1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
56 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
58 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
59 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
60 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
61 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
62 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
63 u16 words
, u16
*data
);
64 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
65 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
66 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
67 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
68 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
69 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
70 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
73 * e1000_init_phy_params_82571 - Init PHY func ptrs.
74 * @hw: pointer to the HW structure
76 * This is a function pointer entry point called by the api module.
78 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
80 struct e1000_phy_info
*phy
= &hw
->phy
;
83 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
84 phy
->type
= e1000_phy_none
;
89 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
90 phy
->reset_delay_us
= 100;
92 switch (hw
->mac
.type
) {
95 phy
->type
= e1000_phy_igp_2
;
98 phy
->type
= e1000_phy_m88
;
102 phy
->type
= e1000_phy_bm
;
105 return -E1000_ERR_PHY
;
109 /* This can only be done after all function pointers are setup. */
110 ret_val
= e1000_get_phy_id_82571(hw
);
113 switch (hw
->mac
.type
) {
116 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
117 return -E1000_ERR_PHY
;
120 if (phy
->id
!= M88E1111_I_PHY_ID
)
121 return -E1000_ERR_PHY
;
125 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
126 return -E1000_ERR_PHY
;
129 return -E1000_ERR_PHY
;
137 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
138 * @hw: pointer to the HW structure
140 * This is a function pointer entry point called by the api module.
142 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
144 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
145 u32 eecd
= er32(EECD
);
148 nvm
->opcode_bits
= 8;
150 switch (nvm
->override
) {
151 case e1000_nvm_override_spi_large
:
153 nvm
->address_bits
= 16;
155 case e1000_nvm_override_spi_small
:
157 nvm
->address_bits
= 8;
160 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
161 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
165 switch (hw
->mac
.type
) {
169 if (((eecd
>> 15) & 0x3) == 0x3) {
170 nvm
->type
= e1000_nvm_flash_hw
;
171 nvm
->word_size
= 2048;
173 * Autonomous Flash update bit must be cleared due
174 * to Flash update issue.
176 eecd
&= ~E1000_EECD_AUPDEN
;
182 nvm
->type
= e1000_nvm_eeprom_spi
;
183 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
184 E1000_EECD_SIZE_EX_SHIFT
);
186 * Added to a constant, "size" becomes the left-shift value
187 * for setting word_size.
189 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
191 /* EEPROM access above 16k is unsupported */
194 nvm
->word_size
= 1 << size
;
202 * e1000_init_mac_params_82571 - Init MAC func ptrs.
203 * @hw: pointer to the HW structure
205 * This is a function pointer entry point called by the api module.
207 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
209 struct e1000_hw
*hw
= &adapter
->hw
;
210 struct e1000_mac_info
*mac
= &hw
->mac
;
211 struct e1000_mac_operations
*func
= &mac
->ops
;
214 bool force_clear_smbi
= false;
217 switch (adapter
->pdev
->device
) {
218 case E1000_DEV_ID_82571EB_FIBER
:
219 case E1000_DEV_ID_82572EI_FIBER
:
220 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
221 hw
->phy
.media_type
= e1000_media_type_fiber
;
223 case E1000_DEV_ID_82571EB_SERDES
:
224 case E1000_DEV_ID_82572EI_SERDES
:
225 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
226 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
227 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
230 hw
->phy
.media_type
= e1000_media_type_copper
;
234 /* Set mta register count */
235 mac
->mta_reg_count
= 128;
236 /* Set rar entry count */
237 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
238 /* Set if manageability features are enabled. */
239 mac
->arc_subsystem_valid
= (er32(FWSM
) & E1000_FWSM_MODE_MASK
) ? 1 : 0;
242 switch (hw
->phy
.media_type
) {
243 case e1000_media_type_copper
:
244 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
245 func
->check_for_link
= e1000e_check_for_copper_link
;
246 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
248 case e1000_media_type_fiber
:
249 func
->setup_physical_interface
=
250 e1000_setup_fiber_serdes_link_82571
;
251 func
->check_for_link
= e1000e_check_for_fiber_link
;
252 func
->get_link_up_info
=
253 e1000e_get_speed_and_duplex_fiber_serdes
;
255 case e1000_media_type_internal_serdes
:
256 func
->setup_physical_interface
=
257 e1000_setup_fiber_serdes_link_82571
;
258 func
->check_for_link
= e1000_check_for_serdes_link_82571
;
259 func
->get_link_up_info
=
260 e1000e_get_speed_and_duplex_fiber_serdes
;
263 return -E1000_ERR_CONFIG
;
267 switch (hw
->mac
.type
) {
270 func
->check_mng_mode
= e1000_check_mng_mode_82574
;
271 func
->led_on
= e1000_led_on_82574
;
274 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
275 func
->led_on
= e1000e_led_on_generic
;
280 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
281 * first NVM or PHY acess. This should be done for single-port
282 * devices, and for one port only on dual-port devices so that
283 * for those devices we can still use the SMBI lock to synchronize
284 * inter-port accesses to the PHY & NVM.
286 switch (hw
->mac
.type
) {
291 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
292 /* Only do this for the first interface on this card */
294 swsm2
| E1000_SWSM2_LOCK
);
295 force_clear_smbi
= true;
297 force_clear_smbi
= false;
300 force_clear_smbi
= true;
304 if (force_clear_smbi
) {
305 /* Make sure SWSM.SMBI is clear */
307 if (swsm
& E1000_SWSM_SMBI
) {
308 /* This bit should not be set on a first interface, and
309 * indicates that the bootagent or EFI code has
310 * improperly left this bit enabled
312 e_dbg("Please update your 82571 Bootagent\n");
314 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
318 * Initialze device specific counter of SMBI acquisition
321 hw
->dev_spec
.e82571
.smb_counter
= 0;
326 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
328 struct e1000_hw
*hw
= &adapter
->hw
;
329 static int global_quad_port_a
; /* global port a indication */
330 struct pci_dev
*pdev
= adapter
->pdev
;
332 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
335 rc
= e1000_init_mac_params_82571(adapter
);
339 rc
= e1000_init_nvm_params_82571(hw
);
343 rc
= e1000_init_phy_params_82571(hw
);
347 /* tag quad port adapters first, it's used below */
348 switch (pdev
->device
) {
349 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
350 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
351 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
352 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
353 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
354 /* mark the first port */
355 if (global_quad_port_a
== 0)
356 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
357 /* Reset for multiple quad port adapters */
358 global_quad_port_a
++;
359 if (global_quad_port_a
== 4)
360 global_quad_port_a
= 0;
366 switch (adapter
->hw
.mac
.type
) {
368 /* these dual ports don't have WoL on port B at all */
369 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
370 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
371 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
373 adapter
->flags
&= ~FLAG_HAS_WOL
;
374 /* quad ports only support WoL on port A */
375 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
376 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
377 adapter
->flags
&= ~FLAG_HAS_WOL
;
378 /* Does not support WoL on any port */
379 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
380 adapter
->flags
&= ~FLAG_HAS_WOL
;
384 if (pdev
->device
== E1000_DEV_ID_82573L
) {
385 if (e1000_read_nvm(&adapter
->hw
, NVM_INIT_3GIO_3
, 1,
388 if (!(eeprom_data
& NVM_WORD1A_ASPM_MASK
)) {
389 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
390 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
402 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
403 * @hw: pointer to the HW structure
405 * Reads the PHY registers and stores the PHY ID and possibly the PHY
406 * revision in the hardware structure.
408 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
410 struct e1000_phy_info
*phy
= &hw
->phy
;
414 switch (hw
->mac
.type
) {
418 * The 82571 firmware may still be configuring the PHY.
419 * In this case, we cannot access the PHY until the
420 * configuration is done. So we explicitly set the
423 phy
->id
= IGP01E1000_I_PHY_ID
;
426 return e1000e_get_phy_id(hw
);
430 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
434 phy
->id
= (u32
)(phy_id
<< 16);
436 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
440 phy
->id
|= (u32
)(phy_id
);
441 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
444 return -E1000_ERR_PHY
;
452 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
453 * @hw: pointer to the HW structure
455 * Acquire the HW semaphore to access the PHY or NVM
457 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
460 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
461 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
465 * If we have timedout 3 times on trying to acquire
466 * the inter-port SMBI semaphore, there is old code
467 * operating on the other port, and it is not
468 * releasing SMBI. Modify the number of times that
469 * we try for the semaphore to interwork with this
472 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
475 /* Get the SW semaphore */
476 while (i
< sw_timeout
) {
478 if (!(swsm
& E1000_SWSM_SMBI
))
485 if (i
== sw_timeout
) {
486 e_dbg("Driver can't access device - SMBI bit is set.\n");
487 hw
->dev_spec
.e82571
.smb_counter
++;
489 /* Get the FW semaphore. */
490 for (i
= 0; i
< fw_timeout
; i
++) {
492 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
494 /* Semaphore acquired if bit latched */
495 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
501 if (i
== fw_timeout
) {
502 /* Release semaphores */
503 e1000_put_hw_semaphore_82571(hw
);
504 e_dbg("Driver can't access the NVM\n");
505 return -E1000_ERR_NVM
;
512 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
513 * @hw: pointer to the HW structure
515 * Release hardware semaphore used to access the PHY or NVM
517 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
522 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
527 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
528 * @hw: pointer to the HW structure
530 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
531 * Then for non-82573 hardware, set the EEPROM access request bit and wait
532 * for EEPROM access grant bit. If the access grant bit is not set, release
533 * hardware semaphore.
535 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
539 ret_val
= e1000_get_hw_semaphore_82571(hw
);
543 switch (hw
->mac
.type
) {
549 ret_val
= e1000e_acquire_nvm(hw
);
554 e1000_put_hw_semaphore_82571(hw
);
560 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
561 * @hw: pointer to the HW structure
563 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
565 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
567 e1000e_release_nvm(hw
);
568 e1000_put_hw_semaphore_82571(hw
);
572 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
573 * @hw: pointer to the HW structure
574 * @offset: offset within the EEPROM to be written to
575 * @words: number of words to write
576 * @data: 16 bit word(s) to be written to the EEPROM
578 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
580 * If e1000e_update_nvm_checksum is not called after this function, the
581 * EEPROM will most likely contain an invalid checksum.
583 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
588 switch (hw
->mac
.type
) {
592 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
596 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
599 ret_val
= -E1000_ERR_NVM
;
607 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
608 * @hw: pointer to the HW structure
610 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
611 * up to the checksum. Then calculates the EEPROM checksum and writes the
612 * value to the EEPROM.
614 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
620 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
625 * If our nvm is an EEPROM, then we're done
626 * otherwise, commit the checksum to the flash NVM.
628 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
631 /* Check for pending operations. */
632 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
634 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
638 if (i
== E1000_FLASH_UPDATES
)
639 return -E1000_ERR_NVM
;
641 /* Reset the firmware if using STM opcode. */
642 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
644 * The enabling of and the actual reset must be done
645 * in two write cycles.
647 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
649 ew32(HICR
, E1000_HICR_FW_RESET
);
652 /* Commit the write to flash */
653 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
656 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
658 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
662 if (i
== E1000_FLASH_UPDATES
)
663 return -E1000_ERR_NVM
;
669 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
670 * @hw: pointer to the HW structure
672 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
673 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
675 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
677 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
678 e1000_fix_nvm_checksum_82571(hw
);
680 return e1000e_validate_nvm_checksum_generic(hw
);
684 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
685 * @hw: pointer to the HW structure
686 * @offset: offset within the EEPROM to be written to
687 * @words: number of words to write
688 * @data: 16 bit word(s) to be written to the EEPROM
690 * After checking for invalid values, poll the EEPROM to ensure the previous
691 * command has completed before trying to write the next word. After write
692 * poll for completion.
694 * If e1000e_update_nvm_checksum is not called after this function, the
695 * EEPROM will most likely contain an invalid checksum.
697 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
698 u16 words
, u16
*data
)
700 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
706 * A check for invalid values: offset too large, too many words,
707 * and not enough words.
709 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
711 e_dbg("nvm parameter(s) out of bounds\n");
712 return -E1000_ERR_NVM
;
715 for (i
= 0; i
< words
; i
++) {
716 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
717 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
718 E1000_NVM_RW_REG_START
;
720 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
726 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
735 * e1000_get_cfg_done_82571 - Poll for configuration done
736 * @hw: pointer to the HW structure
738 * Reads the management control register for the config done bit to be set.
740 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
742 s32 timeout
= PHY_CFG_TIMEOUT
;
746 E1000_NVM_CFG_DONE_PORT_0
)
752 e_dbg("MNG configuration cycle has not completed.\n");
753 return -E1000_ERR_RESET
;
760 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
761 * @hw: pointer to the HW structure
762 * @active: TRUE to enable LPLU, FALSE to disable
764 * Sets the LPLU D0 state according to the active flag. When activating LPLU
765 * this function also disables smart speed and vice versa. LPLU will not be
766 * activated unless the device autonegotiation advertisement meets standards
767 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
768 * pointer entry point only called by PHY setup routines.
770 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
772 struct e1000_phy_info
*phy
= &hw
->phy
;
776 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
781 data
|= IGP02E1000_PM_D0_LPLU
;
782 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
786 /* When LPLU is enabled, we should disable SmartSpeed */
787 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
788 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
789 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
793 data
&= ~IGP02E1000_PM_D0_LPLU
;
794 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
796 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
797 * during Dx states where the power conservation is most
798 * important. During driver activity we should enable
799 * SmartSpeed, so performance is maintained.
801 if (phy
->smart_speed
== e1000_smart_speed_on
) {
802 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
807 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
808 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
812 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
813 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
818 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
819 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
830 * e1000_reset_hw_82571 - Reset hardware
831 * @hw: pointer to the HW structure
833 * This resets the hardware into a known state. This is a
834 * function pointer entry point called by the api module.
836 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
846 * Prevent the PCI-E bus from sticking if there is no TLP connection
847 * on the last TLP read/write transaction when MAC is reset.
849 ret_val
= e1000e_disable_pcie_master(hw
);
851 e_dbg("PCI-E Master disable polling has failed.\n");
853 e_dbg("Masking off all interrupts\n");
854 ew32(IMC
, 0xffffffff);
857 ew32(TCTL
, E1000_TCTL_PSP
);
863 * Must acquire the MDIO ownership before MAC reset.
864 * Ownership defaults to firmware after a reset.
866 switch (hw
->mac
.type
) {
870 extcnf_ctrl
= er32(EXTCNF_CTRL
);
871 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
874 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
875 extcnf_ctrl
= er32(EXTCNF_CTRL
);
877 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
880 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
884 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
892 e_dbg("Issuing a global reset to MAC\n");
893 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
895 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
897 ctrl_ext
= er32(CTRL_EXT
);
898 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
899 ew32(CTRL_EXT
, ctrl_ext
);
903 ret_val
= e1000e_get_auto_rd_done(hw
);
905 /* We don't want to continue accessing MAC registers. */
909 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
910 * Need to wait for Phy configuration completion before accessing
914 switch (hw
->mac
.type
) {
924 /* Clear any pending interrupt events. */
925 ew32(IMC
, 0xffffffff);
928 if (hw
->mac
.type
== e1000_82571
&&
929 hw
->dev_spec
.e82571
.alt_mac_addr_is_present
)
930 e1000e_set_laa_state_82571(hw
, true);
932 /* Reinitialize the 82571 serdes link state machine */
933 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
934 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
940 * e1000_init_hw_82571 - Initialize hardware
941 * @hw: pointer to the HW structure
943 * This inits the hardware readying it for operation.
945 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
947 struct e1000_mac_info
*mac
= &hw
->mac
;
951 u16 rar_count
= mac
->rar_entry_count
;
953 e1000_initialize_hw_bits_82571(hw
);
955 /* Initialize identification LED */
956 ret_val
= e1000e_id_led_init(hw
);
958 e_dbg("Error initializing identification LED\n");
962 /* Disabling VLAN filtering */
963 e_dbg("Initializing the IEEE VLAN\n");
964 e1000e_clear_vfta(hw
);
966 /* Setup the receive address. */
968 * If, however, a locally administered address was assigned to the
969 * 82571, we must reserve a RAR for it to work around an issue where
970 * resetting one port will reload the MAC on the other port.
972 if (e1000e_get_laa_state_82571(hw
))
974 e1000e_init_rx_addrs(hw
, rar_count
);
976 /* Zero out the Multicast HASH table */
977 e_dbg("Zeroing the MTA\n");
978 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
979 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
981 /* Setup link and flow control */
982 ret_val
= e1000_setup_link_82571(hw
);
984 /* Set the transmit descriptor write-back policy */
985 reg_data
= er32(TXDCTL(0));
986 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
987 E1000_TXDCTL_FULL_TX_DESC_WB
|
988 E1000_TXDCTL_COUNT_DESC
;
989 ew32(TXDCTL(0), reg_data
);
991 /* ...for both queues. */
996 e1000e_enable_tx_pkt_filtering(hw
);
997 reg_data
= er32(GCR
);
998 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1002 reg_data
= er32(TXDCTL(1));
1003 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1004 E1000_TXDCTL_FULL_TX_DESC_WB
|
1005 E1000_TXDCTL_COUNT_DESC
;
1006 ew32(TXDCTL(1), reg_data
);
1011 * Clear all of the statistics registers (clear on read). It is
1012 * important that we do this after we have tried to establish link
1013 * because the symbol error count will increment wildly if there
1016 e1000_clear_hw_cntrs_82571(hw
);
1022 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1023 * @hw: pointer to the HW structure
1025 * Initializes required hardware-dependent bits needed for normal operation.
1027 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1031 /* Transmit Descriptor Control 0 */
1032 reg
= er32(TXDCTL(0));
1034 ew32(TXDCTL(0), reg
);
1036 /* Transmit Descriptor Control 1 */
1037 reg
= er32(TXDCTL(1));
1039 ew32(TXDCTL(1), reg
);
1041 /* Transmit Arbitration Control 0 */
1042 reg
= er32(TARC(0));
1043 reg
&= ~(0xF << 27); /* 30:27 */
1044 switch (hw
->mac
.type
) {
1047 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1054 /* Transmit Arbitration Control 1 */
1055 reg
= er32(TARC(1));
1056 switch (hw
->mac
.type
) {
1059 reg
&= ~((1 << 29) | (1 << 30));
1060 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1061 if (er32(TCTL
) & E1000_TCTL_MULR
)
1071 /* Device Control */
1072 switch (hw
->mac
.type
) {
1084 /* Extended Device Control */
1085 switch (hw
->mac
.type
) {
1089 reg
= er32(CTRL_EXT
);
1092 ew32(CTRL_EXT
, reg
);
1098 if (hw
->mac
.type
== e1000_82571
) {
1099 reg
= er32(PBA_ECC
);
1100 reg
|= E1000_PBA_ECC_CORR_EN
;
1104 * Workaround for hardware errata.
1105 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1108 if ((hw
->mac
.type
== e1000_82571
) ||
1109 (hw
->mac
.type
== e1000_82572
)) {
1110 reg
= er32(CTRL_EXT
);
1111 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1112 ew32(CTRL_EXT
, reg
);
1116 /* PCI-Ex Control Registers */
1117 switch (hw
->mac
.type
) {
1136 * e1000e_clear_vfta - Clear VLAN filter table
1137 * @hw: pointer to the HW structure
1139 * Clears the register array which contains the VLAN filter table by
1140 * setting all the values to 0.
1142 void e1000e_clear_vfta(struct e1000_hw
*hw
)
1146 u32 vfta_offset
= 0;
1147 u32 vfta_bit_in_reg
= 0;
1149 switch (hw
->mac
.type
) {
1153 if (hw
->mng_cookie
.vlan_id
!= 0) {
1155 * The VFTA is a 4096b bit-field, each identifying
1156 * a single VLAN ID. The following operations
1157 * determine which 32b entry (i.e. offset) into the
1158 * array we want to set the VLAN ID (i.e. bit) of
1159 * the manageability unit.
1161 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1162 E1000_VFTA_ENTRY_SHIFT
) &
1163 E1000_VFTA_ENTRY_MASK
;
1164 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
1165 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1171 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1173 * If the offset we want to clear is the same offset of the
1174 * manageability VLAN ID, then clear all bits except that of
1175 * the manageability unit.
1177 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1178 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1184 * e1000_check_mng_mode_82574 - Check manageability is enabled
1185 * @hw: pointer to the HW structure
1187 * Reads the NVM Initialization Control Word 2 and returns true
1188 * (>0) if any manageability is enabled, else false (0).
1190 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1194 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1195 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1199 * e1000_led_on_82574 - Turn LED on
1200 * @hw: pointer to the HW structure
1204 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1209 ctrl
= hw
->mac
.ledctl_mode2
;
1210 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1212 * If no link, then turn LED on by setting the invert bit
1213 * for each LED that's "on" (0x0E) in ledctl_mode2.
1215 for (i
= 0; i
< 4; i
++)
1216 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1217 E1000_LEDCTL_MODE_LED_ON
)
1218 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1226 * e1000_update_mc_addr_list_82571 - Update Multicast addresses
1227 * @hw: pointer to the HW structure
1228 * @mc_addr_list: array of multicast addresses to program
1229 * @mc_addr_count: number of multicast addresses to program
1230 * @rar_used_count: the first RAR register free to program
1231 * @rar_count: total number of supported Receive Address Registers
1233 * Updates the Receive Address Registers and Multicast Table Array.
1234 * The caller must have a packed mc_addr_list of multicast addresses.
1235 * The parameter rar_count will usually be hw->mac.rar_entry_count
1236 * unless there are workarounds that change this.
1238 static void e1000_update_mc_addr_list_82571(struct e1000_hw
*hw
,
1244 if (e1000e_get_laa_state_82571(hw
))
1247 e1000e_update_mc_addr_list_generic(hw
, mc_addr_list
, mc_addr_count
,
1248 rar_used_count
, rar_count
);
1252 * e1000_setup_link_82571 - Setup flow control and link settings
1253 * @hw: pointer to the HW structure
1255 * Determines which flow control settings to use, then configures flow
1256 * control. Calls the appropriate media-specific link configuration
1257 * function. Assuming the adapter has a valid link partner, a valid link
1258 * should be established. Assumes the hardware has previously been reset
1259 * and the transmitter and receiver are not enabled.
1261 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1264 * 82573 does not have a word in the NVM to determine
1265 * the default flow control setting, so we explicitly
1268 switch (hw
->mac
.type
) {
1272 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1273 hw
->fc
.requested_mode
= e1000_fc_full
;
1279 return e1000e_setup_link(hw
);
1283 * e1000_setup_copper_link_82571 - Configure copper link settings
1284 * @hw: pointer to the HW structure
1286 * Configures the link for auto-neg or forced speed and duplex. Then we check
1287 * for link, once link is established calls to configure collision distance
1288 * and flow control are called.
1290 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1297 ctrl
|= E1000_CTRL_SLU
;
1298 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1301 switch (hw
->phy
.type
) {
1304 ret_val
= e1000e_copper_link_setup_m88(hw
);
1306 case e1000_phy_igp_2
:
1307 ret_val
= e1000e_copper_link_setup_igp(hw
);
1308 /* Setup activity LED */
1309 led_ctrl
= er32(LEDCTL
);
1310 led_ctrl
&= IGP_ACTIVITY_LED_MASK
;
1311 led_ctrl
|= (IGP_ACTIVITY_LED_ENABLE
| IGP_LED3_MODE
);
1312 ew32(LEDCTL
, led_ctrl
);
1315 return -E1000_ERR_PHY
;
1322 ret_val
= e1000e_setup_copper_link(hw
);
1328 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1329 * @hw: pointer to the HW structure
1331 * Configures collision distance and flow control for fiber and serdes links.
1332 * Upon successful setup, poll for link.
1334 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1336 switch (hw
->mac
.type
) {
1340 * If SerDes loopback mode is entered, there is no form
1341 * of reset to take the adapter out of that mode. So we
1342 * have to explicitly take the adapter out of loopback
1343 * mode. This prevents drivers from twiddling their thumbs
1344 * if another tool failed to take it out of loopback mode.
1346 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1352 return e1000e_setup_fiber_serdes_link(hw
);
1356 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1357 * @hw: pointer to the HW structure
1359 * Checks for link up on the hardware. If link is not up and we have
1360 * a signal, then we need to force link up.
1362 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1364 struct e1000_mac_info
*mac
= &hw
->mac
;
1371 status
= er32(STATUS
);
1374 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1376 /* Receiver is synchronized with no invalid bits. */
1377 switch (mac
->serdes_link_state
) {
1378 case e1000_serdes_link_autoneg_complete
:
1379 if (!(status
& E1000_STATUS_LU
)) {
1381 * We have lost link, retry autoneg before
1382 * reporting link failure
1384 mac
->serdes_link_state
=
1385 e1000_serdes_link_autoneg_progress
;
1386 e_dbg("AN_UP -> AN_PROG\n");
1390 case e1000_serdes_link_forced_up
:
1392 * If we are receiving /C/ ordered sets, re-enable
1393 * auto-negotiation in the TXCW register and disable
1394 * forced link in the Device Control register in an
1395 * attempt to auto-negotiate with our link partner.
1397 if (rxcw
& E1000_RXCW_C
) {
1398 /* Enable autoneg, and unforce link up */
1399 ew32(TXCW
, mac
->txcw
);
1401 (ctrl
& ~E1000_CTRL_SLU
));
1402 mac
->serdes_link_state
=
1403 e1000_serdes_link_autoneg_progress
;
1404 e_dbg("FORCED_UP -> AN_PROG\n");
1408 case e1000_serdes_link_autoneg_progress
:
1410 * If the LU bit is set in the STATUS register,
1411 * autoneg has completed sucessfully. If not,
1412 * try foring the link because the far end may be
1413 * available but not capable of autonegotiation.
1415 if (status
& E1000_STATUS_LU
) {
1416 mac
->serdes_link_state
=
1417 e1000_serdes_link_autoneg_complete
;
1418 e_dbg("AN_PROG -> AN_UP\n");
1421 * Disable autoneg, force link up and
1422 * full duplex, and change state to forced
1425 (mac
->txcw
& ~E1000_TXCW_ANE
));
1426 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1429 /* Configure Flow Control after link up. */
1431 e1000e_config_fc_after_link_up(hw
);
1433 e_dbg("Error config flow control\n");
1436 mac
->serdes_link_state
=
1437 e1000_serdes_link_forced_up
;
1438 e_dbg("AN_PROG -> FORCED_UP\n");
1440 mac
->serdes_has_link
= true;
1443 case e1000_serdes_link_down
:
1445 /* The link was down but the receiver has now gained
1446 * valid sync, so lets see if we can bring the link
1448 ew32(TXCW
, mac
->txcw
);
1450 (ctrl
& ~E1000_CTRL_SLU
));
1451 mac
->serdes_link_state
=
1452 e1000_serdes_link_autoneg_progress
;
1453 e_dbg("DOWN -> AN_PROG\n");
1457 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1458 mac
->serdes_has_link
= false;
1459 mac
->serdes_link_state
= e1000_serdes_link_down
;
1460 e_dbg("ANYSTATE -> DOWN\n");
1463 * We have sync, and can tolerate one
1464 * invalid (IV) codeword before declaring
1465 * link down, so reread to look again
1469 if (rxcw
& E1000_RXCW_IV
) {
1470 mac
->serdes_link_state
= e1000_serdes_link_down
;
1471 mac
->serdes_has_link
= false;
1472 e_dbg("ANYSTATE -> DOWN\n");
1481 * e1000_valid_led_default_82571 - Verify a valid default LED config
1482 * @hw: pointer to the HW structure
1483 * @data: pointer to the NVM (EEPROM)
1485 * Read the EEPROM for the current default LED configuration. If the
1486 * LED configuration is not valid, set to a valid LED configuration.
1488 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1492 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1494 e_dbg("NVM Read Error\n");
1498 switch (hw
->mac
.type
) {
1502 if (*data
== ID_LED_RESERVED_F746
)
1503 *data
= ID_LED_DEFAULT_82573
;
1506 if (*data
== ID_LED_RESERVED_0000
||
1507 *data
== ID_LED_RESERVED_FFFF
)
1508 *data
= ID_LED_DEFAULT
;
1516 * e1000e_get_laa_state_82571 - Get locally administered address state
1517 * @hw: pointer to the HW structure
1519 * Retrieve and return the current locally administered address state.
1521 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1523 if (hw
->mac
.type
!= e1000_82571
)
1526 return hw
->dev_spec
.e82571
.laa_is_present
;
1530 * e1000e_set_laa_state_82571 - Set locally administered address state
1531 * @hw: pointer to the HW structure
1532 * @state: enable/disable locally administered address
1534 * Enable/Disable the current locally administers address state.
1536 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1538 if (hw
->mac
.type
!= e1000_82571
)
1541 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1543 /* If workaround is activated... */
1546 * Hold a copy of the LAA in RAR[14] This is done so that
1547 * between the time RAR[0] gets clobbered and the time it
1548 * gets fixed, the actual LAA is in one of the RARs and no
1549 * incoming packets directed to this port are dropped.
1550 * Eventually the LAA will be in RAR[0] and RAR[14].
1552 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1556 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1557 * @hw: pointer to the HW structure
1559 * Verifies that the EEPROM has completed the update. After updating the
1560 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1561 * the checksum fix is not implemented, we need to set the bit and update
1562 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1563 * we need to return bad checksum.
1565 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1567 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1571 if (nvm
->type
!= e1000_nvm_flash_hw
)
1575 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1576 * 10h-12h. Checksum may need to be fixed.
1578 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1582 if (!(data
& 0x10)) {
1584 * Read 0x23 and check bit 15. This bit is a 1
1585 * when the checksum has already been fixed. If
1586 * the checksum is still wrong and this bit is a
1587 * 1, we need to return bad checksum. Otherwise,
1588 * we need to set this bit to a 1 and update the
1591 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1595 if (!(data
& 0x8000)) {
1597 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1600 ret_val
= e1000e_update_nvm_checksum(hw
);
1608 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1609 * @hw: pointer to the HW structure
1611 * Clears the hardware counters by reading the counter registers.
1613 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1617 e1000e_clear_hw_cntrs_base(hw
);
1620 temp
= er32(PRC127
);
1621 temp
= er32(PRC255
);
1622 temp
= er32(PRC511
);
1623 temp
= er32(PRC1023
);
1624 temp
= er32(PRC1522
);
1626 temp
= er32(PTC127
);
1627 temp
= er32(PTC255
);
1628 temp
= er32(PTC511
);
1629 temp
= er32(PTC1023
);
1630 temp
= er32(PTC1522
);
1632 temp
= er32(ALGNERRC
);
1633 temp
= er32(RXERRC
);
1635 temp
= er32(CEXTERR
);
1637 temp
= er32(TSCTFC
);
1639 temp
= er32(MGTPRC
);
1640 temp
= er32(MGTPDC
);
1641 temp
= er32(MGTPTC
);
1644 temp
= er32(ICRXOC
);
1646 temp
= er32(ICRXPTC
);
1647 temp
= er32(ICRXATC
);
1648 temp
= er32(ICTXPTC
);
1649 temp
= er32(ICTXATC
);
1650 temp
= er32(ICTXQEC
);
1651 temp
= er32(ICTXQMTC
);
1652 temp
= er32(ICRXDMTC
);
1655 static struct e1000_mac_operations e82571_mac_ops
= {
1656 /* .check_mng_mode: mac type dependent */
1657 /* .check_for_link: media type dependent */
1658 .id_led_init
= e1000e_id_led_init
,
1659 .cleanup_led
= e1000e_cleanup_led_generic
,
1660 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1661 .get_bus_info
= e1000e_get_bus_info_pcie
,
1662 /* .get_link_up_info: media type dependent */
1663 /* .led_on: mac type dependent */
1664 .led_off
= e1000e_led_off_generic
,
1665 .update_mc_addr_list
= e1000_update_mc_addr_list_82571
,
1666 .reset_hw
= e1000_reset_hw_82571
,
1667 .init_hw
= e1000_init_hw_82571
,
1668 .setup_link
= e1000_setup_link_82571
,
1669 /* .setup_physical_interface: media type dependent */
1670 .setup_led
= e1000e_setup_led_generic
,
1673 static struct e1000_phy_operations e82_phy_ops_igp
= {
1674 .acquire
= e1000_get_hw_semaphore_82571
,
1675 .check_reset_block
= e1000e_check_reset_block_generic
,
1677 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1678 .get_cfg_done
= e1000_get_cfg_done_82571
,
1679 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1680 .get_info
= e1000e_get_phy_info_igp
,
1681 .read_reg
= e1000e_read_phy_reg_igp
,
1682 .release
= e1000_put_hw_semaphore_82571
,
1683 .reset
= e1000e_phy_hw_reset_generic
,
1684 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1685 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1686 .write_reg
= e1000e_write_phy_reg_igp
,
1687 .cfg_on_link_up
= NULL
,
1690 static struct e1000_phy_operations e82_phy_ops_m88
= {
1691 .acquire
= e1000_get_hw_semaphore_82571
,
1692 .check_reset_block
= e1000e_check_reset_block_generic
,
1693 .commit
= e1000e_phy_sw_reset
,
1694 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1695 .get_cfg_done
= e1000e_get_cfg_done
,
1696 .get_cable_length
= e1000e_get_cable_length_m88
,
1697 .get_info
= e1000e_get_phy_info_m88
,
1698 .read_reg
= e1000e_read_phy_reg_m88
,
1699 .release
= e1000_put_hw_semaphore_82571
,
1700 .reset
= e1000e_phy_hw_reset_generic
,
1701 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1702 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1703 .write_reg
= e1000e_write_phy_reg_m88
,
1704 .cfg_on_link_up
= NULL
,
1707 static struct e1000_phy_operations e82_phy_ops_bm
= {
1708 .acquire
= e1000_get_hw_semaphore_82571
,
1709 .check_reset_block
= e1000e_check_reset_block_generic
,
1710 .commit
= e1000e_phy_sw_reset
,
1711 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1712 .get_cfg_done
= e1000e_get_cfg_done
,
1713 .get_cable_length
= e1000e_get_cable_length_m88
,
1714 .get_info
= e1000e_get_phy_info_m88
,
1715 .read_reg
= e1000e_read_phy_reg_bm2
,
1716 .release
= e1000_put_hw_semaphore_82571
,
1717 .reset
= e1000e_phy_hw_reset_generic
,
1718 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1719 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1720 .write_reg
= e1000e_write_phy_reg_bm2
,
1721 .cfg_on_link_up
= NULL
,
1724 static struct e1000_nvm_operations e82571_nvm_ops
= {
1725 .acquire
= e1000_acquire_nvm_82571
,
1726 .read
= e1000e_read_nvm_eerd
,
1727 .release
= e1000_release_nvm_82571
,
1728 .update
= e1000_update_nvm_checksum_82571
,
1729 .valid_led_default
= e1000_valid_led_default_82571
,
1730 .validate
= e1000_validate_nvm_checksum_82571
,
1731 .write
= e1000_write_nvm_82571
,
1734 struct e1000_info e1000_82571_info
= {
1736 .flags
= FLAG_HAS_HW_VLAN_FILTER
1737 | FLAG_HAS_JUMBO_FRAMES
1739 | FLAG_APME_IN_CTRL3
1740 | FLAG_RX_CSUM_ENABLED
1741 | FLAG_HAS_CTRLEXT_ON_LOAD
1742 | FLAG_HAS_SMART_POWER_DOWN
1743 | FLAG_RESET_OVERWRITES_LAA
/* errata */
1744 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
1745 | FLAG_APME_CHECK_PORT_B
,
1747 .max_hw_frame_size
= DEFAULT_JUMBO
,
1748 .get_variants
= e1000_get_variants_82571
,
1749 .mac_ops
= &e82571_mac_ops
,
1750 .phy_ops
= &e82_phy_ops_igp
,
1751 .nvm_ops
= &e82571_nvm_ops
,
1754 struct e1000_info e1000_82572_info
= {
1756 .flags
= FLAG_HAS_HW_VLAN_FILTER
1757 | FLAG_HAS_JUMBO_FRAMES
1759 | FLAG_APME_IN_CTRL3
1760 | FLAG_RX_CSUM_ENABLED
1761 | FLAG_HAS_CTRLEXT_ON_LOAD
1762 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
1764 .max_hw_frame_size
= DEFAULT_JUMBO
,
1765 .get_variants
= e1000_get_variants_82571
,
1766 .mac_ops
= &e82571_mac_ops
,
1767 .phy_ops
= &e82_phy_ops_igp
,
1768 .nvm_ops
= &e82571_nvm_ops
,
1771 struct e1000_info e1000_82573_info
= {
1773 .flags
= FLAG_HAS_HW_VLAN_FILTER
1774 | FLAG_HAS_JUMBO_FRAMES
1776 | FLAG_APME_IN_CTRL3
1777 | FLAG_RX_CSUM_ENABLED
1778 | FLAG_HAS_SMART_POWER_DOWN
1781 | FLAG_HAS_SWSM_ON_LOAD
,
1783 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
1784 .get_variants
= e1000_get_variants_82571
,
1785 .mac_ops
= &e82571_mac_ops
,
1786 .phy_ops
= &e82_phy_ops_m88
,
1787 .nvm_ops
= &e82571_nvm_ops
,
1790 struct e1000_info e1000_82574_info
= {
1792 .flags
= FLAG_HAS_HW_VLAN_FILTER
1794 | FLAG_HAS_JUMBO_FRAMES
1796 | FLAG_APME_IN_CTRL3
1797 | FLAG_RX_CSUM_ENABLED
1798 | FLAG_HAS_SMART_POWER_DOWN
1800 | FLAG_HAS_CTRLEXT_ON_LOAD
,
1802 .max_hw_frame_size
= DEFAULT_JUMBO
,
1803 .get_variants
= e1000_get_variants_82571
,
1804 .mac_ops
= &e82571_mac_ops
,
1805 .phy_ops
= &e82_phy_ops_bm
,
1806 .nvm_ops
= &e82571_nvm_ops
,
1809 struct e1000_info e1000_82583_info
= {
1811 .flags
= FLAG_HAS_HW_VLAN_FILTER
1813 | FLAG_APME_IN_CTRL3
1814 | FLAG_RX_CSUM_ENABLED
1815 | FLAG_HAS_SMART_POWER_DOWN
1817 | FLAG_HAS_CTRLEXT_ON_LOAD
,
1819 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
1820 .get_variants
= e1000_get_variants_82571
,
1821 .mac_ops
= &e82571_mac_ops
,
1822 .phy_ops
= &e82_phy_ops_bm
,
1823 .nvm_ops
= &e82571_nvm_ops
,