edac: Convert debugfX to edac_dbg(X,
[linux-2.6/libata-dev.git] / drivers / edac / sb_edac.c
blob05955bfda8491811381e48e29289fc9f946f588c
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
27 #include "edac_core.h"
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.0.0 "
38 #define EDAC_MOD_STR "sbridge_edac"
41 * Debug macros
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
56 * sbridge Memory Controller Registers
60 * FIXME: For now, let's order by device function, as it makes
61 * easier for driver's development proccess. This table should be
62 * moved to pci_id.h when submitted upstream
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
77 * Currently, unused, but will be needed in the future
78 * implementations, as they hold the error counters
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 0x80, 0x88, 0x90, 0x98, 0xa0,
88 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
90 #define MAX_SAD ARRAY_SIZE(dram_rule)
92 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
94 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
95 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
97 static char *get_dram_attr(u32 reg)
99 switch(DRAM_ATTR(reg)) {
100 case 0:
101 return "DRAM";
102 case 1:
103 return "MMCFG";
104 case 2:
105 return "NXM";
106 default:
107 return "unknown";
111 static const u32 interleave_list[] = {
112 0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
115 #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
117 #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
126 static inline int sad_pkg(u32 reg, int interleave)
128 switch (interleave) {
129 case 0:
130 return SAD_PKG0(reg);
131 case 1:
132 return SAD_PKG1(reg);
133 case 2:
134 return SAD_PKG2(reg);
135 case 3:
136 return SAD_PKG3(reg);
137 case 4:
138 return SAD_PKG4(reg);
139 case 5:
140 return SAD_PKG5(reg);
141 case 6:
142 return SAD_PKG6(reg);
143 case 7:
144 return SAD_PKG7(reg);
145 default:
146 return -EINVAL;
150 /* Devices 12 Function 7 */
152 #define TOLM 0x80
153 #define TOHM 0x84
155 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
158 /* Device 13 Function 6 */
160 #define SAD_TARGET 0xf0
162 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
164 #define SAD_CONTROL 0xf4
166 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
168 /* Device 14 function 0 */
170 static const u32 tad_dram_rule[] = {
171 0x40, 0x44, 0x48, 0x4c,
172 0x50, 0x54, 0x58, 0x5c,
173 0x60, 0x64, 0x68, 0x6c,
175 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
177 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
180 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
181 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
182 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
183 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
185 /* Device 15, function 0 */
187 #define MCMTR 0x7c
189 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
193 /* Device 15, function 1 */
195 #define RASENABLES 0xac
196 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
198 /* Device 15, functions 2-5 */
200 static const int mtr_regs[] = {
201 0x80, 0x84, 0x88,
204 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
210 static const u32 tad_ch_nilv_offset[] = {
211 0x90, 0x94, 0x98, 0x9c,
212 0xa0, 0xa4, 0xa8, 0xac,
213 0xb0, 0xb4, 0xb8, 0xbc,
215 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
218 static const u32 rir_way_limit[] = {
219 0x108, 0x10c, 0x110, 0x114, 0x118,
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
223 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
227 #define MAX_RIR_WAY 8
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
237 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
240 /* Device 16, functions 2-7 */
243 * FIXME: Implement the error count reads directly
246 static const u32 correrrcnt[] = {
247 0x104, 0x108, 0x10c, 0x110,
250 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
255 static const u32 correrrthrsld[] = {
256 0x11c, 0x120, 0x124, 0x128,
259 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
263 /* Device 17, function 0 */
265 #define RANK_CFG_A 0x0328
267 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
270 * sbridge structs
273 #define NUM_CHANNELS 4
274 #define MAX_DIMMS 3 /* Max DIMMS per channel */
276 struct sbridge_info {
277 u32 mcmtr;
280 struct sbridge_channel {
281 u32 ranks;
282 u32 dimms;
285 struct pci_id_descr {
286 int dev;
287 int func;
288 int dev_id;
289 int optional;
292 struct pci_id_table {
293 const struct pci_id_descr *descr;
294 int n_devs;
297 struct sbridge_dev {
298 struct list_head list;
299 u8 bus, mc;
300 u8 node_id, source_id;
301 struct pci_dev **pdev;
302 int n_devs;
303 struct mem_ctl_info *mci;
306 struct sbridge_pvt {
307 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras;
308 struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0;
309 struct pci_dev *pci_br;
310 struct pci_dev *pci_tad[NUM_CHANNELS];
312 struct sbridge_dev *sbridge_dev;
314 struct sbridge_info info;
315 struct sbridge_channel channel[NUM_CHANNELS];
317 /* Memory type detection */
318 bool is_mirrored, is_lockstep, is_close_pg;
320 /* Fifo double buffers */
321 struct mce mce_entry[MCE_LOG_LEN];
322 struct mce mce_outentry[MCE_LOG_LEN];
324 /* Fifo in/out counters */
325 unsigned mce_in, mce_out;
327 /* Count indicator to show errors not got */
328 unsigned mce_overrun;
330 /* Memory description */
331 u64 tolm, tohm;
334 #define PCI_DESCR(device, function, device_id) \
335 .dev = (device), \
336 .func = (function), \
337 .dev_id = (device_id)
339 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
340 /* Processor Home Agent */
341 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) },
343 /* Memory controller */
344 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) },
345 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) },
346 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) },
347 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) },
348 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) },
349 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) },
350 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) },
352 /* System Address Decoder */
353 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) },
354 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) },
356 /* Broadcast Registers */
357 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) },
360 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
361 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
362 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
363 {0,} /* 0 terminated list. */
367 * pci_device_id table for which devices we are looking for
369 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
371 {0,} /* 0 terminated list. */
375 /****************************************************************************
376 Anciliary status routines
377 ****************************************************************************/
379 static inline int numrank(u32 mtr)
381 int ranks = (1 << RANK_CNT_BITS(mtr));
383 if (ranks > 4) {
384 edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
385 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386 return -EINVAL;
389 return ranks;
392 static inline int numrow(u32 mtr)
394 int rows = (RANK_WIDTH_BITS(mtr) + 12);
396 if (rows < 13 || rows > 18) {
397 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
398 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399 return -EINVAL;
402 return 1 << rows;
405 static inline int numcol(u32 mtr)
407 int cols = (COL_WIDTH_BITS(mtr) + 10);
409 if (cols > 12) {
410 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
411 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412 return -EINVAL;
415 return 1 << cols;
418 static struct sbridge_dev *get_sbridge_dev(u8 bus)
420 struct sbridge_dev *sbridge_dev;
422 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
423 if (sbridge_dev->bus == bus)
424 return sbridge_dev;
427 return NULL;
430 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
431 const struct pci_id_table *table)
433 struct sbridge_dev *sbridge_dev;
435 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
436 if (!sbridge_dev)
437 return NULL;
439 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
440 GFP_KERNEL);
441 if (!sbridge_dev->pdev) {
442 kfree(sbridge_dev);
443 return NULL;
446 sbridge_dev->bus = bus;
447 sbridge_dev->n_devs = table->n_devs;
448 list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
450 return sbridge_dev;
453 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
455 list_del(&sbridge_dev->list);
456 kfree(sbridge_dev->pdev);
457 kfree(sbridge_dev);
460 /****************************************************************************
461 Memory check routines
462 ****************************************************************************/
463 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
464 unsigned func)
466 struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
467 int i;
469 if (!sbridge_dev)
470 return NULL;
472 for (i = 0; i < sbridge_dev->n_devs; i++) {
473 if (!sbridge_dev->pdev[i])
474 continue;
476 if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
477 PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478 edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
479 bus, slot, func, sbridge_dev->pdev[i]);
480 return sbridge_dev->pdev[i];
484 return NULL;
488 * check_if_ecc_is_active() - Checks if ECC is active
489 * bus: Device bus
491 static int check_if_ecc_is_active(const u8 bus)
493 struct pci_dev *pdev = NULL;
494 u32 mcmtr;
496 pdev = get_pdev_slot_func(bus, 15, 0);
497 if (!pdev) {
498 sbridge_printk(KERN_ERR, "Couldn't find PCI device "
499 "%2x.%02d.%d!!!\n",
500 bus, 15, 0);
501 return -ENODEV;
504 pci_read_config_dword(pdev, MCMTR, &mcmtr);
505 if (!IS_ECC_ENABLED(mcmtr)) {
506 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
507 return -ENODEV;
509 return 0;
512 static int get_dimm_config(struct mem_ctl_info *mci)
514 struct sbridge_pvt *pvt = mci->pvt_info;
515 struct dimm_info *dimm;
516 int i, j, banks, ranks, rows, cols, size, npages;
517 u32 reg;
518 enum edac_type mode;
519 enum mem_type mtype;
521 pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
522 pvt->sbridge_dev->source_id = SOURCE_ID(reg);
524 pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
525 pvt->sbridge_dev->node_id = NODE_ID(reg);
526 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
527 pvt->sbridge_dev->mc,
528 pvt->sbridge_dev->node_id,
529 pvt->sbridge_dev->source_id);
531 pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
532 if (IS_MIRROR_ENABLED(reg)) {
533 edac_dbg(0, "Memory mirror is enabled\n");
534 pvt->is_mirrored = true;
535 } else {
536 edac_dbg(0, "Memory mirror is disabled\n");
537 pvt->is_mirrored = false;
540 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
541 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
542 edac_dbg(0, "Lockstep is enabled\n");
543 mode = EDAC_S8ECD8ED;
544 pvt->is_lockstep = true;
545 } else {
546 edac_dbg(0, "Lockstep is disabled\n");
547 mode = EDAC_S4ECD4ED;
548 pvt->is_lockstep = false;
550 if (IS_CLOSE_PG(pvt->info.mcmtr)) {
551 edac_dbg(0, "address map is on closed page mode\n");
552 pvt->is_close_pg = true;
553 } else {
554 edac_dbg(0, "address map is on open page mode\n");
555 pvt->is_close_pg = false;
558 pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
559 if (IS_RDIMM_ENABLED(reg)) {
560 /* FIXME: Can also be LRDIMM */
561 edac_dbg(0, "Memory is registered\n");
562 mtype = MEM_RDDR3;
563 } else {
564 edac_dbg(0, "Memory is unregistered\n");
565 mtype = MEM_DDR3;
568 /* On all supported DDR3 DIMM types, there are 8 banks available */
569 banks = 8;
571 for (i = 0; i < NUM_CHANNELS; i++) {
572 u32 mtr;
574 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
575 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
576 i, j, 0);
577 pci_read_config_dword(pvt->pci_tad[i],
578 mtr_regs[j], &mtr);
579 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
580 if (IS_DIMM_PRESENT(mtr)) {
581 pvt->channel[i].dimms++;
583 ranks = numrank(mtr);
584 rows = numrow(mtr);
585 cols = numcol(mtr);
587 /* DDR3 has 8 I/O banks */
588 size = (rows * cols * banks * ranks) >> (20 - 3);
589 npages = MiB_TO_PAGES(size);
591 edac_dbg(0, "mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
592 pvt->sbridge_dev->mc, i, j,
593 size, npages,
594 banks, ranks, rows, cols);
596 dimm->nr_pages = npages;
597 dimm->grain = 32;
598 dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
599 dimm->mtype = mtype;
600 dimm->edac_mode = mode;
601 snprintf(dimm->label, sizeof(dimm->label),
602 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
603 pvt->sbridge_dev->source_id, i, j);
608 return 0;
611 static void get_memory_layout(const struct mem_ctl_info *mci)
613 struct sbridge_pvt *pvt = mci->pvt_info;
614 int i, j, k, n_sads, n_tads, sad_interl;
615 u32 reg;
616 u64 limit, prv = 0;
617 u64 tmp_mb;
618 u32 mb, kb;
619 u32 rir_way;
622 * Step 1) Get TOLM/TOHM ranges
625 /* Address range is 32:28 */
626 pci_read_config_dword(pvt->pci_sad1, TOLM,
627 &reg);
628 pvt->tolm = GET_TOLM(reg);
629 tmp_mb = (1 + pvt->tolm) >> 20;
631 mb = div_u64_rem(tmp_mb, 1000, &kb);
632 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
634 /* Address range is already 45:25 */
635 pci_read_config_dword(pvt->pci_sad1, TOHM,
636 &reg);
637 pvt->tohm = GET_TOHM(reg);
638 tmp_mb = (1 + pvt->tohm) >> 20;
640 mb = div_u64_rem(tmp_mb, 1000, &kb);
641 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
644 * Step 2) Get SAD range and SAD Interleave list
645 * TAD registers contain the interleave wayness. However, it
646 * seems simpler to just discover it indirectly, with the
647 * algorithm bellow.
649 prv = 0;
650 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
651 /* SAD_LIMIT Address range is 45:26 */
652 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
653 &reg);
654 limit = SAD_LIMIT(reg);
656 if (!DRAM_RULE_ENABLE(reg))
657 continue;
659 if (limit <= prv)
660 break;
662 tmp_mb = (limit + 1) >> 20;
663 mb = div_u64_rem(tmp_mb, 1000, &kb);
664 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
665 n_sads,
666 get_dram_attr(reg),
667 mb, kb,
668 ((u64)tmp_mb) << 20L,
669 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
670 reg);
671 prv = limit;
673 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
674 &reg);
675 sad_interl = sad_pkg(reg, 0);
676 for (j = 0; j < 8; j++) {
677 if (j > 0 && sad_interl == sad_pkg(reg, j))
678 break;
680 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
681 n_sads, j, sad_pkg(reg, j));
686 * Step 3) Get TAD range
688 prv = 0;
689 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
690 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
691 &reg);
692 limit = TAD_LIMIT(reg);
693 if (limit <= prv)
694 break;
695 tmp_mb = (limit + 1) >> 20;
697 mb = div_u64_rem(tmp_mb, 1000, &kb);
698 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
699 n_tads, mb, kb,
700 ((u64)tmp_mb) << 20L,
701 (u32)TAD_SOCK(reg),
702 (u32)TAD_CH(reg),
703 (u32)TAD_TGT0(reg),
704 (u32)TAD_TGT1(reg),
705 (u32)TAD_TGT2(reg),
706 (u32)TAD_TGT3(reg),
707 reg);
708 prv = limit;
712 * Step 4) Get TAD offsets, per each channel
714 for (i = 0; i < NUM_CHANNELS; i++) {
715 if (!pvt->channel[i].dimms)
716 continue;
717 for (j = 0; j < n_tads; j++) {
718 pci_read_config_dword(pvt->pci_tad[i],
719 tad_ch_nilv_offset[j],
720 &reg);
721 tmp_mb = TAD_OFFSET(reg) >> 20;
722 mb = div_u64_rem(tmp_mb, 1000, &kb);
723 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
724 i, j,
725 mb, kb,
726 ((u64)tmp_mb) << 20L,
727 reg);
732 * Step 6) Get RIR Wayness/Limit, per each channel
734 for (i = 0; i < NUM_CHANNELS; i++) {
735 if (!pvt->channel[i].dimms)
736 continue;
737 for (j = 0; j < MAX_RIR_RANGES; j++) {
738 pci_read_config_dword(pvt->pci_tad[i],
739 rir_way_limit[j],
740 &reg);
742 if (!IS_RIR_VALID(reg))
743 continue;
745 tmp_mb = RIR_LIMIT(reg) >> 20;
746 rir_way = 1 << RIR_WAY(reg);
747 mb = div_u64_rem(tmp_mb, 1000, &kb);
748 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
749 i, j,
750 mb, kb,
751 ((u64)tmp_mb) << 20L,
752 rir_way,
753 reg);
755 for (k = 0; k < rir_way; k++) {
756 pci_read_config_dword(pvt->pci_tad[i],
757 rir_offset[j][k],
758 &reg);
759 tmp_mb = RIR_OFFSET(reg) << 6;
761 mb = div_u64_rem(tmp_mb, 1000, &kb);
762 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
763 i, j, k,
764 mb, kb,
765 ((u64)tmp_mb) << 20L,
766 (u32)RIR_RNK_TGT(reg),
767 reg);
773 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
775 struct sbridge_dev *sbridge_dev;
777 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
778 if (sbridge_dev->node_id == node_id)
779 return sbridge_dev->mci;
781 return NULL;
784 static int get_memory_error_data(struct mem_ctl_info *mci,
785 u64 addr,
786 u8 *socket,
787 long *channel_mask,
788 u8 *rank,
789 char **area_type, char *msg)
791 struct mem_ctl_info *new_mci;
792 struct sbridge_pvt *pvt = mci->pvt_info;
793 int n_rir, n_sads, n_tads, sad_way, sck_xch;
794 int sad_interl, idx, base_ch;
795 int interleave_mode;
796 unsigned sad_interleave[MAX_INTERLEAVE];
797 u32 reg;
798 u8 ch_way,sck_way;
799 u32 tad_offset;
800 u32 rir_way;
801 u32 mb, kb;
802 u64 ch_addr, offset, limit, prv = 0;
806 * Step 0) Check if the address is at special memory ranges
807 * The check bellow is probably enough to fill all cases where
808 * the error is not inside a memory, except for the legacy
809 * range (e. g. VGA addresses). It is unlikely, however, that the
810 * memory controller would generate an error on that range.
812 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
813 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
814 return -EINVAL;
816 if (addr >= (u64)pvt->tohm) {
817 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
818 return -EINVAL;
822 * Step 1) Get socket
824 for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
825 pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
826 &reg);
828 if (!DRAM_RULE_ENABLE(reg))
829 continue;
831 limit = SAD_LIMIT(reg);
832 if (limit <= prv) {
833 sprintf(msg, "Can't discover the memory socket");
834 return -EINVAL;
836 if (addr <= limit)
837 break;
838 prv = limit;
840 if (n_sads == MAX_SAD) {
841 sprintf(msg, "Can't discover the memory socket");
842 return -EINVAL;
844 *area_type = get_dram_attr(reg);
845 interleave_mode = INTERLEAVE_MODE(reg);
847 pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
848 &reg);
849 sad_interl = sad_pkg(reg, 0);
850 for (sad_way = 0; sad_way < 8; sad_way++) {
851 if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
852 break;
853 sad_interleave[sad_way] = sad_pkg(reg, sad_way);
854 edac_dbg(0, "SAD interleave #%d: %d\n",
855 sad_way, sad_interleave[sad_way]);
857 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
858 pvt->sbridge_dev->mc,
859 n_sads,
860 addr,
861 limit,
862 sad_way + 7,
863 interleave_mode ? "" : "XOR[18:16]");
864 if (interleave_mode)
865 idx = ((addr >> 6) ^ (addr >> 16)) & 7;
866 else
867 idx = (addr >> 6) & 7;
868 switch (sad_way) {
869 case 1:
870 idx = 0;
871 break;
872 case 2:
873 idx = idx & 1;
874 break;
875 case 4:
876 idx = idx & 3;
877 break;
878 case 8:
879 break;
880 default:
881 sprintf(msg, "Can't discover socket interleave");
882 return -EINVAL;
884 *socket = sad_interleave[idx];
885 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
886 idx, sad_way, *socket);
889 * Move to the proper node structure, in order to access the
890 * right PCI registers
892 new_mci = get_mci_for_node_id(*socket);
893 if (!new_mci) {
894 sprintf(msg, "Struct for socket #%u wasn't initialized",
895 *socket);
896 return -EINVAL;
898 mci = new_mci;
899 pvt = mci->pvt_info;
902 * Step 2) Get memory channel
904 prv = 0;
905 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
906 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
907 &reg);
908 limit = TAD_LIMIT(reg);
909 if (limit <= prv) {
910 sprintf(msg, "Can't discover the memory channel");
911 return -EINVAL;
913 if (addr <= limit)
914 break;
915 prv = limit;
917 ch_way = TAD_CH(reg) + 1;
918 sck_way = TAD_SOCK(reg) + 1;
920 * FIXME: Is it right to always use channel 0 for offsets?
922 pci_read_config_dword(pvt->pci_tad[0],
923 tad_ch_nilv_offset[n_tads],
924 &tad_offset);
926 if (ch_way == 3)
927 idx = addr >> 6;
928 else
929 idx = addr >> (6 + sck_way);
930 idx = idx % ch_way;
933 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
935 switch (idx) {
936 case 0:
937 base_ch = TAD_TGT0(reg);
938 break;
939 case 1:
940 base_ch = TAD_TGT1(reg);
941 break;
942 case 2:
943 base_ch = TAD_TGT2(reg);
944 break;
945 case 3:
946 base_ch = TAD_TGT3(reg);
947 break;
948 default:
949 sprintf(msg, "Can't discover the TAD target");
950 return -EINVAL;
952 *channel_mask = 1 << base_ch;
954 if (pvt->is_mirrored) {
955 *channel_mask |= 1 << ((base_ch + 2) % 4);
956 switch(ch_way) {
957 case 2:
958 case 4:
959 sck_xch = 1 << sck_way * (ch_way >> 1);
960 break;
961 default:
962 sprintf(msg, "Invalid mirror set. Can't decode addr");
963 return -EINVAL;
965 } else
966 sck_xch = (1 << sck_way) * ch_way;
968 if (pvt->is_lockstep)
969 *channel_mask |= 1 << ((base_ch + 1) % 4);
971 offset = TAD_OFFSET(tad_offset);
973 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
974 n_tads,
975 addr,
976 limit,
977 (u32)TAD_SOCK(reg),
978 ch_way,
979 offset,
980 idx,
981 base_ch,
982 *channel_mask);
984 /* Calculate channel address */
985 /* Remove the TAD offset */
987 if (offset > addr) {
988 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
989 offset, addr);
990 return -EINVAL;
992 addr -= offset;
993 /* Store the low bits [0:6] of the addr */
994 ch_addr = addr & 0x7f;
995 /* Remove socket wayness and remove 6 bits */
996 addr >>= 6;
997 addr = div_u64(addr, sck_xch);
998 #if 0
999 /* Divide by channel way */
1000 addr = addr / ch_way;
1001 #endif
1002 /* Recover the last 6 bits */
1003 ch_addr |= addr << 6;
1006 * Step 3) Decode rank
1008 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1009 pci_read_config_dword(pvt->pci_tad[base_ch],
1010 rir_way_limit[n_rir],
1011 &reg);
1013 if (!IS_RIR_VALID(reg))
1014 continue;
1016 limit = RIR_LIMIT(reg);
1017 mb = div_u64_rem(limit >> 20, 1000, &kb);
1018 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1019 n_rir,
1020 mb, kb,
1021 limit,
1022 1 << RIR_WAY(reg));
1023 if (ch_addr <= limit)
1024 break;
1026 if (n_rir == MAX_RIR_RANGES) {
1027 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1028 ch_addr);
1029 return -EINVAL;
1031 rir_way = RIR_WAY(reg);
1032 if (pvt->is_close_pg)
1033 idx = (ch_addr >> 6);
1034 else
1035 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
1036 idx %= 1 << rir_way;
1038 pci_read_config_dword(pvt->pci_tad[base_ch],
1039 rir_offset[n_rir][idx],
1040 &reg);
1041 *rank = RIR_RNK_TGT(reg);
1043 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1044 n_rir,
1045 ch_addr,
1046 limit,
1047 rir_way,
1048 idx);
1050 return 0;
1053 /****************************************************************************
1054 Device initialization routines: put/get, init/exit
1055 ****************************************************************************/
1058 * sbridge_put_all_devices 'put' all the devices that we have
1059 * reserved via 'get'
1061 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1063 int i;
1065 edac_dbg(0, "\n");
1066 for (i = 0; i < sbridge_dev->n_devs; i++) {
1067 struct pci_dev *pdev = sbridge_dev->pdev[i];
1068 if (!pdev)
1069 continue;
1070 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1071 pdev->bus->number,
1072 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1073 pci_dev_put(pdev);
1077 static void sbridge_put_all_devices(void)
1079 struct sbridge_dev *sbridge_dev, *tmp;
1081 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1082 sbridge_put_devices(sbridge_dev);
1083 free_sbridge_dev(sbridge_dev);
1088 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1089 * device/functions we want to reference for this driver
1091 * Need to 'get' device 16 func 1 and func 2
1093 static int sbridge_get_onedevice(struct pci_dev **prev,
1094 u8 *num_mc,
1095 const struct pci_id_table *table,
1096 const unsigned devno)
1098 struct sbridge_dev *sbridge_dev;
1099 const struct pci_id_descr *dev_descr = &table->descr[devno];
1101 struct pci_dev *pdev = NULL;
1102 u8 bus = 0;
1104 sbridge_printk(KERN_INFO,
1105 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1106 dev_descr->dev, dev_descr->func,
1107 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1109 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1110 dev_descr->dev_id, *prev);
1112 if (!pdev) {
1113 if (*prev) {
1114 *prev = pdev;
1115 return 0;
1118 if (dev_descr->optional)
1119 return 0;
1121 if (devno == 0)
1122 return -ENODEV;
1124 sbridge_printk(KERN_INFO,
1125 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1126 dev_descr->dev, dev_descr->func,
1127 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1129 /* End of list, leave */
1130 return -ENODEV;
1132 bus = pdev->bus->number;
1134 sbridge_dev = get_sbridge_dev(bus);
1135 if (!sbridge_dev) {
1136 sbridge_dev = alloc_sbridge_dev(bus, table);
1137 if (!sbridge_dev) {
1138 pci_dev_put(pdev);
1139 return -ENOMEM;
1141 (*num_mc)++;
1144 if (sbridge_dev->pdev[devno]) {
1145 sbridge_printk(KERN_ERR,
1146 "Duplicated device for "
1147 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1148 bus, dev_descr->dev, dev_descr->func,
1149 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1150 pci_dev_put(pdev);
1151 return -ENODEV;
1154 sbridge_dev->pdev[devno] = pdev;
1156 /* Sanity check */
1157 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1158 PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1159 sbridge_printk(KERN_ERR,
1160 "Device PCI ID %04x:%04x "
1161 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1162 PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1163 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1164 bus, dev_descr->dev, dev_descr->func);
1165 return -ENODEV;
1168 /* Be sure that the device is enabled */
1169 if (unlikely(pci_enable_device(pdev) < 0)) {
1170 sbridge_printk(KERN_ERR,
1171 "Couldn't enable "
1172 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1173 bus, dev_descr->dev, dev_descr->func,
1174 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1175 return -ENODEV;
1178 edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1179 bus, dev_descr->dev, dev_descr->func,
1180 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1183 * As stated on drivers/pci/search.c, the reference count for
1184 * @from is always decremented if it is not %NULL. So, as we need
1185 * to get all devices up to null, we need to do a get for the device
1187 pci_dev_get(pdev);
1189 *prev = pdev;
1191 return 0;
1194 static int sbridge_get_all_devices(u8 *num_mc)
1196 int i, rc;
1197 struct pci_dev *pdev = NULL;
1198 const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1200 while (table && table->descr) {
1201 for (i = 0; i < table->n_devs; i++) {
1202 pdev = NULL;
1203 do {
1204 rc = sbridge_get_onedevice(&pdev, num_mc,
1205 table, i);
1206 if (rc < 0) {
1207 if (i == 0) {
1208 i = table->n_devs;
1209 break;
1211 sbridge_put_all_devices();
1212 return -ENODEV;
1214 } while (pdev);
1216 table++;
1219 return 0;
1222 static int mci_bind_devs(struct mem_ctl_info *mci,
1223 struct sbridge_dev *sbridge_dev)
1225 struct sbridge_pvt *pvt = mci->pvt_info;
1226 struct pci_dev *pdev;
1227 int i, func, slot;
1229 for (i = 0; i < sbridge_dev->n_devs; i++) {
1230 pdev = sbridge_dev->pdev[i];
1231 if (!pdev)
1232 continue;
1233 slot = PCI_SLOT(pdev->devfn);
1234 func = PCI_FUNC(pdev->devfn);
1235 switch (slot) {
1236 case 12:
1237 switch (func) {
1238 case 6:
1239 pvt->pci_sad0 = pdev;
1240 break;
1241 case 7:
1242 pvt->pci_sad1 = pdev;
1243 break;
1244 default:
1245 goto error;
1247 break;
1248 case 13:
1249 switch (func) {
1250 case 6:
1251 pvt->pci_br = pdev;
1252 break;
1253 default:
1254 goto error;
1256 break;
1257 case 14:
1258 switch (func) {
1259 case 0:
1260 pvt->pci_ha0 = pdev;
1261 break;
1262 default:
1263 goto error;
1265 break;
1266 case 15:
1267 switch (func) {
1268 case 0:
1269 pvt->pci_ta = pdev;
1270 break;
1271 case 1:
1272 pvt->pci_ras = pdev;
1273 break;
1274 case 2:
1275 case 3:
1276 case 4:
1277 case 5:
1278 pvt->pci_tad[func - 2] = pdev;
1279 break;
1280 default:
1281 goto error;
1283 break;
1284 case 17:
1285 switch (func) {
1286 case 0:
1287 pvt->pci_ddrio = pdev;
1288 break;
1289 default:
1290 goto error;
1292 break;
1293 default:
1294 goto error;
1297 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1298 sbridge_dev->bus,
1299 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1300 pdev);
1303 /* Check if everything were registered */
1304 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1305 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta ||
1306 !pvt->pci_ddrio)
1307 goto enodev;
1309 for (i = 0; i < NUM_CHANNELS; i++) {
1310 if (!pvt->pci_tad[i])
1311 goto enodev;
1313 return 0;
1315 enodev:
1316 sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1317 return -ENODEV;
1319 error:
1320 sbridge_printk(KERN_ERR, "Device %d, function %d "
1321 "is out of the expected range\n",
1322 slot, func);
1323 return -EINVAL;
1326 /****************************************************************************
1327 Error check routines
1328 ****************************************************************************/
1331 * While Sandy Bridge has error count registers, SMI BIOS read values from
1332 * and resets the counters. So, they are not reliable for the OS to read
1333 * from them. So, we have no option but to just trust on whatever MCE is
1334 * telling us about the errors.
1336 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1337 const struct mce *m)
1339 struct mem_ctl_info *new_mci;
1340 struct sbridge_pvt *pvt = mci->pvt_info;
1341 enum hw_event_mc_err_type tp_event;
1342 char *type, *optype, msg[256];
1343 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1344 bool overflow = GET_BITFIELD(m->status, 62, 62);
1345 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1346 bool recoverable = GET_BITFIELD(m->status, 56, 56);
1347 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1348 u32 mscod = GET_BITFIELD(m->status, 16, 31);
1349 u32 errcode = GET_BITFIELD(m->status, 0, 15);
1350 u32 channel = GET_BITFIELD(m->status, 0, 3);
1351 u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1352 long channel_mask, first_channel;
1353 u8 rank, socket;
1354 int rc, dimm;
1355 char *area_type = NULL;
1357 if (uncorrected_error) {
1358 if (ripv) {
1359 type = "FATAL";
1360 tp_event = HW_EVENT_ERR_FATAL;
1361 } else {
1362 type = "NON_FATAL";
1363 tp_event = HW_EVENT_ERR_UNCORRECTED;
1365 } else {
1366 type = "CORRECTED";
1367 tp_event = HW_EVENT_ERR_CORRECTED;
1371 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
1372 * memory errors should fit in this mask:
1373 * 000f 0000 1mmm cccc (binary)
1374 * where:
1375 * f = Correction Report Filtering Bit. If 1, subsequent errors
1376 * won't be shown
1377 * mmm = error type
1378 * cccc = channel
1379 * If the mask doesn't match, report an error to the parsing logic
1381 if (! ((errcode & 0xef80) == 0x80)) {
1382 optype = "Can't parse: it is not a mem";
1383 } else {
1384 switch (optypenum) {
1385 case 0:
1386 optype = "generic undef request error";
1387 break;
1388 case 1:
1389 optype = "memory read error";
1390 break;
1391 case 2:
1392 optype = "memory write error";
1393 break;
1394 case 3:
1395 optype = "addr/cmd error";
1396 break;
1397 case 4:
1398 optype = "memory scrubbing error";
1399 break;
1400 default:
1401 optype = "reserved";
1402 break;
1406 rc = get_memory_error_data(mci, m->addr, &socket,
1407 &channel_mask, &rank, &area_type, msg);
1408 if (rc < 0)
1409 goto err_parsing;
1410 new_mci = get_mci_for_node_id(socket);
1411 if (!new_mci) {
1412 strcpy(msg, "Error: socket got corrupted!");
1413 goto err_parsing;
1415 mci = new_mci;
1416 pvt = mci->pvt_info;
1418 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1420 if (rank < 4)
1421 dimm = 0;
1422 else if (rank < 8)
1423 dimm = 1;
1424 else
1425 dimm = 2;
1429 * FIXME: On some memory configurations (mirror, lockstep), the
1430 * Memory Controller can't point the error to a single DIMM. The
1431 * EDAC core should be handling the channel mask, in order to point
1432 * to the group of dimm's where the error may be happening.
1434 snprintf(msg, sizeof(msg),
1435 "count:%d%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1436 core_err_cnt,
1437 overflow ? " OVERFLOW" : "",
1438 (uncorrected_error && recoverable) ? " recoverable" : "",
1439 area_type,
1440 mscod, errcode,
1441 socket,
1442 channel_mask,
1443 rank);
1445 edac_dbg(0, "%s\n", msg);
1447 /* FIXME: need support for channel mask */
1449 /* Call the helper to output message */
1450 edac_mc_handle_error(tp_event, mci,
1451 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1452 channel, dimm, -1,
1453 optype, msg, m);
1454 return;
1455 err_parsing:
1456 edac_mc_handle_error(tp_event, mci, 0, 0, 0,
1457 -1, -1, -1,
1458 msg, "", m);
1463 * sbridge_check_error Retrieve and process errors reported by the
1464 * hardware. Called by the Core module.
1466 static void sbridge_check_error(struct mem_ctl_info *mci)
1468 struct sbridge_pvt *pvt = mci->pvt_info;
1469 int i;
1470 unsigned count = 0;
1471 struct mce *m;
1474 * MCE first step: Copy all mce errors into a temporary buffer
1475 * We use a double buffering here, to reduce the risk of
1476 * loosing an error.
1478 smp_rmb();
1479 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1480 % MCE_LOG_LEN;
1481 if (!count)
1482 return;
1484 m = pvt->mce_outentry;
1485 if (pvt->mce_in + count > MCE_LOG_LEN) {
1486 unsigned l = MCE_LOG_LEN - pvt->mce_in;
1488 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1489 smp_wmb();
1490 pvt->mce_in = 0;
1491 count -= l;
1492 m += l;
1494 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1495 smp_wmb();
1496 pvt->mce_in += count;
1498 smp_rmb();
1499 if (pvt->mce_overrun) {
1500 sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1501 pvt->mce_overrun);
1502 smp_wmb();
1503 pvt->mce_overrun = 0;
1507 * MCE second step: parse errors and display
1509 for (i = 0; i < count; i++)
1510 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1514 * sbridge_mce_check_error Replicates mcelog routine to get errors
1515 * This routine simply queues mcelog errors, and
1516 * return. The error itself should be handled later
1517 * by sbridge_check_error.
1518 * WARNING: As this routine should be called at NMI time, extra care should
1519 * be taken to avoid deadlocks, and to be as fast as possible.
1521 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1522 void *data)
1524 struct mce *mce = (struct mce *)data;
1525 struct mem_ctl_info *mci;
1526 struct sbridge_pvt *pvt;
1528 mci = get_mci_for_node_id(mce->socketid);
1529 if (!mci)
1530 return NOTIFY_BAD;
1531 pvt = mci->pvt_info;
1534 * Just let mcelog handle it if the error is
1535 * outside the memory controller. A memory error
1536 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1537 * bit 12 has an special meaning.
1539 if ((mce->status & 0xefff) >> 7 != 1)
1540 return NOTIFY_DONE;
1542 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1544 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1545 mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1546 printk("TSC %llx ", mce->tsc);
1547 printk("ADDR %llx ", mce->addr);
1548 printk("MISC %llx ", mce->misc);
1550 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1551 mce->cpuvendor, mce->cpuid, mce->time,
1552 mce->socketid, mce->apicid);
1554 /* Only handle if it is the right mc controller */
1555 if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1556 return NOTIFY_DONE;
1558 smp_rmb();
1559 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1560 smp_wmb();
1561 pvt->mce_overrun++;
1562 return NOTIFY_DONE;
1565 /* Copy memory error at the ringbuffer */
1566 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1567 smp_wmb();
1568 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1570 /* Handle fatal errors immediately */
1571 if (mce->mcgstatus & 1)
1572 sbridge_check_error(mci);
1574 /* Advice mcelog that the error were handled */
1575 return NOTIFY_STOP;
1578 static struct notifier_block sbridge_mce_dec = {
1579 .notifier_call = sbridge_mce_check_error,
1582 /****************************************************************************
1583 EDAC register/unregister logic
1584 ****************************************************************************/
1586 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1588 struct mem_ctl_info *mci = sbridge_dev->mci;
1589 struct sbridge_pvt *pvt;
1591 if (unlikely(!mci || !mci->pvt_info)) {
1592 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1594 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1595 return;
1598 pvt = mci->pvt_info;
1600 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1601 mci, &sbridge_dev->pdev[0]->dev);
1603 mce_unregister_decode_chain(&sbridge_mce_dec);
1605 /* Remove MC sysfs nodes */
1606 edac_mc_del_mc(mci->pdev);
1608 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1609 kfree(mci->ctl_name);
1610 edac_mc_free(mci);
1611 sbridge_dev->mci = NULL;
1614 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1616 struct mem_ctl_info *mci;
1617 struct edac_mc_layer layers[2];
1618 struct sbridge_pvt *pvt;
1619 int rc;
1621 /* Check the number of active and not disabled channels */
1622 rc = check_if_ecc_is_active(sbridge_dev->bus);
1623 if (unlikely(rc < 0))
1624 return rc;
1626 /* allocate a new MC control structure */
1627 layers[0].type = EDAC_MC_LAYER_CHANNEL;
1628 layers[0].size = NUM_CHANNELS;
1629 layers[0].is_virt_csrow = false;
1630 layers[1].type = EDAC_MC_LAYER_SLOT;
1631 layers[1].size = MAX_DIMMS;
1632 layers[1].is_virt_csrow = true;
1633 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1634 sizeof(*pvt));
1636 if (unlikely(!mci))
1637 return -ENOMEM;
1639 edac_dbg(0, "MC: mci = %p, dev = %p\n",
1640 mci, &sbridge_dev->pdev[0]->dev);
1642 pvt = mci->pvt_info;
1643 memset(pvt, 0, sizeof(*pvt));
1645 /* Associate sbridge_dev and mci for future usage */
1646 pvt->sbridge_dev = sbridge_dev;
1647 sbridge_dev->mci = mci;
1649 mci->mtype_cap = MEM_FLAG_DDR3;
1650 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1651 mci->edac_cap = EDAC_FLAG_NONE;
1652 mci->mod_name = "sbridge_edac.c";
1653 mci->mod_ver = SBRIDGE_REVISION;
1654 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1655 mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1656 mci->ctl_page_to_phys = NULL;
1658 /* Set the function pointer to an actual operation function */
1659 mci->edac_check = sbridge_check_error;
1661 /* Store pci devices at mci for faster access */
1662 rc = mci_bind_devs(mci, sbridge_dev);
1663 if (unlikely(rc < 0))
1664 goto fail0;
1666 /* Get dimm basic config and the memory layout */
1667 get_dimm_config(mci);
1668 get_memory_layout(mci);
1670 /* record ptr to the generic device */
1671 mci->pdev = &sbridge_dev->pdev[0]->dev;
1673 /* add this new MC control structure to EDAC's list of MCs */
1674 if (unlikely(edac_mc_add_mc(mci))) {
1675 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1676 rc = -EINVAL;
1677 goto fail0;
1680 mce_register_decode_chain(&sbridge_mce_dec);
1681 return 0;
1683 fail0:
1684 kfree(mci->ctl_name);
1685 edac_mc_free(mci);
1686 sbridge_dev->mci = NULL;
1687 return rc;
1691 * sbridge_probe Probe for ONE instance of device to see if it is
1692 * present.
1693 * return:
1694 * 0 for FOUND a device
1695 * < 0 for error code
1698 static int __devinit sbridge_probe(struct pci_dev *pdev,
1699 const struct pci_device_id *id)
1701 int rc;
1702 u8 mc, num_mc = 0;
1703 struct sbridge_dev *sbridge_dev;
1705 /* get the pci devices we want to reserve for our use */
1706 mutex_lock(&sbridge_edac_lock);
1709 * All memory controllers are allocated at the first pass.
1711 if (unlikely(probed >= 1)) {
1712 mutex_unlock(&sbridge_edac_lock);
1713 return -ENODEV;
1715 probed++;
1717 rc = sbridge_get_all_devices(&num_mc);
1718 if (unlikely(rc < 0))
1719 goto fail0;
1720 mc = 0;
1722 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1723 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1724 mc, mc + 1, num_mc);
1725 sbridge_dev->mc = mc++;
1726 rc = sbridge_register_mci(sbridge_dev);
1727 if (unlikely(rc < 0))
1728 goto fail1;
1731 sbridge_printk(KERN_INFO, "Driver loaded.\n");
1733 mutex_unlock(&sbridge_edac_lock);
1734 return 0;
1736 fail1:
1737 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1738 sbridge_unregister_mci(sbridge_dev);
1740 sbridge_put_all_devices();
1741 fail0:
1742 mutex_unlock(&sbridge_edac_lock);
1743 return rc;
1747 * sbridge_remove destructor for one instance of device
1750 static void __devexit sbridge_remove(struct pci_dev *pdev)
1752 struct sbridge_dev *sbridge_dev;
1754 edac_dbg(0, "\n");
1757 * we have a trouble here: pdev value for removal will be wrong, since
1758 * it will point to the X58 register used to detect that the machine
1759 * is a Nehalem or upper design. However, due to the way several PCI
1760 * devices are grouped together to provide MC functionality, we need
1761 * to use a different method for releasing the devices
1764 mutex_lock(&sbridge_edac_lock);
1766 if (unlikely(!probed)) {
1767 mutex_unlock(&sbridge_edac_lock);
1768 return;
1771 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1772 sbridge_unregister_mci(sbridge_dev);
1774 /* Release PCI resources */
1775 sbridge_put_all_devices();
1777 probed--;
1779 mutex_unlock(&sbridge_edac_lock);
1782 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1785 * sbridge_driver pci_driver structure for this module
1788 static struct pci_driver sbridge_driver = {
1789 .name = "sbridge_edac",
1790 .probe = sbridge_probe,
1791 .remove = __devexit_p(sbridge_remove),
1792 .id_table = sbridge_pci_tbl,
1796 * sbridge_init Module entry function
1797 * Try to initialize this module for its devices
1799 static int __init sbridge_init(void)
1801 int pci_rc;
1803 edac_dbg(2, "\n");
1805 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1806 opstate_init();
1808 pci_rc = pci_register_driver(&sbridge_driver);
1810 if (pci_rc >= 0)
1811 return 0;
1813 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1814 pci_rc);
1816 return pci_rc;
1820 * sbridge_exit() Module exit function
1821 * Unregister the driver
1823 static void __exit sbridge_exit(void)
1825 edac_dbg(2, "\n");
1826 pci_unregister_driver(&sbridge_driver);
1829 module_init(sbridge_init);
1830 module_exit(sbridge_exit);
1832 module_param(edac_op_state, int, 0444);
1833 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1835 MODULE_LICENSE("GPL");
1836 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1837 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1838 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1839 SBRIDGE_REVISION);