Blackfin: bf538: pull gpio/port logic out of core hibernate paths
[linux-2.6/libata-dev.git] / kernel / fork.c
blobca339c5c5819db323d9e3734b0ab9c622cda2875
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
77 #include <trace/events/sched.h>
80 * Protected counters by write_lock_irq(&tasklist_lock)
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
85 int max_threads; /* tunable limit on nr_threads */
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
94 return lockdep_is_held(&tasklist_lock);
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
99 int nr_processes(void)
101 int cpu;
102 int total = 0;
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
107 return total;
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct_node(node) \
112 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
113 # define free_task_struct(tsk) \
114 kmem_cache_free(task_struct_cachep, (tsk))
115 static struct kmem_cache *task_struct_cachep;
116 #endif
118 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
119 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
120 int node)
122 #ifdef CONFIG_DEBUG_STACK_USAGE
123 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
124 #else
125 gfp_t mask = GFP_KERNEL;
126 #endif
127 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
129 return page ? page_address(page) : NULL;
132 static inline void free_thread_info(struct thread_info *ti)
134 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
136 #endif
138 /* SLAB cache for signal_struct structures (tsk->signal) */
139 static struct kmem_cache *signal_cachep;
141 /* SLAB cache for sighand_struct structures (tsk->sighand) */
142 struct kmem_cache *sighand_cachep;
144 /* SLAB cache for files_struct structures (tsk->files) */
145 struct kmem_cache *files_cachep;
147 /* SLAB cache for fs_struct structures (tsk->fs) */
148 struct kmem_cache *fs_cachep;
150 /* SLAB cache for vm_area_struct structures */
151 struct kmem_cache *vm_area_cachep;
153 /* SLAB cache for mm_struct structures (tsk->mm) */
154 static struct kmem_cache *mm_cachep;
156 static void account_kernel_stack(struct thread_info *ti, int account)
158 struct zone *zone = page_zone(virt_to_page(ti));
160 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
163 void free_task(struct task_struct *tsk)
165 prop_local_destroy_single(&tsk->dirties);
166 account_kernel_stack(tsk->stack, -1);
167 free_thread_info(tsk->stack);
168 rt_mutex_debug_task_free(tsk);
169 ftrace_graph_exit_task(tsk);
170 free_task_struct(tsk);
172 EXPORT_SYMBOL(free_task);
174 static inline void free_signal_struct(struct signal_struct *sig)
176 taskstats_tgid_free(sig);
177 sched_autogroup_exit(sig);
178 kmem_cache_free(signal_cachep, sig);
181 static inline void put_signal_struct(struct signal_struct *sig)
183 if (atomic_dec_and_test(&sig->sigcnt))
184 free_signal_struct(sig);
187 void __put_task_struct(struct task_struct *tsk)
189 WARN_ON(!tsk->exit_state);
190 WARN_ON(atomic_read(&tsk->usage));
191 WARN_ON(tsk == current);
193 exit_creds(tsk);
194 delayacct_tsk_free(tsk);
195 put_signal_struct(tsk->signal);
197 if (!profile_handoff_task(tsk))
198 free_task(tsk);
200 EXPORT_SYMBOL_GPL(__put_task_struct);
203 * macro override instead of weak attribute alias, to workaround
204 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
206 #ifndef arch_task_cache_init
207 #define arch_task_cache_init()
208 #endif
210 void __init fork_init(unsigned long mempages)
212 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
213 #ifndef ARCH_MIN_TASKALIGN
214 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
215 #endif
216 /* create a slab on which task_structs can be allocated */
217 task_struct_cachep =
218 kmem_cache_create("task_struct", sizeof(struct task_struct),
219 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
220 #endif
222 /* do the arch specific task caches init */
223 arch_task_cache_init();
226 * The default maximum number of threads is set to a safe
227 * value: the thread structures can take up at most half
228 * of memory.
230 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
233 * we need to allow at least 20 threads to boot a system
235 if(max_threads < 20)
236 max_threads = 20;
238 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
239 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
240 init_task.signal->rlim[RLIMIT_SIGPENDING] =
241 init_task.signal->rlim[RLIMIT_NPROC];
244 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
245 struct task_struct *src)
247 *dst = *src;
248 return 0;
251 static struct task_struct *dup_task_struct(struct task_struct *orig)
253 struct task_struct *tsk;
254 struct thread_info *ti;
255 unsigned long *stackend;
256 int node = tsk_fork_get_node(orig);
257 int err;
259 prepare_to_copy(orig);
261 tsk = alloc_task_struct_node(node);
262 if (!tsk)
263 return NULL;
265 ti = alloc_thread_info_node(tsk, node);
266 if (!ti) {
267 free_task_struct(tsk);
268 return NULL;
271 err = arch_dup_task_struct(tsk, orig);
272 if (err)
273 goto out;
275 tsk->stack = ti;
277 err = prop_local_init_single(&tsk->dirties);
278 if (err)
279 goto out;
281 setup_thread_stack(tsk, orig);
282 clear_user_return_notifier(tsk);
283 clear_tsk_need_resched(tsk);
284 stackend = end_of_stack(tsk);
285 *stackend = STACK_END_MAGIC; /* for overflow detection */
287 #ifdef CONFIG_CC_STACKPROTECTOR
288 tsk->stack_canary = get_random_int();
289 #endif
291 /* One for us, one for whoever does the "release_task()" (usually parent) */
292 atomic_set(&tsk->usage,2);
293 atomic_set(&tsk->fs_excl, 0);
294 #ifdef CONFIG_BLK_DEV_IO_TRACE
295 tsk->btrace_seq = 0;
296 #endif
297 tsk->splice_pipe = NULL;
299 account_kernel_stack(ti, 1);
301 return tsk;
303 out:
304 free_thread_info(ti);
305 free_task_struct(tsk);
306 return NULL;
309 #ifdef CONFIG_MMU
310 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
313 struct rb_node **rb_link, *rb_parent;
314 int retval;
315 unsigned long charge;
316 struct mempolicy *pol;
318 down_write(&oldmm->mmap_sem);
319 flush_cache_dup_mm(oldmm);
321 * Not linked in yet - no deadlock potential:
323 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325 mm->locked_vm = 0;
326 mm->mmap = NULL;
327 mm->mmap_cache = NULL;
328 mm->free_area_cache = oldmm->mmap_base;
329 mm->cached_hole_size = ~0UL;
330 mm->map_count = 0;
331 cpumask_clear(mm_cpumask(mm));
332 mm->mm_rb = RB_ROOT;
333 rb_link = &mm->mm_rb.rb_node;
334 rb_parent = NULL;
335 pprev = &mm->mmap;
336 retval = ksm_fork(mm, oldmm);
337 if (retval)
338 goto out;
339 retval = khugepaged_fork(mm, oldmm);
340 if (retval)
341 goto out;
343 prev = NULL;
344 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
345 struct file *file;
347 if (mpnt->vm_flags & VM_DONTCOPY) {
348 long pages = vma_pages(mpnt);
349 mm->total_vm -= pages;
350 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
351 -pages);
352 continue;
354 charge = 0;
355 if (mpnt->vm_flags & VM_ACCOUNT) {
356 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
357 if (security_vm_enough_memory(len))
358 goto fail_nomem;
359 charge = len;
361 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
362 if (!tmp)
363 goto fail_nomem;
364 *tmp = *mpnt;
365 INIT_LIST_HEAD(&tmp->anon_vma_chain);
366 pol = mpol_dup(vma_policy(mpnt));
367 retval = PTR_ERR(pol);
368 if (IS_ERR(pol))
369 goto fail_nomem_policy;
370 vma_set_policy(tmp, pol);
371 tmp->vm_mm = mm;
372 if (anon_vma_fork(tmp, mpnt))
373 goto fail_nomem_anon_vma_fork;
374 tmp->vm_flags &= ~VM_LOCKED;
375 tmp->vm_next = tmp->vm_prev = NULL;
376 file = tmp->vm_file;
377 if (file) {
378 struct inode *inode = file->f_path.dentry->d_inode;
379 struct address_space *mapping = file->f_mapping;
381 get_file(file);
382 if (tmp->vm_flags & VM_DENYWRITE)
383 atomic_dec(&inode->i_writecount);
384 mutex_lock(&mapping->i_mmap_mutex);
385 if (tmp->vm_flags & VM_SHARED)
386 mapping->i_mmap_writable++;
387 flush_dcache_mmap_lock(mapping);
388 /* insert tmp into the share list, just after mpnt */
389 vma_prio_tree_add(tmp, mpnt);
390 flush_dcache_mmap_unlock(mapping);
391 mutex_unlock(&mapping->i_mmap_mutex);
395 * Clear hugetlb-related page reserves for children. This only
396 * affects MAP_PRIVATE mappings. Faults generated by the child
397 * are not guaranteed to succeed, even if read-only
399 if (is_vm_hugetlb_page(tmp))
400 reset_vma_resv_huge_pages(tmp);
403 * Link in the new vma and copy the page table entries.
405 *pprev = tmp;
406 pprev = &tmp->vm_next;
407 tmp->vm_prev = prev;
408 prev = tmp;
410 __vma_link_rb(mm, tmp, rb_link, rb_parent);
411 rb_link = &tmp->vm_rb.rb_right;
412 rb_parent = &tmp->vm_rb;
414 mm->map_count++;
415 retval = copy_page_range(mm, oldmm, mpnt);
417 if (tmp->vm_ops && tmp->vm_ops->open)
418 tmp->vm_ops->open(tmp);
420 if (retval)
421 goto out;
423 /* a new mm has just been created */
424 arch_dup_mmap(oldmm, mm);
425 retval = 0;
426 out:
427 up_write(&mm->mmap_sem);
428 flush_tlb_mm(oldmm);
429 up_write(&oldmm->mmap_sem);
430 return retval;
431 fail_nomem_anon_vma_fork:
432 mpol_put(pol);
433 fail_nomem_policy:
434 kmem_cache_free(vm_area_cachep, tmp);
435 fail_nomem:
436 retval = -ENOMEM;
437 vm_unacct_memory(charge);
438 goto out;
441 static inline int mm_alloc_pgd(struct mm_struct * mm)
443 mm->pgd = pgd_alloc(mm);
444 if (unlikely(!mm->pgd))
445 return -ENOMEM;
446 return 0;
449 static inline void mm_free_pgd(struct mm_struct * mm)
451 pgd_free(mm, mm->pgd);
453 #else
454 #define dup_mmap(mm, oldmm) (0)
455 #define mm_alloc_pgd(mm) (0)
456 #define mm_free_pgd(mm)
457 #endif /* CONFIG_MMU */
459 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
462 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
464 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466 static int __init coredump_filter_setup(char *s)
468 default_dump_filter =
469 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
470 MMF_DUMP_FILTER_MASK;
471 return 1;
474 __setup("coredump_filter=", coredump_filter_setup);
476 #include <linux/init_task.h>
478 static void mm_init_aio(struct mm_struct *mm)
480 #ifdef CONFIG_AIO
481 spin_lock_init(&mm->ioctx_lock);
482 INIT_HLIST_HEAD(&mm->ioctx_list);
483 #endif
486 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
488 atomic_set(&mm->mm_users, 1);
489 atomic_set(&mm->mm_count, 1);
490 init_rwsem(&mm->mmap_sem);
491 INIT_LIST_HEAD(&mm->mmlist);
492 mm->flags = (current->mm) ?
493 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
494 mm->core_state = NULL;
495 mm->nr_ptes = 0;
496 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
497 spin_lock_init(&mm->page_table_lock);
498 mm->free_area_cache = TASK_UNMAPPED_BASE;
499 mm->cached_hole_size = ~0UL;
500 mm_init_aio(mm);
501 mm_init_owner(mm, p);
502 atomic_set(&mm->oom_disable_count, 0);
504 if (likely(!mm_alloc_pgd(mm))) {
505 mm->def_flags = 0;
506 mmu_notifier_mm_init(mm);
507 return mm;
510 free_mm(mm);
511 return NULL;
515 * Allocate and initialize an mm_struct.
517 struct mm_struct * mm_alloc(void)
519 struct mm_struct * mm;
521 mm = allocate_mm();
522 if (!mm)
523 return NULL;
525 memset(mm, 0, sizeof(*mm));
526 mm_init_cpumask(mm);
527 return mm_init(mm, current);
531 * Called when the last reference to the mm
532 * is dropped: either by a lazy thread or by
533 * mmput. Free the page directory and the mm.
535 void __mmdrop(struct mm_struct *mm)
537 BUG_ON(mm == &init_mm);
538 mm_free_pgd(mm);
539 destroy_context(mm);
540 mmu_notifier_mm_destroy(mm);
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542 VM_BUG_ON(mm->pmd_huge_pte);
543 #endif
544 free_mm(mm);
546 EXPORT_SYMBOL_GPL(__mmdrop);
549 * Decrement the use count and release all resources for an mm.
551 void mmput(struct mm_struct *mm)
553 might_sleep();
555 if (atomic_dec_and_test(&mm->mm_users)) {
556 exit_aio(mm);
557 ksm_exit(mm);
558 khugepaged_exit(mm); /* must run before exit_mmap */
559 exit_mmap(mm);
560 set_mm_exe_file(mm, NULL);
561 if (!list_empty(&mm->mmlist)) {
562 spin_lock(&mmlist_lock);
563 list_del(&mm->mmlist);
564 spin_unlock(&mmlist_lock);
566 put_swap_token(mm);
567 if (mm->binfmt)
568 module_put(mm->binfmt->module);
569 mmdrop(mm);
572 EXPORT_SYMBOL_GPL(mmput);
575 * We added or removed a vma mapping the executable. The vmas are only mapped
576 * during exec and are not mapped with the mmap system call.
577 * Callers must hold down_write() on the mm's mmap_sem for these
579 void added_exe_file_vma(struct mm_struct *mm)
581 mm->num_exe_file_vmas++;
584 void removed_exe_file_vma(struct mm_struct *mm)
586 mm->num_exe_file_vmas--;
587 if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
588 fput(mm->exe_file);
589 mm->exe_file = NULL;
594 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
596 if (new_exe_file)
597 get_file(new_exe_file);
598 if (mm->exe_file)
599 fput(mm->exe_file);
600 mm->exe_file = new_exe_file;
601 mm->num_exe_file_vmas = 0;
604 struct file *get_mm_exe_file(struct mm_struct *mm)
606 struct file *exe_file;
608 /* We need mmap_sem to protect against races with removal of
609 * VM_EXECUTABLE vmas */
610 down_read(&mm->mmap_sem);
611 exe_file = mm->exe_file;
612 if (exe_file)
613 get_file(exe_file);
614 up_read(&mm->mmap_sem);
615 return exe_file;
618 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
620 /* It's safe to write the exe_file pointer without exe_file_lock because
621 * this is called during fork when the task is not yet in /proc */
622 newmm->exe_file = get_mm_exe_file(oldmm);
626 * get_task_mm - acquire a reference to the task's mm
628 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
629 * this kernel workthread has transiently adopted a user mm with use_mm,
630 * to do its AIO) is not set and if so returns a reference to it, after
631 * bumping up the use count. User must release the mm via mmput()
632 * after use. Typically used by /proc and ptrace.
634 struct mm_struct *get_task_mm(struct task_struct *task)
636 struct mm_struct *mm;
638 task_lock(task);
639 mm = task->mm;
640 if (mm) {
641 if (task->flags & PF_KTHREAD)
642 mm = NULL;
643 else
644 atomic_inc(&mm->mm_users);
646 task_unlock(task);
647 return mm;
649 EXPORT_SYMBOL_GPL(get_task_mm);
651 /* Please note the differences between mmput and mm_release.
652 * mmput is called whenever we stop holding onto a mm_struct,
653 * error success whatever.
655 * mm_release is called after a mm_struct has been removed
656 * from the current process.
658 * This difference is important for error handling, when we
659 * only half set up a mm_struct for a new process and need to restore
660 * the old one. Because we mmput the new mm_struct before
661 * restoring the old one. . .
662 * Eric Biederman 10 January 1998
664 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
666 struct completion *vfork_done = tsk->vfork_done;
668 /* Get rid of any futexes when releasing the mm */
669 #ifdef CONFIG_FUTEX
670 if (unlikely(tsk->robust_list)) {
671 exit_robust_list(tsk);
672 tsk->robust_list = NULL;
674 #ifdef CONFIG_COMPAT
675 if (unlikely(tsk->compat_robust_list)) {
676 compat_exit_robust_list(tsk);
677 tsk->compat_robust_list = NULL;
679 #endif
680 if (unlikely(!list_empty(&tsk->pi_state_list)))
681 exit_pi_state_list(tsk);
682 #endif
684 /* Get rid of any cached register state */
685 deactivate_mm(tsk, mm);
687 /* notify parent sleeping on vfork() */
688 if (vfork_done) {
689 tsk->vfork_done = NULL;
690 complete(vfork_done);
694 * If we're exiting normally, clear a user-space tid field if
695 * requested. We leave this alone when dying by signal, to leave
696 * the value intact in a core dump, and to save the unnecessary
697 * trouble otherwise. Userland only wants this done for a sys_exit.
699 if (tsk->clear_child_tid) {
700 if (!(tsk->flags & PF_SIGNALED) &&
701 atomic_read(&mm->mm_users) > 1) {
703 * We don't check the error code - if userspace has
704 * not set up a proper pointer then tough luck.
706 put_user(0, tsk->clear_child_tid);
707 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
708 1, NULL, NULL, 0);
710 tsk->clear_child_tid = NULL;
715 * Allocate a new mm structure and copy contents from the
716 * mm structure of the passed in task structure.
718 struct mm_struct *dup_mm(struct task_struct *tsk)
720 struct mm_struct *mm, *oldmm = current->mm;
721 int err;
723 if (!oldmm)
724 return NULL;
726 mm = allocate_mm();
727 if (!mm)
728 goto fail_nomem;
730 memcpy(mm, oldmm, sizeof(*mm));
731 mm_init_cpumask(mm);
733 /* Initializing for Swap token stuff */
734 mm->token_priority = 0;
735 mm->last_interval = 0;
737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
738 mm->pmd_huge_pte = NULL;
739 #endif
741 if (!mm_init(mm, tsk))
742 goto fail_nomem;
744 if (init_new_context(tsk, mm))
745 goto fail_nocontext;
747 dup_mm_exe_file(oldmm, mm);
749 err = dup_mmap(mm, oldmm);
750 if (err)
751 goto free_pt;
753 mm->hiwater_rss = get_mm_rss(mm);
754 mm->hiwater_vm = mm->total_vm;
756 if (mm->binfmt && !try_module_get(mm->binfmt->module))
757 goto free_pt;
759 return mm;
761 free_pt:
762 /* don't put binfmt in mmput, we haven't got module yet */
763 mm->binfmt = NULL;
764 mmput(mm);
766 fail_nomem:
767 return NULL;
769 fail_nocontext:
771 * If init_new_context() failed, we cannot use mmput() to free the mm
772 * because it calls destroy_context()
774 mm_free_pgd(mm);
775 free_mm(mm);
776 return NULL;
779 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
781 struct mm_struct * mm, *oldmm;
782 int retval;
784 tsk->min_flt = tsk->maj_flt = 0;
785 tsk->nvcsw = tsk->nivcsw = 0;
786 #ifdef CONFIG_DETECT_HUNG_TASK
787 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
788 #endif
790 tsk->mm = NULL;
791 tsk->active_mm = NULL;
794 * Are we cloning a kernel thread?
796 * We need to steal a active VM for that..
798 oldmm = current->mm;
799 if (!oldmm)
800 return 0;
802 if (clone_flags & CLONE_VM) {
803 atomic_inc(&oldmm->mm_users);
804 mm = oldmm;
805 goto good_mm;
808 retval = -ENOMEM;
809 mm = dup_mm(tsk);
810 if (!mm)
811 goto fail_nomem;
813 good_mm:
814 /* Initializing for Swap token stuff */
815 mm->token_priority = 0;
816 mm->last_interval = 0;
817 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
818 atomic_inc(&mm->oom_disable_count);
820 tsk->mm = mm;
821 tsk->active_mm = mm;
822 return 0;
824 fail_nomem:
825 return retval;
828 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
830 struct fs_struct *fs = current->fs;
831 if (clone_flags & CLONE_FS) {
832 /* tsk->fs is already what we want */
833 spin_lock(&fs->lock);
834 if (fs->in_exec) {
835 spin_unlock(&fs->lock);
836 return -EAGAIN;
838 fs->users++;
839 spin_unlock(&fs->lock);
840 return 0;
842 tsk->fs = copy_fs_struct(fs);
843 if (!tsk->fs)
844 return -ENOMEM;
845 return 0;
848 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
850 struct files_struct *oldf, *newf;
851 int error = 0;
854 * A background process may not have any files ...
856 oldf = current->files;
857 if (!oldf)
858 goto out;
860 if (clone_flags & CLONE_FILES) {
861 atomic_inc(&oldf->count);
862 goto out;
865 newf = dup_fd(oldf, &error);
866 if (!newf)
867 goto out;
869 tsk->files = newf;
870 error = 0;
871 out:
872 return error;
875 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
877 #ifdef CONFIG_BLOCK
878 struct io_context *ioc = current->io_context;
880 if (!ioc)
881 return 0;
883 * Share io context with parent, if CLONE_IO is set
885 if (clone_flags & CLONE_IO) {
886 tsk->io_context = ioc_task_link(ioc);
887 if (unlikely(!tsk->io_context))
888 return -ENOMEM;
889 } else if (ioprio_valid(ioc->ioprio)) {
890 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
891 if (unlikely(!tsk->io_context))
892 return -ENOMEM;
894 tsk->io_context->ioprio = ioc->ioprio;
896 #endif
897 return 0;
900 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
902 struct sighand_struct *sig;
904 if (clone_flags & CLONE_SIGHAND) {
905 atomic_inc(&current->sighand->count);
906 return 0;
908 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
909 rcu_assign_pointer(tsk->sighand, sig);
910 if (!sig)
911 return -ENOMEM;
912 atomic_set(&sig->count, 1);
913 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
914 return 0;
917 void __cleanup_sighand(struct sighand_struct *sighand)
919 if (atomic_dec_and_test(&sighand->count))
920 kmem_cache_free(sighand_cachep, sighand);
925 * Initialize POSIX timer handling for a thread group.
927 static void posix_cpu_timers_init_group(struct signal_struct *sig)
929 unsigned long cpu_limit;
931 /* Thread group counters. */
932 thread_group_cputime_init(sig);
934 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
935 if (cpu_limit != RLIM_INFINITY) {
936 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
937 sig->cputimer.running = 1;
940 /* The timer lists. */
941 INIT_LIST_HEAD(&sig->cpu_timers[0]);
942 INIT_LIST_HEAD(&sig->cpu_timers[1]);
943 INIT_LIST_HEAD(&sig->cpu_timers[2]);
946 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
948 struct signal_struct *sig;
950 if (clone_flags & CLONE_THREAD)
951 return 0;
953 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
954 tsk->signal = sig;
955 if (!sig)
956 return -ENOMEM;
958 sig->nr_threads = 1;
959 atomic_set(&sig->live, 1);
960 atomic_set(&sig->sigcnt, 1);
961 init_waitqueue_head(&sig->wait_chldexit);
962 if (clone_flags & CLONE_NEWPID)
963 sig->flags |= SIGNAL_UNKILLABLE;
964 sig->curr_target = tsk;
965 init_sigpending(&sig->shared_pending);
966 INIT_LIST_HEAD(&sig->posix_timers);
968 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
969 sig->real_timer.function = it_real_fn;
971 task_lock(current->group_leader);
972 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
973 task_unlock(current->group_leader);
975 posix_cpu_timers_init_group(sig);
977 tty_audit_fork(sig);
978 sched_autogroup_fork(sig);
980 #ifdef CONFIG_CGROUPS
981 init_rwsem(&sig->threadgroup_fork_lock);
982 #endif
984 sig->oom_adj = current->signal->oom_adj;
985 sig->oom_score_adj = current->signal->oom_score_adj;
986 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
988 mutex_init(&sig->cred_guard_mutex);
990 return 0;
993 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
995 unsigned long new_flags = p->flags;
997 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
998 new_flags |= PF_FORKNOEXEC;
999 new_flags |= PF_STARTING;
1000 p->flags = new_flags;
1001 clear_freeze_flag(p);
1004 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1006 current->clear_child_tid = tidptr;
1008 return task_pid_vnr(current);
1011 static void rt_mutex_init_task(struct task_struct *p)
1013 raw_spin_lock_init(&p->pi_lock);
1014 #ifdef CONFIG_RT_MUTEXES
1015 plist_head_init(&p->pi_waiters);
1016 p->pi_blocked_on = NULL;
1017 #endif
1020 #ifdef CONFIG_MM_OWNER
1021 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1023 mm->owner = p;
1025 #endif /* CONFIG_MM_OWNER */
1028 * Initialize POSIX timer handling for a single task.
1030 static void posix_cpu_timers_init(struct task_struct *tsk)
1032 tsk->cputime_expires.prof_exp = cputime_zero;
1033 tsk->cputime_expires.virt_exp = cputime_zero;
1034 tsk->cputime_expires.sched_exp = 0;
1035 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1036 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1037 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1041 * This creates a new process as a copy of the old one,
1042 * but does not actually start it yet.
1044 * It copies the registers, and all the appropriate
1045 * parts of the process environment (as per the clone
1046 * flags). The actual kick-off is left to the caller.
1048 static struct task_struct *copy_process(unsigned long clone_flags,
1049 unsigned long stack_start,
1050 struct pt_regs *regs,
1051 unsigned long stack_size,
1052 int __user *child_tidptr,
1053 struct pid *pid,
1054 int trace)
1056 int retval;
1057 struct task_struct *p;
1058 int cgroup_callbacks_done = 0;
1060 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1061 return ERR_PTR(-EINVAL);
1064 * Thread groups must share signals as well, and detached threads
1065 * can only be started up within the thread group.
1067 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1068 return ERR_PTR(-EINVAL);
1071 * Shared signal handlers imply shared VM. By way of the above,
1072 * thread groups also imply shared VM. Blocking this case allows
1073 * for various simplifications in other code.
1075 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1076 return ERR_PTR(-EINVAL);
1079 * Siblings of global init remain as zombies on exit since they are
1080 * not reaped by their parent (swapper). To solve this and to avoid
1081 * multi-rooted process trees, prevent global and container-inits
1082 * from creating siblings.
1084 if ((clone_flags & CLONE_PARENT) &&
1085 current->signal->flags & SIGNAL_UNKILLABLE)
1086 return ERR_PTR(-EINVAL);
1088 retval = security_task_create(clone_flags);
1089 if (retval)
1090 goto fork_out;
1092 retval = -ENOMEM;
1093 p = dup_task_struct(current);
1094 if (!p)
1095 goto fork_out;
1097 ftrace_graph_init_task(p);
1099 rt_mutex_init_task(p);
1101 #ifdef CONFIG_PROVE_LOCKING
1102 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1103 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1104 #endif
1105 retval = -EAGAIN;
1106 if (atomic_read(&p->real_cred->user->processes) >=
1107 task_rlimit(p, RLIMIT_NPROC)) {
1108 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1109 p->real_cred->user != INIT_USER)
1110 goto bad_fork_free;
1113 retval = copy_creds(p, clone_flags);
1114 if (retval < 0)
1115 goto bad_fork_free;
1118 * If multiple threads are within copy_process(), then this check
1119 * triggers too late. This doesn't hurt, the check is only there
1120 * to stop root fork bombs.
1122 retval = -EAGAIN;
1123 if (nr_threads >= max_threads)
1124 goto bad_fork_cleanup_count;
1126 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1127 goto bad_fork_cleanup_count;
1129 p->did_exec = 0;
1130 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1131 copy_flags(clone_flags, p);
1132 INIT_LIST_HEAD(&p->children);
1133 INIT_LIST_HEAD(&p->sibling);
1134 rcu_copy_process(p);
1135 p->vfork_done = NULL;
1136 spin_lock_init(&p->alloc_lock);
1138 init_sigpending(&p->pending);
1140 p->utime = cputime_zero;
1141 p->stime = cputime_zero;
1142 p->gtime = cputime_zero;
1143 p->utimescaled = cputime_zero;
1144 p->stimescaled = cputime_zero;
1145 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1146 p->prev_utime = cputime_zero;
1147 p->prev_stime = cputime_zero;
1148 #endif
1149 #if defined(SPLIT_RSS_COUNTING)
1150 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1151 #endif
1153 p->default_timer_slack_ns = current->timer_slack_ns;
1155 task_io_accounting_init(&p->ioac);
1156 acct_clear_integrals(p);
1158 posix_cpu_timers_init(p);
1160 do_posix_clock_monotonic_gettime(&p->start_time);
1161 p->real_start_time = p->start_time;
1162 monotonic_to_bootbased(&p->real_start_time);
1163 p->io_context = NULL;
1164 p->audit_context = NULL;
1165 if (clone_flags & CLONE_THREAD)
1166 threadgroup_fork_read_lock(current);
1167 cgroup_fork(p);
1168 #ifdef CONFIG_NUMA
1169 p->mempolicy = mpol_dup(p->mempolicy);
1170 if (IS_ERR(p->mempolicy)) {
1171 retval = PTR_ERR(p->mempolicy);
1172 p->mempolicy = NULL;
1173 goto bad_fork_cleanup_cgroup;
1175 mpol_fix_fork_child_flag(p);
1176 #endif
1177 #ifdef CONFIG_TRACE_IRQFLAGS
1178 p->irq_events = 0;
1179 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1180 p->hardirqs_enabled = 1;
1181 #else
1182 p->hardirqs_enabled = 0;
1183 #endif
1184 p->hardirq_enable_ip = 0;
1185 p->hardirq_enable_event = 0;
1186 p->hardirq_disable_ip = _THIS_IP_;
1187 p->hardirq_disable_event = 0;
1188 p->softirqs_enabled = 1;
1189 p->softirq_enable_ip = _THIS_IP_;
1190 p->softirq_enable_event = 0;
1191 p->softirq_disable_ip = 0;
1192 p->softirq_disable_event = 0;
1193 p->hardirq_context = 0;
1194 p->softirq_context = 0;
1195 #endif
1196 #ifdef CONFIG_LOCKDEP
1197 p->lockdep_depth = 0; /* no locks held yet */
1198 p->curr_chain_key = 0;
1199 p->lockdep_recursion = 0;
1200 #endif
1202 #ifdef CONFIG_DEBUG_MUTEXES
1203 p->blocked_on = NULL; /* not blocked yet */
1204 #endif
1205 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1206 p->memcg_batch.do_batch = 0;
1207 p->memcg_batch.memcg = NULL;
1208 #endif
1210 /* Perform scheduler related setup. Assign this task to a CPU. */
1211 sched_fork(p);
1213 retval = perf_event_init_task(p);
1214 if (retval)
1215 goto bad_fork_cleanup_policy;
1217 if ((retval = audit_alloc(p)))
1218 goto bad_fork_cleanup_policy;
1219 /* copy all the process information */
1220 if ((retval = copy_semundo(clone_flags, p)))
1221 goto bad_fork_cleanup_audit;
1222 if ((retval = copy_files(clone_flags, p)))
1223 goto bad_fork_cleanup_semundo;
1224 if ((retval = copy_fs(clone_flags, p)))
1225 goto bad_fork_cleanup_files;
1226 if ((retval = copy_sighand(clone_flags, p)))
1227 goto bad_fork_cleanup_fs;
1228 if ((retval = copy_signal(clone_flags, p)))
1229 goto bad_fork_cleanup_sighand;
1230 if ((retval = copy_mm(clone_flags, p)))
1231 goto bad_fork_cleanup_signal;
1232 if ((retval = copy_namespaces(clone_flags, p)))
1233 goto bad_fork_cleanup_mm;
1234 if ((retval = copy_io(clone_flags, p)))
1235 goto bad_fork_cleanup_namespaces;
1236 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1237 if (retval)
1238 goto bad_fork_cleanup_io;
1240 if (pid != &init_struct_pid) {
1241 retval = -ENOMEM;
1242 pid = alloc_pid(p->nsproxy->pid_ns);
1243 if (!pid)
1244 goto bad_fork_cleanup_io;
1247 p->pid = pid_nr(pid);
1248 p->tgid = p->pid;
1249 if (clone_flags & CLONE_THREAD)
1250 p->tgid = current->tgid;
1252 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1254 * Clear TID on mm_release()?
1256 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1257 #ifdef CONFIG_BLOCK
1258 p->plug = NULL;
1259 #endif
1260 #ifdef CONFIG_FUTEX
1261 p->robust_list = NULL;
1262 #ifdef CONFIG_COMPAT
1263 p->compat_robust_list = NULL;
1264 #endif
1265 INIT_LIST_HEAD(&p->pi_state_list);
1266 p->pi_state_cache = NULL;
1267 #endif
1269 * sigaltstack should be cleared when sharing the same VM
1271 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1272 p->sas_ss_sp = p->sas_ss_size = 0;
1275 * Syscall tracing and stepping should be turned off in the
1276 * child regardless of CLONE_PTRACE.
1278 user_disable_single_step(p);
1279 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1280 #ifdef TIF_SYSCALL_EMU
1281 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1282 #endif
1283 clear_all_latency_tracing(p);
1285 /* ok, now we should be set up.. */
1286 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1287 p->pdeath_signal = 0;
1288 p->exit_state = 0;
1291 * Ok, make it visible to the rest of the system.
1292 * We dont wake it up yet.
1294 p->group_leader = p;
1295 INIT_LIST_HEAD(&p->thread_group);
1297 /* Now that the task is set up, run cgroup callbacks if
1298 * necessary. We need to run them before the task is visible
1299 * on the tasklist. */
1300 cgroup_fork_callbacks(p);
1301 cgroup_callbacks_done = 1;
1303 /* Need tasklist lock for parent etc handling! */
1304 write_lock_irq(&tasklist_lock);
1306 /* CLONE_PARENT re-uses the old parent */
1307 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1308 p->real_parent = current->real_parent;
1309 p->parent_exec_id = current->parent_exec_id;
1310 } else {
1311 p->real_parent = current;
1312 p->parent_exec_id = current->self_exec_id;
1315 spin_lock(&current->sighand->siglock);
1318 * Process group and session signals need to be delivered to just the
1319 * parent before the fork or both the parent and the child after the
1320 * fork. Restart if a signal comes in before we add the new process to
1321 * it's process group.
1322 * A fatal signal pending means that current will exit, so the new
1323 * thread can't slip out of an OOM kill (or normal SIGKILL).
1325 recalc_sigpending();
1326 if (signal_pending(current)) {
1327 spin_unlock(&current->sighand->siglock);
1328 write_unlock_irq(&tasklist_lock);
1329 retval = -ERESTARTNOINTR;
1330 goto bad_fork_free_pid;
1333 if (clone_flags & CLONE_THREAD) {
1334 current->signal->nr_threads++;
1335 atomic_inc(&current->signal->live);
1336 atomic_inc(&current->signal->sigcnt);
1337 p->group_leader = current->group_leader;
1338 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1341 if (likely(p->pid)) {
1342 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1344 if (thread_group_leader(p)) {
1345 if (is_child_reaper(pid))
1346 p->nsproxy->pid_ns->child_reaper = p;
1348 p->signal->leader_pid = pid;
1349 p->signal->tty = tty_kref_get(current->signal->tty);
1350 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1351 attach_pid(p, PIDTYPE_SID, task_session(current));
1352 list_add_tail(&p->sibling, &p->real_parent->children);
1353 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1354 __this_cpu_inc(process_counts);
1356 attach_pid(p, PIDTYPE_PID, pid);
1357 nr_threads++;
1360 total_forks++;
1361 spin_unlock(&current->sighand->siglock);
1362 write_unlock_irq(&tasklist_lock);
1363 proc_fork_connector(p);
1364 cgroup_post_fork(p);
1365 if (clone_flags & CLONE_THREAD)
1366 threadgroup_fork_read_unlock(current);
1367 perf_event_fork(p);
1368 return p;
1370 bad_fork_free_pid:
1371 if (pid != &init_struct_pid)
1372 free_pid(pid);
1373 bad_fork_cleanup_io:
1374 if (p->io_context)
1375 exit_io_context(p);
1376 bad_fork_cleanup_namespaces:
1377 exit_task_namespaces(p);
1378 bad_fork_cleanup_mm:
1379 if (p->mm) {
1380 task_lock(p);
1381 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1382 atomic_dec(&p->mm->oom_disable_count);
1383 task_unlock(p);
1384 mmput(p->mm);
1386 bad_fork_cleanup_signal:
1387 if (!(clone_flags & CLONE_THREAD))
1388 free_signal_struct(p->signal);
1389 bad_fork_cleanup_sighand:
1390 __cleanup_sighand(p->sighand);
1391 bad_fork_cleanup_fs:
1392 exit_fs(p); /* blocking */
1393 bad_fork_cleanup_files:
1394 exit_files(p); /* blocking */
1395 bad_fork_cleanup_semundo:
1396 exit_sem(p);
1397 bad_fork_cleanup_audit:
1398 audit_free(p);
1399 bad_fork_cleanup_policy:
1400 perf_event_free_task(p);
1401 #ifdef CONFIG_NUMA
1402 mpol_put(p->mempolicy);
1403 bad_fork_cleanup_cgroup:
1404 #endif
1405 if (clone_flags & CLONE_THREAD)
1406 threadgroup_fork_read_unlock(current);
1407 cgroup_exit(p, cgroup_callbacks_done);
1408 delayacct_tsk_free(p);
1409 module_put(task_thread_info(p)->exec_domain->module);
1410 bad_fork_cleanup_count:
1411 atomic_dec(&p->cred->user->processes);
1412 exit_creds(p);
1413 bad_fork_free:
1414 free_task(p);
1415 fork_out:
1416 return ERR_PTR(retval);
1419 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1421 memset(regs, 0, sizeof(struct pt_regs));
1422 return regs;
1425 static inline void init_idle_pids(struct pid_link *links)
1427 enum pid_type type;
1429 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1430 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1431 links[type].pid = &init_struct_pid;
1435 struct task_struct * __cpuinit fork_idle(int cpu)
1437 struct task_struct *task;
1438 struct pt_regs regs;
1440 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1441 &init_struct_pid, 0);
1442 if (!IS_ERR(task)) {
1443 init_idle_pids(task->pids);
1444 init_idle(task, cpu);
1447 return task;
1451 * Ok, this is the main fork-routine.
1453 * It copies the process, and if successful kick-starts
1454 * it and waits for it to finish using the VM if required.
1456 long do_fork(unsigned long clone_flags,
1457 unsigned long stack_start,
1458 struct pt_regs *regs,
1459 unsigned long stack_size,
1460 int __user *parent_tidptr,
1461 int __user *child_tidptr)
1463 struct task_struct *p;
1464 int trace = 0;
1465 long nr;
1468 * Do some preliminary argument and permissions checking before we
1469 * actually start allocating stuff
1471 if (clone_flags & CLONE_NEWUSER) {
1472 if (clone_flags & CLONE_THREAD)
1473 return -EINVAL;
1474 /* hopefully this check will go away when userns support is
1475 * complete
1477 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1478 !capable(CAP_SETGID))
1479 return -EPERM;
1483 * Determine whether and which event to report to ptracer. When
1484 * called from kernel_thread or CLONE_UNTRACED is explicitly
1485 * requested, no event is reported; otherwise, report if the event
1486 * for the type of forking is enabled.
1488 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1489 if (clone_flags & CLONE_VFORK)
1490 trace = PTRACE_EVENT_VFORK;
1491 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1492 trace = PTRACE_EVENT_CLONE;
1493 else
1494 trace = PTRACE_EVENT_FORK;
1496 if (likely(!ptrace_event_enabled(current, trace)))
1497 trace = 0;
1500 p = copy_process(clone_flags, stack_start, regs, stack_size,
1501 child_tidptr, NULL, trace);
1503 * Do this prior waking up the new thread - the thread pointer
1504 * might get invalid after that point, if the thread exits quickly.
1506 if (!IS_ERR(p)) {
1507 struct completion vfork;
1509 trace_sched_process_fork(current, p);
1511 nr = task_pid_vnr(p);
1513 if (clone_flags & CLONE_PARENT_SETTID)
1514 put_user(nr, parent_tidptr);
1516 if (clone_flags & CLONE_VFORK) {
1517 p->vfork_done = &vfork;
1518 init_completion(&vfork);
1521 audit_finish_fork(p);
1524 * We set PF_STARTING at creation in case tracing wants to
1525 * use this to distinguish a fully live task from one that
1526 * hasn't finished SIGSTOP raising yet. Now we clear it
1527 * and set the child going.
1529 p->flags &= ~PF_STARTING;
1531 wake_up_new_task(p);
1533 /* forking complete and child started to run, tell ptracer */
1534 if (unlikely(trace))
1535 ptrace_event(trace, nr);
1537 if (clone_flags & CLONE_VFORK) {
1538 freezer_do_not_count();
1539 wait_for_completion(&vfork);
1540 freezer_count();
1541 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1543 } else {
1544 nr = PTR_ERR(p);
1546 return nr;
1549 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1550 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1551 #endif
1553 static void sighand_ctor(void *data)
1555 struct sighand_struct *sighand = data;
1557 spin_lock_init(&sighand->siglock);
1558 init_waitqueue_head(&sighand->signalfd_wqh);
1561 void __init proc_caches_init(void)
1563 sighand_cachep = kmem_cache_create("sighand_cache",
1564 sizeof(struct sighand_struct), 0,
1565 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1566 SLAB_NOTRACK, sighand_ctor);
1567 signal_cachep = kmem_cache_create("signal_cache",
1568 sizeof(struct signal_struct), 0,
1569 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1570 files_cachep = kmem_cache_create("files_cache",
1571 sizeof(struct files_struct), 0,
1572 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1573 fs_cachep = kmem_cache_create("fs_cache",
1574 sizeof(struct fs_struct), 0,
1575 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1577 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1578 * whole struct cpumask for the OFFSTACK case. We could change
1579 * this to *only* allocate as much of it as required by the
1580 * maximum number of CPU's we can ever have. The cpumask_allocation
1581 * is at the end of the structure, exactly for that reason.
1583 mm_cachep = kmem_cache_create("mm_struct",
1584 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1585 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1586 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1587 mmap_init();
1591 * Check constraints on flags passed to the unshare system call.
1593 static int check_unshare_flags(unsigned long unshare_flags)
1595 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1596 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1597 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1598 return -EINVAL;
1600 * Not implemented, but pretend it works if there is nothing to
1601 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1602 * needs to unshare vm.
1604 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1605 /* FIXME: get_task_mm() increments ->mm_users */
1606 if (atomic_read(&current->mm->mm_users) > 1)
1607 return -EINVAL;
1610 return 0;
1614 * Unshare the filesystem structure if it is being shared
1616 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1618 struct fs_struct *fs = current->fs;
1620 if (!(unshare_flags & CLONE_FS) || !fs)
1621 return 0;
1623 /* don't need lock here; in the worst case we'll do useless copy */
1624 if (fs->users == 1)
1625 return 0;
1627 *new_fsp = copy_fs_struct(fs);
1628 if (!*new_fsp)
1629 return -ENOMEM;
1631 return 0;
1635 * Unshare file descriptor table if it is being shared
1637 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1639 struct files_struct *fd = current->files;
1640 int error = 0;
1642 if ((unshare_flags & CLONE_FILES) &&
1643 (fd && atomic_read(&fd->count) > 1)) {
1644 *new_fdp = dup_fd(fd, &error);
1645 if (!*new_fdp)
1646 return error;
1649 return 0;
1653 * unshare allows a process to 'unshare' part of the process
1654 * context which was originally shared using clone. copy_*
1655 * functions used by do_fork() cannot be used here directly
1656 * because they modify an inactive task_struct that is being
1657 * constructed. Here we are modifying the current, active,
1658 * task_struct.
1660 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1662 struct fs_struct *fs, *new_fs = NULL;
1663 struct files_struct *fd, *new_fd = NULL;
1664 struct nsproxy *new_nsproxy = NULL;
1665 int do_sysvsem = 0;
1666 int err;
1668 err = check_unshare_flags(unshare_flags);
1669 if (err)
1670 goto bad_unshare_out;
1673 * If unsharing namespace, must also unshare filesystem information.
1675 if (unshare_flags & CLONE_NEWNS)
1676 unshare_flags |= CLONE_FS;
1678 * CLONE_NEWIPC must also detach from the undolist: after switching
1679 * to a new ipc namespace, the semaphore arrays from the old
1680 * namespace are unreachable.
1682 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1683 do_sysvsem = 1;
1684 if ((err = unshare_fs(unshare_flags, &new_fs)))
1685 goto bad_unshare_out;
1686 if ((err = unshare_fd(unshare_flags, &new_fd)))
1687 goto bad_unshare_cleanup_fs;
1688 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1689 new_fs)))
1690 goto bad_unshare_cleanup_fd;
1692 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1693 if (do_sysvsem) {
1695 * CLONE_SYSVSEM is equivalent to sys_exit().
1697 exit_sem(current);
1700 if (new_nsproxy) {
1701 switch_task_namespaces(current, new_nsproxy);
1702 new_nsproxy = NULL;
1705 task_lock(current);
1707 if (new_fs) {
1708 fs = current->fs;
1709 spin_lock(&fs->lock);
1710 current->fs = new_fs;
1711 if (--fs->users)
1712 new_fs = NULL;
1713 else
1714 new_fs = fs;
1715 spin_unlock(&fs->lock);
1718 if (new_fd) {
1719 fd = current->files;
1720 current->files = new_fd;
1721 new_fd = fd;
1724 task_unlock(current);
1727 if (new_nsproxy)
1728 put_nsproxy(new_nsproxy);
1730 bad_unshare_cleanup_fd:
1731 if (new_fd)
1732 put_files_struct(new_fd);
1734 bad_unshare_cleanup_fs:
1735 if (new_fs)
1736 free_fs_struct(new_fs);
1738 bad_unshare_out:
1739 return err;
1743 * Helper to unshare the files of the current task.
1744 * We don't want to expose copy_files internals to
1745 * the exec layer of the kernel.
1748 int unshare_files(struct files_struct **displaced)
1750 struct task_struct *task = current;
1751 struct files_struct *copy = NULL;
1752 int error;
1754 error = unshare_fd(CLONE_FILES, &copy);
1755 if (error || !copy) {
1756 *displaced = NULL;
1757 return error;
1759 *displaced = task->files;
1760 task_lock(task);
1761 task->files = copy;
1762 task_unlock(task);
1763 return 0;