e1000_update_itr(adapter,
2289 adapter->tx_itr,
2290 adapter->total_tx_packets,
2291 adapter->total_tx_bytes);
2292 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2293 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2294 adapter->tx_itr = low_latency;
2296 adapter->rx_itr = e1000_update_itr(adapter,
2297 adapter->rx_itr,
2298 adapter->total_rx_packets,
2299 adapter->total_rx_bytes);
2300 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2301 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2302 adapter->rx_itr = low_latency;
2304 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2306 switch (current_itr) {
2307 /* counts and packets in update_itr are dependent on these numbers */
2308 case lowest_latency:
2309 new_itr = 70000;
2310 break;
2311 case low_latency:
2312 new_itr = 20000; /* aka hwitr = ~200 */
2313 break;
2314 case bulk_latency:
2315 new_itr = 4000;
2316 break;
2317 default:
2318 break;
2321 set_itr_now:
2322 if (new_itr != adapter->itr) {
2324 * this attempts to bias the interrupt rate towards Bulk
2325 * by adding intermediate steps when interrupt rate is
2326 * increasing
2328 new_itr = new_itr > adapter->itr ?
2329 min(adapter->itr + (new_itr >> 2), new_itr) :
2330 new_itr;
2331 adapter->itr = new_itr;
2332 adapter->rx_ring->itr_val = new_itr;
2333 if (adapter->msix_entries)
2334 adapter->rx_ring->set_itr = 1;
2335 else
2336 ew32(ITR, 1000000000 / (new_itr * 256));
2341 * e1000_alloc_queues - Allocate memory for all rings
2342 * @adapter: board private structure to initialize
2344 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2346 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2347 if (!adapter->tx_ring)
2348 goto err;
2350 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2351 if (!adapter->rx_ring)
2352 goto err;
2354 return 0;
2355 err:
2356 e_err("Unable to allocate memory for queues\n");
2357 kfree(adapter->rx_ring);
2358 kfree(adapter->tx_ring);
2359 return -ENOMEM;
2363 * e1000_clean - NAPI Rx polling callback
2364 * @napi: struct associated with this polling callback
2365 * @budget: amount of packets driver is allowed to process this poll
2367 static int e1000_clean(struct napi_struct *napi, int budget)
2369 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2370 struct e1000_hw *hw = &adapter->hw;
2371 struct net_device *poll_dev = adapter->netdev;
2372 int tx_cleaned = 1, work_done = 0;
2374 adapter = netdev_priv(poll_dev);
2376 if (adapter->msix_entries &&
2377 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2378 goto clean_rx;
2380 tx_cleaned = e1000_clean_tx_irq(adapter);
2382 clean_rx:
2383 adapter->clean_rx(adapter, &work_done, budget);
2385 if (!tx_cleaned)
2386 work_done = budget;
2388 /* If budget not fully consumed, exit the polling mode */
2389 if (work_done < budget) {
2390 if (adapter->itr_setting & 3)
2391 e1000_set_itr(adapter);
2392 napi_complete(napi);
2393 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2394 if (adapter->msix_entries)
2395 ew32(IMS, adapter->rx_ring->ims_val);
2396 else
2397 e1000_irq_enable(adapter);
2401 return work_done;
2404 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2406 struct e1000_adapter *adapter = netdev_priv(netdev);
2407 struct e1000_hw *hw = &adapter->hw;
2408 u32 vfta, index;
2410 /* don't update vlan cookie if already programmed */
2411 if ((adapter->hw.mng_cookie.status &
2412 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2413 (vid == adapter->mng_vlan_id))
2414 return;
2416 /* add VID to filter table */
2417 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2418 index = (vid >> 5) & 0x7F;
2419 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2420 vfta |= (1 << (vid & 0x1F));
2421 hw->mac.ops.write_vfta(hw, index, vfta);
2425 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2427 struct e1000_adapter *adapter = netdev_priv(netdev);
2428 struct e1000_hw *hw = &adapter->hw;
2429 u32 vfta, index;
2431 if (!test_bit(__E1000_DOWN, &adapter->state))
2432 e1000_irq_disable(adapter);
2433 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2435 if (!test_bit(__E1000_DOWN, &adapter->state))
2436 e1000_irq_enable(adapter);
2438 if ((adapter->hw.mng_cookie.status &
2439 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2440 (vid == adapter->mng_vlan_id)) {
2441 /* release control to f/w */
2442 e1000_release_hw_control(adapter);
2443 return;
2446 /* remove VID from filter table */
2447 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2448 index = (vid >> 5) & 0x7F;
2449 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2450 vfta &= ~(1 << (vid & 0x1F));
2451 hw->mac.ops.write_vfta(hw, index, vfta);
2455 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2457 struct net_device *netdev = adapter->netdev;
2458 u16 vid = adapter->hw.mng_cookie.vlan_id;
2459 u16 old_vid = adapter->mng_vlan_id;
2461 if (!adapter->vlgrp)
2462 return;
2464 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2465 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2466 if (adapter->hw.mng_cookie.status &
2467 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2468 e1000_vlan_rx_add_vid(netdev, vid);
2469 adapter->mng_vlan_id = vid;
2472 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2473 (vid != old_vid) &&
2474 !vlan_group_get_device(adapter->vlgrp, old_vid))
2475 e1000_vlan_rx_kill_vid(netdev, old_vid);
2476 } else {
2477 adapter->mng_vlan_id = vid;
2482 static void e1000_vlan_rx_register(struct net_device *netdev,
2483 struct vlan_group *grp)
2485 struct e1000_adapter *adapter = netdev_priv(netdev);
2486 struct e1000_hw *hw = &adapter->hw;
2487 u32 ctrl, rctl;
2489 if (!test_bit(__E1000_DOWN, &adapter->state))
2490 e1000_irq_disable(adapter);
2491 adapter->vlgrp = grp;
2493 if (grp) {
2494 /* enable VLAN tag insert/strip */
2495 ctrl = er32(CTRL);
2496 ctrl |= E1000_CTRL_VME;
2497 ew32(CTRL, ctrl);
2499 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2500 /* enable VLAN receive filtering */
2501 rctl = er32(RCTL);
2502 rctl &= ~E1000_RCTL_CFIEN;
2503 ew32(RCTL, rctl);
2504 e1000_update_mng_vlan(adapter);
2506 } else {
2507 /* disable VLAN tag insert/strip */
2508 ctrl = er32(CTRL);
2509 ctrl &= ~E1000_CTRL_VME;
2510 ew32(CTRL, ctrl);
2512 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2513 if (adapter->mng_vlan_id !=
2514 (u16)E1000_MNG_VLAN_NONE) {
2515 e1000_vlan_rx_kill_vid(netdev,
2516 adapter->mng_vlan_id);
2517 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2522 if (!test_bit(__E1000_DOWN, &adapter->state))
2523 e1000_irq_enable(adapter);
2526 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2528 u16 vid;
2530 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2532 if (!adapter->vlgrp)
2533 return;
2535 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2536 if (!vlan_group_get_device(adapter->vlgrp, vid))
2537 continue;
2538 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2542 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2544 struct e1000_hw *hw = &adapter->hw;
2545 u32 manc, manc2h, mdef, i, j;
2547 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2548 return;
2550 manc = er32(MANC);
2553 * enable receiving management packets to the host. this will probably
2554 * generate destination unreachable messages from the host OS, but
2555 * the packets will be handled on SMBUS
2557 manc |= E1000_MANC_EN_MNG2HOST;
2558 manc2h = er32(MANC2H);
2560 switch (hw->mac.type) {
2561 default:
2562 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2563 break;
2564 case e1000_82574:
2565 case e1000_82583:
2567 * Check if IPMI pass-through decision filter already exists;
2568 * if so, enable it.
2570 for (i = 0, j = 0; i < 8; i++) {
2571 mdef = er32(MDEF(i));
2573 /* Ignore filters with anything other than IPMI ports */
2574 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2575 continue;
2577 /* Enable this decision filter in MANC2H */
2578 if (mdef)
2579 manc2h |= (1 << i);
2581 j |= mdef;
2584 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2585 break;
2587 /* Create new decision filter in an empty filter */
2588 for (i = 0, j = 0; i < 8; i++)
2589 if (er32(MDEF(i)) == 0) {
2590 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2591 E1000_MDEF_PORT_664));
2592 manc2h |= (1 << 1);
2593 j++;
2594 break;
2597 if (!j)
2598 e_warn("Unable to create IPMI pass-through filter\n");
2599 break;
2602 ew32(MANC2H, manc2h);
2603 ew32(MANC, manc);
2607 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2608 * @adapter: board private structure
2610 * Configure the Tx unit of the MAC after a reset.
2612 static void e1000_configure_tx(struct e1000_adapter *adapter)
2614 struct e1000_hw *hw = &adapter->hw;
2615 struct e1000_ring *tx_ring = adapter->tx_ring;
2616 u64 tdba;
2617 u32 tdlen, tctl, tipg, tarc;
2618 u32 ipgr1, ipgr2;
2620 /* Setup the HW Tx Head and Tail descriptor pointers */
2621 tdba = tx_ring->dma;
2622 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2623 ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2624 ew32(TDBAH, (tdba >> 32));
2625 ew32(TDLEN, tdlen);
2626 ew32(TDH, 0);
2627 ew32(TDT, 0);
2628 tx_ring->head = E1000_TDH;
2629 tx_ring->tail = E1000_TDT;
2631 /* Set the default values for the Tx Inter Packet Gap timer */
2632 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2633 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2634 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2636 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2637 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2641 ew32(TIPG, tipg);
2643 /* Set the Tx Interrupt Delay register */
2644 ew32(TIDV, adapter->tx_int_delay);
2645 /* Tx irq moderation */
2646 ew32(TADV, adapter->tx_abs_int_delay);
2648 /* Program the Transmit Control Register */
2649 tctl = er32(TCTL);
2650 tctl &= ~E1000_TCTL_CT;
2651 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2652 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2654 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2655 tarc = er32(TARC(0));
2657 * set the speed mode bit, we'll clear it if we're not at
2658 * gigabit link later
2660 #define SPEED_MODE_BIT (1 << 21)
2661 tarc |= SPEED_MODE_BIT;
2662 ew32(TARC(0), tarc);
2665 /* errata: program both queues to unweighted RR */
2666 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2667 tarc = er32(TARC(0));
2668 tarc |= 1;
2669 ew32(TARC(0), tarc);
2670 tarc = er32(TARC(1));
2671 tarc |= 1;
2672 ew32(TARC(1), tarc);
2675 /* Setup Transmit Descriptor Settings for eop descriptor */
2676 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2678 /* only set IDE if we are delaying interrupts using the timers */
2679 if (adapter->tx_int_delay)
2680 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2682 /* enable Report Status bit */
2683 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2685 ew32(TCTL, tctl);
2687 e1000e_config_collision_dist(hw);
2691 * e1000_setup_rctl - configure the receive control registers
2692 * @adapter: Board private structure
2694 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2695 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2696 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2698 struct e1000_hw *hw = &adapter->hw;
2699 u32 rctl, rfctl;
2700 u32 psrctl = 0;
2701 u32 pages = 0;
2703 /* Program MC offset vector base */
2704 rctl = er32(RCTL);
2705 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2706 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2707 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2708 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2710 /* Do not Store bad packets */
2711 rctl &= ~E1000_RCTL_SBP;
2713 /* Enable Long Packet receive */
2714 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2715 rctl &= ~E1000_RCTL_LPE;
2716 else
2717 rctl |= E1000_RCTL_LPE;
2719 /* Some systems expect that the CRC is included in SMBUS traffic. The
2720 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2721 * host memory when this is enabled
2723 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2724 rctl |= E1000_RCTL_SECRC;
2726 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2727 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2728 u16 phy_data;
2730 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2731 phy_data &= 0xfff8;
2732 phy_data |= (1 << 2);
2733 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2735 e1e_rphy(hw, 22, &phy_data);
2736 phy_data &= 0x0fff;
2737 phy_data |= (1 << 14);
2738 e1e_wphy(hw, 0x10, 0x2823);
2739 e1e_wphy(hw, 0x11, 0x0003);
2740 e1e_wphy(hw, 22, phy_data);
2743 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2744 if (hw->mac.type == e1000_pch2lan) {
2745 s32 ret_val;
2747 if (rctl & E1000_RCTL_LPE)
2748 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2749 else
2750 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2753 /* Setup buffer sizes */
2754 rctl &= ~E1000_RCTL_SZ_4096;
2755 rctl |= E1000_RCTL_BSEX;
2756 switch (adapter->rx_buffer_len) {
2757 case 2048:
2758 default:
2759 rctl |= E1000_RCTL_SZ_2048;
2760 rctl &= ~E1000_RCTL_BSEX;
2761 break;
2762 case 4096:
2763 rctl |= E1000_RCTL_SZ_4096;
2764 break;
2765 case 8192:
2766 rctl |= E1000_RCTL_SZ_8192;
2767 break;
2768 case 16384:
2769 rctl |= E1000_RCTL_SZ_16384;
2770 break;
2774 * 82571 and greater support packet-split where the protocol
2775 * header is placed in skb->data and the packet data is
2776 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2777 * In the case of a non-split, skb->data is linearly filled,
2778 * followed by the page buffers. Therefore, skb->data is
2779 * sized to hold the largest protocol header.
2781 * allocations using alloc_page take too long for regular MTU
2782 * so only enable packet split for jumbo frames
2784 * Using pages when the page size is greater than 16k wastes
2785 * a lot of memory, since we allocate 3 pages at all times
2786 * per packet.
2788 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2789 if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2790 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2791 adapter->rx_ps_pages = pages;
2792 else
2793 adapter->rx_ps_pages = 0;
2795 if (adapter->rx_ps_pages) {
2796 /* Configure extra packet-split registers */
2797 rfctl = er32(RFCTL);
2798 rfctl |= E1000_RFCTL_EXTEN;
2800 * disable packet split support for IPv6 extension headers,
2801 * because some malformed IPv6 headers can hang the Rx
2803 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2804 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2806 ew32(RFCTL, rfctl);
2808 /* Enable Packet split descriptors */
2809 rctl |= E1000_RCTL_DTYP_PS;
2811 psrctl |= adapter->rx_ps_bsize0 >>
2812 E1000_PSRCTL_BSIZE0_SHIFT;
2814 switch (adapter->rx_ps_pages) {
2815 case 3:
2816 psrctl |= PAGE_SIZE <<
2817 E1000_PSRCTL_BSIZE3_SHIFT;
2818 case 2:
2819 psrctl |= PAGE_SIZE <<
2820 E1000_PSRCTL_BSIZE2_SHIFT;
2821 case 1:
2822 psrctl |= PAGE_SIZE >>
2823 E1000_PSRCTL_BSIZE1_SHIFT;
2824 break;
2827 ew32(PSRCTL, psrctl);
2830 ew32(RCTL, rctl);
2831 /* just started the receive unit, no need to restart */
2832 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2836 * e1000_configure_rx - Configure Receive Unit after Reset
2837 * @adapter: board private structure
2839 * Configure the Rx unit of the MAC after a reset.
2841 static void e1000_configure_rx(struct e1000_adapter *adapter)
2843 struct e1000_hw *hw = &adapter->hw;
2844 struct e1000_ring *rx_ring = adapter->rx_ring;
2845 u64 rdba;
2846 u32 rdlen, rctl, rxcsum, ctrl_ext;
2848 if (adapter->rx_ps_pages) {
2849 /* this is a 32 byte descriptor */
2850 rdlen = rx_ring->count *
2851 sizeof(union e1000_rx_desc_packet_split);
2852 adapter->clean_rx = e1000_clean_rx_irq_ps;
2853 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2854 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2855 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2856 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2857 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2858 } else {
2859 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2860 adapter->clean_rx = e1000_clean_rx_irq;
2861 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2864 /* disable receives while setting up the descriptors */
2865 rctl = er32(RCTL);
2866 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2867 e1e_flush();
2868 msleep(10);
2870 /* set the Receive Delay Timer Register */
2871 ew32(RDTR, adapter->rx_int_delay);
2873 /* irq moderation */
2874 ew32(RADV, adapter->rx_abs_int_delay);
2875 if (adapter->itr_setting != 0)
2876 ew32(ITR, 1000000000 / (adapter->itr * 256));
2878 ctrl_ext = er32(CTRL_EXT);
2879 /* Auto-Mask interrupts upon ICR access */
2880 ctrl_ext |= E1000_CTRL_EXT_IAME;
2881 ew32(IAM, 0xffffffff);
2882 ew32(CTRL_EXT, ctrl_ext);
2883 e1e_flush();
2886 * Setup the HW Rx Head and Tail Descriptor Pointers and
2887 * the Base and Length of the Rx Descriptor Ring
2889 rdba = rx_ring->dma;
2890 ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
2891 ew32(RDBAH, (rdba >> 32));
2892 ew32(RDLEN, rdlen);
2893 ew32(RDH, 0);
2894 ew32(RDT, 0);
2895 rx_ring->head = E1000_RDH;
2896 rx_ring->tail = E1000_RDT;
2898 /* Enable Receive Checksum Offload for TCP and UDP */
2899 rxcsum = er32(RXCSUM);
2900 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2901 rxcsum |= E1000_RXCSUM_TUOFL;
2904 * IPv4 payload checksum for UDP fragments must be
2905 * used in conjunction with packet-split.
2907 if (adapter->rx_ps_pages)
2908 rxcsum |= E1000_RXCSUM_IPPCSE;
2909 } else {
2910 rxcsum &= ~E1000_RXCSUM_TUOFL;
2911 /* no need to clear IPPCSE as it defaults to 0 */
2913 ew32(RXCSUM, rxcsum);
2916 * Enable early receives on supported devices, only takes effect when
2917 * packet size is equal or larger than the specified value (in 8 byte
2918 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2920 if (adapter->flags & FLAG_HAS_ERT) {
2921 if (adapter->netdev->mtu > ETH_DATA_LEN) {
2922 u32 rxdctl = er32(RXDCTL(0));
2923 ew32(RXDCTL(0), rxdctl | 0x3);
2924 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2926 * With jumbo frames and early-receive enabled,
2927 * excessive C-state transition latencies result in
2928 * dropped transactions.
2930 pm_qos_update_request(
2931 adapter->netdev->pm_qos_req, 55);
2932 } else {
2933 pm_qos_update_request(
2934 adapter->netdev->pm_qos_req,
2935 PM_QOS_DEFAULT_VALUE);
2939 /* Enable Receives */
2940 ew32(RCTL, rctl);
2944 * e1000_update_mc_addr_list - Update Multicast addresses
2945 * @hw: pointer to the HW structure
2946 * @mc_addr_list: array of multicast addresses to program
2947 * @mc_addr_count: number of multicast addresses to program
2949 * Updates the Multicast Table Array.
2950 * The caller must have a packed mc_addr_list of multicast addresses.
2952 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2953 u32 mc_addr_count)
2955 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count);
2959 * e1000_set_multi - Multicast and Promiscuous mode set
2960 * @netdev: network interface device structure
2962 * The set_multi entry point is called whenever the multicast address
2963 * list or the network interface flags are updated. This routine is
2964 * responsible for configuring the hardware for proper multicast,
2965 * promiscuous mode, and all-multi behavior.
2967 static void e1000_set_multi(struct net_device *netdev)
2969 struct e1000_adapter *adapter = netdev_priv(netdev);
2970 struct e1000_hw *hw = &adapter->hw;
2971 struct netdev_hw_addr *ha;
2972 u8 *mta_list;
2973 u32 rctl;
2974 int i;
2976 /* Check for Promiscuous and All Multicast modes */
2978 rctl = er32(RCTL);
2980 if (netdev->flags & IFF_PROMISC) {
2981 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2982 rctl &= ~E1000_RCTL_VFE;
2983 } else {
2984 if (netdev->flags & IFF_ALLMULTI) {
2985 rctl |= E1000_RCTL_MPE;
2986 rctl &= ~E1000_RCTL_UPE;
2987 } else {
2988 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2990 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2991 rctl |= E1000_RCTL_VFE;
2994 ew32(RCTL, rctl);
2996 if (!netdev_mc_empty(netdev)) {
2997 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
2998 if (!mta_list)
2999 return;
3001 /* prepare a packed array of only addresses. */
3002 i = 0;
3003 netdev_for_each_mc_addr(ha, netdev)
3004 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3006 e1000_update_mc_addr_list(hw, mta_list, i);
3007 kfree(mta_list);
3008 } else {
3010 * if we're called from probe, we might not have
3011 * anything to do here, so clear out the list
3013 e1000_update_mc_addr_list(hw, NULL, 0);
3018 * e1000_configure - configure the hardware for Rx and Tx
3019 * @adapter: private board structure
3021 static void e1000_configure(struct e1000_adapter *adapter)
3023 e1000_set_multi(adapter->netdev);
3025 e1000_restore_vlan(adapter);
3026 e1000_init_manageability_pt(adapter);
3028 e1000_configure_tx(adapter);
3029 e1000_setup_rctl(adapter);
3030 e1000_configure_rx(adapter);
3031 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
3035 * e1000e_power_up_phy - restore link in case the phy was powered down
3036 * @adapter: address of board private structure
3038 * The phy may be powered down to save power and turn off link when the
3039 * driver is unloaded and wake on lan is not enabled (among others)
3040 * *** this routine MUST be followed by a call to e1000e_reset ***
3042 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3044 if (adapter->hw.phy.ops.power_up)
3045 adapter->hw.phy.ops.power_up(&adapter->hw);
3047 adapter->hw.mac.ops.setup_link(&adapter->hw);
3051 * e1000_power_down_phy - Power down the PHY
3053 * Power down the PHY so no link is implied when interface is down.
3054 * The PHY cannot be powered down if management or WoL is active.
3056 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3058 /* WoL is enabled */
3059 if (adapter->wol)
3060 return;
3062 if (adapter->hw.phy.ops.power_down)
3063 adapter->hw.phy.ops.power_down(&adapter->hw);
3067 * e1000e_reset - bring the hardware into a known good state
3069 * This function boots the hardware and enables some settings that
3070 * require a configuration cycle of the hardware - those cannot be
3071 * set/changed during runtime. After reset the device needs to be
3072 * properly configured for Rx, Tx etc.
3074 void e1000e_reset(struct e1000_adapter *adapter)
3076 struct e1000_mac_info *mac = &adapter->hw.mac;
3077 struct e1000_fc_info *fc = &adapter->hw.fc;
3078 struct e1000_hw *hw = &adapter->hw;
3079 u32 tx_space, min_tx_space, min_rx_space;
3080 u32 pba = adapter->pba;
3081 u16 hwm;
3083 /* reset Packet Buffer Allocation to default */
3084 ew32(PBA, pba);
3086 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3088 * To maintain wire speed transmits, the Tx FIFO should be
3089 * large enough to accommodate two full transmit packets,
3090 * rounded up to the next 1KB and expressed in KB. Likewise,
3091 * the Rx FIFO should be large enough to accommodate at least
3092 * one full receive packet and is similarly rounded up and
3093 * expressed in KB.
3095 pba = er32(PBA);
3096 /* upper 16 bits has Tx packet buffer allocation size in KB */
3097 tx_space = pba >> 16;
3098 /* lower 16 bits has Rx packet buffer allocation size in KB */
3099 pba &= 0xffff;
3101 * the Tx fifo also stores 16 bytes of information about the tx
3102 * but don't include ethernet FCS because hardware appends it
3104 min_tx_space = (adapter->max_frame_size +
3105 sizeof(struct e1000_tx_desc) -
3106 ETH_FCS_LEN) * 2;
3107 min_tx_space = ALIGN(min_tx_space, 1024);
3108 min_tx_space >>= 10;
3109 /* software strips receive CRC, so leave room for it */
3110 min_rx_space = adapter->max_frame_size;
3111 min_rx_space = ALIGN(min_rx_space, 1024);
3112 min_rx_space >>= 10;
3115 * If current Tx allocation is less than the min Tx FIFO size,
3116 * and the min Tx FIFO size is less than the current Rx FIFO
3117 * allocation, take space away from current Rx allocation
3119 if ((tx_space < min_tx_space) &&
3120 ((min_tx_space - tx_space) < pba)) {
3121 pba -= min_tx_space - tx_space;
3124 * if short on Rx space, Rx wins and must trump tx
3125 * adjustment or use Early Receive if available
3127 if ((pba < min_rx_space) &&
3128 (!(adapter->flags & FLAG_HAS_ERT)))
3129 /* ERT enabled in e1000_configure_rx */
3130 pba = min_rx_space;
3133 ew32(PBA, pba);
3138 * flow control settings
3140 * The high water mark must be low enough to fit one full frame
3141 * (or the size used for early receive) above it in the Rx FIFO.
3142 * Set it to the lower of:
3143 * - 90% of the Rx FIFO size, and
3144 * - the full Rx FIFO size minus the early receive size (for parts
3145 * with ERT support assuming ERT set to E1000_ERT_2048), or
3146 * - the full Rx FIFO size minus one full frame
3148 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3149 fc->pause_time = 0xFFFF;
3150 else
3151 fc->pause_time = E1000_FC_PAUSE_TIME;
3152 fc->send_xon = 1;
3153 fc->current_mode = fc->requested_mode;
3155 switch (hw->mac.type) {
3156 default:
3157 if ((adapter->flags & FLAG_HAS_ERT) &&
3158 (adapter->netdev->mtu > ETH_DATA_LEN))
3159 hwm = min(((pba << 10) * 9 / 10),
3160 ((pba << 10) - (E1000_ERT_2048 << 3)));
3161 else
3162 hwm = min(((pba << 10) * 9 / 10),
3163 ((pba << 10) - adapter->max_frame_size));
3165 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3166 fc->low_water = fc->high_water - 8;
3167 break;
3168 case e1000_pchlan:
3170 * Workaround PCH LOM adapter hangs with certain network
3171 * loads. If hangs persist, try disabling Tx flow control.
3173 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3174 fc->high_water = 0x3500;
3175 fc->low_water = 0x1500;
3176 } else {
3177 fc->high_water = 0x5000;
3178 fc->low_water = 0x3000;
3180 fc->refresh_time = 0x1000;
3181 break;
3182 case e1000_pch2lan:
3183 fc->high_water = 0x05C20;
3184 fc->low_water = 0x05048;
3185 fc->pause_time = 0x0650;
3186 fc->refresh_time = 0x0400;
3187 break;
3190 /* Allow time for pending master requests to run */
3191 mac->ops.reset_hw(hw);
3194 * For parts with AMT enabled, let the firmware know
3195 * that the network interface is in control
3197 if (adapter->flags & FLAG_HAS_AMT)
3198 e1000_get_hw_control(adapter);
3200 ew32(WUC, 0);
3202 if (mac->ops.init_hw(hw))
3203 e_err("Hardware Error\n");
3205 e1000_update_mng_vlan(adapter);
3207 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3208 ew32(VET, ETH_P_8021Q);
3210 e1000e_reset_adaptive(hw);
3211 e1000_get_phy_info(hw);
3213 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3214 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3215 u16 phy_data = 0;
3217 * speed up time to link by disabling smart power down, ignore
3218 * the return value of this function because there is nothing
3219 * different we would do if it failed
3221 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3222 phy_data &= ~IGP02E1000_PM_SPD;
3223 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3227 int e1000e_up(struct e1000_adapter *adapter)
3229 struct e1000_hw *hw = &adapter->hw;
3231 /* hardware has been reset, we need to reload some things */
3232 e1000_configure(adapter);
3234 clear_bit(__E1000_DOWN, &adapter->state);
3236 napi_enable(&adapter->napi);
3237 if (adapter->msix_entries)
3238 e1000_configure_msix(adapter);
3239 e1000_irq_enable(adapter);
3241 netif_wake_queue(adapter->netdev);
3243 /* fire a link change interrupt to start the watchdog */
3244 if (adapter->msix_entries)
3245 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3246 else
3247 ew32(ICS, E1000_ICS_LSC);
3249 return 0;
3252 void e1000e_down(struct e1000_adapter *adapter)
3254 struct net_device *netdev = adapter->netdev;
3255 struct e1000_hw *hw = &adapter->hw;
3256 u32 tctl, rctl;
3259 * signal that we're down so the interrupt handler does not
3260 * reschedule our watchdog timer
3262 set_bit(__E1000_DOWN, &adapter->state);
3264 /* disable receives in the hardware */
3265 rctl = er32(RCTL);
3266 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3267 /* flush and sleep below */
3269 netif_stop_queue(netdev);
3271 /* disable transmits in the hardware */
3272 tctl = er32(TCTL);
3273 tctl &= ~E1000_TCTL_EN;
3274 ew32(TCTL, tctl);
3275 /* flush both disables and wait for them to finish */
3276 e1e_flush();
3277 msleep(10);
3279 napi_disable(&adapter->napi);
3280 e1000_irq_disable(adapter);
3282 del_timer_sync(&adapter->watchdog_timer);
3283 del_timer_sync(&adapter->phy_info_timer);
3285 netif_carrier_off(netdev);
3286 adapter->link_speed = 0;
3287 adapter->link_duplex = 0;
3289 if (!pci_channel_offline(adapter->pdev))
3290 e1000e_reset(adapter);
3291 e1000_clean_tx_ring(adapter);
3292 e1000_clean_rx_ring(adapter);
3295 * TODO: for power management, we could drop the link and
3296 * pci_disable_device here.
3300 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3302 might_sleep();
3303 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3304 msleep(1);
3305 e1000e_down(adapter);
3306 e1000e_up(adapter);
3307 clear_bit(__E1000_RESETTING, &adapter->state);
3311 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3312 * @adapter: board private structure to initialize
3314 * e1000_sw_init initializes the Adapter private data structure.
3315 * Fields are initialized based on PCI device information and
3316 * OS network device settings (MTU size).
3318 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3320 struct net_device *netdev = adapter->netdev;
3322 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3323 adapter->rx_ps_bsize0 = 128;
3324 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3325 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3327 e1000e_set_interrupt_capability(adapter);
3329 if (e1000_alloc_queues(adapter))
3330 return -ENOMEM;
3332 /* Explicitly disable IRQ since the NIC can be in any state. */
3333 e1000_irq_disable(adapter);
3335 set_bit(__E1000_DOWN, &adapter->state);
3336 return 0;
3340 * e1000_intr_msi_test - Interrupt Handler
3341 * @irq: interrupt number
3342 * @data: pointer to a network interface device structure
3344 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3346 struct net_device *netdev = data;
3347 struct e1000_adapter *adapter = netdev_priv(netdev);
3348 struct e1000_hw *hw = &adapter->hw;
3349 u32 icr = er32(ICR);
3351 e_dbg("icr is %08X\n", icr);
3352 if (icr & E1000_ICR_RXSEQ) {
3353 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3354 wmb();
3357 return IRQ_HANDLED;
3361 * e1000_test_msi_interrupt - Returns 0 for successful test
3362 * @adapter: board private struct
3364 * code flow taken from tg3.c
3366 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3368 struct net_device *netdev = adapter->netdev;
3369 struct e1000_hw *hw = &adapter->hw;
3370 int err;
3372 /* poll_enable hasn't been called yet, so don't need disable */
3373 /* clear any pending events */
3374 er32(ICR);
3376 /* free the real vector and request a test handler */
3377 e1000_free_irq(adapter);
3378 e1000e_reset_interrupt_capability(adapter);
3380 /* Assume that the test fails, if it succeeds then the test
3381 * MSI irq handler will unset this flag */
3382 adapter->flags |= FLAG_MSI_TEST_FAILED;
3384 err = pci_enable_msi(adapter->pdev);
3385 if (err)
3386 goto msi_test_failed;
3388 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3389 netdev->name, netdev);
3390 if (err) {
3391 pci_disable_msi(adapter->pdev);
3392 goto msi_test_failed;
3395 wmb();
3397 e1000_irq_enable(adapter);
3399 /* fire an unusual interrupt on the test handler */
3400 ew32(ICS, E1000_ICS_RXSEQ);
3401 e1e_flush();
3402 msleep(50);
3404 e1000_irq_disable(adapter);
3406 rmb();
3408 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3409 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3410 err = -EIO;
3411 e_info("MSI interrupt test failed!\n");
3414 free_irq(adapter->pdev->irq, netdev);
3415 pci_disable_msi(adapter->pdev);
3417 if (err == -EIO)
3418 goto msi_test_failed;
3420 /* okay so the test worked, restore settings */
3421 e_dbg("MSI interrupt test succeeded!\n");
3422 msi_test_failed:
3423 e1000e_set_interrupt_capability(adapter);
3424 e1000_request_irq(adapter);
3425 return err;
3429 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3430 * @adapter: board private struct
3432 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3434 static int e1000_test_msi(struct e1000_adapter *adapter)
3436 int err;
3437 u16 pci_cmd;
3439 if (!(adapter->flags & FLAG_MSI_ENABLED))
3440 return 0;
3442 /* disable SERR in case the MSI write causes a master abort */
3443 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3444 if (pci_cmd & PCI_COMMAND_SERR)
3445 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3446 pci_cmd & ~PCI_COMMAND_SERR);
3448 err = e1000_test_msi_interrupt(adapter);
3450 /* re-enable SERR */
3451 if (pci_cmd & PCI_COMMAND_SERR) {
3452 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3453 pci_cmd |= PCI_COMMAND_SERR;
3454 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3457 /* success ! */
3458 if (!err)
3459 return 0;
3461 /* EIO means MSI test failed */
3462 if (err != -EIO)
3463 return err;
3465 /* back to INTx mode */
3466 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3468 e1000_free_irq(adapter);
3470 err = e1000_request_irq(adapter);
3472 return err;
3476 * e1000_open - Called when a network interface is made active
3477 * @netdev: network interface device structure
3479 * Returns 0 on success, negative value on failure
3481 * The open entry point is called when a network interface is made
3482 * active by the system (IFF_UP). At this point all resources needed
3483 * for transmit and receive operations are allocated, the interrupt
3484 * handler is registered with the OS, the watchdog timer is started,
3485 * and the stack is notified that the interface is ready.
3487 static int e1000_open(struct net_device *netdev)
3489 struct e1000_adapter *adapter = netdev_priv(netdev);
3490 struct e1000_hw *hw = &adapter->hw;
3491 struct pci_dev *pdev = adapter->pdev;
3492 int err;
3494 /* disallow open during test */
3495 if (test_bit(__E1000_TESTING, &adapter->state))
3496 return -EBUSY;
3498 pm_runtime_get_sync(&pdev->dev);
3500 netif_carrier_off(netdev);
3502 /* allocate transmit descriptors */
3503 err = e1000e_setup_tx_resources(adapter);
3504 if (err)
3505 goto err_setup_tx;
3507 /* allocate receive descriptors */
3508 err = e1000e_setup_rx_resources(adapter);
3509 if (err)
3510 goto err_setup_rx;
3513 * If AMT is enabled, let the firmware know that the network
3514 * interface is now open and reset the part to a known state.
3516 if (adapter->flags & FLAG_HAS_AMT) {
3517 e1000_get_hw_control(adapter);
3518 e1000e_reset(adapter);
3521 e1000e_power_up_phy(adapter);
3523 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3524 if ((adapter->hw.mng_cookie.status &
3525 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3526 e1000_update_mng_vlan(adapter);
3528 /* DMA latency requirement to workaround early-receive/jumbo issue */
3529 if (adapter->flags & FLAG_HAS_ERT)
3530 adapter->netdev->pm_qos_req =
3531 pm_qos_add_request(PM_QOS_CPU_DMA_LATENCY,
3532 PM_QOS_DEFAULT_VALUE);
3535 * before we allocate an interrupt, we must be ready to handle it.
3536 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3537 * as soon as we call pci_request_irq, so we have to setup our
3538 * clean_rx handler before we do so.
3540 e1000_configure(adapter);
3542 err = e1000_request_irq(adapter);
3543 if (err)
3544 goto err_req_irq;
3547 * Work around PCIe errata with MSI interrupts causing some chipsets to
3548 * ignore e1000e MSI messages, which means we need to test our MSI
3549 * interrupt now
3551 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3552 err = e1000_test_msi(adapter);
3553 if (err) {
3554 e_err("Interrupt allocation failed\n");
3555 goto err_req_irq;
3559 /* From here on the code is the same as e1000e_up() */
3560 clear_bit(__E1000_DOWN, &adapter->state);
3562 napi_enable(&adapter->napi);
3564 e1000_irq_enable(adapter);
3566 netif_start_queue(netdev);
3568 adapter->idle_check = true;
3569 pm_runtime_put(&pdev->dev);
3571 /* fire a link status change interrupt to start the watchdog */
3572 if (adapter->msix_entries)
3573 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3574 else
3575 ew32(ICS, E1000_ICS_LSC);
3577 return 0;
3579 err_req_irq:
3580 e1000_release_hw_control(adapter);
3581 e1000_power_down_phy(adapter);
3582 e1000e_free_rx_resources(adapter);
3583 err_setup_rx:
3584 e1000e_free_tx_resources(adapter);
3585 err_setup_tx:
3586 e1000e_reset(adapter);
3587 pm_runtime_put_sync(&pdev->dev);
3589 return err;
3593 * e1000_close - Disables a network interface
3594 * @netdev: network interface device structure
3596 * Returns 0, this is not allowed to fail
3598 * The close entry point is called when an interface is de-activated
3599 * by the OS. The hardware is still under the drivers control, but
3600 * needs to be disabled. A global MAC reset is issued to stop the
3601 * hardware, and all transmit and receive resources are freed.
3603 static int e1000_close(struct net_device *netdev)
3605 struct e1000_adapter *adapter = netdev_priv(netdev);
3606 struct pci_dev *pdev = adapter->pdev;
3608 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3610 pm_runtime_get_sync(&pdev->dev);
3612 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3613 e1000e_down(adapter);
3614 e1000_free_irq(adapter);
3616 e1000_power_down_phy(adapter);
3618 e1000e_free_tx_resources(adapter);
3619 e1000e_free_rx_resources(adapter);
3622 * kill manageability vlan ID if supported, but not if a vlan with
3623 * the same ID is registered on the host OS (let 8021q kill it)
3625 if ((adapter->hw.mng_cookie.status &
3626 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3627 !(adapter->vlgrp &&
3628 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3629 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3632 * If AMT is enabled, let the firmware know that the network
3633 * interface is now closed
3635 if (adapter->flags & FLAG_HAS_AMT)
3636 e1000_release_hw_control(adapter);
3638 if (adapter->flags & FLAG_HAS_ERT) {
3639 pm_qos_remove_request(adapter->netdev->pm_qos_req);
3640 adapter->netdev->pm_qos_req = NULL;
3643 pm_runtime_put_sync(&pdev->dev);
3645 return 0;
3648 * e1000_set_mac - Change the Ethernet Address of the NIC
3649 * @netdev: network interface device structure
3650 * @p: pointer to an address structure
3652 * Returns 0 on success, negative on failure
3654 static int e1000_set_mac(struct net_device *netdev, void *p)
3656 struct e1000_adapter *adapter = netdev_priv(netdev);
3657 struct sockaddr *addr = p;
3659 if (!is_valid_ether_addr(addr->sa_data))
3660 return -EADDRNOTAVAIL;
3662 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3663 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3665 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3667 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3668 /* activate the work around */
3669 e1000e_set_laa_state_82571(&adapter->hw, 1);
3672 * Hold a copy of the LAA in RAR[14] This is done so that
3673 * between the time RAR[0] gets clobbered and the time it
3674 * gets fixed (in e1000_watchdog), the actual LAA is in one
3675 * of the RARs and no incoming packets directed to this port
3676 * are dropped. Eventually the LAA will be in RAR[0] and
3677 * RAR[14]
3679 e1000e_rar_set(&adapter->hw,
3680 adapter->hw.mac.addr,
3681 adapter->hw.mac.rar_entry_count - 1);
3684 return 0;
3688 * e1000e_update_phy_task - work thread to update phy
3689 * @work: pointer to our work struct
3691 * this worker thread exists because we must acquire a
3692 * semaphore to read the phy, which we could msleep while
3693 * waiting for it, and we can't msleep in a timer.
3695 static void e1000e_update_phy_task(struct work_struct *work)
3697 struct e1000_adapter *adapter = container_of(work,
3698 struct e1000_adapter, update_phy_task);
3699 e1000_get_phy_info(&adapter->hw);
3703 * Need to wait a few seconds after link up to get diagnostic information from
3704 * the phy
3706 static void e1000_update_phy_info(unsigned long data)
3708 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3709 schedule_work(&adapter->update_phy_task);
3713 * e1000e_update_phy_stats - Update the PHY statistics counters
3714 * @adapter: board private structure
3716 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
3718 struct e1000_hw *hw = &adapter->hw;
3719 s32 ret_val;
3720 u16 phy_data;
3722 ret_val = hw->phy.ops.acquire(hw);
3723 if (ret_val)
3724 return;
3726 hw->phy.addr = 1;
3728 #define HV_PHY_STATS_PAGE 778
3730 * A page set is expensive so check if already on desired page.
3731 * If not, set to the page with the PHY status registers.
3733 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
3734 &phy_data);
3735 if (ret_val)
3736 goto release;
3737 if (phy_data != (HV_PHY_STATS_PAGE << IGP_PAGE_SHIFT)) {
3738 ret_val = e1000e_write_phy_reg_mdic(hw,
3739 IGP01E1000_PHY_PAGE_SELECT,
3740 (HV_PHY_STATS_PAGE <<
3741 IGP_PAGE_SHIFT));
3742 if (ret_val)
3743 goto release;
3746 /* Read/clear the upper 16-bit registers and read/accumulate lower */
3748 /* Single Collision Count */
3749 e1000e_read_phy_reg_mdic(hw, HV_SCC_UPPER & MAX_PHY_REG_ADDRESS,
3750 &phy_data);
3751 ret_val = e1000e_read_phy_reg_mdic(hw,
3752 HV_SCC_LOWER & MAX_PHY_REG_ADDRESS,
3753 &phy_data);
3754 if (!ret_val)
3755 adapter->stats.scc += phy_data;
3757 /* Excessive Collision Count */
3758 e1000e_read_phy_reg_mdic(hw, HV_ECOL_UPPER & MAX_PHY_REG_ADDRESS,
3759 &phy_data);
3760 ret_val = e1000e_read_phy_reg_mdic(hw,
3761 HV_ECOL_LOWER & MAX_PHY_REG_ADDRESS,
3762 &phy_data);
3763 if (!ret_val)
3764 adapter->stats.ecol += phy_data;
3766 /* Multiple Collision Count */
3767 e1000e_read_phy_reg_mdic(hw, HV_MCC_UPPER & MAX_PHY_REG_ADDRESS,
3768 &phy_data);
3769 ret_val = e1000e_read_phy_reg_mdic(hw,
3770 HV_MCC_LOWER & MAX_PHY_REG_ADDRESS,
3771 &phy_data);
3772 if (!ret_val)
3773 adapter->stats.mcc += phy_data;
3775 /* Late Collision Count */
3776 e1000e_read_phy_reg_mdic(hw, HV_LATECOL_UPPER & MAX_PHY_REG_ADDRESS,
3777 &phy_data);
3778 ret_val = e1000e_read_phy_reg_mdic(hw,
3779 HV_LATECOL_LOWER &
3780 MAX_PHY_REG_ADDRESS,
3781 &phy_data);
3782 if (!ret_val)
3783 adapter->stats.latecol += phy_data;
3785 /* Collision Count - also used for adaptive IFS */
3786 e1000e_read_phy_reg_mdic(hw, HV_COLC_UPPER & MAX_PHY_REG_ADDRESS,
3787 &phy_data);
3788 ret_val = e1000e_read_phy_reg_mdic(hw,
3789 HV_COLC_LOWER & MAX_PHY_REG_ADDRESS,
3790 &phy_data);
3791 if (!ret_val)
3792 hw->mac.collision_delta = phy_data;
3794 /* Defer Count */
3795 e1000e_read_phy_reg_mdic(hw, HV_DC_UPPER & MAX_PHY_REG_ADDRESS,
3796 &phy_data);
3797 ret_val = e1000e_read_phy_reg_mdic(hw,
3798 HV_DC_LOWER & MAX_PHY_REG_ADDRESS,
3799 &phy_data);
3800 if (!ret_val)
3801 adapter->stats.dc += phy_data;
3803 /* Transmit with no CRS */
3804 e1000e_read_phy_reg_mdic(hw, HV_TNCRS_UPPER & MAX_PHY_REG_ADDRESS,
3805 &phy_data);
3806 ret_val = e1000e_read_phy_reg_mdic(hw,
3807 HV_TNCRS_LOWER & MAX_PHY_REG_ADDRESS,
3808 &phy_data);
3809 if (!ret_val)
3810 adapter->stats.tncrs += phy_data;
3812 release:
3813 hw->phy.ops.release(hw);
3817 * e1000e_update_stats - Update the board statistics counters
3818 * @adapter: board private structure
3820 void e1000e_update_stats(struct e1000_adapter *adapter)
3822 struct net_device *netdev = adapter->netdev;
3823 struct e1000_hw *hw = &adapter->hw;
3824 struct pci_dev *pdev = adapter->pdev;
3827 * Prevent stats update while adapter is being reset, or if the pci
3828 * connection is down.
3830 if (adapter->link_speed == 0)
3831 return;
3832 if (pci_channel_offline(pdev))
3833 return;
3835 adapter->stats.crcerrs += er32(CRCERRS);
3836 adapter->stats.gprc += er32(GPRC);
3837 adapter->stats.gorc += er32(GORCL);
3838 er32(GORCH); /* Clear gorc */
3839 adapter->stats.bprc += er32(BPRC);
3840 adapter->stats.mprc += er32(MPRC);
3841 adapter->stats.roc += er32(ROC);
3843 adapter->stats.mpc += er32(MPC);
3845 /* Half-duplex statistics */
3846 if (adapter->link_duplex == HALF_DUPLEX) {
3847 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
3848 e1000e_update_phy_stats(adapter);
3849 } else {
3850 adapter->stats.scc += er32(SCC);
3851 adapter->stats.ecol += er32(ECOL);
3852 adapter->stats.mcc += er32(MCC);
3853 adapter->stats.latecol += er32(LATECOL);
3854 adapter->stats.dc += er32(DC);
3856 hw->mac.collision_delta = er32(COLC);
3858 if ((hw->mac.type != e1000_82574) &&
3859 (hw->mac.type != e1000_82583))
3860 adapter->stats.tncrs += er32(TNCRS);
3862 adapter->stats.colc += hw->mac.collision_delta;
3865 adapter->stats.xonrxc += er32(XONRXC);
3866 adapter->stats.xontxc += er32(XONTXC);
3867 adapter->stats.xoffrxc += er32(XOFFRXC);
3868 adapter->stats.xofftxc += er32(XOFFTXC);
3869 adapter->stats.gptc += er32(GPTC);
3870 adapter->stats.gotc += er32(GOTCL);
3871 er32(GOTCH); /* Clear gotc */
3872 adapter->stats.rnbc += er32(RNBC);
3873 adapter->stats.ruc += er32(RUC);
3875 adapter->stats.mptc += er32(MPTC);
3876 adapter->stats.bptc += er32(BPTC);
3878 /* used for adaptive IFS */
3880 hw->mac.tx_packet_delta = er32(TPT);
3881 adapter->stats.tpt += hw->mac.tx_packet_delta;
3883 adapter->stats.algnerrc += er32(ALGNERRC);
3884 adapter->stats.rxerrc += er32(RXERRC);
3885 adapter->stats.cexterr += er32(CEXTERR);
3886 adapter->stats.tsctc += er32(TSCTC);
3887 adapter->stats.tsctfc += er32(TSCTFC);
3889 /* Fill out the OS statistics structure */
3890 netdev->stats.multicast = adapter->stats.mprc;
3891 netdev->stats.collisions = adapter->stats.colc;
3893 /* Rx Errors */
3896 * RLEC on some newer hardware can be incorrect so build
3897 * our own version based on RUC and ROC
3899 netdev->stats.rx_errors = adapter->stats.rxerrc +
3900 adapter->stats.crcerrs + adapter->stats.algnerrc +
3901 adapter->stats.ruc + adapter->stats.roc +
3902 adapter->stats.cexterr;
3903 netdev->stats.rx_length_errors = adapter->stats.ruc +
3904 adapter->stats.roc;
3905 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3906 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3907 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3909 /* Tx Errors */
3910 netdev->stats.tx_errors = adapter->stats.ecol +
3911 adapter->stats.latecol;
3912 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3913 netdev->stats.tx_window_errors = adapter->stats.latecol;
3914 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3916 /* Tx Dropped needs to be maintained elsewhere */
3918 /* Management Stats */
3919 adapter->stats.mgptc += er32(MGTPTC);
3920 adapter->stats.mgprc += er32(MGTPRC);
3921 adapter->stats.mgpdc += er32(MGTPDC);
3925 * e1000_phy_read_status - Update the PHY register status snapshot
3926 * @adapter: board private structure
3928 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3930 struct e1000_hw *hw = &adapter->hw;
3931 struct e1000_phy_regs *phy = &adapter->phy_regs;
3932 int ret_val;
3934 if ((er32(STATUS) & E1000_STATUS_LU) &&
3935 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3936 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3937 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3938 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3939 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3940 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3941 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3942 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3943 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3944 if (ret_val)
3945 e_warn("Error reading PHY register\n");
3946 } else {
3948 * Do not read PHY registers if link is not up
3949 * Set values to typical power-on defaults
3951 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3952 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3953 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3954 BMSR_ERCAP);
3955 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3956 ADVERTISE_ALL | ADVERTISE_CSMA);
3957 phy->lpa = 0;
3958 phy->expansion = EXPANSION_ENABLENPAGE;
3959 phy->ctrl1000 = ADVERTISE_1000FULL;
3960 phy->stat1000 = 0;
3961 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3965 static void e1000_print_link_info(struct e1000_adapter *adapter)
3967 struct e1000_hw *hw = &adapter->hw;
3968 u32 ctrl = er32(CTRL);
3970 /* Link status message must follow this format for user tools */
3971 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3972 "Flow Control: %s\n",
3973 adapter->netdev->name,
3974 adapter->link_speed,
3975 (adapter->link_duplex == FULL_DUPLEX) ?
3976 "Full Duplex" : "Half Duplex",
3977 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3978 "RX/TX" :
3979 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3980 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3983 static bool e1000e_has_link(struct e1000_adapter *adapter)
3985 struct e1000_hw *hw = &adapter->hw;
3986 bool link_active = 0;
3987 s32 ret_val = 0;
3990 * get_link_status is set on LSC (link status) interrupt or
3991 * Rx sequence error interrupt. get_link_status will stay
3992 * false until the check_for_link establishes link
3993 * for copper adapters ONLY
3995 switch (hw->phy.media_type) {
3996 case e1000_media_type_copper:
3997 if (hw->mac.get_link_status) {
3998 ret_val = hw->mac.ops.check_for_link(hw);
3999 link_active = !hw->mac.get_link_status;
4000 } else {
4001 link_active = 1;
4003 break;
4004 case e1000_media_type_fiber:
4005 ret_val = hw->mac.ops.check_for_link(hw);
4006 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4007 break;
4008 case e1000_media_type_internal_serdes:
4009 ret_val = hw->mac.ops.check_for_link(hw);
4010 link_active = adapter->hw.mac.serdes_has_link;
4011 break;
4012 default:
4013 case e1000_media_type_unknown:
4014 break;
4017 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4018 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4019 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4020 e_info("Gigabit has been disabled, downgrading speed\n");
4023 return link_active;
4026 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4028 /* make sure the receive unit is started */
4029 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4030 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4031 struct e1000_hw *hw = &adapter->hw;
4032 u32 rctl = er32(RCTL);
4033 ew32(RCTL, rctl | E1000_RCTL_EN);
4034 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4039 * e1000_watchdog - Timer Call-back
4040 * @data: pointer to adapter cast into an unsigned long
4042 static void e1000_watchdog(unsigned long data)
4044 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4046 /* Do the rest outside of interrupt context */
4047 schedule_work(&adapter->watchdog_task);
4049 /* TODO: make this use queue_delayed_work() */
4052 static void e1000_watchdog_task(struct work_struct *work)
4054 struct e1000_adapter *adapter = container_of(work,
4055 struct e1000_adapter, watchdog_task);
4056 struct net_device *netdev = adapter->netdev;
4057 struct e1000_mac_info *mac = &adapter->hw.mac;
4058 struct e1000_phy_info *phy = &adapter->hw.phy;
4059 struct e1000_ring *tx_ring = adapter->tx_ring;
4060 struct e1000_hw *hw = &adapter->hw;
4061 u32 link, tctl;
4062 int tx_pending = 0;
4064 link = e1000e_has_link(adapter);
4065 if ((netif_carrier_ok(netdev)) && link) {
4066 /* Cancel scheduled suspend requests. */
4067 pm_runtime_resume(netdev->dev.parent);
4069 e1000e_enable_receives(adapter);
4070 goto link_up;
4073 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4074 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4075 e1000_update_mng_vlan(adapter);
4077 if (link) {
4078 if (!netif_carrier_ok(netdev)) {
4079 bool txb2b = 1;
4081 /* Cancel scheduled suspend requests. */
4082 pm_runtime_resume(netdev->dev.parent);
4084 /* update snapshot of PHY registers on LSC */
4085 e1000_phy_read_status(adapter);
4086 mac->ops.get_link_up_info(&adapter->hw,
4087 &adapter->link_speed,
4088 &adapter->link_duplex);
4089 e1000_print_link_info(adapter);
4091 * On supported PHYs, check for duplex mismatch only
4092 * if link has autonegotiated at 10/100 half
4094 if ((hw->phy.type == e1000_phy_igp_3 ||
4095 hw->phy.type == e1000_phy_bm) &&
4096 (hw->mac.autoneg == true) &&
4097 (adapter->link_speed == SPEED_10 ||
4098 adapter->link_speed == SPEED_100) &&
4099 (adapter->link_duplex == HALF_DUPLEX)) {
4100 u16 autoneg_exp;
4102 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4104 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4105 e_info("Autonegotiated half duplex but"
4106 " link partner cannot autoneg. "
4107 " Try forcing full duplex if "
4108 "link gets many collisions.\n");
4111 /* adjust timeout factor according to speed/duplex */
4112 adapter->tx_timeout_factor = 1;
4113 switch (adapter->link_speed) {
4114 case SPEED_10:
4115 txb2b = 0;
4116 adapter->tx_timeout_factor = 16;
4117 break;
4118 case SPEED_100:
4119 txb2b = 0;
4120 adapter->tx_timeout_factor = 10;
4121 break;
4125 * workaround: re-program speed mode bit after
4126 * link-up event
4128 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4129 !txb2b) {
4130 u32 tarc0;
4131 tarc0 = er32(TARC(0));
4132 tarc0 &= ~SPEED_MODE_BIT;
4133 ew32(TARC(0), tarc0);
4137 * disable TSO for pcie and 10/100 speeds, to avoid
4138 * some hardware issues
4140 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4141 switch (adapter->link_speed) {
4142 case SPEED_10:
4143 case SPEED_100:
4144 e_info("10/100 speed: disabling TSO\n");
4145 netdev->features &= ~NETIF_F_TSO;
4146 netdev->features &= ~NETIF_F_TSO6;
4147 break;
4148 case SPEED_1000:
4149 netdev->features |= NETIF_F_TSO;
4150 netdev->features |= NETIF_F_TSO6;
4151 break;
4152 default:
4153 /* oops */
4154 break;
4159 * enable transmits in the hardware, need to do this
4160 * after setting TARC(0)
4162 tctl = er32(TCTL);
4163 tctl |= E1000_TCTL_EN;
4164 ew32(TCTL, tctl);
4167 * Perform any post-link-up configuration before
4168 * reporting link up.
4170 if (phy->ops.cfg_on_link_up)
4171 phy->ops.cfg_on_link_up(hw);
4173 netif_carrier_on(netdev);
4175 if (!test_bit(__E1000_DOWN, &adapter->state))
4176 mod_timer(&adapter->phy_info_timer,
4177 round_jiffies(jiffies + 2 * HZ));
4179 } else {
4180 if (netif_carrier_ok(netdev)) {
4181 adapter->link_speed = 0;
4182 adapter->link_duplex = 0;
4183 /* Link status message must follow this format */
4184 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4185 adapter->netdev->name);
4186 netif_carrier_off(netdev);
4187 if (!test_bit(__E1000_DOWN, &adapter->state))
4188 mod_timer(&adapter->phy_info_timer,
4189 round_jiffies(jiffies + 2 * HZ));
4191 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4192 schedule_work(&adapter->reset_task);
4193 else
4194 pm_schedule_suspend(netdev->dev.parent,
4195 LINK_TIMEOUT);
4199 link_up:
4200 e1000e_update_stats(adapter);
4202 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4203 adapter->tpt_old = adapter->stats.tpt;
4204 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4205 adapter->colc_old = adapter->stats.colc;
4207 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4208 adapter->gorc_old = adapter->stats.gorc;
4209 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4210 adapter->gotc_old = adapter->stats.gotc;
4212 e1000e_update_adaptive(&adapter->hw);
4214 if (!netif_carrier_ok(netdev)) {
4215 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
4216 tx_ring->count);
4217 if (tx_pending) {
4219 * We've lost link, so the controller stops DMA,
4220 * but we've got queued Tx work that's never going
4221 * to get done, so reset controller to flush Tx.
4222 * (Do the reset outside of interrupt context).
4224 adapter->tx_timeout_count++;
4225 schedule_work(&adapter->reset_task);
4226 /* return immediately since reset is imminent */
4227 return;
4231 /* Simple mode for Interrupt Throttle Rate (ITR) */
4232 if (adapter->itr_setting == 4) {
4234 * Symmetric Tx/Rx gets a reduced ITR=2000;
4235 * Total asymmetrical Tx or Rx gets ITR=8000;
4236 * everyone else is between 2000-8000.
4238 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4239 u32 dif = (adapter->gotc > adapter->gorc ?
4240 adapter->gotc - adapter->gorc :
4241 adapter->gorc - adapter->gotc) / 10000;
4242 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4244 ew32(ITR, 1000000000 / (itr * 256));
4247 /* Cause software interrupt to ensure Rx ring is cleaned */
4248 if (adapter->msix_entries)
4249 ew32(ICS, adapter->rx_ring->ims_val);
4250 else
4251 ew32(ICS, E1000_ICS_RXDMT0);
4253 /* Force detection of hung controller every watchdog period */
4254 adapter->detect_tx_hung = 1;
4257 * With 82571 controllers, LAA may be overwritten due to controller
4258 * reset from the other port. Set the appropriate LAA in RAR[0]
4260 if (e1000e_get_laa_state_82571(hw))
4261 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4263 /* Reset the timer */
4264 if (!test_bit(__E1000_DOWN, &adapter->state))
4265 mod_timer(&adapter->watchdog_timer,
4266 round_jiffies(jiffies + 2 * HZ));
4269 #define E1000_TX_FLAGS_CSUM 0x00000001
4270 #define E1000_TX_FLAGS_VLAN 0x00000002
4271 #define E1000_TX_FLAGS_TSO 0x00000004
4272 #define E1000_TX_FLAGS_IPV4 0x00000008
4273 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4274 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4276 static int e1000_tso(struct e1000_adapter *adapter,
4277 struct sk_buff *skb)
4279 struct e1000_ring *tx_ring = adapter->tx_ring;
4280 struct e1000_context_desc *context_desc;
4281 struct e1000_buffer *buffer_info;
4282 unsigned int i;
4283 u32 cmd_length = 0;
4284 u16 ipcse = 0, tucse, mss;
4285 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4286 int err;
4288 if (!skb_is_gso(skb))
4289 return 0;
4291 if (skb_header_cloned(skb)) {
4292 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4293 if (err)
4294 return err;
4297 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4298 mss = skb_shinfo(skb)->gso_size;
4299 if (skb->protocol == htons(ETH_P_IP)) {
4300 struct iphdr *iph = ip_hdr(skb);
4301 iph->tot_len = 0;
4302 iph->check = 0;
4303 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4304 0, IPPROTO_TCP, 0);
4305 cmd_length = E1000_TXD_CMD_IP;
4306 ipcse = skb_transport_offset(skb) - 1;
4307 } else if (skb_is_gso_v6(skb)) {
4308 ipv6_hdr(skb)->payload_len = 0;
4309 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4310 &ipv6_hdr(skb)->daddr,
4311 0, IPPROTO_TCP, 0);
4312 ipcse = 0;
4314 ipcss = skb_network_offset(skb);
4315 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4316 tucss = skb_transport_offset(skb);
4317 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4318 tucse = 0;
4320 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4321 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4323 i = tx_ring->next_to_use;
4324 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4325 buffer_info = &tx_ring->buffer_info[i];
4327 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4328 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4329 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4330 context_desc->upper_setup.tcp_fields.tucss = tucss;
4331 context_desc->upper_setup.tcp_fields.tucso = tucso;
4332 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4333 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4334 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4335 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4337 buffer_info->time_stamp = jiffies;
4338 buffer_info->next_to_watch = i;
4340 i++;
4341 if (i == tx_ring->count)
4342 i = 0;
4343 tx_ring->next_to_use = i;
4345 return 1;
4348 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4350 struct e1000_ring *tx_ring = adapter->tx_ring;
4351 struct e1000_context_desc *context_desc;
4352 struct e1000_buffer *buffer_info;
4353 unsigned int i;
4354 u8 css;
4355 u32 cmd_len = E1000_TXD_CMD_DEXT;
4356 __be16 protocol;
4358 if (skb->ip_summed != CHECKSUM_PARTIAL)
4359 return 0;
4361 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4362 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4363 else
4364 protocol = skb->protocol;
4366 switch (protocol) {
4367 case cpu_to_be16(ETH_P_IP):
4368 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4369 cmd_len |= E1000_TXD_CMD_TCP;
4370 break;
4371 case cpu_to_be16(ETH_P_IPV6):
4372 /* XXX not handling all IPV6 headers */
4373 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4374 cmd_len |= E1000_TXD_CMD_TCP;
4375 break;
4376 default:
4377 if (unlikely(net_ratelimit()))
4378 e_warn("checksum_partial proto=%x!\n",
4379 be16_to_cpu(protocol));
4380 break;
4383 css = skb_transport_offset(skb);
4385 i = tx_ring->next_to_use;
4386 buffer_info = &tx_ring->buffer_info[i];
4387 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4389 context_desc->lower_setup.ip_config = 0;
4390 context_desc->upper_setup.tcp_fields.tucss = css;
4391 context_desc->upper_setup.tcp_fields.tucso =
4392 css + skb->csum_offset;
4393 context_desc->upper_setup.tcp_fields.tucse = 0;
4394 context_desc->tcp_seg_setup.data = 0;
4395 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4397 buffer_info->time_stamp = jiffies;
4398 buffer_info->next_to_watch = i;
4400 i++;
4401 if (i == tx_ring->count)
4402 i = 0;
4403 tx_ring->next_to_use = i;
4405 return 1;
4408 #define E1000_MAX_PER_TXD 8192
4409 #define E1000_MAX_TXD_PWR 12
4411 static int e1000_tx_map(struct e1000_adapter *adapter,
4412 struct sk_buff *skb, unsigned int first,
4413 unsigned int max_per_txd, unsigned int nr_frags,
4414 unsigned int mss)
4416 struct e1000_ring *tx_ring = adapter->tx_ring;
4417 struct pci_dev *pdev = adapter->pdev;
4418 struct e1000_buffer *buffer_info;
4419 unsigned int len = skb_headlen(skb);
4420 unsigned int offset = 0, size, count = 0, i;
4421 unsigned int f, bytecount, segs;
4423 i = tx_ring->next_to_use;
4425 while (len) {
4426 buffer_info = &tx_ring->buffer_info[i];
4427 size = min(len, max_per_txd);
4429 buffer_info->length = size;
4430 buffer_info->time_stamp = jiffies;
4431 buffer_info->next_to_watch = i;
4432 buffer_info->dma = dma_map_single(&pdev->dev,
4433 skb->data + offset,
4434 size, DMA_TO_DEVICE);
4435 buffer_info->mapped_as_page = false;
4436 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4437 goto dma_error;
4439 len -= size;
4440 offset += size;
4441 count++;
4443 if (len) {
4444 i++;
4445 if (i == tx_ring->count)
4446 i = 0;
4450 for (f = 0; f < nr_frags; f++) {
4451 struct skb_frag_struct *frag;
4453 frag = &skb_shinfo(skb)->frags[f];
4454 len = frag->size;
4455 offset = frag->page_offset;
4457 while (len) {
4458 i++;
4459 if (i == tx_ring->count)
4460 i = 0;
4462 buffer_info = &tx_ring->buffer_info[i];
4463 size = min(len, max_per_txd);
4465 buffer_info->length = size;
4466 buffer_info->time_stamp = jiffies;
4467 buffer_info->next_to_watch = i;
4468 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
4469 offset, size,
4470 DMA_TO_DEVICE);
4471 buffer_info->mapped_as_page = true;
4472 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4473 goto dma_error;
4475 len -= size;
4476 offset += size;
4477 count++;
4481 segs = skb_shinfo(skb)->gso_segs ?: 1;
4482 /* multiply data chunks by size of headers */
4483 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4485 tx_ring->buffer_info[i].skb = skb;
4486 tx_ring->buffer_info[i].segs = segs;
4487 tx_ring->buffer_info[i].bytecount = bytecount;
4488 tx_ring->buffer_info[first].next_to_watch = i;
4490 return count;
4492 dma_error:
4493 dev_err(&pdev->dev, "TX DMA map failed\n");
4494 buffer_info->dma = 0;
4495 if (count)
4496 count--;
4498 while (count--) {
4499 if (i==0)
4500 i += tx_ring->count;
4501 i--;
4502 buffer_info = &tx_ring->buffer_info[i];
4503 e1000_put_txbuf(adapter, buffer_info);;
4506 return 0;
4509 static void e1000_tx_queue(struct e1000_adapter *adapter,
4510 int tx_flags, int count)
4512 struct e1000_ring *tx_ring = adapter->tx_ring;
4513 struct e1000_tx_desc *tx_desc = NULL;
4514 struct e1000_buffer *buffer_info;
4515 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4516 unsigned int i;
4518 if (tx_flags & E1000_TX_FLAGS_TSO) {
4519 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4520 E1000_TXD_CMD_TSE;
4521 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4523 if (tx_flags & E1000_TX_FLAGS_IPV4)
4524 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4527 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4528 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4529 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4532 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4533 txd_lower |= E1000_TXD_CMD_VLE;
4534 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4537 i = tx_ring->next_to_use;
4539 while (count--) {
4540 buffer_info = &tx_ring->buffer_info[i];
4541 tx_desc = E1000_TX_DESC(*tx_ring, i);
4542 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4543 tx_desc->lower.data =
4544 cpu_to_le32(txd_lower | buffer_info->length);
4545 tx_desc->upper.data = cpu_to_le32(txd_upper);
4547 i++;
4548 if (i == tx_ring->count)
4549 i = 0;
4552 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4555 * Force memory writes to complete before letting h/w
4556 * know there are new descriptors to fetch. (Only
4557 * applicable for weak-ordered memory model archs,
4558 * such as IA-64).
4560 wmb();
4562 tx_ring->next_to_use = i;
4563 writel(i, adapter->hw.hw_addr + tx_ring->tail);
4565 * we need this if more than one processor can write to our tail
4566 * at a time, it synchronizes IO on IA64/Altix systems
4568 mmiowb();
4571 #define MINIMUM_DHCP_PACKET_SIZE 282
4572 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4573 struct sk_buff *skb)
4575 struct e1000_hw *hw = &adapter->hw;
4576 u16 length, offset;
4578 if (vlan_tx_tag_present(skb)) {
4579 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4580 (adapter->hw.mng_cookie.status &
4581 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4582 return 0;
4585 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4586 return 0;
4588 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4589 return 0;
4592 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4593 struct udphdr *udp;
4595 if (ip->protocol != IPPROTO_UDP)
4596 return 0;
4598 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4599 if (ntohs(udp->dest) != 67)
4600 return 0;
4602 offset = (u8 *)udp + 8 - skb->data;
4603 length = skb->len - offset;
4604 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4607 return 0;
4610 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4612 struct e1000_adapter *adapter = netdev_priv(netdev);
4614 netif_stop_queue(netdev);
4616 * Herbert's original patch had:
4617 * smp_mb__after_netif_stop_queue();
4618 * but since that doesn't exist yet, just open code it.
4620 smp_mb();
4623 * We need to check again in a case another CPU has just
4624 * made room available.
4626 if (e1000_desc_unused(adapter->tx_ring) < size)
4627 return -EBUSY;
4629 /* A reprieve! */
4630 netif_start_queue(netdev);
4631 ++adapter->restart_queue;
4632 return 0;
4635 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4637 struct e1000_adapter *adapter = netdev_priv(netdev);
4639 if (e1000_desc_unused(adapter->tx_ring) >= size)
4640 return 0;
4641 return __e1000_maybe_stop_tx(netdev, size);
4644 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4645 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4646 struct net_device *netdev)
4648 struct e1000_adapter *adapter = netdev_priv(netdev);
4649 struct e1000_ring *tx_ring = adapter->tx_ring;
4650 unsigned int first;
4651 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4652 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4653 unsigned int tx_flags = 0;
4654 unsigned int len = skb_headlen(skb);
4655 unsigned int nr_frags;
4656 unsigned int mss;
4657 int count = 0;
4658 int tso;
4659 unsigned int f;
4661 if (test_bit(__E1000_DOWN, &adapter->state)) {
4662 dev_kfree_skb_any(skb);
4663 return NETDEV_TX_OK;
4666 if (skb->len <= 0) {
4667 dev_kfree_skb_any(skb);
4668 return NETDEV_TX_OK;
4671 mss = skb_shinfo(skb)->gso_size;
4673 * The controller does a simple calculation to
4674 * make sure there is enough room in the FIFO before
4675 * initiating the DMA for each buffer. The calc is:
4676 * 4 = ceil(buffer len/mss). To make sure we don't
4677 * overrun the FIFO, adjust the max buffer len if mss
4678 * drops.
4680 if (mss) {
4681 u8 hdr_len;
4682 max_per_txd = min(mss << 2, max_per_txd);
4683 max_txd_pwr = fls(max_per_txd) - 1;
4686 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4687 * points to just header, pull a few bytes of payload from
4688 * frags into skb->data
4690 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4692 * we do this workaround for ES2LAN, but it is un-necessary,
4693 * avoiding it could save a lot of cycles
4695 if (skb->data_len && (hdr_len == len)) {
4696 unsigned int pull_size;
4698 pull_size = min((unsigned int)4, skb->data_len);
4699 if (!__pskb_pull_tail(skb, pull_size)) {
4700 e_err("__pskb_pull_tail failed.\n");
4701 dev_kfree_skb_any(skb);
4702 return NETDEV_TX_OK;
4704 len = skb_headlen(skb);
4708 /* reserve a descriptor for the offload context */
4709 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4710 count++;
4711 count++;
4713 count += TXD_USE_COUNT(len, max_txd_pwr);
4715 nr_frags = skb_shinfo(skb)->nr_frags;
4716 for (f = 0; f < nr_frags; f++)
4717 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4718 max_txd_pwr);
4720 if (adapter->hw.mac.tx_pkt_filtering)
4721 e1000_transfer_dhcp_info(adapter, skb);
4724 * need: count + 2 desc gap to keep tail from touching
4725 * head, otherwise try next time
4727 if (e1000_maybe_stop_tx(netdev, count + 2))
4728 return NETDEV_TX_BUSY;
4730 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4731 tx_flags |= E1000_TX_FLAGS_VLAN;
4732 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4735 first = tx_ring->next_to_use;
4737 tso = e1000_tso(adapter, skb);
4738 if (tso < 0) {
4739 dev_kfree_skb_any(skb);
4740 return NETDEV_TX_OK;
4743 if (tso)
4744 tx_flags |= E1000_TX_FLAGS_TSO;
4745 else if (e1000_tx_csum(adapter, skb))
4746 tx_flags |= E1000_TX_FLAGS_CSUM;
4749 * Old method was to assume IPv4 packet by default if TSO was enabled.
4750 * 82571 hardware supports TSO capabilities for IPv6 as well...
4751 * no longer assume, we must.
4753 if (skb->protocol == htons(ETH_P_IP))
4754 tx_flags |= E1000_TX_FLAGS_IPV4;
4756 /* if count is 0 then mapping error has occured */
4757 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4758 if (count) {
4759 e1000_tx_queue(adapter, tx_flags, count);
4760 /* Make sure there is space in the ring for the next send. */
4761 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4763 } else {
4764 dev_kfree_skb_any(skb);
4765 tx_ring->buffer_info[first].time_stamp = 0;
4766 tx_ring->next_to_use = first;
4769 return NETDEV_TX_OK;
4773 * e1000_tx_timeout - Respond to a Tx Hang
4774 * @netdev: network interface device structure
4776 static void e1000_tx_timeout(struct net_device *netdev)
4778 struct e1000_adapter *adapter = netdev_priv(netdev);
4780 /* Do the reset outside of interrupt context */
4781 adapter->tx_timeout_count++;
4782 schedule_work(&adapter->reset_task);
4785 static void e1000_reset_task(struct work_struct *work)
4787 struct e1000_adapter *adapter;
4788 adapter = container_of(work, struct e1000_adapter, reset_task);
4790 e1000e_dump(adapter);
4791 e_err("Reset adapter\n");
4792 e1000e_reinit_locked(adapter);
4796 * e1000_get_stats - Get System Network Statistics
4797 * @netdev: network interface device structure
4799 * Returns the address of the device statistics structure.
4800 * The statistics are actually updated from the timer callback.
4802 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4804 /* only return the current stats */
4805 return &netdev->stats;
4809 * e1000_change_mtu - Change the Maximum Transfer Unit
4810 * @netdev: network interface device structure
4811 * @new_mtu: new value for maximum frame size
4813 * Returns 0 on success, negative on failure
4815 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4817 struct e1000_adapter *adapter = netdev_priv(netdev);
4818 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4820 /* Jumbo frame support */
4821 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
4822 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4823 e_err("Jumbo Frames not supported.\n");
4824 return -EINVAL;
4827 /* Supported frame sizes */
4828 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4829 (max_frame > adapter->max_hw_frame_size)) {
4830 e_err("Unsupported MTU setting\n");
4831 return -EINVAL;
4834 /* 82573 Errata 17 */
4835 if (((adapter->hw.mac.type == e1000_82573) ||
4836 (adapter->hw.mac.type == e1000_82574)) &&
4837 (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
4838 adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
4839 e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
4842 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4843 msleep(1);
4844 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4845 adapter->max_frame_size = max_frame;
4846 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4847 netdev->mtu = new_mtu;
4848 if (netif_running(netdev))
4849 e1000e_down(adapter);
4852 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4853 * means we reserve 2 more, this pushes us to allocate from the next
4854 * larger slab size.
4855 * i.e. RXBUFFER_2048 --> size-4096 slab
4856 * However with the new *_jumbo_rx* routines, jumbo receives will use
4857 * fragmented skbs
4860 if (max_frame <= 2048)
4861 adapter->rx_buffer_len = 2048;
4862 else
4863 adapter->rx_buffer_len = 4096;
4865 /* adjust allocation if LPE protects us, and we aren't using SBP */
4866 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4867 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4868 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4869 + ETH_FCS_LEN;
4871 if (netif_running(netdev))
4872 e1000e_up(adapter);
4873 else
4874 e1000e_reset(adapter);
4876 clear_bit(__E1000_RESETTING, &adapter->state);
4878 return 0;
4881 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4882 int cmd)
4884 struct e1000_adapter *adapter = netdev_priv(netdev);
4885 struct mii_ioctl_data *data = if_mii(ifr);
4887 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4888 return -EOPNOTSUPP;
4890 switch (cmd) {
4891 case SIOCGMIIPHY:
4892 data->phy_id = adapter->hw.phy.addr;
4893 break;
4894 case SIOCGMIIREG:
4895 e1000_phy_read_status(adapter);
4897 switch (data->reg_num & 0x1F) {
4898 case MII_BMCR:
4899 data->val_out = adapter->phy_regs.bmcr;
4900 break;
4901 case MII_BMSR:
4902 data->val_out = adapter->phy_regs.bmsr;
4903 break;
4904 case MII_PHYSID1:
4905 data->val_out = (adapter->hw.phy.id >> 16);
4906 break;
4907 case MII_PHYSID2:
4908 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4909 break;
4910 case MII_ADVERTISE:
4911 data->val_out = adapter->phy_regs.advertise;
4912 break;
4913 case MII_LPA:
4914 data->val_out = adapter->phy_regs.lpa;
4915 break;
4916 case MII_EXPANSION:
4917 data->val_out = adapter->phy_regs.expansion;
4918 break;
4919 case MII_CTRL1000:
4920 data->val_out = adapter->phy_regs.ctrl1000;
4921 break;
4922 case MII_STAT1000:
4923 data->val_out = adapter->phy_regs.stat1000;
4924 break;
4925 case MII_ESTATUS:
4926 data->val_out = adapter->phy_regs.estatus;
4927 break;
4928 default:
4929 return -EIO;
4931 break;
4932 case SIOCSMIIREG:
4933 default:
4934 return -EOPNOTSUPP;
4936 return 0;
4939 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4941 switch (cmd) {
4942 case SIOCGMIIPHY:
4943 case SIOCGMIIREG:
4944 case SIOCSMIIREG:
4945 return e1000_mii_ioctl(netdev, ifr, cmd);
4946 default:
4947 return -EOPNOTSUPP;
4951 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
4953 struct e1000_hw *hw = &adapter->hw;
4954 u32 i, mac_reg;
4955 u16 phy_reg;
4956 int retval = 0;
4958 /* copy MAC RARs to PHY RARs */
4959 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
4961 /* copy MAC MTA to PHY MTA */
4962 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
4963 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
4964 e1e_wphy(hw, BM_MTA(i), (u16)(mac_reg & 0xFFFF));
4965 e1e_wphy(hw, BM_MTA(i) + 1, (u16)((mac_reg >> 16) & 0xFFFF));
4968 /* configure PHY Rx Control register */
4969 e1e_rphy(&adapter->hw, BM_RCTL, &phy_reg);
4970 mac_reg = er32(RCTL);
4971 if (mac_reg & E1000_RCTL_UPE)
4972 phy_reg |= BM_RCTL_UPE;
4973 if (mac_reg & E1000_RCTL_MPE)
4974 phy_reg |= BM_RCTL_MPE;
4975 phy_reg &= ~(BM_RCTL_MO_MASK);
4976 if (mac_reg & E1000_RCTL_MO_3)
4977 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
4978 << BM_RCTL_MO_SHIFT);
4979 if (mac_reg & E1000_RCTL_BAM)
4980 phy_reg |= BM_RCTL_BAM;
4981 if (mac_reg & E1000_RCTL_PMCF)
4982 phy_reg |= BM_RCTL_PMCF;
4983 mac_reg = er32(CTRL);
4984 if (mac_reg & E1000_CTRL_RFCE)
4985 phy_reg |= BM_RCTL_RFCE;
4986 e1e_wphy(&adapter->hw, BM_RCTL, phy_reg);
4988 /* enable PHY wakeup in MAC register */
4989 ew32(WUFC, wufc);
4990 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
4992 /* configure and enable PHY wakeup in PHY registers */
4993 e1e_wphy(&adapter->hw, BM_WUFC, wufc);
4994 e1e_wphy(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
4996 /* activate PHY wakeup */
4997 retval = hw->phy.ops.acquire(hw);
4998 if (retval) {
4999 e_err("Could not acquire PHY\n");
5000 return retval;
5002 e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
5003 (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT));
5004 retval = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg);
5005 if (retval) {
5006 e_err("Could not read PHY page 769\n");
5007 goto out;
5009 phy_reg |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5010 retval = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
5011 if (retval)
5012 e_err("Could not set PHY Host Wakeup bit\n");
5013 out:
5014 hw->phy.ops.release(hw);
5016 return retval;
5019 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5020 bool runtime)
5022 struct net_device *netdev = pci_get_drvdata(pdev);
5023 struct e1000_adapter *adapter = netdev_priv(netdev);
5024 struct e1000_hw *hw = &adapter->hw;
5025 u32 ctrl, ctrl_ext, rctl, status;
5026 /* Runtime suspend should only enable wakeup for link changes */
5027 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5028 int retval = 0;
5030 netif_device_detach(netdev);
5032 if (netif_running(netdev)) {
5033 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5034 e1000e_down(adapter);
5035 e1000_free_irq(adapter);
5037 e1000e_reset_interrupt_capability(adapter);
5039 retval = pci_save_state(pdev);
5040 if (retval)
5041 return retval;
5043 status = er32(STATUS);
5044 if (status & E1000_STATUS_LU)
5045 wufc &= ~E1000_WUFC_LNKC;
5047 if (wufc) {
5048 e1000_setup_rctl(adapter);
5049 e1000_set_multi(netdev);
5051 /* turn on all-multi mode if wake on multicast is enabled */
5052 if (wufc & E1000_WUFC_MC) {
5053 rctl = er32(RCTL);
5054 rctl |= E1000_RCTL_MPE;
5055 ew32(RCTL, rctl);
5058 ctrl = er32(CTRL);
5059 /* advertise wake from D3Cold */
5060 #define E1000_CTRL_ADVD3WUC 0x00100000
5061 /* phy power management enable */
5062 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5063 ctrl |= E1000_CTRL_ADVD3WUC;
5064 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5065 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5066 ew32(CTRL, ctrl);
5068 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5069 adapter->hw.phy.media_type ==
5070 e1000_media_type_internal_serdes) {
5071 /* keep the laser running in D3 */
5072 ctrl_ext = er32(CTRL_EXT);
5073 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5074 ew32(CTRL_EXT, ctrl_ext);
5077 if (adapter->flags & FLAG_IS_ICH)
5078 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
5080 /* Allow time for pending master requests to run */
5081 e1000e_disable_pcie_master(&adapter->hw);
5083 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5084 /* enable wakeup by the PHY */
5085 retval = e1000_init_phy_wakeup(adapter, wufc);
5086 if (retval)
5087 return retval;
5088 } else {
5089 /* enable wakeup by the MAC */
5090 ew32(WUFC, wufc);
5091 ew32(WUC, E1000_WUC_PME_EN);
5093 } else {
5094 ew32(WUC, 0);
5095 ew32(WUFC, 0);
5098 *enable_wake = !!wufc;
5100 /* make sure adapter isn't asleep if manageability is enabled */
5101 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5102 (hw->mac.ops.check_mng_mode(hw)))
5103 *enable_wake = true;
5105 if (adapter->hw.phy.type == e1000_phy_igp_3)
5106 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5109 * Release control of h/w to f/w. If f/w is AMT enabled, this
5110 * would have already happened in close and is redundant.
5112 e1000_release_hw_control(adapter);
5114 pci_disable_device(pdev);
5116 return 0;
5119 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5121 if (sleep && wake) {
5122 pci_prepare_to_sleep(pdev);
5123 return;
5126 pci_wake_from_d3(pdev, wake);
5127 pci_set_power_state(pdev, PCI_D3hot);
5130 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5131 bool wake)
5133 struct net_device *netdev = pci_get_drvdata(pdev);
5134 struct e1000_adapter *adapter = netdev_priv(netdev);
5137 * The pci-e switch on some quad port adapters will report a
5138 * correctable error when the MAC transitions from D0 to D3. To
5139 * prevent this we need to mask off the correctable errors on the
5140 * downstream port of the pci-e switch.
5142 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5143 struct pci_dev *us_dev = pdev->bus->self;
5144 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
5145 u16 devctl;
5147 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5148 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5149 (devctl & ~PCI_EXP_DEVCTL_CERE));
5151 e1000_power_off(pdev, sleep, wake);
5153 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5154 } else {
5155 e1000_power_off(pdev, sleep, wake);
5159 #ifdef CONFIG_PCIEASPM
5160 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5162 pci_disable_link_state(pdev, state);
5164 #else
5165 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5167 int pos;
5168 u16 reg16;
5171 * Both device and parent should have the same ASPM setting.
5172 * Disable ASPM in downstream component first and then upstream.
5174 pos = pci_pcie_cap(pdev);
5175 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5176 reg16 &= ~state;
5177 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5179 if (!pdev->bus->self)
5180 return;
5182 pos = pci_pcie_cap(pdev->bus->self);
5183 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5184 reg16 &= ~state;
5185 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5187 #endif
5188 void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5190 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5191 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5192 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5194 __e1000e_disable_aspm(pdev, state);
5197 #ifdef CONFIG_PM_OPS
5198 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5200 return !!adapter->tx_ring->buffer_info;
5203 static int __e1000_resume(struct pci_dev *pdev)
5205 struct net_device *netdev = pci_get_drvdata(pdev);
5206 struct e1000_adapter *adapter = netdev_priv(netdev);
5207 struct e1000_hw *hw = &adapter->hw;
5208 u32 err;
5210 pci_set_power_state(pdev, PCI_D0);
5211 pci_restore_state(pdev);
5212 pci_save_state(pdev);
5213 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5214 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5216 e1000e_set_interrupt_capability(adapter);
5217 if (netif_running(netdev)) {
5218 err = e1000_request_irq(adapter);
5219 if (err)
5220 return err;
5223 e1000e_power_up_phy(adapter);
5225 /* report the system wakeup cause from S3/S4 */
5226 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5227 u16 phy_data;
5229 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5230 if (phy_data) {
5231 e_info("PHY Wakeup cause - %s\n",
5232 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5233 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5234 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5235 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5236 phy_data & E1000_WUS_LNKC ? "Link Status "
5237 " Change" : "other");
5239 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5240 } else {
5241 u32 wus = er32(WUS);
5242 if (wus) {
5243 e_info("MAC Wakeup cause - %s\n",
5244 wus & E1000_WUS_EX ? "Unicast Packet" :
5245 wus & E1000_WUS_MC ? "Multicast Packet" :
5246 wus & E1000_WUS_BC ? "Broadcast Packet" :
5247 wus & E1000_WUS_MAG ? "Magic Packet" :
5248 wus & E1000_WUS_LNKC ? "Link Status Change" :
5249 "other");
5251 ew32(WUS, ~0);
5254 e1000e_reset(adapter);
5256 e1000_init_manageability_pt(adapter);
5258 if (netif_running(netdev))
5259 e1000e_up(adapter);
5261 netif_device_attach(netdev);
5264 * If the controller has AMT, do not set DRV_LOAD until the interface
5265 * is up. For all other cases, let the f/w know that the h/w is now
5266 * under the control of the driver.
5268 if (!(adapter->flags & FLAG_HAS_AMT))
5269 e1000_get_hw_control(adapter);
5271 return 0;
5274 #ifdef CONFIG_PM_SLEEP
5275 static int e1000_suspend(struct device *dev)
5277 struct pci_dev *pdev = to_pci_dev(dev);
5278 int retval;
5279 bool wake;
5281 retval = __e1000_shutdown(pdev, &wake, false);
5282 if (!retval)
5283 e1000_complete_shutdown(pdev, true, wake);
5285 return retval;
5288 static int e1000_resume(struct device *dev)
5290 struct pci_dev *pdev = to_pci_dev(dev);
5291 struct net_device *netdev = pci_get_drvdata(pdev);
5292 struct e1000_adapter *adapter = netdev_priv(netdev);
5294 if (e1000e_pm_ready(adapter))
5295 adapter->idle_check = true;
5297 return __e1000_resume(pdev);
5299 #endif /* CONFIG_PM_SLEEP */
5301 #ifdef CONFIG_PM_RUNTIME
5302 static int e1000_runtime_suspend(struct device *dev)
5304 struct pci_dev *pdev = to_pci_dev(dev);
5305 struct net_device *netdev = pci_get_drvdata(pdev);
5306 struct e1000_adapter *adapter = netdev_priv(netdev);
5308 if (e1000e_pm_ready(adapter)) {
5309 bool wake;
5311 __e1000_shutdown(pdev, &wake, true);
5314 return 0;
5317 static int e1000_idle(struct device *dev)
5319 struct pci_dev *pdev = to_pci_dev(dev);
5320 struct net_device *netdev = pci_get_drvdata(pdev);
5321 struct e1000_adapter *adapter = netdev_priv(netdev);
5323 if (!e1000e_pm_ready(adapter))
5324 return 0;
5326 if (adapter->idle_check) {
5327 adapter->idle_check = false;
5328 if (!e1000e_has_link(adapter))
5329 pm_schedule_suspend(dev, MSEC_PER_SEC);
5332 return -EBUSY;
5335 static int e1000_runtime_resume(struct device *dev)
5337 struct pci_dev *pdev = to_pci_dev(dev);
5338 struct net_device *netdev = pci_get_drvdata(pdev);
5339 struct e1000_adapter *adapter = netdev_priv(netdev);
5341 if (!e1000e_pm_ready(adapter))
5342 return 0;
5344 adapter->idle_check = !dev->power.runtime_auto;
5345 return __e1000_resume(pdev);
5347 #endif /* CONFIG_PM_RUNTIME */
5348 #endif /* CONFIG_PM_OPS */
5350 static void e1000_shutdown(struct pci_dev *pdev)
5352 bool wake = false;
5354 __e1000_shutdown(pdev, &wake, false);
5356 if (system_state == SYSTEM_POWER_OFF)
5357 e1000_complete_shutdown(pdev, false, wake);
5360 #ifdef CONFIG_NET_POLL_CONTROLLER
5362 * Polling 'interrupt' - used by things like netconsole to send skbs
5363 * without having to re-enable interrupts. It's not called while
5364 * the interrupt routine is executing.
5366 static void e1000_netpoll(struct net_device *netdev)
5368 struct e1000_adapter *adapter = netdev_priv(netdev);
5370 disable_irq(adapter->pdev->irq);
5371 e1000_intr(adapter->pdev->irq, netdev);
5373 enable_irq(adapter->pdev->irq);
5375 #endif
5378 * e1000_io_error_detected - called when PCI error is detected
5379 * @pdev: Pointer to PCI device
5380 * @state: The current pci connection state
5382 * This function is called after a PCI bus error affecting
5383 * this device has been detected.
5385 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5386 pci_channel_state_t state)
5388 struct net_device *netdev = pci_get_drvdata(pdev);
5389 struct e1000_adapter *adapter = netdev_priv(netdev);
5391 netif_device_detach(netdev);
5393 if (state == pci_channel_io_perm_failure)
5394 return PCI_ERS_RESULT_DISCONNECT;
5396 if (netif_running(netdev))
5397 e1000e_down(adapter);
5398 pci_disable_device(pdev);
5400 /* Request a slot slot reset. */
5401 return PCI_ERS_RESULT_NEED_RESET;
5405 * e1000_io_slot_reset - called after the pci bus has been reset.
5406 * @pdev: Pointer to PCI device
5408 * Restart the card from scratch, as if from a cold-boot. Implementation
5409 * resembles the first-half of the e1000_resume routine.
5411 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5413 struct net_device *netdev = pci_get_drvdata(pdev);
5414 struct e1000_adapter *adapter = netdev_priv(netdev);
5415 struct e1000_hw *hw = &adapter->hw;
5416 int err;
5417 pci_ers_result_t result;
5419 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5420 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5421 err = pci_enable_device_mem(pdev);
5422 if (err) {
5423 dev_err(&pdev->dev,
5424 "Cannot re-enable PCI device after reset.\n");
5425 result = PCI_ERS_RESULT_DISCONNECT;
5426 } else {
5427 pci_set_master(pdev);
5428 pdev->state_saved = true;
5429 pci_restore_state(pdev);
5431 pci_enable_wake(pdev, PCI_D3hot, 0);
5432 pci_enable_wake(pdev, PCI_D3cold, 0);
5434 e1000e_reset(adapter);
5435 ew32(WUS, ~0);
5436 result = PCI_ERS_RESULT_RECOVERED;
5439 pci_cleanup_aer_uncorrect_error_status(pdev);
5441 return result;
5445 * e1000_io_resume - called when traffic can start flowing again.
5446 * @pdev: Pointer to PCI device
5448 * This callback is called when the error recovery driver tells us that
5449 * its OK to resume normal operation. Implementation resembles the
5450 * second-half of the e1000_resume routine.
5452 static void e1000_io_resume(struct pci_dev *pdev)
5454 struct net_device *netdev = pci_get_drvdata(pdev);
5455 struct e1000_adapter *adapter = netdev_priv(netdev);
5457 e1000_init_manageability_pt(adapter);
5459 if (netif_running(netdev)) {
5460 if (e1000e_up(adapter)) {
5461 dev_err(&pdev->dev,
5462 "can't bring device back up after reset\n");
5463 return;
5467 netif_device_attach(netdev);
5470 * If the controller has AMT, do not set DRV_LOAD until the interface
5471 * is up. For all other cases, let the f/w know that the h/w is now
5472 * under the control of the driver.
5474 if (!(adapter->flags & FLAG_HAS_AMT))
5475 e1000_get_hw_control(adapter);
5479 static void e1000_print_device_info(struct e1000_adapter *adapter)
5481 struct e1000_hw *hw = &adapter->hw;
5482 struct net_device *netdev = adapter->netdev;
5483 u32 pba_num;
5485 /* print bus type/speed/width info */
5486 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
5487 /* bus width */
5488 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5489 "Width x1"),
5490 /* MAC address */
5491 netdev->dev_addr);
5492 e_info("Intel(R) PRO/%s Network Connection\n",
5493 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5494 e1000e_read_pba_num(hw, &pba_num);
5495 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
5496 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
5499 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5501 struct e1000_hw *hw = &adapter->hw;
5502 int ret_val;
5503 u16 buf = 0;
5505 if (hw->mac.type != e1000_82573)
5506 return;
5508 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5509 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5510 /* Deep Smart Power Down (DSPD) */
5511 dev_warn(&adapter->pdev->dev,
5512 "Warning: detected DSPD enabled in EEPROM\n");
5516 static const struct net_device_ops e1000e_netdev_ops = {
5517 .ndo_open = e1000_open,
5518 .ndo_stop = e1000_close,
5519 .ndo_start_xmit = e1000_xmit_frame,
5520 .ndo_get_stats = e1000_get_stats,
5521 .ndo_set_multicast_list = e1000_set_multi,
5522 .ndo_set_mac_address = e1000_set_mac,
5523 .ndo_change_mtu = e1000_change_mtu,
5524 .ndo_do_ioctl = e1000_ioctl,
5525 .ndo_tx_timeout = e1000_tx_timeout,
5526 .ndo_validate_addr = eth_validate_addr,
5528 .ndo_vlan_rx_register = e1000_vlan_rx_register,
5529 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
5530 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
5531 #ifdef CONFIG_NET_POLL_CONTROLLER
5532 .ndo_poll_controller = e1000_netpoll,
5533 #endif
5537 * e1000_probe - Device Initialization Routine
5538 * @pdev: PCI device information struct
5539 * @ent: entry in e1000_pci_tbl
5541 * Returns 0 on success, negative on failure
5543 * e1000_probe initializes an adapter identified by a pci_dev structure.
5544 * The OS initialization, configuring of the adapter private structure,
5545 * and a hardware reset occur.
5547 static int __devinit e1000_probe(struct pci_dev *pdev,
5548 const struct pci_device_id *ent)
5550 struct net_device *netdev;
5551 struct e1000_adapter *adapter;
5552 struct e1000_hw *hw;
5553 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5554 resource_size_t mmio_start, mmio_len;
5555 resource_size_t flash_start, flash_len;
5557 static int cards_found;
5558 int i, err, pci_using_dac;
5559 u16 eeprom_data = 0;
5560 u16 eeprom_apme_mask = E1000_EEPROM_APME;
5562 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
5563 e1000e_disable_aspm(pdev, PCIE_LINK_STATE_L1);
5565 err = pci_enable_device_mem(pdev);
5566 if (err)
5567 return err;
5569 pci_using_dac = 0;
5570 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
5571 if (!err) {
5572 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5573 if (!err)
5574 pci_using_dac = 1;
5575 } else {
5576 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
5577 if (err) {
5578 err = dma_set_coherent_mask(&pdev->dev,
5579 DMA_BIT_MASK(32));
5580 if (err) {
5581 dev_err(&pdev->dev, "No usable DMA "
5582 "configuration, aborting\n");
5583 goto err_dma;
5588 err = pci_request_selected_regions_exclusive(pdev,
5589 pci_select_bars(pdev, IORESOURCE_MEM),
5590 e1000e_driver_name);
5591 if (err)
5592 goto err_pci_reg;
5594 /* AER (Advanced Error Reporting) hooks */
5595 pci_enable_pcie_error_reporting(pdev);
5597 pci_set_master(pdev);
5598 /* PCI config space info */
5599 err = pci_save_state(pdev);
5600 if (err)
5601 goto err_alloc_etherdev;
5603 err = -ENOMEM;
5604 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
5605 if (!netdev)
5606 goto err_alloc_etherdev;
5608 SET_NETDEV_DEV(netdev, &pdev->dev);
5610 netdev->irq = pdev->irq;
5612 pci_set_drvdata(pdev, netdev);
5613 adapter = netdev_priv(netdev);
5614 hw = &adapter->hw;
5615 adapter->netdev = netdev;
5616 adapter->pdev = pdev;
5617 adapter->ei = ei;
5618 adapter->pba = ei->pba;
5619 adapter->flags = ei->flags;
5620 adapter->flags2 = ei->flags2;
5621 adapter->hw.adapter = adapter;
5622 adapter->hw.mac.type = ei->mac;
5623 adapter->max_hw_frame_size = ei->max_hw_frame_size;
5624 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
5626 mmio_start = pci_resource_start(pdev, 0);
5627 mmio_len = pci_resource_len(pdev, 0);
5629 err = -EIO;
5630 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
5631 if (!adapter->hw.hw_addr)
5632 goto err_ioremap;
5634 if ((adapter->flags & FLAG_HAS_FLASH) &&
5635 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
5636 flash_start = pci_resource_start(pdev, 1);
5637 flash_len = pci_resource_len(pdev, 1);
5638 adapter->hw.flash_address = ioremap(flash_start, flash_len);
5639 if (!adapter->hw.flash_address)
5640 goto err_flashmap;
5643 /* construct the net_device struct */
5644 netdev->netdev_ops = &e1000e_netdev_ops;
5645 e1000e_set_ethtool_ops(netdev);
5646 netdev->watchdog_timeo = 5 * HZ;
5647 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
5648 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
5650 netdev->mem_start = mmio_start;
5651 netdev->mem_end = mmio_start + mmio_len;
5653 adapter->bd_number = cards_found++;
5655 e1000e_check_options(adapter);
5657 /* setup adapter struct */
5658 err = e1000_sw_init(adapter);
5659 if (err)
5660 goto err_sw_init;
5662 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5663 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
5664 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5666 err = ei->get_variants(adapter);
5667 if (err)
5668 goto err_hw_init;
5670 if ((adapter->flags & FLAG_IS_ICH) &&
5671 (adapter->flags & FLAG_READ_ONLY_NVM))
5672 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
5674 hw->mac.ops.get_bus_info(&adapter->hw);
5676 adapter->hw.phy.autoneg_wait_to_complete = 0;
5678 /* Copper options */
5679 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
5680 adapter->hw.phy.mdix = AUTO_ALL_MODES;
5681 adapter->hw.phy.disable_polarity_correction = 0;
5682 adapter->hw.phy.ms_type = e1000_ms_hw_default;
5685 if (e1000_check_reset_block(&adapter->hw))
5686 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5688 netdev->features = NETIF_F_SG |
5689 NETIF_F_HW_CSUM |
5690 NETIF_F_HW_VLAN_TX |
5691 NETIF_F_HW_VLAN_RX;
5693 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
5694 netdev->features |= NETIF_F_HW_VLAN_FILTER;
5696 netdev->features |= NETIF_F_TSO;
5697 netdev->features |= NETIF_F_TSO6;
5699 netdev->vlan_features |= NETIF_F_TSO;
5700 netdev->vlan_features |= NETIF_F_TSO6;
5701 netdev->vlan_features |= NETIF_F_HW_CSUM;
5702 netdev->vlan_features |= NETIF_F_SG;
5704 if (pci_using_dac)
5705 netdev->features |= NETIF_F_HIGHDMA;
5707 if (e1000e_enable_mng_pass_thru(&adapter->hw))
5708 adapter->flags |= FLAG_MNG_PT_ENABLED;
5711 * before reading the NVM, reset the controller to
5712 * put the device in a known good starting state
5714 adapter->hw.mac.ops.reset_hw(&adapter->hw);
5717 * systems with ASPM and others may see the checksum fail on the first
5718 * attempt. Let's give it a few tries
5720 for (i = 0;; i++) {
5721 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
5722 break;
5723 if (i == 2) {
5724 e_err("The NVM Checksum Is Not Valid\n");
5725 err = -EIO;
5726 goto err_eeprom;
5730 e1000_eeprom_checks(adapter);
5732 /* copy the MAC address */
5733 if (e1000e_read_mac_addr(&adapter->hw))
5734 e_err("NVM Read Error while reading MAC address\n");
5736 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
5737 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
5739 if (!is_valid_ether_addr(netdev->perm_addr)) {
5740 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
5741 err = -EIO;
5742 goto err_eeprom;
5745 init_timer(&adapter->watchdog_timer);
5746 adapter->watchdog_timer.function = &e1000_watchdog;
5747 adapter->watchdog_timer.data = (unsigned long) adapter;
5749 init_timer(&adapter->phy_info_timer);
5750 adapter->phy_info_timer.function = &e1000_update_phy_info;
5751 adapter->phy_info_timer.data = (unsigned long) adapter;
5753 INIT_WORK(&adapter->reset_task, e1000_reset_task);
5754 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
5755 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
5756 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
5757 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
5759 /* Initialize link parameters. User can change them with ethtool */
5760 adapter->hw.mac.autoneg = 1;
5761 adapter->fc_autoneg = 1;
5762 adapter->hw.fc.requested_mode = e1000_fc_default;
5763 adapter->hw.fc.current_mode = e1000_fc_default;
5764 adapter->hw.phy.autoneg_advertised = 0x2f;
5766 /* ring size defaults */
5767 adapter->rx_ring->count = 256;
5768 adapter->tx_ring->count = 256;
5771 * Initial Wake on LAN setting - If APM wake is enabled in
5772 * the EEPROM, enable the ACPI Magic Packet filter
5774 if (adapter->flags & FLAG_APME_IN_WUC) {
5775 /* APME bit in EEPROM is mapped to WUC.APME */
5776 eeprom_data = er32(WUC);
5777 eeprom_apme_mask = E1000_WUC_APME;
5778 if (eeprom_data & E1000_WUC_PHY_WAKE)
5779 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
5780 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5781 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5782 (adapter->hw.bus.func == 1))
5783 e1000_read_nvm(&adapter->hw,
5784 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5785 else
5786 e1000_read_nvm(&adapter->hw,
5787 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5790 /* fetch WoL from EEPROM */
5791 if (eeprom_data & eeprom_apme_mask)
5792 adapter->eeprom_wol |= E1000_WUFC_MAG;
5795 * now that we have the eeprom settings, apply the special cases
5796 * where the eeprom may be wrong or the board simply won't support
5797 * wake on lan on a particular port
5799 if (!(adapter->flags & FLAG_HAS_WOL))
5800 adapter->eeprom_wol = 0;
5802 /* initialize the wol settings based on the eeprom settings */
5803 adapter->wol = adapter->eeprom_wol;
5804 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5806 /* save off EEPROM version number */
5807 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5809 /* reset the hardware with the new settings */
5810 e1000e_reset(adapter);
5813 * If the controller has AMT, do not set DRV_LOAD until the interface
5814 * is up. For all other cases, let the f/w know that the h/w is now
5815 * under the control of the driver.
5817 if (!(adapter->flags & FLAG_HAS_AMT))
5818 e1000_get_hw_control(adapter);
5820 strcpy(netdev->name, "eth%d");
5821 err = register_netdev(netdev);
5822 if (err)
5823 goto err_register;
5825 /* carrier off reporting is important to ethtool even BEFORE open */
5826 netif_carrier_off(netdev);
5828 e1000_print_device_info(adapter);
5830 if (pci_dev_run_wake(pdev)) {
5831 pm_runtime_set_active(&pdev->dev);
5832 pm_runtime_enable(&pdev->dev);
5834 pm_schedule_suspend(&pdev->dev, MSEC_PER_SEC);
5836 return 0;
5838 err_register:
5839 if (!(adapter->flags & FLAG_HAS_AMT))
5840 e1000_release_hw_control(adapter);
5841 err_eeprom:
5842 if (!e1000_check_reset_block(&adapter->hw))
5843 e1000_phy_hw_reset(&adapter->hw);
5844 err_hw_init:
5846 kfree(adapter->tx_ring);
5847 kfree(adapter->rx_ring);
5848 err_sw_init:
5849 if (adapter->hw.flash_address)
5850 iounmap(adapter->hw.flash_address);
5851 e1000e_reset_interrupt_capability(adapter);
5852 err_flashmap:
5853 iounmap(adapter->hw.hw_addr);
5854 err_ioremap:
5855 free_netdev(netdev);
5856 err_alloc_etherdev:
5857 pci_release_selected_regions(pdev,
5858 pci_select_bars(pdev, IORESOURCE_MEM));
5859 err_pci_reg:
5860 err_dma:
5861 pci_disable_device(pdev);
5862 return err;
5866 * e1000_remove - Device Removal Routine
5867 * @pdev: PCI device information struct
5869 * e1000_remove is called by the PCI subsystem to alert the driver
5870 * that it should release a PCI device. The could be caused by a
5871 * Hot-Plug event, or because the driver is going to be removed from
5872 * memory.
5874 static void __devexit e1000_remove(struct pci_dev *pdev)
5876 struct net_device *netdev = pci_get_drvdata(pdev);
5877 struct e1000_adapter *adapter = netdev_priv(netdev);
5878 bool down = test_bit(__E1000_DOWN, &adapter->state);
5880 pm_runtime_get_sync(&pdev->dev);
5883 * flush_scheduled work may reschedule our watchdog task, so
5884 * explicitly disable watchdog tasks from being rescheduled
5886 if (!down)
5887 set_bit(__E1000_DOWN, &adapter->state);
5888 del_timer_sync(&adapter->watchdog_timer);
5889 del_timer_sync(&adapter->phy_info_timer);
5891 cancel_work_sync(&adapter->reset_task);
5892 cancel_work_sync(&adapter->watchdog_task);
5893 cancel_work_sync(&adapter->downshift_task);
5894 cancel_work_sync(&adapter->update_phy_task);
5895 cancel_work_sync(&adapter->print_hang_task);
5896 flush_scheduled_work();
5898 if (!(netdev->flags & IFF_UP))
5899 e1000_power_down_phy(adapter);
5901 /* Don't lie to e1000_close() down the road. */
5902 if (!down)
5903 clear_bit(__E1000_DOWN, &adapter->state);
5904 unregister_netdev(netdev);
5906 if (pci_dev_run_wake(pdev)) {
5907 pm_runtime_disable(&pdev->dev);
5908 pm_runtime_set_suspended(&pdev->dev);
5910 pm_runtime_put_noidle(&pdev->dev);
5913 * Release control of h/w to f/w. If f/w is AMT enabled, this
5914 * would have already happened in close and is redundant.
5916 e1000_release_hw_control(adapter);
5918 e1000e_reset_interrupt_capability(adapter);
5919 kfree(adapter->tx_ring);
5920 kfree(adapter->rx_ring);
5922 iounmap(adapter->hw.hw_addr);
5923 if (adapter->hw.flash_address)
5924 iounmap(adapter->hw.flash_address);
5925 pci_release_selected_regions(pdev,
5926 pci_select_bars(pdev, IORESOURCE_MEM));
5928 free_netdev(netdev);
5930 /* AER disable */
5931 pci_disable_pcie_error_reporting(pdev);
5933 pci_disable_device(pdev);
5936 /* PCI Error Recovery (ERS) */
5937 static struct pci_error_handlers e1000_err_handler = {
5938 .error_detected = e1000_io_error_detected,
5939 .slot_reset = e1000_io_slot_reset,
5940 .resume = e1000_io_resume,
5943 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
5944 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5945 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5946 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5947 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5948 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5949 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5950 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5951 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5952 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5954 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5955 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5956 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5957 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5959 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5960 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5961 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5963 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5964 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
5965 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
5967 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5968 board_80003es2lan },
5969 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5970 board_80003es2lan },
5971 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5972 board_80003es2lan },
5973 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5974 board_80003es2lan },
5976 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5977 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5978 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5979 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5980 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5981 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5982 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5983 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
5985 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5986 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5987 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5988 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5989 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5990 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5991 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5992 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5993 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5995 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5996 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5997 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5999 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6000 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6001 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6003 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6004 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6005 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6006 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6008 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6009 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6011 { } /* terminate list */
6013 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6015 #ifdef CONFIG_PM_OPS
6016 static const struct dev_pm_ops e1000_pm_ops = {
6017 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6018 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6019 e1000_runtime_resume, e1000_idle)
6021 #endif
6023 /* PCI Device API Driver */
6024 static struct pci_driver e1000_driver = {
6025 .name = e1000e_driver_name,
6026 .id_table = e1000_pci_tbl,
6027 .probe = e1000_probe,
6028 .remove = __devexit_p(e1000_remove),
6029 #ifdef CONFIG_PM_OPS
6030 .driver.pm = &e1000_pm_ops,
6031 #endif
6032 .shutdown = e1000_shutdown,
6033 .err_handler = &e1000_err_handler
6037 * e1000_init_module - Driver Registration Routine
6039 * e1000_init_module is the first routine called when the driver is
6040 * loaded. All it does is register with the PCI subsystem.
6042 static int __init e1000_init_module(void)
6044 int ret;
6045 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6046 e1000e_driver_version);
6047 pr_info("Copyright (c) 1999 - 2010 Intel Corporation.\n");
6048 ret = pci_register_driver(&e1000_driver);
6050 return ret;
6052 module_init(e1000_init_module);
6055 * e1000_exit_module - Driver Exit Cleanup Routine
6057 * e1000_exit_module is called just before the driver is removed
6058 * from memory.
6060 static void __exit e1000_exit_module(void)
6062 pci_unregister_driver(&e1000_driver);
6064 module_exit(e1000_exit_module);
6067 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6068 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6069 MODULE_LICENSE("GPL");
6070 MODULE_VERSION(DRV_VERSION);
6072 /* e1000_main.c */